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Abstract. Starting from a Heegaard splitting of a three-manifold, we use Lagrangian Floer ho-
mology to construct a three-manifold invariant, in the form of a relatively Z/8Z-graded abelian
group. Our motivation is to have a well-defined symplectic side of the Atiyah-Floer Conjecture,
for arbitrary three-manifolds. The symplectic manifold used in the construction is the extended
moduli space of flat SU(2)-connections on the Heegaard surface. An open subset of this moduli
space carries a symplectic form, and each of the two handlebodies in the decomposition gives rise
to a Lagrangian inside the open set. In order to define their Floer homology, we compactify the
open subset by symplectic cutting; the resulting manifold is only semipositive, but we show that
one can still develop a version of Floer homology in this setting.

1. Introduction

Floer’s instanton homology [15] is an invariant of integral homology three-spheres Y which serves
as target for the relative Donaldson invariants of four-manifolds with boundary; see [13]. It is defined
from a complex whose generators are (suitably perturbed) irreducible flat connections in a trivial
SU(2)-bundle over Y, and whose differentials arise from counting anti-self-dual SU(2)-connections
on Y × R. There is also a version of instanton Floer homology using connections in U(2)-bundles
with c1 odd ([17], [9]), an equivariant version ([4], [5]), and several other variants which use both
irreducible and reducible flat connections [13]. More recently, Kronheimer and Mrowka [29] have
developed instanton homology for sutured manifolds; a particular case of their theory leads to a
version of instanton homology that can be defined for arbitrary closed three-manifolds.

In another remarkable paper [16], Floer associated a homology theory to two Lagrangian sub-
manifolds of a symplectic manifold, under suitable assumptions. This homology is defined from a
complex whose generators are intersection points between the two Lagrangians, and whose differ-
entials count pseudo-holomorphic strips. The Atiyah-Floer Conjecture [2] states that Floer’s two
constructions are related: for any decomposition of the homology sphere Y into two handlebodies
glued along a Riemann surface Σ, instanton Floer homology should be the same as the Lagrangian
Floer homology of the SU(2)-character varieties of the two handlebodies, viewed as subspaces of
the character variety of Σ.

As stated, an obvious problem with the Atiyah-Floer Conjecture is that the symplectic side is
ill-defined: due to the presence of reducible connections, the SU(2)-character variety of Σ is not
smooth. One way of dealing with the singularities is to use a version of Lagrangian Floer homology
defined via the symplectic vortex equations on the infinite-dimensional space of all connections.
This approach was pursued by Salamon and Wehrheim, who obtained partial results towards the
conjecture in this set-up; see [49], [56], [50]. Another approach is to avoid reducibles altogether by
using nontrivial PU(2)-bundles instead. This road was taken by Dostoglou and Salamon [14], who
proved a variant of the conjecture for mapping tori.

The goal of this paper is to construct another candidate that could sit on the symplectic side of
the (suitably modified) Atiyah-Floer Conjecture.

Here is a short sketch of the construction. Let Σ be a Riemann surface of genus h ≥ 1, and
z ∈ Σ a base point. The moduli space M (Σ) of flat connections in a trivial SU(2)-bundle over
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Σ can be identified with the character variety {ρ : π1(Σ) → SU(2)}/PU(2). The moduli space
M (Σ) is typically singular. However, Jeffrey [26] and, independently, Huebschmann [23], showed
that M (Σ) is the symplectic quotient of a different space, called the extended moduli space, by
a Hamiltonian PU(2)-action. The extended moduli space is naturally associated not to Σ, but to
Σ′, a surface with boundary obtained from Σ by deleting a small disk around z. The extended
moduli space has an open smooth stratum, which Jeffrey and Huebschmann equip with a natural
closed two-form. This form is nondegenerate on a certain open set N (Σ′), which we take as our
ambient symplectic manifold. In fact, N (Σ′) can also be viewed as an open subset of the Cartesian
product SU(2)2h ∼= {ρ : π1(Σ

′) → SU(2)}. More precisely, if we pick 2h generators for the free
groups π1(Σ

′), we can describe this subset as

N (Σ′) = {(A1, B1, . . . , Ah, Bh) ∈ SU(2)2h |
h∏

i=1

[Ai, Bi] 6= −I}.

Consider a Heegaard decomposition of a three-manifold Y as Y = H0 ∪ H1, where the han-
dlebodies H0 and H1 are glued along their common boundary Σ. There are smooth Lagrangians
Li = {π1(Hi) → SU(2)} ⊂ N (Σ′), for i = 0, 1. In order to take the Lagrangian Floer homol-
ogy of L0 and L1, care must be taken with holomorphic strips going out to infinity; indeed, the
symplectic manifold N (Σ′) is not weakly convex at infinity. Our remedy is to compactify N (Σ′)
by (non-abelian) symplectic cutting. The resulting manifold N c(Σ′) is the union of N (Σ′) and a
codimension two submanifold R. A new problem shows up here, because the natural two-form ω̃
on N c(Σ′) has degeneracies on R. Neverthless, (N c(Σ′), ω̃) is monotone, in a suitable sense. One
can deform ω̃ into a symplectic form ω, at the expense of losing monotonicity. We are thus led to
develop a version of Lagrangian Floer theory on N c(Σ′) by making use of the interplay between
the forms ω̃ and ω. Our Floer complex uses only holomorphic disks lying in the open part N (Σ′) of
N c(Σ′). We show that, while holomorphic strips with boundary on L0 and L1 can go to infinity in
N (Σ′), they do so only in high codimension, without affecting the Floer differential. The resulting
Floer homology group is denoted

HSI(Σ;H0,H1) = HF (L0, L1 in N (Σ′)),

and admits a relative Z/8Z-grading. We call it symplectic instanton homology.
Using the theory of Lagrangian correspondences and pseudo-holomorphic quilts developed in

Wehrheim-Woodward and [59] and Lekili-Lipyanskiy [30], we prove:

Theorem 1.1. The relatively Z/8Z graded group HSI(Y ) = HSI(Σ;H0,H1) is an invariant of
the three-manifold Y .

Strictly speaking, if we are interested in canonical isomorphisms, then the symplectic instanton
homology also depends on the base point z ∈ Σ ⊂ Y : as z varies inside Y , the corresponding groups
form a local system. However, we drop z from notation for simplicity.

Let us explain how we expect HSI(Y ) to be related to the traditional instanton theory on
3-manifolds. We restrict our attention to the original set-up for Floer’s instanton theory I(Y )
from [15], when Y is an integral homology sphere. It is then decidedly not the case that HSI(Y )
coincides with Floer’s theory; for example, we have HSI(S3) ∼= Z, but I(S3) = 0. Nevertheless, in
[13, Section 7.3.3], Donaldson introduced a different version of instanton homology, a Z/8Z-graded

vector field over Q denoted H̃F , which satisfies H̃F (S3) ∼= Q. (Floer’s theory I is denoted HF in
[13].) We state the following variant of the Atiyah-Floer Conjecture:

Conjecture 1.2. For every integral homology sphere Y , the symplectic instanton homology HSI(Y )⊗

Q and the Donaldson-Floer homology H̃F (Y ) from [13] are isomorphic, as relatively Z/8Z-graded
vector spaces.
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Alternatively, one could hope to relate HSI to the sutured version of instanton Floer homology
developed by Kronheimer and Mrowka in [29]. More open questions, and speculations along these
lines, are presented in Section 7.3.

Acknowledgments. We would like to thank Yasha Eliashberg, Peter Kronheimer, Peter Ozsváth,
Tim Perutz, and Michael Thaddeus for some very helpful discussions during the preparation of
this paper. Especially, we would like to thank Ryszard Rubinsztein for pointing out an impor-
tant mistake in an earlier version of this paper (in which topological invariance was stated as a
conjecture).

2. Floer homology

2.1. The monotone, nondegenerate case. Lagrangian Floer homology was originally con-
structed in [16] under some restrictive conditions, and later generalized by various authors to
many different settings. We review here its definition in the monotone case, due to Oh [39, 41],
together with a discussion of orientations following Fukaya-Oh-Ohta-Ono [18].

Let (M,ω) be a compact connected symplectic manifold. We denote by J (M,ω) the space of
compatible almost complex structures on (M,ω), and by Jt(M,ω) = C∞([0, 1],J (M,ω)) the space
of time-dependent compatible almost complex structures. Any compatible almost complex structure
J defines a complex structure on the tangent bundle TM . Since J (M,ω) is contractible, the first
Chern class c1(TM) ∈ H2(M, Z) depends only on ω, not on J . The minimal Chern number NM of
M is defined as the positive generator of the image of c1(TM) : π2(M) → Z.

Definition 2.1. Let (M,ω) be a symplectic manifold. M is called monotone if there exists κ > 0
such that

[ω] = κ · c1(TM).

In that case, κ is called the monotonicity constant.

Definition 2.2. A Lagrangian submanifold L ⊂ (M,ω) is called monotone if there exists a constant
κ > 0 such that

2[ω]|π2(M,L) = κ · µL,

where µL : π2(M,L) → Z is the Maslov index.

Necessarily if L is monotone then M is monotone with the same monotonicity constant. The
minimal Maslov number NL of a monotone Lagrangian L is defined as the positive generator of the
image of µL in Z.

From now on we will assume that M is monotone with monotonicity constant κ and that we are
given two closed, simply connected Lagrangians L0, L1 ⊂ M. These conditions imply that L0 and
L1 are monotone with the same monotonicity constant and

NL0 = NL1 = 2NM .

We assume that NM > 1, and denote N = 2NM ≥ 4. We also assume that w2(L0) = w2(L1) = 0.
After a small Hamiltonian perturbation we can arrange so that the intersection L0 ∩ L1 is

transverse. Let (Jt)0≤t≤1 ∈ Jt(M,ω). For any x± ∈ L0 ∩ L1 we denote by M̃(x+, x−) the space of
Floer trajectories (or Jt-holomorphic strips) from x+ to x−, i.e., finite energy solutions to Floer’s
equation

(1)





u : R × [0, 1] → M,

u(s, j) ∈ Lj, j = 0, 1,

∂su + Jt(u)∂tu = 0,

lim
s→±∞

u(s, ·) = x±



4 CIPRIAN MANOLESCU AND CHRISTOPHER WOODWARD

Let M(x+, x−) denote the quotient of M̃(x+, x−) by the translational action of R. For (Jt)0≤t≤1

chosen from a comeagre1 subset J reg
t (L0, L1) ⊂ Jt(M,ω) of (L0, L1)-regular, time-dependent com-

patible almost complex structures, M(x+, x−) is a smooth, finite dimensional manifold with di-
mension at non-constant u ∈ M(x+, x−) given by dim TuM(x+, x−) = I(u) − 1. We denote by
M(x+, x−)d the subset with I(u) − 1 = d (note that M(x+, x−)−1 is non-empty if x+ = x−.) As
explained in Oh [39] after shrinking J reg

t (L0, L1) further we may assume that M(x+, x−)0 is finite
and M(x+, x−)1 is compact up to breaking of trajectories:

(2) ∂M(x+, x−)1 =
⋃

y∈L0∩L1

M(x+, y)0 × M(y, x−)0.

The condition that the Lagrangians have vanishing w2 is used in defining orientations on the moduli
spaces, compatible with the identity (2). The Floer chain complex is then defined to be the free
abelian group generated by the intersection points,

CF (L0, L1) =
⊕

x∈L0∩L1

Z <x> .

The Floer differential is

∂ <x+>=
∑

u∈M(x+,x−)0

ε(u) <x−>

where ε(u) ∈ {±1} is the sign comparing the orientation of the moduli space to the canonical
orientation of a point, see for example [58].

Our assumptions allow one to define a relative Maslov index I(x, y) ∈ Z/NZ for every x, y ∈
L0 ∩ L1, such that I(x, y) ≡ I(u) (mod N) for any u ∈ M(x, y). The relative index satisfies
I(x, y) + I(y, z) = I(x, z), and induces a relative Z/NZ-grading on the chain complex.

The Lagrangian Floer homology groups HF (L0, L1) are the homology groups of CF∗(L0, L1)
with respect to the differential ∂. Equation (2) implies that ∂2 = 0. An important property
of the Floer homology groups HF (L0, L1) is that they are independent of the choice of path of
almost complex structures, and invariant under Hamiltonian isotopies of either L0 and L1. Since
H1(L0) = H1(L1) = 0, any isotopy of L0 or L1 through Lagrangians can be embedded in an ambient
Hamiltonian isotopy; see for example [44, Section 6.1] or the discussion in [52, Section 4(D)].

2.2. A relative version. Let R ⊂ M denote an symplectic hypersurface disjoint from the La-
grangians L0, L1. Each pseudo-holomorphic strip u : R × [0, 1] → M meeting R in a finite number
of points has a well-defined intersection number u·R, defined by a signed count of intersection points
of generic perturbations. The intersection numbers u ·R depend only on the relative homology class
of u, and are additive under concatenation of trajectories:

(u#v) · R = (u · R) + (v · R).

Let J (M,ω,R) denote the space of compatible almost complex structures J for which R is a
J-holomorphic submanifold. Let also Jt(M,ω,R) = C∞([0, 1],J (M,ω,R)) be the corresponding
space of time-dependent almost complex structures. If (Jt) ∈ Jt(M,ω,R), then the intersection
number of any Jt-holomorphic strip with R is a finite sum of positive local intersection numbers,
see for example Cieliebak-Mohnke [11, Proposition 7.1]. In particular, if a Jt-holomorphic strip has
trivial intersection number with R, it must be disjoint from R.

One can show that J reg
t (L0, L1, R) = J reg

t (L0, L1) ∩ Jt(M,ω,R) is comeagre in Jt(M,ω,R).
Since L0, L1 are disjoint from R, Floer homology may be defined using Jt ∈ Jt(M,ω,R). Moreover,

1A subset of a topological space is comeagre if it is the intersection of countably many open dense subsets. Many
authors use the term “Baire second category”, which however denotes more generally subsets that are not meagre,
i.e. not the complement of a comeagre subset. See for example [48, Chapter 7.8].
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for J ∈ J reg
t (L0, L1, R) the Floer differential decomposes as the sum

∂ =
∑

m≥0

∂m

where ∂m counts the trajectories with intersection number m with R. By additivity of the inter-
section numbers, the square of the Floer differential satisfies the refined equality

∑

i+j=m

∂i∂j = 0.

In particular, ∂2
0 = 0. Let HF (L0, L1;R) denote the homology of ∂0, counting Floer trajectories

disjoint from R. We call HF (L0, L1;R) the Lagrangian Floer homology of L0, L1 relative to the
hypersurface R. This kind of construction has previously appeared in the literature in various
guises; see for example Seidel’s deformation of the Fukaya category [51, p.8] or the hat version of
Heegaard Floer homology [43]. Note that HF (L0, L1;R) admits a relative Z/N ′Z-grading, where
N ′ = 2NM\R is a positive multiple of N.

The standard continuation argument then shows that HF (L0, L1;R) is independent of the choice
of Jt ∈ J reg

t (L0, L1, R). Indeed, any two such compatible almost complex structures can be joined
by a path Jt,ρ, ρ ∈ [0, 1], which equips the fiber-bundle R × [0, 1] × M → R × [0, 1] with an almost
complex structure. The part of the continuation map counting pseudoholomorphic sections with
zero intersection number with the almost complex submanifold R×[0, 1]×R defines an isomorphism
from the two Floer homology groups.

In fact, we may assume that all Floer trajectories are transverse to R by the following argument,
which holds for not-necessarily-monotone M .

For any k ∈ N, we denote by M(x+, x−; k) the subset of M(x+, x−) with a tangency of order
exactly k to R. Given an open subset W ⊂ M containing L0 and L1 with closure disjoint from
R and a J̃ ∈ J (M,ω,R), we denote by Jt(M,ω,W, J̃) the space of compatible almost complex

structures that agree with J̃ outside W.

Lemma 2.3. There exists a comeagre subset J reg
t (L0, L1,W, J̃) of Jt(M,ω,W, J̃) contained in

J reg
t (L0, L1, R) such that for any (Jt) ∈ J reg

t (L0, L1,W, J̃), the corresponding moduli space M(x+, x−)
is a smooth manifold, and for every k ∈ N and x± ∈ L0∩L1, M(x+, x−; k) is a smooth submanifold
of M(x+, x−) of codimension 2k.

Proof. For the closed case, see Cieliebak-Mohnke [11, Proposition 6.9]. The proof for Floer trajecto-
ries and compatible almost complex structures is the same, since the Lagrangians are disjoint from
R. Note that [11] uses tamed almost complex structures; however, the arguments apply equally
well to compatible almost complex structures, see [33, p.47]. �

Corollary 2.4. If (Jt) ∈ J reg
t (L0, L1,W, J̃) then for every element of M(x+, x−)0 and M(x+, x−)1,

the intersection with R is transversal and the number of intersection points equals the intersection
pairing with R.

2.3. Floer homology on semipositive manifolds. In this section we extend the definition of
Floer homology to a semipositive setting. More precisely, we assume the following:

Assumption 2.5. (i) (M,ω) is a compact symplectic manifold;
(ii) ω̃ is a closed two-form on M ;
(iii) The degeneracy locus R ⊂ M of ω̃ is a symplectic hypersurface with respect to ω;
(iv) ω̃ is monotone, i.e. [ω̃] = κ · c1(TM) for some κ > 0;
(v) The restrictions of ω̃ and ω to M \ R have the same cohomology class in H2(M \ R);
(vi) The forms ω̃ and ω themselves coincide on an open subset W ⊂ M \ R;
(vii) We are given two closed submanifolds L0, L1 ⊂ W which are Lagrangian with respect to ω

(hence Lagrangians with respect to ω̃ as well);
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(viii) L0 and L1 intersect transversely;
(ix) π1(L0) = π1(L1) = 1 and w2(L0) = w2(L1) = 0;
(x) The minimal Chern number NM\R (with respect to ω) is at least 2, so that N = 2NM\R ≥ 4;
(xi) There exists an almost complex structures that is compatible with respect to ω on M , and

compatible with respect to ω̃ on M \R, and for which R is an almost complex submanifold.

We fix such a J̃ , which we call the base almost complex structure.
(xii) Any J̃-holomorphic sphere in M of index zero (necessarily contained in R) has intersection

number with R equal to a negative multiple of 2.

Let us remark that, because J̃ is compatible with respect to ω̃ on M \R, by continuity it follows

that J̃ is semipositive with respect to ω̃ on all of M ; i.e., ω̃(v, J̃v) ≥ 0 for any m ∈ M and v ∈ TmM .

Our goal is to define a relatively Z/NZ-graded Floer homology group HF (L0, L1, J̃ ;R) using
Floer trajectories away from R and a path of almost complex structures that are small perturbations
of J̃ supported in a neighborhood of L0 ∪L1. The construction is similar to the one in Section 2.2,
but a priori it depends on J̃ .

Definition 2.6. (a) We say that J ∈ J (M,ω) is spherically semipositive if every J-holomorphic
sphere has non-negative Chern number c1(TM)[u] ≥ 0.

(b) We say that J ∈ J (M,ω) is hemispherically semipositive if J is spherically semipositive and
every J-holomorphic map (D2, ∂D2) → (M,Li), i ∈ 0, 1 has non-negative Maslov index I(u); and,
further, if I(u) = 0 then u is constant.

Given a continuous map u : (D2, ∂D2) → (M,Li), i = 0, 1, we define the canonical area of u by

Ã(u) :=
[ω̃](u)

κ
.

Lemma 2.7. We have I(u) = Ã(u), for any u : (D2, ∂D2) → (M,Li).

Proof. Since Li is simply connected, we can find a disk v contained in Li with boundary equal
to that of u, but with reversed orientation. Let u#v : S2 → M the map formed by gluing. By
additivity of Maslov index

I(u) = I(u) + I(v) = I(u#v) = 2
[ω̃](u#v)

κ
= 2

[ω̃](u)

κ
,

since both the index and the area of v are trivial. �

We define a strip with decay near the ends to be a continuous map

(3) u : (R × [0, 1], R × {0}, R × {1}) → (M,L0, L1)

such that lims→∞ u(s, t), lims→−∞ u(s, t) ∈ L0 ∩ L1 exist. Every strip with decay near the ends
admits a relative homology class in H2(M,L0∪L1), and therefore has a well-defined canonical area

Ã(u) :=
[ω̃](u)

κ

and a Maslov index I(u).
The following lemma is [39, Proposition 2.7]:

Lemma 2.8. Strips (3) satisfy an index-action relation

I(u) = Ã(u) + C,

for some constant C depending only on the endpoints of u.
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Proof (sketch). Pick u0 a reference strip with the same endpoints as u. Using the fact that π1(L0) =
1, we can find a map v : D2 → L0 such that half of its boundary is taken to the image of u0(R×{0})
and the other half to the image of u(R × {0}). By adjoining v to u and u0 (the latter taken with
reversed orientation), we obtain a disk (−u0)#v#u with boundary in L1. Applying Lemma 2.7 to
this disk, and using the additivity of the index and canonical action under gluing, we obtain

I(u) − I(u0) = Ã(u) − Ã(u0).

We then take C = I(u0) − Ã(u0). �

As in Section 2.2, J (M,ω,W, J̃) denotes the space of compatible almost complex structures

agreeing with J̃ outside W. We let Jt(M,ω,W, J̃) = C∞([0, 1],J (M,ω,W, J̃).

Lemma 2.9. Every J in J (M,ω,W, J̃) is hemispherically semipositive.

Proof. Since ω̃ agrees with ω on W, we have ω̃(v, Jv) ≥ 0 for every v ∈ TmM, where m ∈ W. Since

J agrees with J̃ outside W, we in fact have ω̃(v, Jv) ≥ 0 everywhere. Nonnegativity of I then
follows from the monotonicity of ω̃ (for spheres) and Lemma 2.7 for disks. If a J-holomorphic disk
u has I(u) = 0, its canonical area must be zero. Since J is compatible with respect to ω̃ on M \R,
the disk should be contained in R. However, this is impossible, because the disk has boundary
on a Lagrangian Li with Li ∩ R = ∅. (By contrast, we could have I(u) = 0 for non-constant

J̃-holomorphic spheres contained in R.) �

Let J reg
t (L0, L1,W, J̃) ⊂ Jt(M,ω,W, J̃) ∩ J reg

t (L0, L1, R) be as in Lemma 2.3.

Proposition 2.10. Let M,L0, L1, ω̃, ω, J̃ satisfy Assumption 2.5. If we choose (Jt) ∈ J reg
t (L0, L1,

W, J̃), then the relative Floer differential counting trajectories disjoint from R is finite and satis-

fies ∂2
0 = 0. The resulting (relatively Z/NZ-graded) Floer homology groups HF∗(L0, L1, J̃ ;R) are

independent of the choice of path (Jt), and are preserved under Hamiltonian isotopies of either
Lagrangian, as long as Assumption 2.5 is still satisfied.

Proof. Using parts (v) and (vi) of Assumption 2.5, we see that on the complement of R we have
ω − ω̃ = da, for some a ∈ Ω1(M \ R) satisfying da = 0 on the neighborhood W of L0 ∪ L1. Let u
be a pseudo-holomorphic strip whose image is contained in M \ R. Then

E(u) − κÃ(u) =

∫

R×[0,1]
u∗(ω − ω̃) =

∫

R×[0,1]
d(u∗a) =

∫

γ0

u∗a −

∫

γ1

u∗a,

where γi is a path in the Lagrangian Li joining the endpoints of u. Since da = 0 on Li, Stokes’
Theorem implies that

∫
γ u∗a is independent of γ; it just depends on the endpoints. Therefore,

E(u) − κÃ(u) only depends on the endpoints of u. Together with Lemma 2.8 this gives an energy
index relation as follows: for any u in M \ R, we have

I(u) = E(u)/κ + C ′,

where C ′ is a constant depending on the endpoints of u. Since there is a finite number of possibilities
for these endpoints, it follows that there exists a constant K > 0 such that the energy of any such
trajectory u is bounded above by K.

Let (Jt) ∈ J reg
t (L0, L1,W, J̃). By Proposition 2.9 each Jt is hemispherically semipositive. We

define the Floer differential by counting Jt-holomorphic strips in M \R. By Lemma 2.3, a sequence
of such strips cannot converge to a strip that intersects R, unless further bubbling occurs.

We seek to rule out sphere bubbles and disk bubbles in the boundary of the zero and one-
dimensional moduli spaces of such strips (i.e. those of index 1 or 2). Assume that we have
a sequence (uν) of pseudo-holomorphic strips of index 1 or 2. Because of the energy bound, a
subsequence Gromov converges to a limiting configuration consisting of a broken trajectory and
a collection of disk and sphere bubbles. Since the Jt’s are hemispherically semipositive, it follows
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that the indices of the bubbles are nonnegative. Further, by part (x) of Assumption 2.5, the index
of each bubble is a multiple of 4. Since we started with a configuration of index at most 2, all
bubbles have index zero. By the definition of hemispherical semipositivity, the index zero disks are
constant.

By item (xii) of Assumption 2.5, each index sphere bubble contributes a multiple of two to the
intersection number with R. By Lemma 2.3, the intersection number of the limiting trajectory u∞

(with sphere bubbles removed) is given by the number of intersection points, and each of these is
transverse. Hence at most half of the intersection points with R have sphere bubbles attached. In
particular, there exists a point z ∈ R× [0, 1] such that u∞(z) ∈ R is a transverse intersection point
but z is not in the bubbling set. Since the intersection points are stable under perturbation, it
follows that u∞ cannot be a limit of Floer trajectories disjoint from R. Indeed, by definition this
convergence is uniform in all derivatives on the complement of the bubbling set and, in particular,
on an open subset containing z. Since there are no sphere bubbles, there cannot be any disk bubbles
either, since at least one disk bubble would have to be non-constant. Hence the limit is a (possibly
broken) Floer trajectory.

The rest of the argument is then as in the monotone case. In particular, the statement about the
invariance of HF (L0, L1, J̃ ;R) follows from the usual continuation arguments in Floer theory. �

Remark 2.11. If M,L0, L1, ω̃, ω, J̃ satisfy Assumption 2.5, we can define HF∗(L0, L1, J̃ ;R) even
if L0 and L1 do not intersect transversely: one can simply isotope one of the Lagrangians to achieve
transversality, and take the resulting Floer homology.

Remark 2.12. A priori the construction of the Floer homologies HF (L0, L1, J̃ ;R) depends on the

open set W, because (Jt) is chosen from the corresponding set J reg
t (L0, L1,W, J̃). However, suppose

we have another open set W ′ ⊂ M \ R satisfying L0 ∩ L1 ⊂ W ′ and ω = ω̃ on W ′. Note that

(4) J reg
t (L0, L1,W, J̃) ∩ J reg

t (L0, L1,W
′, J̃) = J reg

t (L0, L1,W ∩W ′, J̃),

because the regularity condition in Lemma 2.3 is intrinsic for (Jt) (it boils down to the surjectivity of
certain linear operators). It follows that by choosing (Jt) in the (necessarily nonempty) intersection

(4), the Floer homologies HF (L0, L1, J̃ ;R) defined from W and W ′ are isomorphic. Thus, we can
safely drop W from the notation.

Remark 2.13. A smooth variation of the base almost complex structure J̃ induces an isomorphism
between the respective Floer homologies HF (L0, L1, J̃ ;R). However, if we are only given ω̃ and ω, it

is not clear whether the space of possible J̃ ’s is contractible. This justifies keeping J̃ in the notation
HF (L0, L1, J̃ ;R).

3. Moduli spaces

3.1. Notation. Throughout the rest of the paper G will denote the Lie group SU(2), and Gad =
PU(2) = SO(3) the corresponding group of adjoint type. We identify the Lie algebra g = su(2)
with its dual g∗ by using the basic invariant bilinear form

〈·, ·〉 : g × g → R, 〈A,B〉 = −Tr (AB).

The maximal torus T ∼= S1 ⊂ G consists of the diagonal matrices diag(e2πti, e−2πti), t ∈ R. We let
T ad = T/(Z/2Z) ⊂ Gad and identify their Lie algebra t with R by sending diag(i,−i) to 1. Under
this identification, the restriction of the inner product 〈·, ·〉 to t is twice the Euclidean metric. We
use this inner product to identify t with t∗ as well. Finally, we let t⊥ denote the orthocomplement
of t in g.

Conjugacy classes in g (under the adjoint action of G) are parametrized by the positive Weyl
chamber t+ = [0,∞). Indeed, the adjoint quotient map

Q : g → [0,∞)
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takes θ ∈ g to t such that θ is conjugate to diag(ti,−ti).
On the other hand, conjugacy classes in G are parametrized by the fundamental alcove A =

[0, 1/2]. Indeed, for any g ∈ G, there is a unique t ∈ [0, 1/2] such that g is conjugate to the diagonal
matrix diag(e2πti, e−2πti).

3.2. The extended moduli space. We review here the construction of the extended moduli space
([26], [23]), mostly following Jeffrey’s gauge-theoretic approach from [26].

Let Σ be a compact connected Riemann surface of genus h ≥ 1. Fix some z ∈ Σ and let Σ′ denote
the complement in Σ of a small disk around z, so that S = ∂Σ′ is a circle. Identify a neighborhood
of S in Σ′ with [0, ε) × S, and let s ∈ R/2πZ be the coordinate on the circle S.

Consider the space A (Σ′) ∼= Ω1(Σ′) ⊗ g of smooth connections on the trivial G-bundle over Σ′,
and set

A
g(Σ′) = {A ∈ A (Σ′) | FA = 0, A = θds on some neighborhood of S for some θ ∈ g}.

The space A g(Σ′) is acted on by the gauge group

G
c(Σ′) = {f : Σ′ → G) | f = I on some neighborhood of S}.

The extended moduli space is then defined as

M
g(Σ′) = A

g(Σ′)/G c(Σ′).

A more explicit description of the extended moduli space is obtained by fixing a collection of
simple closed curves αi, βi (i = 1, . . . , h) on Σ′, based at a point in S, such that π1(Σ

′) is generated

by their equivalence classes and the class of a curve γ around S, with the relation:
∏h

i=1[αi, βj ] = γ.
To each connection on Σ′ one can then associate the holonomies Ai, Bi ∈ G around the loops αi

and βi, respectively, i = 1, . . . , h. This allows us to view the extended moduli space as

(5) M
g(Σ′) = {(A1, B1, . . . , Ah, Bh) ∈ G2h, θ ∈ g |

h∏

i=1

[Ai, Bi] = exp(2πθ)}.

There is a proper map
Φ : M

g(Σ′) → g

which takes the class [A] of a connection A to the value θ = Φ(A) such that A|S = θds. (This
corresponds to the variable θ appearing in (5).) There is also a natural G-action on M g(Σ′) given
by constant gauge transformations. With respect to the identification (5), it is

(6) g ∈ G : (Ai, Bi, θ) → (gAig
−1, gBig

−1,Ad(g)θ).

Observe that this action factors through Gad. The map Φ is equivariant with respect to this
action on its domain, and the adjoint action on its target. Set

Φ̃ : M
g(Σ′) → [0,∞), Φ̃ = Q ◦ Φ.

Now consider the subspace

M
g
s (Σ′) = {x ∈ M

g(Σ′) | Φ̃(x) 6∈ Z \ {0} }.

Proposition 3.1. (a) The space M
g
s (Σ′) is a smooth manifold of real dimension 6h.

(b) Every nonzero element θ ∈ g is a regular value for the restriction of Φ to M
g
s (Σ′).

Proof. Part (a) is proved in [26, Theorem 2.7]. We copy the proof here, and explain how the same
arguments can be used to deduce part (b) as well.

Consider the commutator map c : G2h → G, c(A1, B1, . . . , Ah, Bh) =
∏h

i=1[Ai, Bi]. For ρ =

(A1, B1, . . . , Ah, Bh) ∈ G2h, we denote by Z(ρ) ⊂ G its stabilizer (under the diagonal action by
conjugation). Let z(ρ) ⊂ g be the Lie algebra of Z(ρ). Note that Z(ρ) = {±I} unless c(ρ) = I.

The image of dcρ · c(ρ)−1 is z(ρ)⊥; see for example [19, proof of Proposition 3.7]. In particular,
the differential dcρ is surjective whenever c(ρ) 6= I.
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Define the maps

f1 : G2h × g → G, f1(ρ, θ) = c(ρ) · exp(−2πθ)

and

f2 : G2h × g → G × g, f2(ρ, θ) = (f1(ρ, θ), θ).

On the extended moduli space M g(Σ′) = f−1
1 (I), we have

(df1)(ρ,θ) = (dc)ρ exp(−2πθ) + 2π exp(2πθ)(d exp)−2πθ.

When c(ρ) = exp(2πθ) 6= I, we have that (dc)ρ is surjective, hence so is (df1)(ρ,θ). Also, when
θ = 0, (d exp)−2πθ is just the identity, so again (df1)(ρ,θ) is surjective. Claim (a) follows.

Next, observe that

(df2)(ρ,θ)(α, λ) = ((df1)(ρ,θ)(α, λ), λ) = (dcρ(α) · exp(−2πθ) + l(λ), λ),

where l(λ) does not depend on α. Hence, when c(ρ) = exp(2πθ) 6= I, the differential (df2)(ρ,θ) is
surjective. This implies that any θ ∈ g with Q(θ) 6∈ Z is a regular value for Φ|M g

s (Σ′). Since the

values θ ∈ g with Q(θ) ∈ Z \ {0} are not in the image of Φ|M g
s (Σ′), they are automatically regular

values, and claim (b) follows. �

Consider also the subspace

N (Σ′) = Φ̃−1
(
[0, 1/2)

)
⊂ M

g
s (Σ′).

Note that the restriction of the exponential map θ → exp(2πθ) to Q−1
[
0, 1/2

)
is a diffeomorphism

onto its image G \ {−I}. Therefore, using the identification (5), we can describe N (Σ′) as

(7) N (Σ′) =

{
(A1, B1, . . . , Ah, Bh) ∈ G2h

∣∣
h∏

i=1

[Ai, Bi] 6= −I

}
.

3.3. Hamiltonian actions. Let K be a compact, connected Lie group with Lie algebra k. We let
K act on the dual Lie algebra k∗ by the coadjoint action.

A pre-symplectic manifold is a smooth manifold M together with a closed form ω ∈ Ω2(M), pos-
sibly degenerate. A Hamiltonian pre-symplectic K-manifold (M,ω,Φ) is a pre-symplectic manifold
(M,ω) together with a K-equivariant smooth map Φ : M → k∗ such that for any ξ ∈ g, if Xξ

denotes the vector field on M generated by the one-parameter subgroup {exp(−tξ)|t ∈ R} ⊂ K,
we have

d
(
〈Φ, ξ〉

)
= −ι(Xξ)ω.

Under these hypotheses, the K-action on M is called Hamiltonian, and Φ is called the moment
map. The quotient

M//K := Φ−1(0)/K

is named the pre-symplectic quotient of M by K. The following result is known as the Reduction
Theorem ([32], [36], [20, Theorem 5.1]):

Theorem 3.2. Let (M,ω,Φ) be a Hamiltonian pre-symplectic K-manifold. Suppose that the level
set Φ−1(0) is a smooth manifold on which K acts freely. Let i : Φ−1(0) →֒ M be the inclusion and
π : Φ−1(0) → M//K the projection. Then there exists a unique closed form ωred on the smooth
manifold M//K with the property that i∗ω = π∗ωred. The reduced form ωred is non-degenerate on
M//K if and only if ω is nondegenerate on M at the points of Φ−1(0).

Furthermore, if M admits another Hamiltonian K ′-action (for some compact Lie group K ′) that
commutes with the K-action, then (M//K,ωred) has an induced Hamiltonian K ′-action.

When the form ω is symplectic, (M,ω,Φ) is simply called a Hamiltonian K-manifold. In this
case we can drop the condition that Φ−1(0) is smooth from the hypotheses of Theorem 3.2; indeed,
this condition is automatically implied by the assumption that K acts freely on Φ−1(0).
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3.4. A closed two-form on the extended moduli space. According to [26, Equation (2.7)],
the tangent space to the smooth stratum M

g
s (Σ′) ⊂ M g(Σ′) at some class [A] can be naturally

identified with

(8) T[A]M
g
s (Σ′) =

Ker(dA : Ω1,g(Σ′) → Ω2
c(Σ

′) ⊗ g)

Im(dA : Ω0
c(Σ

′) ⊗ g → Ω1,g(Σ′))
,

where Ωp
c(Σ′) denotes the space of p-forms compactly supported in the interior of Σ′, and Ω1,g(Σ′)

denotes the space of 1-forms A such that A = θds near S = ∂Σ′ for some θ ∈ g.
Define a bilinear form ω on Ω1,g(Σ′) by

ω(a, b) =

∫

Σ′

Tr (a ∧ b),

where the wedge operation on g-valued forms combines the usual exterior product with the inner
product on g. Stokes’ Theorem implies that ω descends to a bilinear form on the tangent space to
M

g
s (Σ′) described in Equation (8) above. Thus we can think of ω as a two-form on M

g
s (Σ′).

Theorem 3.3 (Huebschmann-Jeffrey). The two-form ω ∈ Ω2(M g
s (Σ′)) is closed. It is nonde-

generate when restricted to N (Σ′) ⊂ M
g
s (Σ′). Moreover, the restriction of the Gad-action (6) to

M
g
s (Σ′) is Hamiltonian with respect to ω. Its moment map is the restriction of Φ to N (Σ′), which

we henceforth also denote by Φ.

For the proof, we refer to Jeffrey [26]; see also [34].
Theorem 3.3 says that (M g

s (Σ′), ω,Φ) is a Hamiltonian pre-symplectic Gad-manifold in the sense
of Section 3.3, and that its subset (N (Σ′), ω,Φ) is a (symplectic) Hamiltonian Gad-manifold. The
symplectic quotient

N (Σ′)//Gad = Φ−1(0)/Gad = M (Σ)

is the usual moduli space of flat G-connections on Σ, with the symplectic form (on its smooth
stratum) being the one constructed by Atiyah and Bott [3]. If Σ is given a complex structure,
M (Σ) can also be viewed as the moduli space of semistable bundles of rank two on Σ with trivial
determinant, cf. [38].

For an alternate (group-theoretic) description of the form ω on N (Σ′), see [27], [23], or [24].
Let us mention two results about the two-form ω. The first is proved in [35]:

Theorem 3.4 (Meinrenken-Woodward). (N (Σ′), ω) is a monotone symplectic manifold, with
monotonicity constant 1/4.

The second result is:

Lemma 3.5. The cohomology class of the symplectic form ω ∈ Ω2(N (Σ′)) is integral.

Proof. The extended moduli space M g(Σ′) embeds in the moduli space M (Σ′) of all flat connections
on Σ′. The latter is an infinite dimensional Banach manifold with a natural symplectic form that
restricts to ω on M

g
s (Σ′). Moreover, Donaldson [12] showed that M (Σ′) has the structure of a

Hamiltonian LG-manifold, where LG = Map(S1, G) is the loop group of G.
Recall that a pre-quantum line bundle E for a symplectic manifold (M,ω) is a Hermitian line

bundle equipped with an invariant connection ∇ whose curvature is −2πi times the symplectic
form. If M is finite dimensional, this implies that [ω] = c1(E) ∈ H2(M ; Z). In our situation,
a pre-quantum line bundle on M = N (Σ′) can be obtained by restricting the well-known LG-
equivariant pre-quantum line bundle on the infinite-dimensional symplectic manifold M (Σ′). We
refer the reader to [37], [46] and [60] for the construction of the latter; see also [34]. �

Corollary 3.6. The minimal Chern number of the symplectic manifold N (Σ′) is a positive multiple
of 4.

Proof. Use Theorem 3.4 and Lemma 3.5. �
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3.5. Other versions. Although our main interest lies in the extended moduli space M g(Σ′) and
its open subset N (Σ′), in order to understand them better we need to introduce two other moduli
spaces. Both of them appeared in [26], where their main properties are spelled out. An alternative
viewpoint on them is given in [34, Section 3.4.2], where they are interpreted as cross-sections of the
full moduli space M (Σ′).

The first auxiliary space that we consider is the toroidal extended moduli space:

M
t(Σ′) = Φ−1(t) ⊂ M

g(Σ′).

It has a smooth stratum

M
t
s(Σ

′) = {x ∈ M
t(Σ′) | Φ̃(x) 6∈ Z}.

The restrictions of ω and Φ to M t
s(Σ

′) turn it into a Hamiltonian pre-symplectic T ad-manifold. On

the open subset M t(Σ′) ∩ Φ̃−1(0, 1/2), the two-form is nondegenerate.
The second space is the twisted extended moduli space from [26, Section 5.3]. In terms of coor-

dinates, it is

M
g
tw(Σ′) =

{
(A1, B1, . . . , Ah, Bh) ∈ G2h, θ ∈ g

∣∣∣
h∏

i=1

[Ai, Bi] = − exp(2πθ)
}

.

This space admits a Gad-action just like M g(Σ′), and a natural projection Φtw : M
g
tw → g. Set

Φ̃tw = Q ◦ Φtw. The smooth stratum of M
g
tw(Σ′) is

M
g
tw,s(Σ

′) =
{

x ∈ M
g
tw(Σ′)

∣∣∣ Φ̃tw(x) 6∈ Z +
1

2

}
.

Furthermore, M
g
tw,s(Σ

′) admits a natural two-form ωtw, which turns it into a Hamiltonian pre-

symplectic Gad-manifold, with moment map Φtw. The restriction of ωtw to the subspace

Ntw(Σ′) = Φ̃−1
tw

(
[0, 1/2)

)

is nondegenerate.
Observe that the subspace Φ−1

tw (t) ⊂ M
g
tw(Σ′) can be identified with the toroidal extended moduli

space M t(Σ′), via the map

(A1, B1, . . . , Ah, Bh, t) → (A1, B1, . . . , Ah, Bh, 1/2 − t).

This map is a diffeomorphism of the smooth strata, and is compatible with the restrictions of the
pre-symplectic forms ω and ωtw.

3.6. The structure of degeneracies of M
g
s (Σ′). Recall from Theorem 3.3 that the degeneracy

locus of the pre-symplectic manifold M
g
s (Σ′) is contained in the preimage Φ̃−1(1/2). We seek to

understand the structure of the degeneracies.
Let µ = diag(i/2,−i/2). Note that the stabilizer Gad of exp(2πµ) = −I is bigger than the

stabilizer T ad = S1 of µ. Thus, we have an obvious diffeomorphism

Φ̃−1(1/2) ∼= Oµ × Φ−1(µ),

where Oµ denotes the coadjoint orbit of µ. The first factor Oµ is diffeomorphic to the flag variety

Gad/T ad ∼= P1. The second factor Φ−1(µ) is smooth by Proposition 3.1 (b).
There is a residual T ad-action on the space Φ−1(µ). Thus Φ−1(µ) is an S1-bundle over

Mµ(Σ′) = Φ−1(µ)/T ad.

Finally, Mµ(Σ′) is a P1-bundle over

M−I(Σ
′) =

{
(A1, B1, . . . , Ah, Bh) ∈ G2h|

h∏

i=1

[Ai, Bi] = −I
}

/Gad.
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This last space M−I(Σ
′) can be identified with the moduli space Mtw(Σ) of projectively flat

connections on E with fixed central curvature, where E is a U(2)-bundle of odd degree over the
closed surface Σ = Σ′ ∪ D2. Alternatively, it is the moduli space of rank two stable bundles on
Σ having fixed determinant of odd degree, cf. [38], [3]. It can also be viewed as the symplectic
quotient of the twisted extended moduli space from Section 3.5:

Mtw(Σ) = Ntw(Σ′)//Gad = Φ−1
tw (0)/Gad.

We have described a string of fibrations that gives a clue to the structure of the space Φ̃−1(1/2).

Let us now reshuffle these fibrations and view Φ̃−1(1/2) as a Gad-bundle over the space Oµ ×
M−I(Σ

′). Its fiberwise tangent space (at any point) is g, which can be decomposed as t⊕ t⊥, with
t⊥ ∼= C.

Proposition 3.7. Let x ∈ Φ̃−1(1/2) ⊂ M
g
s (Σ′). The null space of the form ω at x consists of the

fiber directions corresponding to t⊥ ⊂ g.

Proof. Our strategy for proving Proposition 3.7 is to reduce it to a similar statement for the
toroidal extended moduli space M t(Σ′), and then study the latter via its embedding into the
twisted extended moduli space M

g
tw(Σ′).

First, note that by Gad-invariance, we can assume without loss of generality that Φ(x) = µ. The
symplectic cross-section theorem [21] says that, near Φ−1(µ), the two-form on M g(Σ′) is obtained
from the one on M t(Σ′) = Φ−1(t) by a procedure called symplectic induction. (Strictly speak-
ing, symplectic induction is described in [21] for nondegenerate forms; however, it applies to the
Hamiltonian pre-symplectic case as well.) More concretely, we have a (noncanonical) decomposition

(9) TxM
g(Σ′) = TxM

t(Σ′) ⊕ Tµ(Oµ)

such that ω|x is the direct sum of its restriction to the first summand in (9) with the canonical
symplectic form on the second summand.

Recall that we are viewing Φ̃−1(1/2) as a G-bundle over Oµ × M−I(Σ
′). Its intersection with

M t(Σ′) is Φ−1(µ), which is the part of the Gad-bundle that lies over {µ} × M−I(Σ
′). The decom-

position (9) implies that, in order to prove the final claim about the null space of ω|x, it suffices to
show that the null space of ω|M t(Σ′) at x consists of the fiber directions corresponding to t⊥ ⊂ g.

Let us use the observation in the last paragraph of Section 3.5, and view M t(Σ′) as Φ−1
tw (t) ⊂

M
g
tw(Σ′). The point x now lies in Φ−1

tw (0).
Recall from Section 3.5 that the two-form M

g
tw(Σ′) is nondegenerate near Φ−1

tw (0). Further, it

is easy to check that the action of Gad on Φ−1
tw (0) is free. This action is Hamiltonian; hence, the

quotient Φ−1
tw (0)/Gad = M−I(Σ

′) is smooth, and the reduced two-form on it is nondegenerate.
Further, there is a (noncanonical) decomposition:

(10) TxM
g
tw(Σ′) ∼= π∗Tπ(x)M−I(Σ

′) ⊕ g ⊕ g∗,

where π : Φ−1
tw (0) → M−I(Σ

′) is the quotient map. (See for example Equation (5.6) in [20].) The
two-form ωtw at x is the direct summand of the reduced form at π(x) and the natural pairing of
the two last factors in (10).

With respect to the decomposition (10), the subspace TxM t(Σ′) ⊂ TxM
g
tw(Σ′) corresponds to

TxM
t(Σ′) ∼= π∗Tπ(x)M−I(Σ

′) ⊕ g ⊕ t∗.

Therefore, the null space of ωtw on TxM t(Σ′) is the null space of the restriction of the natural
pairing on g ⊕ g∗ to g ⊕ t∗. This is g/t ∼= t⊥, as claimed. �
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4. Symplectic cutting

4.1. Abelian symplectic cutting. We review here Lerman’s definition of (abelian) symplectic
cutting, following [31]. Consider a symplectic manifold (M,ω) with a Hamiltonian S1-action and
moment map Φ : M → R. Pick some λ ∈ R. The diagonal S1-action on the space M×C− (endowed
with the standard product symplectic structure, where C− is C with negative the usual area form)
is Hamiltonian with respect to the moment map

Ψ : M × C− → R, Ψ(m, z) = Φ(m) +
1

2
|z|2 − λ.

The symplectic quotient

M≤λ := Ψ−1(0)/S1 ∼= Φ−1(λ)/S1 ∪ Φ−1(−∞, λ)

is called the symplectic cut of M at λ. If the action of S1 on Φ−1(λ) is free, then M≤λ is a symplectic
manifold, and it contains Φ−1(λ)/S1 (with its reduced form) as a symplectic hypersurface, i.e. a
symplectic submanifold of real codimension two.

Remark 4.1. The normal bundle to Φ−1(λ)/S1 in M≤λ is the complex line bundle whose associated
circle bundle is Φ−1(λ) → Φ−1(λ)/S1.

Remark 4.2. Symplectic cutting is a local construction. In particular, if (M,ω) is symplectic and
Φ : M → R is a continuous map that induces a smooth Hamiltonian S1-action on an open set
U ⊂ M containing Φ−1(λ), then we can still define M≤λ as the union (M \ U) ∪ U≤λ.

Remark 4.3. If M has an additional Hamiltonian K-action (for some other compact group K)
commuting with that of S1, then M≤λ has an induced Hamiltonian K-action. This follows from
the similar statement for symplectic reduction, cf. Theorem 3.2.

4.2. Non-abelian symplectic cutting. An analog of symplectic cutting for non-abelian Hamil-
tonian actions was defined in [61]. We explain here the case of Hamiltonian PU(2)-actions, since
this is all we need for our purposes.

We keep the notation from Section 3.1, with G = SU(2) and Gad = PU(2). Let (M,ω,Φ) be a
Hamiltonian Gad-manifold. Since g and g∗ are identified using the bilinear form, from now on we
will view the moment map Φ as taking values in g. Recall that

Q : g → g/Gad ∼= [0,∞)

denotes the adjoint quotient map. The map Q is continuous, and is smooth outside Q−1(0). Set

Φ̃ = Q ◦ Φ.

On the complement U = U of Φ−1(0) in M, the map Φ̃ induces a Hamiltonian S1-action.
Explicitly, u ∈ S1 = R/2πZ acts on m ∈ U by

(11) m → exp
(
u ·

Φ(m)

2Φ̃(m)

)
· m.

This action is well-defined because exp(πH) = I in Gad. We can describe it alternatively as
follows: on Φ−1(t) ⊂ M, it coincides with the action of T ad ⊂ Gad; then it is extended to all of M
in a Gad-equivariant manner.

Fix λ > 0. Using the local version (from Remark 4.2) of abelian symplectic cutting for the action
(11), we define the non-abelian symplectic cut of M at λ to be

M≤λ = Φ−1(0) ∪ U≤λ = M<λ ∪ R,

where

M<λ = Φ−1
1 ([0, λ)), Rλ = Φ̃−1(λ)/S1.
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If S1 acts freely on Φ̃−1(λ), then M≤λ is a smooth manifold. It can be naturally equipped with
a symplectic form ω≤λ, coming from the symplectic form ω on M. In fact, M≤λ is a Hamiltonian
Gad-manifold, cf. Remark 4.3. With respect to the form ω≤λ, R is a symplectic hypersurface in
M≤λ.

4.3. Monotonicity. We aim to find a condition that guarantees that a non-abelian symplectic cut
is monotone. As a toy model for our future results, we start with a general fact about symplectic
reduction:

Lemma 4.4. Let K be a Lie group with H2(K; R) = 0, and let (M,ω,Φ) be a Hamiltonian K-
manifold that is monotone, with monotonicity constant κ. Assume that the moment map Φ is proper,
and the K-action on Φ−1(0) is free. Then, the symplectic quotient M//K = Φ−1(0)/K (with the
reduced symplectic form ωred) is also monotone, with the same monotonicity constant κ.

Proof. Consider the Kirwan map from [28]:

H2
K(M ; R) → H2(M//K; R),

which is obtained by composing the map H2
K(M ; R) → H2

K(Φ−1(0); R) (induced by the inclusion)
with the Cartan isomorphism H2

K(Φ−1(0); R) ∼= H2(M//K; R). The Kirwan map takes the first

equivariant Chern class cK
1 (TM) to c1(T (M//K)), and the equivariant two-form ω̃ = ω − Φ to

ωred. Since H2
K(M ; R) ∼= H2(M ; R), with cK

1 corresponding to c1 and [ω̃] to [ω]), the conclusion
follows. �

Let us now specialize to the case when K = Gad = PU(2). For λ ∈ (0,∞), let Oλ
∼= P1 be the

coadjoint orbit of diag(iλ,−iλ), endowed with the Kostant-Kirillov-Souriau form ωKKS(λ). It has
a Hamiltonian Gad-action with moment map the inclusion ι : Oλ → g. Let γ = P.D.(pt) denote the
generator of H2(Oλ; Z) ⊂ H2(Oλ; R), so that c1(Oλ) = 2γ. Then c1(Oλ) = [ωKKS(1)], [6, Section
7.5,Section 7.6], and so [ωKKS(λ)] = 2λγ.

If (M,ω,Φ) is a Hamiltonian Gad-manifold, let M × Oλ
− denote the Hamiltonian manifold

(M ×Oλ, ω ×−ωKKS(λ),Φ − ι). The reduction of M with respect to Oλ is defined as

Mλ = (M ×Oλ
−)//Gad = Φ−1(Oλ)/Gad.

If the Gad-action on Φ−1(Oλ) is free, the quotient Mλ is smooth and admits a natural symplectic
form ωλ. It can be viewed as Φ−1(diag(iλ,−iλ))/T ad; we let Eλ denote the complex line bundle on
Mλ associated to the respective T ad-fibration.

Lemma 4.5. Let (M,ω,Φ) be a Hamiltonian Gad-manifold such that the moment map Φ is proper,
and the action of Gad is free outside Φ−1(0). Assume that M is monotone, with monotonicity
constant κ. Then the cohomology class of the reduced form ωλ is given by the formula

[ωλ] = κ · c1(TMλ) + (λ − κ) · c1(Eλ).

Proof. First, note that for any Hamiltonian Gad-manifold M we have H2
Gad(M ; R) ∼= H2(M ; R),

because H i(BGad; R) = 0 for i = 1, 2. Thus the Kirwan map can viewed as going from H2(M ; R)
into H2(M//Gad; R).

Let us consider the Kirwan map for the manifold M ×Oλ
−, whose symplectic reduction is Mλ.

By abuse of notation, we denote classes in H2(M) or H2(Oλ
−) the same as their pullbacks to

H2(M ×Oλ
−).

Just as in the proof of Lemma 4.4, we get that the Kirwan map takes [ω] − [ωKKS(λ)] =
κc1(TM) − 2λγ to the reduced form [ωλ], and c1(TM) − c1(TOλ) = c1(TM) − 2γ to the reduced
Chern class c1(TMλ). Note also that the image of c1(TOλ

−) = −2γ under the Kirwan map is
c1(Eλ). Hence:

[ωλ] − κ · c1(TMλ) = (λ − κ) · c1(Eλ),

as desired. �
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We are now ready to study monotonicity for non-abelian cuts:

Proposition 4.6. Let Gad = PU(2), and (M,ω,Φ) be a Hamiltonian Gad-manifold that is mono-
tone with monotonicity constant κ > 0. Assume that the moment map Φ is proper, and that Gad

acts freely outside Φ−1(0). Then the symplectic cut M≤λ at the value λ = 2κ ∈ (0,∞) is also
monotone, with the same monotonicity constant κ.

Proof. Recall that the symplectic cut M≤λ is the union of the open piece M<λ and the hypersurface
Rλ = Φ−1(Oλ)/S1. Note that there is a natural symplectomorphism

(12) Rλ

∼=
−−−−→ Oλ × Mλ, m →

(
Φ(m), [m]

)
.

The inverse to this symplectomorphism is given by the map ([g], [m]) → [gm].
By Remark 4.1, the normal bundle to Rλ is the line bundle associated to the defining T ad-bundle

on Rλ. We denote this T ad-bundle by Nλ; it is the product of Gad → Gad/T ad ∼= Oλ on the Oλ

factor and the circle bundle of Eλ on the Mλ factor.
Let ν(Rλ) be a regular neighborhood of Rλ, so that the intersection M<λ ∩ ν(Rλ) admits a

deformation retract into a copy of Nλ.
We have a Mayer-Vietoris sequence

· · · → H1(M<λ) ⊕ H1(ν(Rλ)) → H1(Nλ) → H2(M≤λ) → H2(M<λ) ⊕ H2(ν(Rλ)) → . . .

Note that the first Chern class of the bundle Nλ → Rλ is nontorsion in H2(Rλ), because it is
so on the Oλ factor. Hence, the map H1(ν(Rλ); R) → H1(Nλ; R) is onto. The Mayer-Vietoris
sequence then tells us that the map

H2(M≤λ; R) → H2(M<λ; R) ⊕ H2(ν(Rλ); R)

is injective. Therefore, in order to check the monotonicity of M≤λ, it suffices to check it on M<λ

and ν(Rλ).
Since M<λ is symplectomorphic to a subset of M, by assumption monotonicity is satisfied there.

Let us check it on ν(Rλ) or, equivalently, on its deformation retract Rλ. We will use the symplec-
tomorphism (12) and, by abuse of notation, we will denote the objects on Oλ or Mλ the same as
we denote their pullback to Rλ. Let γ be the generator of H2(Oλ; Z) as in the proof of Lemma 4.5.
By the result of that lemma, we have

(13) [ω≤λ|Rλ
] = 2λγ + κc1(TMλ) + (λ − κ)c1(Eλ).

On the other hand, the tangent space to M≤λ at a point of Rλ decomposes into the tangent and
normal bundles to Rλ. Therefore,

c1(TM≤λ|Rλ
) = c1(TRλ) + 2γ + c1(Eλ) = 4γ + c1(TMλ) + c1(Eλ).

Taking into account Equation (13), for λ = 2κ we conclude that [ω≤λ|Rλ
] = κ ·c1(TM≤λ|Rλ

). �

4.4. Extensions to pre-symplectic manifolds. Abelian and non-abelian cutting are simply
particular instances of symplectic reduction. Since the latter can be extended to the pre-symplectic
setting, one can also define abelian and non-abelian cutting for Hamiltonian pre-symplectic mani-
folds.

In general, one cannot define c1(TM) (and the notion of monotonicity) for pre-symplectic mani-
folds, because there is no good notion of compatible almost complex structure. In order to fix that,
we introduce the following:

Definition 4.7. An ǫ-symplectic manifold (M, {ωt}) is a smooth manifold M together with a
smooth family of closed two-forms ωt ∈ Ω2(M), t ∈ [0, ǫ] for some ǫ > 0, such that ωt is symplectic
for all t ∈ (0, ǫ].
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One should think of an ǫ-symplectic manifold (M, {ωt}) as the pre-symplectic manifold (M,ω0)
together with some additional data given by the other ωt’s. In particular, by the degeneracy locus
of (M, {ωt}) we mean the degeneracy locus of ω0, i.e.

R(ω0) = {m ∈ M | ω0 is degenerate on TmM}.

If (M, {ωt}) is any ǫ-symplectic manifold, we can define its first Chern class c1(TM) ∈ H2(M ; Z)
by giving TM an almost complex structure compatible with some ωt for t > 0. (Note that the
resulting c1(TM) does not depend on t.) Thus, we can define the minimal Chern number of an
ǫ-symplectic manifold just as we did for symplectic manifolds. Moreover, we can talk about mono-
tonicity:

Definition 4.8. The ǫ-symplectic manifold (M, {ωt}) is called monotone (with monotonicity con-
stant κ > 0) if

[ω0] = κ · c1(TM).

One source of ǫ-symplectic manifolds is symplectic reduction. Indeed, suppose we have a Hamil-
tonian pre-symplectic S1-manifold (M,ω,Φ) with the moment map Φ : M → R being proper. The
form ω may have some degeneracies on Φ−1(0); however, we assume that it is nondegenerate on
Φ−1

(
(0, ǫ]

)
for some ǫ > 0. Assume also that S1 acts freely on Φ−1

(
[0, ǫ]

)
(hence any t ∈ (0, ǫ] is a

regular value for Φ) and, further, 0 is a regular value for Φ as well. Then the pre-symplectic quotients
Mt = Φ−1(t)/S1 for t ∈ [0, ǫ] form a smooth fibration over the interval [0, ǫ]. By choosing a connec-
tion for this fiber bundle, we can find a smooth family of diffeomorphisms φt : M0 → Mt, t ∈ [0, ǫ],
with φ0 = idM0. We can then put a structure of ǫ-symplectic manifold on M0 by using the forms
φ∗

t ωt, t ∈ [0, ǫ], where ωt is the reduced form on Mt. Note that the space of choices involved in this
construction (i.e. connections) is contractible. Therefore, whether or not (M0, φ

∗
t ωt) is monotone

is independent of these choices.
Since abelian and non-abelian cutting are instances of (pre-)symplectic reduction, one can also

turn pre-symplectic cuts into ǫ-symplectic manifolds in an essentially canonical way, provided that
the form is nondegenerate on the nearby cuts. (By “nearby” we implicitly assume that we have
chosen a preferred side for approximating the cut value: either from above or from below.) In this
context, we have the following analog of Proposition 4.6:

Proposition 4.9. Let Gad = PU(2), and (M,ω,Φ) be a Hamiltonian pre-symplectic Gad-manifold.

Set Φ̃ = Q ◦ Φ : M → [0,∞) as usual. Assume that:

• The moment map Φ is proper;
• The form ω is nondegenerate on the open subset M<λ = Φ̃−1

(
[0, λ)

)
, for some value λ ∈

(0,∞);

• Gad acts freely on Φ̃−1
(
(0, λ]

)
(hence, any t ∈ (0, λ) is a regular value for Φ̃);

• λ is also a regular value for Φ̃;
• As a symplectic manifold, M<λ is monotone, with monotonicity constant κ = λ/2.

Fix some ǫ ∈ (0, λ) and view the pre-symplectic cut M≤λ as an ǫ-symplectic manifold, with respect
to forms φ∗

t ω≤λ−t, for a smooth family of diffeomorphisms φt : M≤λ → M≤λ−t, t ∈ [0, ǫ], φ0 = id.
Then, M≤λ is monotone, with the same monotonicity constant κ = λ/2.

Proof. We can run the same arguments as in the proof of Proposition 4.6, as long as we apply them
to the Hamiltonian manifold M<λ, where ω is nondegenerate. This gives us the corresponding
formulae for the cohomology classes [ω≤λ−t] and c1(TM≤λ−t), for t ∈ (0, ǫ). In the limit t → 0, we
get monotonicity. �

4.5. Cutting the extended moduli space. Recall from Section 3.4 that the smooth part M
g
s (Σ′)

of the extended moduli space is a Hamiltonian pre-symplectic Gad-manifold. Let us consider its
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non-abelian cut at the value λ = 1/2:

N
c(Σ′) = M

g
s (Σ′)≤1/2.

The notation N c(Σ′) indicates that this space is a compactification of N (Σ′) = M
g
s (Σ′)<1/2.

Indeed, we have
N

c(Σ′) = N (Σ′) ∪ R,

where

(14) R ∼= {(A1, B1, . . . , Ah, Bh, θ) ∈ G2h × g |
h∏

i=1

[Ai, Bi] = exp(2πθ) = −1}/S1,

Here u ∈ S1 = R/2πZ acts by conjugating each Ai and Bi by exp(uθ), and preserving θ.

The Gad-action on Φ̃−1
(
(0, 1/2]

)
⊂ M

g
s (Σ′) is free. Since ω is nondegenerate on Φ̃−1

(
(0, 1/2]

)

by Theorem 3.3, this implies that any θ ∈ g with Q(θ) ∈ (0, 1/2] is a regular value for Φ. The
last statement also follows from Proposition 3.1 (b), which further says that the values θ ∈ g with

Q(θ) = 1/2 are also regular. Hence, any t ∈ (0, 1/2] is a regular value for Φ̃. Lastly, note that

Theorem 3.4 says that Φ̃−1
(
[0, 1/2)

)
is monotone, with monotonicity constant κ = 1/4 = λ/2. We

conclude that the hypotheses of Proposition 4.9 are satisfied.

Proposition 4.10. Fix ǫ ∈ (0, 1/2). Endow N c(Σ′) with the structure of an ǫ-symplectic manifold,
using the forms φ∗

t ω≤1/2−t, coming from a smooth family of diffeomorphisms

φt : N
c(Σ′) = M≤1/2 → M≤1/2−t, t ∈ [0, ǫ], φ0 = id.

Then, N c(Σ′) is monotone with monotonicity constant 1/4.

Thus, we have succeeded in compactifying the symplectic manifold N (Σ′) while preserving
monotonicity. The downside is that N c(Σ′) is only pre-symplectic. The resulting two-form has
degeneracies on R.

Lemma 4.11. Let us view R = Φ̃−1(1/2)/S1 as a P1-bundle over the space Oµ×M−I(Σ
′), compare

Section 3.6. Then the null space of the form ω≤1/2 at x ∈ R consists of the fiber directions.

Furthermore, the intersection number (inside N c(Σ)) of R with any P1 fiber of R is −2.

Proof. The first claim follows from Proposition 3.7. The second holds because the normal bundle
is the associated bundle to t⊥, which is a weight space with weight −2. �

In a family of forms that make N c(Σ′) into an ǫ-symplectic manifold (as in Proposition 4.10),
the degenerate form ω≤1/2 always corresponds to t = 0. Hence, from now on we will denote it by
ω0.

Proposition 4.12. In addition to the degenerate form ω0 coming from the cut, the space N c(Σ′) =
N (Σ′) ∪ R also admits a symplectic form ωǫ with the following properties:

(i) R is a symplectic hypersurface with respect to ωǫ;
(ii) The restrictions of ω0 and ωǫ to N (Σ′) have the same cohomology class in H2(N (Σ′); R);

(iii) The forms ω0 and ωǫ themselves coincide on the open subset W = Φ̃−1
(
[0, 1/4)

)
⊂ N (Σ′);

(iv) There exists an almost complex structure J̃ on N c(Σ′) that preserves R, is compatible with
respect to ωǫ on N c(Σ′), and compatible with respect to ω0 on N (Σ′), and for which any

J̃-holomorphic sphere of index zero has intersection number with R a negative multiple of
two.

Proof. As the name suggests, the form ωǫ will be part of a family (ωt), t ∈ [0, ǫ] of the type used
to turn N c(Σ′) into an ǫ-symplectic manifold. In fact, it is easy to find such a form that satisfies
conditions (i)-(iii) above. One needs to choose ǫ < 1/4 and a smooth family of diffeomorphisms
φt : N c(Σ′) = M≤1/2 → M≤1/2−t, t ∈ [0, ǫ], φ0 = id, such that φt = id on W and φt takes R
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to R1/2−t = Φ̃−1(1/2 − t)/S1; then set ωǫ = φ∗
ǫω0. Note that condition (ii) is automatic from (iii),

because W is a deformation retract of N (Σ′).
However, in order to make sure that condition (iv) is satisfied, more care is needed in choosing

the diffeomorphisms above. We will only construct φ = φǫ, since this is all we need for our purposes;
however, it will be easy to see that one could interpolate between φ and the identity.

The strategy for constructing φ and J̃ is the same as in the proofs of Proposition 3.7 and
Lemma 4.11: we construct a diffeomorphism and an almost complex structure on the toroidal
extended moduli space M t(Σ′), by looking at it as a subset of the twisted extended moduli space
M

g
tw(Σ′); then, we lift them to M g(Σ′); finally, we show how they descend to the cut.
Let µ = diag(i/2,−i/2) as in Section 3.6. We start by carefully examining the restriction of the

form ω to M t(Σ′), in a neighborhood of Φ−1(µ). By the remark at the end of Section 3.5, this is
the same as looking at the restriction of ωtw to Φ−1

tw (t∗) in a neighborhood of Φ−1
tw (0).

The zero set Z of the moment map Φtw on (the smooth, symplectic part of) M
g
tw(Σ′) is a

coisotropic submanifold. Let ωtw,0 be the reduced form on Z/Gad = M−I(Σ
′). Pick a connection

form α ∈ Ω1(Z) ⊗ g for the Gad-action on Z. By the equivariant coisotropic embedding theorem
[21, Proposition 39.2], we can find a Gad-equivariant diffeomorphism between a neighborhood of
Z = Φ−1

tw (0) in M
g
tw(Σ′) and a neighborhood of Z ×{0} in Z × g∗ such that the form ωtw looks like

ωtw = π∗
1ωtw,0 + d(α, π2),

where π1 : Z × g → Z → Z/Gad and π2 : Z × g∗ → g∗ are projections. We can assume that π2

corresponds to the moment map.
Restricting this diffeomorphism to Φ−1

tw (t∗), we obtain a local model Z × t∗ for that space. This
implies that, locally near Z, we get a decomposition of its tangent spaces into several (nontrivial)
bundles

(15) T (Φ−1
tw (t∗)) ∼= T (Z/S1) ⊕ g ⊕ t∗ ∼= T (M−I(Σ

′)) ⊕ t⊥ ⊕ (t ⊕ t∗).

(We omitted the pull-back symbols from notation for simplicity.)
The restriction of ωtw to Φ−1

tw (t∗) is nondegenerate in the horizontal directions TM−I(Σ
′) as well

as on t ⊕ t∗. Let us compute it on the subbundle t⊥ ⊂ g. For a point x with Φtw(x) = tµ ∈ t∗, and
for ξ1, ξ2 ∈ t⊥ ⊂ TxΦ−1

tw (t∗), we have

(16) ωtw(ξ1, ξ2) = (dα(ξ1, ξ2), tµ) = −
t

2
〈[ξ1, ξ2], µ〉.

Thus the restriction of the form to t⊥ is nondegenerate as long as t 6= 0. (For t = 0, we already
knew that it was degenerate from the proof of Proposition 3.7.)

We construct a Gad-equivariant almost complex structure J in a neighborhood of Z in Φ−1
tw (t∗),

such that J is split with respect to the decomposition (15), and compatible with ωtw “as much
as possible.” More precisely, we choose Gad-equivariant complex structures J1, J3 on each of the
subbundles T (M−I(Σ

′)) and t ⊕ t∗ that are compatible with respect to the restriction of ωtw on
the respective subbundle. We also choose a Gad-equivariant complex structure J2 on t⊥ that is
compatible with respect to the form σ given by

σ(ξ1, ξ2) = −〈[ξ1, ξ2], µ〉.

By Equation 16, we have ωtw = tσ/2; hence, J2 is compatible with respect to ωtw away from t = 0.
We then let J = J1 ⊕ J2 ⊕ J3 be the almost complex structure on Φ−1

tw (t∗) near Z.
Choose ǫ ∈ (0, 1/8) sufficiently small, so that Z × (−3ǫ, 3ǫ) is part of the local model for Φ−1

tw (t∗)
described above. Pick a smooth function f : R → R with the following properties: f(t) = t+ǫ for t in
a neighborhood of 0; f(t) = t for |t| ≥ 2ǫ; and f ′(t) > 0 everywhere. This induces a Gad-equivariant
self-diffeomorphism of the open subset Z × (−3ǫ, 3ǫ) ⊂ Φ−1

tw (t∗), given by (z, t) → (z, f(t)). Note
that this diffeomorphism preserves J , it is the identity near the boundary, and it takes Z × [0, 2ǫ)
to Z × [ǫ, 2ǫ).
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Now let us look at the constructions we have made in light of the identification between Φ−1
tw (t∗)

and M t(Σ′) = Φ−1(t) ⊂ M g(Σ′). We have obtained a local model Z × (−3ǫ, 3ǫ) for the neigh-
borhood N = Φ−1(−3ǫµ, 3ǫµ) of Φ−1(µ) in M t(Σ′), an almost complex structure on N , and a
self-diffeomorphism of N.

The symplectic cross-section theorem [21] says that locally near Φ̃−1(1/2), the extended moduli
space M g(Σ′) looks like G ×T M t(Σ′). Thus, we can lift the local model for M t(Σ′) and obtain
a Gad-equivariant local model (G ×T Z) × (−3ǫ, 3ǫ) for M g(Σ′). Projection on the second factor

corresponds to the map 1/2− Φ̃. Further, locally we can decompose the tangent bundle to M g(Σ′)
as in Equation (9). The form ω is nondegenerate when restricted to Tµ(Oµ). Let us choose a

Gad-equivariant complex structure on this subbundle that is compatible with the restriction of ω
there. By combining it with J , we obtain an equivariant almost complex structure J̃ on

Ñ = Φ̃−1(1/2 − 3ǫ, 1/2 + 3ǫ) ⊂ M
g(Σ′).

We can also lift the self-diffeomorphism of N ⊂ M t(Σ′) to Ñ = G ×T N in an equivariant
manner. Since this self-diffeomorphism is the identity near the boundary, we can extend it by the
identity to all of M

g
s (Σ′). The result is a Gad-equivariant diffeomorphism

M
g
s (Σ′) → M

g
s (Σ′)

that preserves J̃ on Ñ , takes Φ̃−1(1/2) to Φ̃−1(1/2 − ǫ), and is the identity on Φ̃−1
(
[0, 1/2 − 2ǫ)

)
.

This diffeomorphism descends to one between the corresponding cut spaces:

φ : N
c(Σ′) = M

g
s (Σ′)≤1/2 → M

g
s (Σ′)≤1/2−ǫ.

We set ωǫ = φ∗ω0. Note that ω0 and ωǫ coincide on the subset Φ̃−1
(
[0, 1/2− 2ǫ)

)
. Since we chose

2ǫ < 1/4, the latter subset contains W = Φ̃−1
(
[0, 1/4)

)
.

The almost complex structure J̃ on Ñ descend to the cut Ñ≤1/2 as well. Indeed, if t ⊂ TÑ

denotes the line bundle in the direction of the T ad-action used for cutting, by construction we have
J̃t ∩ T

(
Φ̃−1(1/2)

)
= 0. Since J̃ equivariance, it is easy to see that it induces an almost complex

structure on the cut, which we still denote J̃ . We extend J̃ to Φ̃−1
(
[0, 1/2 − 2ǫ)

)
by choosing it to

be compatible with ω0 = ωǫ there.
It is easy to see that the resulting J̃ and ωǫ satisfy the required conditions (i)-(iv). With respect

to the last claim in (iv), note that any J̃-holomorphic sphere of index zero is necessarily a multiple
cover of one of the fibers of the P1-bundle R → M−I(Σ

′). Hence it has intersection number with R
a positive multiple of the intersection number of the fiber, which by Lemma 4.11 is −2. �

Remark 4.13. There were several choices made in the construction of ωǫ and J̃ in Proposition 4.12:
for example, the connection α, the structures J1, J2, J3, the function f , etc. The space of all these
choices is contractible.

5. Symplectic instanton homology

5.1. Lagrangians from handlebodies. Let H be a handlebody of genus h ≥ 1 whose boundary
is the compact Riemann surface Σ. We view Σ′ and Σ as subsets of H, with Σ′ = Σ \ D2.

Let A g(Σ′|H) ⊂ A g(Σ′) be the subspace of connections that extend to flat connections on the
trivial G-bundle over H. Consider also A (H), the space of flat connections on H, which is acted
on by the based gauge group G0(H) = {f : H → G|f(z) = I}. Since π1(G) = 1 and Σ′ has the
homotopy type of a wedge of spheres, every map Σ′ → G must be nullhomotopic. This implies that
G c(Σ′) preserves A g(Σ′|H) and, furthermore, the natural map

(17) A (H)/G0(H) −→ A
g(Σ′|H)/G c(Σ′)

is a diffeomorphism.
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Set

L(H) = A (H)/G0(H) ∼= A
g(Σ′|H)/G c(Σ′) ⊂ M

g(Σ′) = A
g(Σ′)/G c(Σ′).

The left hand side of (17) is the moduli space of flat connections on H. After choosing a set of
h simple closed curves α1, . . . , αh on H whose classes generate π1(H), the space A (H)/G (H) can
be identified with the space of homomorphisms π1(H) → G or, alternatively, with the Cartesian
product Gh.

In fact, if the curves α1, . . . , αh are the same as the ones chosen on Σ′ for the identification (5),
so that the remaining curves βi are nullhomotopic in H, then with respect to the identification (7)
we have

(18) L(H) ∼= {(A1, B1, · · · , Ah, Bh) ∈ G2h | Bi = I, i = 1, . . . , h} ⊂ N (Σ′).

Let us now view L(H) as A g(Σ′|H)/G c(Σ′) via (17). Note that connections A that extend to H
in particular extend to Σ, which means that the value θ ∈ g such that A|S = θds is zero. In other
words, L(H) lies in Φ−1(0) ⊂ N (Σ′).

Lemma 5.1. With respect to the Huebschmann-Jeffrey symplectic form ω from Section 3.4, L(H)
is a Lagrangian submanifold of N (Σ′).

Proof. Let Ã be a flat connection on H and A its restriction to Σ′. With respect to the description
(8) of T[A]N (Σ′), the tangent space to L(H) at A consists of equivalence classes of dA-closed forms

a ∈ Ω1,g(Σ′) which extend to dÃ-closed forms ã ∈ Ω1(H) ⊗ g. Let a, b be two such forms and ã, b̃
their extensions to H. We have a|S = b|S = 0. Furthermore, by the Poincaré lemma for connections,
on the disk D2 which is the complement of Σ′ in Σ there exists λ ∈ Ω0(D2; g) such that dÃλ = ã|D2 .
By Stokes’ Theorem, ∫

D2

〈a ∧ b〉 =

∫

S
〈λ ∧ b〉 = 0.

Another application of Stokes’ Theorem gives
∫

Σ′

〈a ∧ b〉 =

∫

Σ
〈ã ∧ b̃〉 =

∫

H
〈dÃ(ã ∧ b̃)〉 = 0.

This shows that ω vanishes on the tangent space to L(H) ∼= Gh, which is half-dimensional. �

5.2. Symplectic instanton homology. Let Y = H0 ∪ H1 be a Heegaard decomposition of a
three-manifold Y, where H0 and H1 are handlebodies of genus h, with ∂H0 = −∂H1 = Σ. Let
L0 = L(H0) and L1 = L(H1) ⊂ N (Σ′) be the Lagrangians associated to H0 resp. H1, as in
Section 5.1. View N (Σ′) as an open subset of the compactified space N c(Σ′), as in Section 4.5,
with R being its complement.

In Section 4.5 we gave N c(Σ′) the structure of an ǫ-symplectic manifold. By Lemma 4.11, its
degeneracy locus is exactly R. Using the variant of Floer homology described in Section 2.3 and
letting ω̃ = ω0, ω = ωǫ, J̃ be as in Proposition 4.12, we define

HSI(Σ′;H0,H1) = HF (L0, L1, J̃ ;R).

In order to make sure the Floer homology is well-defined, we should check that the hypotheses
(i)-(ix) listed at the beginning of Section 2.3 are satisfied. Indeed, (i), (ii), (iii), (v) and (x) are
subsumed in Proposition 4.12. (iv), (v), and (ix) follow from Proposition 4.10, Lemma 5.1 and
Corollary 3.6, respectively. For (viii), the Lagrangians are simply connected and spin because they
are diffeomorphic to Gh. By Theorem 3.4 and Lemma 3.5, the minimal Chern number of the open
subset N (Σ) is a multiple of 4; therefore, the Floer groups admit a relative Z/8Z-grading.

A priori the Floer homology depends on J̃ . However, the set of choices used in the construction
of J̃ is contractible, cf. Remark 4.13. By the usual continuation arguments in Floer theory, if we
change J̃ the corresponding Floer homology groups are canonically isomorphic.
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5.3. Dependence on the base point. Recall that the surface Σ′ is obtained from a closed surface
Σ by deleting a disk around some base point z ∈ Σ. Let z0, z1 ∈ Σ be two choices of base point. Any
choice of path γ : [0, 1] → Σ, j 7→ zj , j = 0, 1 induces an identification of fundamental groups Σ′

0 →
Σ′

1, and equivariant pre-symplectomorphisms Tγ : N c(Σ′
0) → N c(Σ′

1) preserving the cut locus R.

The pullbacks of the form ω and the almost complex structure J̃ from Proposition 4.12 (applied
to N c(Σ′

1)) can act as the corresponding form and almost complex structure in Proposition 4.12
applied to N c(Σ′

0). Moreover, if H0,H1 are handlebodies, the symplectomorphism Tγ preserves
the corresponding Lagrangians L0, L1, since the vanishing holonomy condition is invariant under
conjugation by paths. Therefore, the continuation arguments in Floer theory show that Tγ induces
an isomorphism

HSI(Σ′
0;H0,H1) → HSI(Σ′

1;H0,H1).

This isomorphism depends only on the homotopy class of γ relative to its endpoints. We conclude
that the symplectic instanton homology groups naturally form a flat bundle over Σ. In particular,
there is a natural action of π1(Σ, z0) on HSI(Σ′

0;H0,H1).
When we only care about the Floer homology group up to isomorphism (not canonical isomor-

phism), we drop the base point from the notation and write HSI(Σ′;H0,H1) = HSI(Σ;H0,H1),
as in the Introduction.

6. Invariance

We prove here that the groups HSI(Σ;H0,H1) are invariants of the 3-manifold Y = H0 ∪ H1.
The proof is based on the theory of Lagrangian correspondences in Floer theory, cf. [59]. We start
by reviewing this theory.

6.1. Quilted Floer homology. Let M0,M1 be compact symplectic manifolds. A Lagrangian cor-
respondence from M0 to M1 is a Lagrangian submanifold L01 ⊂ M−

0 ×M1. (The minus superscript
means considering the same manifold equipped with the negative of the given symplectic form.)
Given Lagrangian correspondences L01 ⊂ M−

0 × M1, L12 ⊂ M−
1 × M2, their composition is the

subset of M−
0 × M2 defined by

L01 ◦ L12 = π02(L01 ×M1 L12)

where π02 : M−
0 × M1 × M−

1 × M2 → M−
0 × M2 is the projection. If the intersection

L01 ×M1 L12 = (L01 × L12) ∩ (M−
0 × ∆M1 × M2)

is transverse (hence smooth) in M−
0 ×M1×M−

1 ×M2, and the projection π02 : L01×M1L12 → L01◦L12

is embedded, we say that the composition L02 = L01 ◦L12 is embedded. An embedded composition
L02 is a smooth Lagrangian correspondence from M0 to M2.

Suppose now that M0,M1,M2 are compact symplectic manifolds, monotone with the same
monotonicity constant, and minimal Chern number at least 2. Suppose that L0 ⊂ M0, L01 ⊂
M−

0 ×M1, L12 ⊂ M−
1 ×M2, L2 ⊂ M2 are simply connected Lagrangian submanifolds. (This implies

that their minimal Maslov numbers are at least 4.) Define

HF (L0, L12, L12, L2) := HF (L0 × L12, L01 × L2)

HF (L0, L02, L2) := HF (L0 × L2, L01 ◦ L12).

The main theorem of [59] implies that

Theorem 6.1. With M0,M1,M2, L0, L01, L12, L2 monotone as above, if L02 := L01 ◦ L12 is em-
bedded then there exists a canonical isomorphism of Lagrangian Floer homology groups

(19) HF (L0, L01, L12, L2) → HF (L0, L02, L2).
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M0

M1

M2

L02

L12

L01

Figure 1. Geometric composition via a quilt count of Y -maps

In Wehrheim-Woodward [59] an isomorphism is defined using pseudo-holomorphic quilts, i.e., in
this case, triples of strips in M0,M1,M2 with boundary conditions in L0, L01, L12 and L2. The count
of such quilts is used in the left hand side of (19). In the limit when the width δ of the middle strip
goes to 0, the same count produces the right hand side. An alternative proof was given in Lekili-
Lipyanskiy [30] using a count of Y -maps. This approach is better suited for the semipositive case
in which we will need it, so we review the construction. Given x− ∈ (L0 × L12) ∩ (L01 × L2), x+ ∈
(L0×L2)∩L02 let M(x−, x+) denote the set of holomorphic quilts with two strip-like ends and one
cylindrical end as shown in Figure 1 below, with finite energy and limits x±. The authors show
that for a comeagre subset of space of point-dependent compatible almost complex structures, the
moduli space M(x−, x+) of Y -maps has the structure of a finite dimensional manifold, and counting
the zero-dimensional component M(x−, x+)0 defines a cochain map

Φ : CF (L0, L01, L12, L2) → CF (L0, L02, L2), <x−> 7→
∑

u∈M(x−,x+)0

ε(u) <x+> .

Here, in the case of integer coefficients, the map

ε : M(x−, x+)0 → {±1}

is defined by comparing the orientations constructed in [58] with the canonical orientation of a
point.
Counting Y -maps in the opposite direction defines a chain map

Ψ : CF (L0, L02, L2) → CF (L0, L01, L12, L2).

Lekili-Lipyanskiy [30] prove that the monotonicity constant for these Y -maps is the same as the
monotonicity constant for Floer trajectories. They then show that Φ and Ψ induce isomorphisms
on homology.

6.2. Relative quilted Floer homology in semipositive manifolds. We wish to have a version
of the quilted Floer homology and Composition Theorem 6.1 which holds for Floer homology relative
to hypersurfaces in semipositive manifolds, as in Section 2.3. Suppose that R0, R1 are symplectic
hypersurfaces in M0,M1. From them we obtain two hypersurfaces R̃0 = R−

0 ×M1, R̃1 = M−
0 ×R1 in

M−
0 ×M1. Let ÑR0 , ÑR1 denote their normal bundles NR0 , NR1 , that is, the pull-backs of NR0 , NR1

to R̃0, R̃1. Because R0, R1 are symplectic, NR0 , NR1 are oriented rank 2 bundles, or equivalently
up to homotopy, rank one complex line bundles. As we will see below, the following definition gives
sufficient conditions for a sort of combined intersection number with R0, R1 to be well-defined and
given by the usual geometric formulas:

Definition 6.2. A simply connected Lagrangian correspondence L01 ⊂ M−
0 ×M1 is called compat-

ible with the pair (R0, R1) if

(R0 × M1) ∩ L01 = (M0 × R1) ∩ L01 = (R0 × R1) ∩ L01
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and there exists an isomorphism

ϕ :
(
ÑR0

)
|(R0×R1)∩L01

∼=
(
ÑR1

)
|(R0×R1)∩L01

and tubular neighborhoods

τ0 : NR0 → M0, τ1 : NR1 → M1

of R0 resp. R1 such that (τ0 × τ1)
−1(L01) ⊂ NR0 × NR1 = ÑR0 ×M0×M1 ÑR1 is equal to the graph

of ϕ.

To explain the conditions in the definition, note that the existence of ϕ implies that any map of a
compact oriented surface with boundary to M with boundary conditions in L01 has a well-defined
intersection number with R̃0∪R̃1. For example, suppose that u : (D,∂D) → (M0×M1, L01) is a disk

with Lagrangian boundary conditions. The sum of dual classes [R̃0]
∨ + [R̃1]

∨ has trivial restriction
to H2(L01; Z). If L01 is simply connected then H2(M,L01) is the kernel of H2(M) → H2(L01) and

so we may consider [R̃0]
∨ +[R̃1]

∨ as a class in H2(M,L01). Then the intersection number of a map

u : (D,∂D) → (M0 × M1, L01) with [R̃0] + [R̃1] is well-defined and denoted u · R.
The existence of the tubular neighborhoods τ0, τ1 implies that u · R is given by a geometric

count of intersection points. Indeed, we may identify a neighborhood of Rj with the normal bundle
πj : Nj → Rj via the tubular neighborhood τj. Then π∗

j Nj is trivial on the complement of Rj ,
since the map πj gives a non-vanishing section, and extends to a bundle LRj

on Mj trivial on the
complement of Rj. Then the dual class [Rj ]

∨ is given by a Thom class in the tubular neighborhood
of Rj, and hence equals the Euler class of LRj

. The bundles LR0 and LR1 are isomorphic on ∂D via

ϕ, and so glue together to a bundle denoted u∗LR over S2 = D ∪∂D D. The intersection number is
then the Euler number of u∗LR, that is,

u · R = ([S2],Eul(u∗LR)).

The compatibility condition on the maps τj implies that the maps u0, u1 considered as sections of
LRj

near Rj glue together to a section of u∗LR, which by abuse of notation we denote by u. If each
uj meets Rj in a finite number of points then u ·R is a sum of local intersection numbers (u ·R)z,
given by the image of a small loop around each intersection point z in H1(u

∗LR|V − 0, Z) ∼= Z in
a small neighborhood V of z. Note that since we have constructed u∗LR only as a topological (or
rather, piecewise smooth) bundle, such a loop will only be piecewise smooth if z ∈ ∂D.

Our examples will arise as follows:

Example 6.3. Suppose ι : C → M1 is a fibered coisotropic submanifold of M1, with structure
group C the fibration being π : C → M0. Then (π × ι) : C → M−

0 × M1 defines a Lagrangian
correspondence, compare [59, Example 2.0.3(b)]. Suppose further that M1 is a Hamiltonian U(1)-
manifold with moment map Φ1 and C is U(1)-invariant and meets Φ−1

0 (λ) transversely. Then the
symplectic cut M1,≤λ contains the closure C≤λ of the image C as a fibered coisotropic, whose graph is
a Lagrangian correspondence in M0,≤λ ×M1,≤λ. Furthermore, the submanifolds R0 := M0,λ, R1 :=
M1,λ are symplectic submanifolds with the properties described in Definition 6.2. Indeed, any tubular
neighborhood NR1 → M1,≤λ of R1 that is U(1)-invariant, maps NR1 |C≤λ

to C≤λ, and maps fibers
to fibers induces a tubular neighborhood NR0 → M0,≤λ with the required properties.

The intersection numbers described above are well-defined more generally for quilted strips, as we
now explain. Given symplectic manifolds M1, . . . ,Mk, Lagrangian submanifolds L1 ⊂ M1, Lk ⊂ Mk

disjoint from R1 resp. Rk, and Lagrangian correspondences

L12 ⊂ M1 × M2, . . . , L(k−1)k ⊂ M−
k−1 × Mk

compatible with hypersurfaces R = (Rj ⊂ Mj)j=1,...,k the intersection number u · R of a quilted
Floer trajectory

u = (uj : R × [0, 1] → Mj)
k
j=1
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is the pairing of u with the sum of the dual classes [Rj ]
∨ to Rj .

If the intersection of u with R is finite, then the intersection number is the sum of local intersection
numbers defined as follows. By assumption, there exists an isomorphism

Nj−1|L(j−1)j∩(Rj−1×Rj)

∼=
−→ Nj |L(j−1)j∩(Rj−1×Rj)

and this extends to an isomorphism of ÑRj
|L(j−1)j

and ÑRj−1 |L(j−1)j
, by the assumption about

the tubular neighborhoods. Thus the pull-back bundles u∗
jÑRj

patch together to a bundle on the

quilted surface S = ∪jSj that we denote by u∗ÑR. The intersection number is then the relative
Euler number of u∗NR → S, that is, the pairing of the relative Euler class with the generator of

H2(cl(S), ∂cl(S)) where cl(S) is the closed disk obtained by adding points at ±∞. The map u then
provides a section of u∗NR, by the compatibility conditions in Definition 6.2. If the intersection is
finite, then

(20) u · R =
∑

{z∈S|u(z)∈R}

(u · R)z

where (u ·R)z ∈ Z is, as in the case of disks discussed before, the image of a small loop around z in
the complement u∗NR − 0 of the zero section, as a multiple of the generator of the first homology

of the fiber, and the condition u(z) ∈ R means that if z lies in the component Sj, then uj(zj) ∈ Rj .
Note that in particular that these local intersection numbers are topologically continuous, that is,
given any loop in the domain of the quilt the sum of the local intersection numbers is constant in
any continuous family as long as none of the intersection points cross the loop.

If the intersection is not only finite but transverse, and the hypersurfaces R are almost complex,
then the intersection number is the usual one counted with weight 1/2 for the seam points:

Lemma 6.4. Suppose that L0 resp. Lk is disjoint from R0 resp. Rk and each L(j−1)j is compatible
with (Rj−1, Rj). Suppose that the almost complex structure on M0 × . . . × Mk is of product form

J0 × . . . × Jk near each R̃j , so that each Rj is an almost complex submanifold of Mj with respect
to Jj . Let u : S → M be a quilted Floer trajectory with Lagrangian boundary and seam conditions

in L meeting each R̃j transversally. Then

u · R =
k∑

j=0

#{zj ∈ int(Sj)|uj(zj) ∈ Rj} +
1

2
#{zj ∈ ∂Sj |uj(zj) ∈ Rj}.

Proof. The local intersection number in (20) at a transversal point of intersection z ∈ S is the
homology class of the image of a small loop around z, considered as an element of H1(N z)

∼= Z.
We consider only the case of an intersection point z on the seam, the loop is divided into two loops,
one coming from each component of the quilt, and is only piecewise smooth; the case of an interior
intersection is easier and left to the reader.

Suppose z is on the seam L(j−1)j where the components uj−1 and uj of the quilt meet. For
l = j − 1 or j, let us view ul as a section of a piecewise smooth line bundle. Using a local
trivialization of the bundle and a coordinate chart for S centered at z, we have that ul near z (now
viewed as a map to C) is given approximately by its linearization at z:

|ul(r exp(it)) − (Dul(z))r exp(it)| < Cr2.

We use here that since Rl is almost complex, the linearization Dul is complex linear. Fix ǫ > 0.
For r sufficiently small, we have

| arg(ul(r exp(it))) − arg(Dul(z)r exp(it))| < ǫ.

This implies that

|

∫ 1

0
u∗

l dθ − π| < ǫ, l = j − 1, j
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and so ∫ 1

0
u∗

j−1dθ +

∫ 1

0
u∗

jdθ ∈ (2π − 2ǫ, 2π + 2ǫ).

Since the integral must be an integer multiple of 2π (and ǫ can be chosen arbitrarily small), the
integral must in fact equal 2π. It follows that the two paths patch together to a positive generator
of H1(C

∗, Z), as claimed. �

We can now define relative quilted Floer homology in semipositive manifolds.

Theorem 6.5. Suppose that M = (Mi)
k
i=0 are semipositive manifolds as in the first six items of

Assumptions 2.5, with a collection of open sets W = (Wi)
k
i=0 on which the respective forms ωi and

ω̃i coincide. Suppose the manifolds Mi come equipped with almost complex structures J̃i, so that
the degeneracy loci Ri of the forms ω̃i are almost complex hypersurfaces in Mi, disjoint from Wi.
We denote by Jt(M,W , J̃) the space of time-dependent almost complex structures on M0× . . .×Mk

that agree with J̃ = J̃0 × · · · × J̃k on W :=
∏k

i=0 Wi.

We are also given simply connected Lagrangians L0 ⊂ M0, L01 ⊂ M−
0 × M1, . . . , L(k−1)k ⊂

M−
k−1 × Mk, Lk ⊂ Mk such that the seam conditions L(i−1)i are compatible with (Ri−1, Ri) and L0

resp. Lk are contained in W0 resp. Wk. Also, we assume that

(21) (L0 × L12 × . . . ) ∩ (L01 × L23 × . . . ) ⊂ W0 × · · · ×Wk.

Suppose further that any holomorphic disk with boundary in L(i−1)i, i = 1, . . . , k or holomorphic
sphere with zero canonical area has intersection number with R given by a negative multiple of 2.

Then, there exists a comeagre subset J reg
t (L,W , J̃) of Jt(M,W , J̃) so that if the almost complex

structure (Jt) is chosen from J reg
t (L,W , J̃) then the part of the Floer differential of CF (L) =

CF (L0 × L12 × . . . , L01 × L23 × . . .) counting trajectories disjoint from Ri, i = 1, . . . ,m, is finite
and squares to zero. We denote by

HF (L;R) := HF (L, J̃ ;R)

the resulting Floer homology group; it is independent up to isomorphism on all choices except
possibly the base almost complex structures J̃i.

Proof. First, note that the condition (21) implies that the endpoints of any holomorphic quilt are
contained in W = W0×· · ·×Wk. Hence, every quilt component ui contains a point in the respective
open set Wi. This implies that the usual transversality arguments for holomorphic quilts apply, even
when we restrict to almost complex structures Jt that are required to agree with J̃ on W.

Next, we discuss compactness. We must rule out sphere and disk bubbling in the zero and one-
dimensional moduli spaces. For a suitable comeagre subset of almost complex structures agreeing
with the given J̃i, the trajectories are transverse to the Rj in the zero and one-dimensional moduli
spaces, by the same argument we gave previously for the unquilted case (Corollary 2.4).

Suppose that u∞ is the limit of a sequence of trajectories of index 1 or 2 disjoint from R. By
the assumption on the intersection number, any sphere bubble or disk bubble with boundary in
some L(j−1)j contributes at least −2 to the intersection number with R. It follows that at least
one intersection point does not have a bubble attached. But then, since the intersection point is
transverse, u∞ cannot be the limit of a sequence of trajectories disjoint from R, since transverse
intersection points persist under deformation. Hence there is no such bubbling and the limit is a
(possibly broken) trajectory, as desired. Independence of the choice of almost complex structures
is proved by the usual continuation argument, ruling out disk bubbles of index one and sphere
bubbles by the same reasoning. �

Remark 6.6. If the Lagrangian correspondences above are associated to fibered coisotropics, then
the almost complex structures may be taken of split form, that is, products of the almost complex
structures on M0, . . . ,Mk. This will be the case in our application.
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Theorem 6.7. Suppose that M = (M0,M1,M2) and L = (L0, L01, L12, L2) satisfy the assump-
tions in Theorem 6.5. Suppose further that L01 ◦ L12 is an embedded composition, is simply-
connected, and is compatible with (R0, R2), and that all holomorphic quilted cylinders with seams
in L01, L12, L01 ◦ L12 with zero canonical area have intersection number equal to a negative mul-
tiple of 2. Then the relative Lagrangian Floer homology groups HF (L0, L01, L12, L2;R0, R1, R2),
HF (L0, L01 ◦ L12, L2;R0, R2) are isomorphic. Similar statements hold for the composition of any
two adjacent pairs, as long as the compositions are smooth and embedded.

Proof. If the Lagrangian correspondences had been monotone, the result would have been a slight
extension of Theorem 6.1 in [59], by counting only those trajectories disjoint from Ri; indeed, since
the intersection numbers are homotopy invariants, they do not change when taking the limit δ → 0.

In the semipositive case at hand, one can rule out disk and sphere bubbling as in the proof of
Proposition 2.10, but not the figure eight bubbles mentioned in [59, Section 5.3]. Indeed, removal
of singularities, transversality, and Fredholm theory for figure eight bubbles have not yet been
developed. For this reason, we use instead the approach of Lekili-Lipyanskiy [30].

First one checks that for a comeagre subset of compatible almost complex structures, the ends
of the cylinders of Y -maps will not map to R in the 0 and 1-dimensional components of the moduli
space, since this is a codimension 2 condition. Indeed, an examination of the weighted Sobolev space
construction of the moduli space of Y -maps in [30] shows that the evaluation map at the end of the
cylinder is smooth; indeed it projects onto the factor of asymptotically constant maps in the Banach
manifolds in which the moduli space of Y -maps is locally embedded: W 1,p,ε(S;u∗TM,u∗TL) ⊕
T(u)02(∞)L02, where the former is the space of from S with Lagrangian boundary conditions with
finite ε-weighted Sobolev norm of class (1, p) and the latter is the intersection of the linearized
Lagrangian boundary conditions at infinity on the cylindrical end.

As a result, the intersection number u·R of any Y -map u of index zero and one with the collection
R is well-defined and given by the formula (6.4). (More generally, one could make the intersection
number with any Y -map well-defined by imposing the compatibility condition ϕ01 ◦ ϕ12 = ϕ02, so
that the bundle u∗LR is well-defined. But we will not need this.) In the zero and one dimensional
moduli spaces all intersections with the manifolds Rj are transverse for J chosen from a comeagre
subset of the space of compatible almost complex structures making Rj almost complex, by standard
arguments [11, Section 6].

A Gromov compactness argument shows that finite energy Y-maps have as limits configurations
consisting of a (possibly broken) Y-map together with some sphere bubbles, disk bubbles, and
cylinder bubbles. The cylinder bubbles may form when there is an accumulation of energy at the
Y-end.

In the case at hand, sphere and disk bubbles are ruled out as as in the proof of Theorem 6.5: any
sphere or disk bubble appearing in the limit configuration u∞ must have index zero, and therefore
intersection number at most −2 with R. By (6.4), any intersection point contributes at most 1
to the intersection number, and therefore at some intersection point with R is not attached to a
bubble. But then u∞ cannot be the limit of a sequence of trajectories disjoint from R, since the
local intersection number of u∞ is non-zero.

It remains to rule out cylinder bubbles. Since no trajectory of index zero or one maps the end of
the cylinder to R, any quilted cylinder bubble must capture positive canonical area. But then, for
index reasons explained in Lekili-Lipyanskiy [30], the cylinder bubble must capture at least index
two, so the index of the remaining Y -map is at most −1. (Here working with Y -maps, rather than
strip-shrinking, provides an advantage: by exponential decay for holomorphic strips with boundary
values in Lagrangians intersecting cleanly, one knows that these cylinder bubbles connect to a point
outside of R, whereas for figure eight bubbles such exponential decay estimates are missing.) But
such a trajectory does not exist, since transversality is achieved for the chosen J .
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It follows that the moduli spaces of Y -maps of dimension zero and one that are disjoint from
R are compact up to breaking off trajectories disjoint from R. Furthermore, for these trajectories
and Y -maps we have the same relationship as in [30], since the complements of R are monotone.
The rest of their argument now goes as in [30, Section 3.1]. �

6.3. Proof of invariance. Going back to topology, let Σ0,Σ1 be Riemann surfaces of genus h,
resp. h+1. Let H01 be a compression body with boundary Σ−

0 ×Σ1, that is, a cobordism consisting
of attaching a single handle of index one. Associated to H01 we have a Lagrangian correspondence

L01 ⊂ N (Σ′
0)

− × N (Σ′
1)

defined as follows. Suppose that γ is a path from the base points z0 to z1, equipped with a framing
of the normal bundle. Let H ′

01 denote the non-compact surface obtained from H01 by removing a
regular neighborhood of γ. The boundary of H ′

01 then consists of Σ′
0,Σ

′
1 and a cylinder S × [0, 1].

Let N (H ′
01) denote the moduli space of flat connections on H01 of the form θds near S × [0, 1]

(where s is the coordinate on the circle S), for some θ ∈ g, modulo gauge transformations equal
to the identity in a neighborhood of S × [0, 1]. The same arguments as in the proof of Lemma 5.1
show that L01 is a Lagrangian correspondence.

The Lagrangian correspondence L01 has the following explicit description in terms of holonomies,
similar to (7) and (18). Suppose that H01 consists of attaching a one-handle whose meridian is the
generator Bh+1 of π1(Σ1). Then:

Lemma 6.8. The Lagrangian correspondence L01 is given by

L01 = {((A1, . . . , Bh) ∈ N (Σ′
0), (A1, . . . , Bh, Ah+1, Bh+1) ∈ N (Σ′

1)) | Bh+1 = I}.

Proof. H ′
01 has the homotopy type of the wedge product of Σ′

0 with a circle, corresponding to a
single additional generator ah+1. Thus π1(H

′
01) is freely generated by (a1, . . . , bh, ah+1), and the

lemma follows. �

Recall from Section 4.5 that N (Σ′
0) admits a compactification N c(Σ′

0) = N (Σ′
0) ∪ R0. We

equip N c(Σ′) with the (non-monotone) symplectic form constructed in Proposition 4.12, which we
denote by ωǫ,0. Then R0 is a symplectic hypersurface. Similarly, we have a symplectic form ωǫ,1

on N c(Σ′
1) = N (Σ′

1) ∪ R1. Let Lc
01 denote the closure of L01 in the compactification N c(Σ′

0)
− ×

N c(Σ′
1).

Lemma 6.9. The Lagrangian correspondence Lc
01 is compatible with the pair (R0, R1). Further-

more, any disk bubble with boundary in Lc
01 with index zero has intersection number with (R0, R1)

a negative multiple of 2.

Proof. View Lc
01 as a coisotropic submanifold of N c(Σ′

1), fibered over N c(Σ′
0) with fiber G. We

are then exactly in the setting of Example 6.3. To prove the claim on the intersection number, note
that any fiber of R1 which intersects L01 is mapped symplectomorphically onto the corresponding
fiber of R0 via the projection of the fibered coisotropic Bh+1 = I. Hence the patches of any
such disk bubble, after projection to N c(Σ′

0), glue together to a sphere bubble in the P1-fiber of
R0. Furthermore, the projection induces an isomorphism of normal bundles by assumption, so the
intersection number is equal to the intersection number of the sphere with R0, which is a negative
multiple of 2 as claimed. �

Lemma 6.10. Let L0 ⊂ N c(Σ′
0), resp. L1 ⊂ N c(Σ′

1), be the Lagrangian for the handlebody given
by contracting the cycles b1, . . . , bh, resp. b1, . . . , bh+1. Then the composition L0 ◦Lc

01 is embedded,
and equals L1.

Proof. Immediate from Lemma 6.8 and the fact that L0 does not meet the hypersurface R0. �
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Lemma 6.11. Let Lc
01 ⊂ N c(Σ′

0)
− × N c(Σ′

1) be the Lagrangian correspondence for attaching a
handle corresponding to adding the cycle ah+1, and Lc

10 ⊂ N c(Σ′
1)

− × N c(Σ′
0) the Lagrangian

correspondence corresponding to contracting the cycle bh+1. Then the composition Lc
01 ◦ Lc

10 is
embedded, and equals the diagonal ∆0 ⊂ N c(Σ′

0)
− × N c(Σ′

0). Furthermore, any quilted cylinder
with seams in Lc

10, L
c
01,∆0 with index zero has intersection number with (R0, R1, R0) a negative

multiple of 2.

Proof. The first claim is immediate from Lemma 6.8. To see the assertion on the quilted cylinders,
note that any quilted cylinder of index zero has zero canonical area, and so each component is
contained in the corresponding Rj and maps onto a single fiber of the degeneracy locus. As in
the proof of Lemma 6.9, the three holomorphic strips patch together to an orientation-preserving
map of a sphere to a fiber of R0, which must have intersection number a positive multiple of the
intersection number of the fiber, which is −2. �

Proof of Theorem 1.1. We seek to show that the Floer homology groups

HSI(Σ′;H0,H1) = HF (L0, L1;R)

are independent of the choice of Heegaard splitting of the 3-manifold Y .
By the Reidemeister-Singer theorem ([47], [53]), any two Heegaard splittings Y = H0 ∪Σ0 H1,

Y = H ′
0 ∪Σ1 H ′

1, are related by a sequence of stabilizations and de-stabilizations. Therefore it
suffices to consider the case that H ′

0,H
′
1 are obtained from H0,H1 by stabilization. That is,

H ′
0 = H0 ∪Σ0 H01, H ′

1 = H1 ∪Σ0 (−H10)

where H01,H10 are the compression bodies corresponding to adding the cycle ah+1, resp. contract-
ing bh+1. Then, after three applications of Theorem 6.7, and taking into account Lemmas 6.10,
6.11, we have

HF (L0, L1;R0) ∼= HF (L0,∆0, L1;R0, R0)
∼= HF (L0, L

c
01, L

c
10, L1;R0, R1, R0)

∼= HF (L0 ◦ Lc
01, L

c
10 ◦ L1;R1, R1)

= HF (L′
0, L

′
1;R1).

�

Remark 6.12. The symplectic instanton homology groups HSI(Y, z) depend on the choice of
basepoint z ∈ Σ ⊂ Y, compare Section 5.3. As z varies, the groups naturally form a flat bundle
over Y. Still, we usually drop z from the notation and denote them as HSI(Y ).

7. Properties and examples

7.1. The Euler characterstic. In general, the Euler characteristic of Lagrangian Floer homology
is the intersection number of the two Lagrangians. In our situation, the corresponding intersection
number is computed (up to a sign) in [1, Proposition 1.1 (a), (b)]:

(22) χ
(
HSI(Y )

)
= [L0] · [L1] =

{
±|H1(Y ; Z)| if b1(Y ) = 0;

0 otherwise.

7.2. Examples.

Proposition 7.1. We have an isomorphism

HSI(S3) ∼= Z.
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Proof. Let Hh denote the Heegaard decomposition S3 = H0∪Σ H1 of genus h ≥ 1 such that there is
a system of 2h curves αi, βi on Σ′ as in Section 3.2 with the property that the βi’s are nullhomotopic
in H0 and the αi’s are nullhomotopic in H1.

With respect to the identification (7), the Lagrangians corresponding to H0 and H1 are given by

L0 = {(A1, B1, . . . , Ah, Bh) ∈ G2h | Bi = I, i = 1, . . . , h},

L1 = {(A1, B1, . . . , Ah, Bh) ∈ G2h | Ai = I, i = 1, . . . , h}.

These have exactly one intersection point, the reducible Ai = Bi = I. Clearly L0 and L1 intersect
transversely in N (Σ′) ⊂ G2h at that point. It is somewhat counterintuitive that L0 and L1 can
intersect transversely at I, because they both live in the subspace Φ−1(0) of codimension three in
N (Σ′). However, that subspace is not smooth, so there is no contradiction. We conclude that the
Floer chain group has one generator; hence so does the homology. �

Proposition 7.2. For h ≥ 1, we have an isomorphism

HSI(#h(S1 × S2)) ∼=
(
H∗(S

3; Z/2Z)
)⊗h

,

where the grading of the latter vector space is collapsed mod 8.

Proof. Let H′
h be the Heegaard splitting of genus h ≥ 1 for #h(S1 × S2). Since L0 = L1

∼= Gh ∼=
(S3)h, the cohomology ring of L0 is generated by its degree d = 3 part. Under the monotonicity
assumptions which are satisfied in our setting, Oh [40] constructed a spectral sequence whose E1

term is H∗(L0; Z/2Z) and which converges to HF∗(L0, L0; Z/2Z). This sequence is multiplicative
by the results of Buhovski [10] and Biran-Cornea [7], [8]. A consequence of multiplicativity is that
the spectral sequence collapses at the E1 stage provided that NL > d + 1, see for example [8,
Theorem 1.2.2]. This is satisfied in our case because NL0 = N ≥ 8. Hence HF∗(L0, L0; Z/2Z) ∼=
H∗(G

h; Z/2Z).
Note that the results of Oh, Buhovski and Biran-Cornea were originally formulated for monotone

symplectic manifolds, i.e. in the setting of Section 2.1. However, they also apply to the Floer
homology groups defined in Section 2.3. Indeed, the arguments in the proof of Proposition 2.10
about the finiteness of the Floer differential is finite and the fact that ∂2 = 0 apply equally well to
the “string of pearls” complex used in [7], [8]. �

Proposition 7.3. For a lens space L(p, q), with g. c.d.(p, q) = 1, the symplectic instanton homology
HSI(L(p, q)) is a free abelian group of rank p.

Proof. Denote by H(p, q) the genus one Heegaard splitting of L(p, q). In terms of the coordinates
A = A1 and B = B1, the two Lagrangians are given by L0 = B = 1 and L1 = ApB−q = 1. Their
intersection consists of the space of representations π1(L(p, q)) ∼= Z/p → SU(2), which has several
components: when p is odd, there is the reducible point (A = B = I) and (p − 1)/2 copies of S2;
when p is even, there are two reducibles (A = B = I and A = −I,B = I) and (p−2)/2 copies of S2.
It is straightforward to check that each component is a clean intersection in the sense of Poźniak
[45]. Therefore, there exists a spectral sequence that starts at H∗(L0 ∩ L1) ∼= Zp and converges
to HF (L0, L1), cf. [45]. Since the Euler characteristic of HF (L0, L1) is p by Equation (22), the
sequence must collapse at the first stage. �

Remark 7.4. More generally, whenever we have a Heegaard decomposition H of a three-manifold
Y with H1(Y ) = 0, the two Lagrangians L0 and L1 will intersect transversely at the reducible I, cf.
[1, Proposition 1.1(c)]. We could then fix an absolute Z/8Z-grading on HSI(H) by requiring that
the Z summand corresponding to I lies in grading zero.
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7.3. Comparison with other approaches. Let Y = H0 ∪Σ H1 be a Heegaard splitting of a
3-manifold, with Σ of genus h. Recall that the Lagrangians L0 = L(H0) and L1 = L(H1) live inside
the subspace

Φ−1(0) =
{

(A1, B1, . . . , Ah, Bh) ∈ G2h
∣∣∣

h∏

i=1

[Ai, Bi] = I
}
⊂ N (Σ′).

There is an alternative way of embedding Φ−1(0) inside a symplectic manifold of dimension 6h.
Namely, let Σ+ be the closed surface (of genus h + 1) obtained by gluing a copy of T 2 \ D2 onto
the boundary of Σ′ = Σ \D2. Consider the moduli space Mtw(Σ+) of projectively flat connections
(with fixed central curvature) in an odd-degree U(2)-bundle over Σ+, as in Section 3.6:

Mtw(Σ+) =
{
(A1, B1, . . . , Ah+1, Bh+1) ∈ G2h+2

∣∣∣
h+1∏

i=1

[Ai, Bi] = −I
}
/G.

Pick two particular matrices X,Y ∈ G with the property that [X,Y ] = −I. Then we can embed
Φ−1(0) into Mtw(Σ+) by the map

(A1, B1, . . . , Ah, Bh) → [(A1, B1, . . . , Ah, Bh,X, Y )].

With respect to the natural symplectic form on Mtw(Σ+), the spaces L0, L1 ⊂ Φ−1(0) are still
Lagrangians. One can take their Floer homology, and obtain a Z/4Z graded abelian group. This
was studied in [57, Section 4.1], where it is shown that it is a 3-manifold invariant. It is not obvious
how this invariant relates to HSI.

The advantage of using Mtw(Σ+) instead of N (Σ′) is that the former is already compact (and
monotone); therefore, the definition of Floer homology is less technical and this allows one to
prove invariance. Nevertheless, the construction presented in this paper (using N (Σ′)) has certain
advantages as well: first, the resulting groups are Z/8Z-graded rather than Z/4Z-graded. Second,
it is better suited for defining an equivariant version of symplectic instanton homology. Indeed,
unlike Mtw(Σ+), the space N (Σ′) comes with a natural action of G that preserves the symplectic
form and the Lagrangians. Following the ideas of Viterbo from [55], [54], we expect that one should
be able to use this action to define equivariant Floer groups HSIG

∗ (Y ) in the form of H∗(BG)-
modules. For integral homology spheres, a suitable Atiyah-Floer Conjecture would relate these to
the equivariant instanton homology of Austin and Braam [5].

In a different direction, it would be interesting to study the connection between our construction

and the Heegaard Floer homology groups ĤF ,HF+ of Ozsváth and Szabó [43], [42]. In particular,
we ask the following:

Question 7.5. For an arbitrary 3-manifold Y , are the total ranks of HSI(Y )⊗Q and ĤF (Y )⊗Q

equal?

Finally, we remark that Jacobsson and Rubinsztein [25] have recently described a construction
similar to the one in this paper, but for the case of knots in S3 rather than 3-manifolds. Given a
representation of a knot as a braid closure, they define two Lagrangians inside a certain symplectic
manifold; this manifold was first constructed in [22] and is a version of the extended moduli space.
Conjecturally, one should be able to take the Floer homology of the two Lagrangians and obtain a
knot invariant.
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