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Abstract. Given a closed four-manifold X with an indefinite intersection form, we consider
smoothly embedded surfaces in X \ B̊4, with boundary a knot K ⊂ S3. We give several
methods to bound the genus of such surfaces in a fixed homology class. Our techniques include
adjunction inequalities and the 10/8 + 4 theorem. In particular, we present obstructions to
a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show
that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds.

1. Introduction

A fundamental problem in four-dimensional topology is to find the minimal genus of embed-
ded surfaces in a four-manifold, in a given homology class. For example, the Thom conjecture
[35] and the symplectic Thom conjecture [46] were problems of this type; their solutions rank
among the major successes of gauge theory. A relative version of the same problem concerns
bounding the genus of properly embedded surfaces Σ in a four-manifold W with boundary,
when ∂Σ is a given knot K ⊂ ∂W and the relative homology class of Σ is fixed.

We will focus on the case where the four-manifold has boundary S3. We let X be a
closed, connected, oriented, smooth four-manifold, and consider properly embedded surfaces
in X◦ := X \ B̊4, with boundary a classical knot K ⊂ S3. One problem of interest is whether
K bounds a null-homologous disk in X◦; if so, we say that K is H-slice in X.

When X = S4, the problem reduces to the well-known question of finding the four-ball
genus of knots, and in particular of determining which knots are slice. More generally, when
X has definite intersection form, many of the gauge theoretic techniques for bounding the

genus of embedded surfaces still apply; see [48, 36, 23]. When X = #nCP2 or #nCP2, there
are also bounds from Khovanov homology [39].

Less is known about relative genus bounds in more complicated, indefinite four-manifolds,
such as the K3 surface or complex surfaces of general type. Classical methods produce topo-
logical constraints (that apply equally well for surfaces embedded in a locally flat way in a
topological four-manifold). We will review these in Section 3. They include constraints from
the Arf invariant [56, 14, 32], from the Tristram-Levine signatures [10], and from a theorem
of Rokhlin [57].

The main purpose of this paper is to use gauge theory and Heegaard Floer homology to
develop new techniques for bounding the genus of smoothly embedded surfaces with boundary,
in indefinite four-manifolds.

Inside 4-manifolds with non-trivial Seiberg-Witten (or Ozsváth-Szabó) invariants, the genus
of closed surfaces can be bounded using the adjunction inequalities from [35], [41], [46], [51].
This can be leveraged to bound the genus of surfaces Σ ⊂ X◦ with boundary a knot K: by
capping off Σ with a smooth surface F in some manifold Z with ∂Z ⊃ S3 and ∂F = K (the
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mirror of K), we can apply the adjunction inequality in X◦∪Z to the resulting closed surface
Σ ∪ F .

The simplest way to do this is to take Z = B4 and F a surface in B4 with boundary K.
This gives an inequality of the following form, involving the slice genus g4(K) of the knot:

(1) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2 + 2g4(K).

A stronger bound can be obtained by taking Z to be the cobordism associated to some
surgery on K, and letting F be the core of the 2-handle. This improves the inequality (1)
to one involving the concordance invariant ν+ from knot Floer homology [25]. We obtain
the following relative adjunction inequality (see Section 4 for an introduction to ΦX,s and
manifolds of Ozsváth–Szabó simple type):

Theorem 1.1. Let X be a closed 4-manifold, with b+2 (X) > 1. Let Σ ⊂ X◦ be a properly

embedded surface with g(Σ) > 0 and ∂Σ = K, and let K denote the mirror of K. Suppose that
either [Σ]2 ≥ 2ν+(K) or X is of Ozsváth-Szabó simple type. Then, for every spinc structure
s ∈ Spinc(X) for which the mixed invariant ΦX,s is non-zero, we have

⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2 + 2ν+(K).

Remark 1.2. A different relative adjunction inequality, in terms of the concordance invariant
τ , was proved by Ozsváth and Szabó [48, Theorem 1.1]. Theirs applies to surfaces in negative
definite 4-manifolds, whereas ours is for 4-manifolds with b+2 (X) > 1.

Theorem 1.1 gives non-trivial obstructions for surfaces Σ of positive genus and with [Σ] ̸= 0,
but does not say anything about H-sliceness in X. Instead, we can get constraints on H-
sliceness by filling X◦ with suitable symplectic manifolds, and using adjunction inequalities
based on the Bauer-Furuta invariants:

Theorem 1.3. Let X and X ′ be closed symplectic 4-manifolds satisfying b+2 (X) ≡ b+2 (X
′) ≡ 3

(mod 4). Suppose that a knot K ⊂ S3 is such that the mirror K bounds a smooth, properly
embedded disk ∆ ⊂ X◦ with [∆]2 ≥ 0 and [∆] ̸= 0. Then K is not H-slice in X ′.

From here we obtain the following application.

Corollary 1.4. There exist smooth, homeomorphic four-manifolds X and X ′ and a knot
K ⊂ S3 that is H-slice in X but not in X ′. For example, one can take

X = #3CP2#20CP2, X ′ = K3#CP2,

and K to be the right-handed trefoil.

This result sheds some light on the following well-known strategy to disprove the smooth
4-dimensional Poincaré conjecture: find a knot K that is H-slice (or equivalently slice) in a
homotopy 4-sphere but not in S4; see for example [13]. Corollary 1.4 gives the first example
showing that indeed there are closed 4-manifolds for which the set of H-slice knots can detect
exotic smooth structures. (We note that the literature already contains examples of exotic
4-manifold pairs, where the boundary Y is not S3, such that some knot in Y bounds a null-
homologous smooth disk in one manifold and not in the other; this is the case, for instance,
with Akbulut’s corks [1]).

We also observe that Corollary 1.4 gives an example of a knot that is topologically but not
smoothly H-slice in an indefinite 4-manifold; under the homeomorphism X → X ′, the image
of the smooth H-slice disk for the right hand trefoil in X is a topological H-slice disk for the
right-handed trefoil in X ′. Since the right-handed trefoil does not bound a topological disk
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in S3 × [0, 1], Corollary 1.4 demonstrates that this disparity between smooth and topological
sliceness is inherent toX ′ rather than inherited from the well-known disparity between smooth
and topological sliceness in B4.

In a different direction, Furuta’s celebrated 10/8-theorem [17] gives constraints on the
intersection forms of smooth spin 4-manifolds. Donald and Vafaee [11] used the 10/8-theorem
to derive a new sliceness obstruction (in the four-ball). Their result was strengthened by
Truong in [65], by applying a refinement of Furuta’s theorem (called the 10/8 + 4 theorem)
due to Hopkins-Lin-Shi-Xu [26].

The same techniques can be used to obstruct H-sliceness in other 4-manifolds. We obtain:

Theorem 1.5. Let K ⊂ S3 be an H-slice knot in a closed spin 4-manifold X, and let W be
a spin 2-handlebody with ∂W = S3

0(K). If b2(X) + b2(W ) ̸= 1, 3, 23, then

b2(X) + b2(W ) ≥ 10

8
· |σ(X)− σ(W )|+ 5.

In [11, Section 3.2], Donald and Vafaee applied their methods to show that a certain
topologically slice knot, which we call KDV and reproduce in Figure 5, is not smoothly slice.
Theorem 1.5 implies the following.

Corollary 1.6. The topologically slice knot KDV is not H-slice in the K3 surface.

Note that this example is qualitatively different from that of the trefoil in X ′ = K3#CP2,
because KDV bounds a locally flat disk in a neighborhood of the boundary, i.e., in S3 × [0, 1].
In the terminology of [34], KDV is topologically shallow slice in the K3 surface, whereas the
trefoil is topologically deep slice in X ′.

Remark 1.7. In unpublished work, Anthony Conway and Oliver Singh used the same technique
to investigate topological versus smooth H-sliceness in #n(S2 × S2).

1.1. Organization of the paper. In Section 2 we discuss the notions of slice and H-slice
knots in four-manifolds, and give some examples. In Section 3 we review several topological
constraints on the existence of surfaces with boundary inside four-manifolds. In Section 4
we prove the relative adjunction inequality, Theorem 1.1, along with Theorem 1.3 and Corol-
lary 1.4. In Section 5 we present the relative Donald-Vafaee obstruction, Theorem 1.5, and
prove Corollary 1.6. Finally, in Section 6 we list a few open problems.

1.2. Acknowledgments. We are grateful to Matt Hedden, Michael Klug, Maggie Miller,
Benjamin Ruppik, and Ian Zemke for helpful conversations.

2. Slice and H-slice knots

Let X be a closed, connected, oriented, smooth four-manifold, and consider properly em-
bedded surfaces in X◦ := X \ B̊4.

Definition 2.1. (a) We say that a knot K in S3 ∼= ∂X◦ is slice in X if it bounds a smoothly,
properly embedded disk ∆ ⊂ X◦.

(b) If K is slice in X and the disk ∆ can be taken so that [∆] = 0 ∈ H2(X
◦, ∂X◦) ∼= H2(X),

we say that K is H-slice in X.

As a simple observation, we note that a knot K is slice (resp. H-slice) in X if and only if
its mirror image K is slice (resp. H-slice) in X.
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Figure 1. There is a cobordism in CP2 \ (B̊4 ⊔ B̊4) from LHT to the unknot.

We denote by S(X), resp. SH(X), the set of knots that are slice, resp. H-slice, in X. In
particular, we write S = S(S4) = SH(S4) for the usual set of slice knots. We also write K for
the set of all knots. Note that for every X we have

(2) S ⊆ SH(X) ⊆ S(X) ⊆ K.

In a topological 4-manifold X, we also have related notions of topologically slice, and topo-
logically H-slice knots in X, referring to the existence of disks that are embedded in a locally
flat way.

Let us mention a few results about sliceness and H-sliceness in some particular four-

manifolds: Norman [45] and Suzuki [60] proved that every knot is slice in CP2#CP2 and
S2 × S2. Further, Schneiderman [59] showed that every knot of Arf invariant zero is H-slice
in #n(S2 × S2) for some n ≥ 0. At the opposite end, for manifolds such as X = S1 × S3

or T 4, we have S(X) = SH(X) = S. A more interesting example is CP2, for which all the
inclusions in (2) are strict. Indeed, there exist knots that are not slice in CP2, such as T2,−15,

cf. Yasuhara [68, 69]; there are also knots that are slice in CP2 but not H-slice in CP2, such
as the left-handed trefoil; and knots that are H-slice in CP2 but not slice in S4, such as the
right-handed trefoil. (See Examples 2.2–2.4 below.) Sliceness and related notions in #nCP2

(or its reverse) were further investigated in [7], [8], [54].
Invariants from Floer homology and Khovanov homology can be used to obstruct H-sliceness

in definite four-manifolds [48, 36, 39, 23].

Example 2.2. The left hand trefoil (LHT) is not H-slice in CP2, for example by the adjunction
inequality for τ or s [51, 39].

Example 2.3. On the other hand, the right handed trefoil (RHT) is H-slice in CP2. One way
to see this is to consider the standard handle diagram for CP2. After we remove the 0-handle
and the 4-handle, we get a cobordism CP2 \ (B̊4 ⊔ B̊4) from S3 to S3. Observe that there is a
null-homologous annulus in CP2 \ (B̊4 ⊔ B̊4) from LHT in ∂−(CP2 \ (B̊4 ⊔ B̊4)) to the curve γ
in ∂+(CP2 \ (B̊4 ⊔ B̊4)) shown in the left frame of Figure 1. The annulus is null-homologous
because γ has vanishing linking number with the 2-handle. Now observe that when we identify
∂+(CP2 \ (B̊4 ⊔ B̊4)) with the standard diagram of S3, as in the right of Figure 1, we can
identify γ as the unknot. Since the unknot bounds a disk in the 4-handle, we have found a
nullhomologous disk in CP2 \ B̊4 with boundary LHT in ∂−(CP2 \ B̊4). Adjusting for the
standard outward-normal-first orientation on boundaries, the claim follows.

Example 2.4. Note that the red +1 framed unknot in Figure 1 encircles a crossing of LHT,
with linking number 0. If we had instead considered a −1 framed unknot encircling a crossing
of LHT, with linking number 2, then we could argue exactly as in Example 2.3 that there is

a cobordism in CP2 \ (B̊4 ⊔ B̊4) from LHT to the unknot, hence proving that RHT bounds a
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Figure 2. The handle diagram of the K3 surface from [22, Section 8.3]. All
circles except the right handed trefoil have framing −2.

disk in CP2. However in this setting the disk is in homology class 2H, where H is a generator

of H2(CP2;Z). After a global change of orientation, we see that LHT bounds a disk in CP2

with homology class 2H, where H is a generator of H2(CP2;Z).

We now give some examples of slice and H-slice knots in the K3 surface. We chose the
K3 surface because it is a symplectic 4-manifold with a rather simple description, but it is

not definite, nor is it homeomorphic to a sum of CP2, CP2, or S2 × S2. The K3 surface can
be given a handle decomposition with a 0-handle, twenty-two 2-handles, and a 4-handle, as
explained in [22, Section 8.3]. See Figure 2 for such a handle diagram.

Example 2.5. The left handed trefoil LHT bounds a disk ∆ ⊂ K3 \ B̊4 with [∆]2 = 0 and
[∆] ̸= 0. To see this, as in Example 2.3, we locate RHT in ∂− of the standard handle diagram
of K3 with the 0-handle removed. The core of the trefoil-shaped 2-handle in Figure 2 is a disk
in K3 with boundary this RHT. Thus after correcting for outward normal first orientation we
see that LHT bounds the desired disk in K3.

The next lemma implies that the family S(K3) of knots that are slice in K3 is quite large.
We start by giving a definition.

Definition 2.6. We say that a knot K2 is obtained from a knot K1 by adding a negative
twist along k strands if K1 and K2 admit knot diagrams that agree everywhere except in a
small region where they appear as shown in Figure 3.

Lemma 2.7. Let K0, K1, and K2 be knots such that Ki is obtained from Ki+1 by adding
a negative full twist along ki strands, and suppose that ki ≤ 5. Then, there exists a smooth,
connected, properly embedded surface Σ ⊂ K3 \ B̊4 with ∂Σ = K2 and

g(Σ) ≤ g4(K0).

Proof. Let X be a closed four-manifold with a handle diagram with no 1-handles, and let
W = X \ (B̊4 ⊔ B̊4), seen as a cobordism from S3 to S3. We first observe that if any Tk,−k

torus link appears as a sublink of such a handle diagram (where we make no assumption on
the framings of the components), and the knot J is obtained from K by adding a negative
twist along k strands, then there is an embedded annulus in W from J ⊂ ∂−W to K ⊂ ∂+W .
Such an annulus is shown in Figure 4.
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Figure 3. The figure shows the effect of adding a negative full twist along k strands.
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Figure 4. For a 4-manifold W as in the proof of Lemma 2.7, the red curves
on the left represent some 2-handles of W arranged as a Tk,−k torus link. If we
slide k parallel strands of a knot K ⊂ ∂+W over the 2-handles as shown in the
figure, the resulting knot J ⊂ ∂−W is obtained from K by adding a negative
full twist along k strands.

Now observe that the handle diagram of K3 in Figure 2 contains two disjoint copies of T5,−5,
namely the 5 outermost components of the left bundle and the 5 innermost components of the
right bundle. Thus, there is an embedded annulus A in W = K3 \ (B̊4 ⊔ B̊4) from K0 to K2.
To get the surface Σ, we attach a minimal genus surface for K0 in a B4 glued to ∂−W . □

Corollary 2.8. Any knot K with unknotting number u(K) ≤ 2 is slice in K3.

Proof. Suppose that the knots K0 = U (the unknot), K1, and K2 = K are such that Ki is
obtained from Ki+1 by a crossing change. Note that any crossing change can be realized by
adding a negative full twist along 2 strands. By applying Lemma 2.7, we obtain a slice disk
Σ for K. □

Example 2.9. From Corollary 2.8 we see that both trefoils are slice in K3. (See also Example
2.5.) However, note that neither trefoil is H-slice in K3; see Example 3.3 below.

The following lemma illustrates a way to construct H-slice knots in a general 4-manifold.

Lemma 2.10. Let X be a 4-manifold and let K be a knot in S3 which bounds a surface Σ of
genus g in X◦. Then Wh±−[Σ]2

(K) bounds a homologically trivial embedded surface Wh±−[Σ]2
(Σ)

of genus 2g in X◦.

Proof. Take two copies Σ1 and Σ2 of Σ with opposite orientations, with boundary the un-
twisted cable C2,0(K), where the two components have opposite orientations. Note that
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Σ1 · Σ2 = −[Σ]2. We can cancel the double points by bringing them to the boundary, where
they contribute to the linking number. Thus, we get a 2-component embedded surface with
boundary C2,−2[Σ]2(K), i.e. so that the linking number of the two components is equal to [Σ]2.
By adding a twisted band to connect the two components we get a null-homologous embedded
surface Wh±−[Σ]2

(Σ) with boundary Wh±−[Σ]2
(K). □

Example 2.11. By Lemma 2.10 applied to Example 2.5, we see that Wh±0 (LHT) is H-slice in
K3.

3. Topological obstructions

We review here some constraints on the homology classes of surfaces embedded in topolog-
ical four-manifolds.

3.1. The Arf invariant. The Kirby-Siebenmann invariant ks(X) ∈ H4(X;Z/2) is an ob-
struction to smoothing topological manifolds; see [31]. WhenX is a closed oriented topological
4-manifold, then ks(X) is valued in Z/2 and given by the formula

ks(X) =
1

8
(σ(X)− [Σ]2)−Arf(X,Σ) (mod 2),

where Σ is any characteristic surface in X; see [32, Corollary 9.3]. In particular, when X is
smooth, we have ks(X) = 0 and we obtain:

(3)
σ(X)− [Σ]2

8
≡ Arf(X,Σ) (mod 2).

This result is due to Rokhlin [58]; see [14], [40] for different proofs. There is also a relative
version of (3), as follows.

Theorem 3.1. Let X be a smooth, closed, connected, oriented 4-manifold. If Σ ⊂ X◦ is a
properly embedded, locally flat characteristic surface with boundary a knot K, then

(4)
σ(X)− [Σ]2

8
≡ Arf(K) + Arf(X,Σ) (mod 2).

This appears (with minor modifications) as Corollary 6 on [30, p. 69], and also as Theorem
2.2 in [70]. See [33, Theorem 2] for a generalization of Theorem 3.1 to the case of 4-manifolds
with boundary a homology sphere.

WhenX is spin and Σ is a null-homologous disk, we have σ(X) ≡ 0(mod 16) and Arf(X,Σ) =
0. From (4), we recover an old result of Robertello [56, p. 1-2]:

Theorem 3.2 (Robertello [56]). If a knot K is topologically H-slice in a spin smooth 4-
manifold, then Arf(K) = 0.

Example 3.3. Recall that the Arf invariant of a knot can be read from the determinant
D = |∆K(−1)|: we have Arf = 0 ⇐⇒ D ≡ ±1 (mod 8). For example, the torus knot
T2,2k+1 has D = 2k + 1 and therefore Arf = 0 ⇐⇒ k ≡ 0 or 3 (mod 4). Thus, torus knots
of the form T2,8k+3 and T2,8k+5 are not H-slice in smooth spin 4-manifolds.

3.2. Levine-Tristram signatures. Given a knot K ⊂ S3 and a value ω ∈ S1, the Levine-
Tristram signature σK(ω) is defined as the signature of (1 − ω)A + (1 − ω)AT , where A is a
Seifert matrix for K; see [64], [37], or [9].

Following [43], we denote by S1
! the set of unit complex numbers that are not zeros of

any integral Laurent polynomial p with p(1) = 1. Note that S1
! includes, for example, roots
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of unity of order a prime power. The evaluations σK(ω) for ω ∈ S1
! are knot concordance

invariants; see [43]. In particular, for ω = −1, we obtain the usual knot signature

σ(K) := σK(−1).

The following result is a special case of Theorem 3.8 in [10].

Theorem 3.4 (Conway-Nagel [10]). Let X be a closed topological 4-manifold with H1(X;Z) =
0 and signature σ(X). If the knot K ⊂ S3 bounds a locally flat, properly embedded, null-
homologous surface in X◦ of genus g, then

(5) |σK(ω) + σ(X)| ≤ b2(X) + 2g,

for every ω ∈ S1
! .

Note that we can re-write the constraint (5) as

σK(ω) ∈ [−2b+(X)− 2g, 2b−(X) + 2g].

One case of interest is when g = 0:

Corollary 3.5 (Corollary 4.7 in [34]). If K is topologically H-slice in X, and ω ∈ S1
! , then

σK(ω) ∈ [−2b+(X), 2b−(X)].

As an application of this, Klug and Ruppik showed in [34, Theorem 4.4] that for every
closed oriented 4-manifold X, there exists a knot K ⊂ S3 that is not topologically H-slice in
X.

3.3. Relative Rokhlin-type inequalities. Rokhlin [57] gave constraints on the homology
classes of closed embedded surfaces inside 4-manifolds, provided these homology classes are
divisible by a prime. (Note that this includes the null-homologous case.) Rokhlin’s results
were used by Yasuhara in [68, 69] to prove the existence of non-slice knots in CP2. Rokhlin’s
results were also used by Klug and Ruppik in [34] to show that every closed 2-handlebody
X ̸= S4 admits knots that are slice in X but not slice in S4.

Rokhlin’s constraints were generalized to surfaces with boundary a knot K in the work of
Viro [66] and Gilmer [21, Theorem 4.1 and Remark (a) on p.371]. Note that while Rokhlin,
Viro and Gilmer all worked in the smooth category, the main ingredient in their proofs is the
G-signature theorem [3], which also works in the topological category when applied to tame,
semi-free actions (such as, in our case, the action of deck transformations on a cyclic branched
cover); see [67, Theorem 14B.2]. We will phrase the relative result in the topological category.

Theorem 3.6 (Viro [66], Gilmer [21]). Let X be a topological closed oriented 4-manifold with
H1(X;Z) = 0. Let Σ ⊂ X◦ be a locally flat, properly embedded surface of genus g, with
boundary a knot K ⊂ S3. If the homology class [Σ] ∈ H2(X

◦, ∂X◦) ∼= H2(X) is divisible by a
prime power m = pk, then

(6)

∣∣∣∣σK(e2πri/m) + σ(X)− 2r(m− r) · [Σ]2

m2

∣∣∣∣ ≤ b2(X) + 2g,

for every r = 1, . . . ,m− 1.

Remark 3.7. When [Σ] is 2-divisible, taking m = 2 in Theorem 3.6 we get:

(7)

∣∣∣∣σ(K) + σ(X)− [Σ]2

2

∣∣∣∣ ≤ b2(X) + 2g.

Remark 3.8. Suppose K is the unknot. After capping K with a disk in B4, the inequality (6)
for r = ⌊m/2⌋ gives Rokhlin’s main theorem from [57].
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Remark 3.9. When Σ is null-homologous, Theorem 3.6 reduces to the Conway-Nagel result
(Theorem 3.4) for ω = e2πri/m.

4. Adjunction inequalities

4.1. The adjunction inequality for closed surfaces in closed 4-manifolds. We start
by reviewing the adjunction inequality from Seiberg-Witten theory, which gives genus bounds
on smoothly embedded surfaces in 4-manifolds.

Let X be a closed 4-manifold with b+2 (X) > 1. Recall that X is called of Seiberg-Witten
simple type if the Seiberg-Witten invariants SWX,s vanish whenever the expected dimension
of the Seiberg-Witten moduli space,

d(s) =
c1(s)

2 − (2χ(X) + 3σ(X))

4
,

is nonzero. It is known that complex projective surfaces and, more generally, symplectic
4-manifolds are of simple type; cf. [62], [63].

Theorem 4.1 ([35], [41], [46]). Let X be a closed 4-manifold with b+2 (X) > 1. Let Σ ⊂ X be
a smoothly embedded surface of genus g(Σ) > 0. Suppose that either

(a) [Σ]2 ≥ 0; or
(b) X is of Seiberg-Witten simple type.

Then, for each spinc structure s ∈ Spinc(X) for which SWX,s ̸= 0, we have

(8) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2.

In Heegaard Floer theory, the analogues of the Seiberg-Witten invariants are the Ozsváth-
Szabó mixed invariants ΦX,s defined in [51]. The invariants ΦX,s are conjecturally equal to the
Seiberg-Witten invariants, and have similar properties. We recall their definition in Section
4.2.

We say that X is of Ozsváth-Szabó simple type if ΦX,s = 0 whenever d(s) ̸= 0. It is expected
that symplectic 4-manifolds are of Ozsváth-Szabó simple type; see [27, Conjecture 1.3]. In
any case, we know that the K3 surface is of Ozsváth-Szabó simple type by the calculation in
[50, Section 4]; see [27] for other examples.

Theorem 4.2 (Ozsváth-Szabó [51, 50]). Let X be a closed 4-manifold with b+2 (X) > 1. Let
Σ ⊂ X be a smoothly embedded surface of genus g(Σ) > 0. Suppose that either

(a) [Σ]2 ≥ 0; or
(b) X is of Ozsváth-Szabó simple type.

Then, for each spinc structure s ∈ Spinc(X) for which ΦX,s ̸= 0, we have

(9) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2.

Under the hypothesis (a), this result is [51, Theorem 1.5]. An alternative proof was given
by Zemke [72, Theorem 1.6]. Under the hypotheses (b), it is a consequence of the adjunction
relation in [50, Theorem 3.1]. It is also a particular case of Theorem 4.7, which we will prove
below.

In Seiberg-Witten theory, there is also an adjunction inequality for embedded spheres:

Theorem 4.3 (Fintushel-Stern [12]). Let X be a closed 4-manifold with b+2 (X) > 1. Suppose
that there exists a spinc structure s with SWX,s ̸= 0. Then, there exist no smoothly embedded
spheres Σ ⊂ X such that [Σ]2 ≥ 0 and [Σ] ̸= 0.
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Remark 4.4. The proof of Theorem 4.3 involves the blow-up formula and the finiteness of basic
classes. Since the same results also hold in the Heegaard Floer setting (cf. [51, Theorems
1.4 and 3.3]), the adjunction inequality for spheres also holds if we replace the condition
SWX,s ̸= 0 with ΦX,s ̸= 0.

For future reference, we will need a refinement of Theorem 4.3, based on the Bauer-Furuta
invariants instead of the Seiberg-Witten invariants. The Bauer-Furuta invariant takes values
in an (equivariant) stable homotopy group of spheres, and is defined from the Seiberg-Witten
map by using finite dimensional approximation. For simplicity, we will only consider the
nonequivariant Bauer-Furuta invariant, with values in the ordinary stable homotopy groups
of spheres:

BFX,s ∈ πst
d(s)+1(S

0).

Intuitively, via the Pontryagin-Thom construction, this captures the framed cobordism class
of the Seiberg-Witten moduli space. Unlike the Seiberg-Witten invariant, it can be nonzero
even when b+2 (X) is even; see [5], [4] for more details.

The following theorem was independently proved by Yasui [71, Theorem 2.8] using Frøyshov’s
work [16, Theorem 1.1], and by Khandhawit-Lin-Sasahira in [29, Corollary 1.9].

Theorem 4.5 ([71], [29]). Let X be a closed 4-manifold with b+2 (X) > 1. Suppose that there
exists a spinc structure with BFX,s ̸= 0. Then, there exist no smoothly embedded spheres
Σ ⊂ X such that [Σ]2 ≥ 0 and [Σ] ̸= 0.

4.2. The adjunction inequality for closed surfaces in 4-manifolds with boundary.
An inequality of this form was proved by Zemke [72, Theorem 1.6], assuming the map on
CFL− is nonzero. Here we will prove a similar inequality involving mixed invariants.

The mixed invariant for a 4-manifold X with boundary Y and b+2 > 1 is defined in [51,
Section 8] as follows: We choose an admissible cut N that splitsX asX1∪NX2, with ∂X1 = N
and ∂X2 = N ⊔Y. For a spinc structure s ∈ Spinc(X), we combine the minus map on X1 with
the plus map on X2 and the identification HF+

red(N) ∼= HF−
red(N) in the middle, to obtain a

mixed map
HF−(S3) → HF+(Y, s|Y ).

By incorporating the action of A(X) = Λ∗(H1(X;Z)/Tors)[U ], we get a map

ΦX,s : A(X)⊗Z[U ] HF
−(S3) → HF+(Y, s|Y ),

which we call the Ozsváth–Szabó mixed invariant. We remark that we consider all the Hee-
gaard Floer modules over F2[U ], where F2 is the field with two elements (see [28] for a
discussion of the coefficient ring).

For a cobordismW between non-empty manifolds Y0 and Y1, together with a spinc structure
s which is torsion on Y0 and Y1, we define the quantity

D(W, s) =
c21(s)− (2χ(W ) + 3σ(W ))

4
,

which is additive under composition of spinc cobordisms.
Note that for a closed 4-manifold X with a spinc structure s, we have d(s) = D(W, s)− 1,

where W is X \ (B̊4 ⊔ B̊4) seen as a cobordism from S3 to S3. Analogously, for a 4-manifold
X with one boundary component Y and a spinc structure s which is torsion on Y , we define

d(s) = D(W, s|W )− 1 =
c1(s)

2 − (2χ(X) + 3σ(X))

4
− 1

2
,

where W = X \ B̊4 seen as a cobordism from S3 to Y .
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Definition 4.6. Let X be a smooth 4-manifold X with ∂X = Y and b+2 (X) > 1. We say that
X is of relative Ozsváth–Szabó simple type if Y is a rational homology sphere and ΦX,s = 0
whenever d(s) ̸= d(Y, s|Y ).

Note that whenX is closed, thenX being of Ozsváth–Szabó simple type (in the usual sense)
is equivalent to X◦ = X \ B̊4 being of relative Ozsváth–Szabó simple type as in Definition 4.6.

Theorem 4.7. Let X be a smooth 4-manifold (possibly with boundary) and b+2 (X) > 1. Let
Σ ⊂ Int(X) be a smoothly embedded closed connected surface of genus g(Σ) > 0. Suppose that
either

(a) [Σ]2 ≥ 0; or
(b) X is of relative Ozsváth-Szabó simple type.

Then, for each spinc structure s ∈ Spinc(X) for which ΦX,s ̸= 0, we have

(10) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2.

Proof. In case (a) we follow Ozsváth–Szabó’s proof of [51, Theorem 1.5]. Split X as X1∪N X2

with N an admissible cut. We first reduce to the case [Σ]2 = 0 by repeatedly blowing up:

each copy of CP2 can be added to either X1 or X2, and by [51, Theorem 3.7 with ℓ = 0]
the mixed invariant map is still non-vanishing. The surface Σ is replaced by the connected

sum of itself with the exceptional divisor, and the spinc structure on CP2 is chosen so that
⟨c1(s), [Σ]⟩+ [Σ]2 does not change.

Since b+2 (X) > 1, there exists a homology class α ∈ H2(X;Z) with α2 > 0 and α · [Σ] = 0.
We represent α by a smoothly embedded surface T transverse to Σ. By adding tubes on
T to cancel intersections with Σ, we can also assume that T and Σ are disjoint (note that
[T ] = α does not change while doing so). Let N (T ) be a tubular neighborhood of T . Then
N = ∂N (T ) is an admissible cut of X, and we can assume that Σ ⊂ X2. Since [Σ]2 = 0, the
cobordism map

F+
X2,s

: HF+(N, s) → HF+(Y, s)

factors through HF+(Y#(S1 × Σ), s), which vanishes by [49, Theorem 7.1] unless

|⟨c1(s), [Σ]⟩| ≤ 2g(Σ)− 2.

This concludes the proof of case (a), since the vanishing of HF+(Y#(S1 ×Σ), s) implies that
of ΦX,s too.

We now turn to case (b). Assume by contradiction that the inequality (10) does not hold.
By blowing up appropriately we can repeatedly reduce the quantity ⟨c1(s), [Σ]⟩ + [Σ]2 by 2
until

⟨c1(s), [Σ]⟩+ [Σ]2 = 2g(Σ),

while keeping ΦX,s ̸= 0. (Recall that the left hand side of the previous equation is always
even because c1(s) is characteristic.)

As before, we find an admissible cut of X with Σ ⊂ X2. Then, by [72, Theorem 1.5] applied
to Σ, with Σw being a disk and Σz = Σ \ Σw, we have

F+
X2,s

(−) = F+
X2,s+PD([Σ])(ι∗(ξ(Σz))⊗−).

Thus, on the mixed invariant level, we get that

ΦX,s+PD([Σ])(ι∗(ξ(Σz))⊗−) = ΦX,s(−) ̸= 0,

showing that ΦX,s+PD([Σ]) ̸= 0.
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Note that s and s+PD([Σ]) restrict to the same spinc structure on ∂X: this is because the
condition Σ ⊂ Int(X) implies that PD([Σ]) ∈ H2(X) maps to 0 ∈ H2(∂X) under the map
induced by restriction, hence PD([Σ]) acts trivially on Spinc(∂X).

By arguing as in [46, Corollary 1.7] we get a contradiction with the relative Ozsváth–Szabó
simple type assumption, since

d(s+ PD([Σ])) =
(c1(s)

2 + 4⟨c1(s), [Σ]⟩+ 4[Σ]2)− (2χ(X) + 3σ(X))

4
− 1

2

= d(s) + ⟨c1(s), [Σ]⟩+ [Σ]2 = d(s) + 2g(Σ) > d(s). □

4.3. Relative adjunction inequalities. We will be interested in surfaces with boundary in
4-manifolds of the form X◦ = X \ B̊4, where X is closed. The adjunction inequality for closed
surfaces (Theorem 4.2) has the following immediate consequence.

Theorem 4.8. Let Σ ⊂ X◦ be a properly embedded surface with g(Σ) + g4(K) > 0, where X
is a closed 4-manifold with b+2 (X) > 1. Suppose that either

(a) [Σ]2 ≥ 0; or
(b) X is of Ozsváth–Szabó simple type.

Then, for each spinc structure s ∈ Spinc(X) for which ΦX,s ̸= 0, we have

(11) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2 + 2g4(K).

Proof. Choose a surface S ⊂ B4 with boundary K and genus g4(K). By gluing Σ and S
together we get a closed surface in X, to which we can apply Theorem 4.2. □

We will refine this using the invariant ν+ constructed by Hom and Wu in [25]. Let
CFK∞(K) denote the (Z ⊕ Z)-filtered knot Floer complex of a knot K in S3, and let i
and j denote the two filtration indices. Following [24], we define A−

s = C {max {j − s, i} ≤ 0}
and B− = C {i ≤ 0}. The inclusion map v−s : A−

s → B− induces a map v−s,∗ in homology, and
we define

Vs(K) := rankF2(coker v
−
s,∗).

The numbers Vs(K) are concordance invariants. They are non-negative, non-increasing in s,
and they vanish for s ≫ 0. They were originally defined by Rasmussen [55], although the
notation Vs(K) was introduced in [53, Section 8]. The invariant ν+ is defined as

ν+(K) := min {s ≥ 0 |Vs(K) = 0} .
(Strictly speaking, this is the definition of ν−(K), but ν−(K) = ν+(K) by [52, Proposition
2.13].)

Theorem 1.1. Let X be a closed 4-manifold, with b+2 (X) > 1. Let Σ ⊂ X◦ be a properly

embedded surface with g(Σ) > 0 and ∂Σ = K, and let K denote the mirror of K. Suppose that
either [Σ]2 ≥ 2ν+(K) or X is of Ozsváth-Szabó simple type. Then, for every spinc structure
s ∈ Spinc(X) for which the mixed invariant ΦX,s is non-zero, we have

(12) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 2 + 2ν+(K).

Proof. We begin by setting up some objects and notation: Let n ≥ 0. Attach a (−n)-
framed 2-handle along K to X◦. We denote the trace of the surgery by X−n(K), and we call

X̂−n = X◦ ∪S3 X−n(K). Let Σ̂−n denote the surface obtained by capping off Σ with the core
of the 2-handle.

Let ŝ be a spinc structure on X̂−n. If H denotes the homology class given by the core of
the 2-handle, for i ∈ Z let si denote the spinc structure on the positive trace Xn(K) with
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⟨c1(si), H⟩ = n+ 2i. We denote by ti its restriction of S3
n(K); note that ti = tn+i. Following

usual conventions, we let si denote also the corresponding spinc structure on its orientation
reversal X−n(K), which has ⟨c1(si), H⟩ = −n− 2i.

Notation in hand, we observe that Theorem 4.7 gives

(13) ⟨c1(ŝ), [Σ̂−n]⟩+ [Σ̂−n]
2 ≤ 2g(Σ̂−n)− 2

whenever we are in the setting

• [Σ̂−n]
2 = [Σ]2 − n ≥ 0 or X̂−n is of Ozsváth–Szabó simple type;

• g(Σ̂−n) = g(Σ) > 0; and
• the map

(14) F+ : HF+(S3) → HF+(S3
−n(K), ŝ|S3

−n(K))

is nonzero on the bottom element.

We now check that we can choose n and ŝ so that these conditions are satisfied. We will
first assume that either [Σ]2 > 0 or X is of Ozsváth–Szabó simple type. We will deal with the
special case [Σ]2 = 0 at the end. Notice that the second bullet point is satisfied by hypothesis
and when X is not of Ozsváth–Szabó simple type we can satisfy the first half of the first bullet
point by choosing 0 < n ≤ [Σ]2.

When X is of Ozsváth–Szabó simple type, we will now argue that X̂−n is of relative
Ozsváth–Szabó simple type for all n > 0. Suppose that ΦX̂−n ,̂s

̸= 0 for some ŝ = s#si. Since

ΦX̂−n ,̂s
= F+ ◦ ΦX,s, we have that ΦX,s ̸= 0. Since d(s) = 0 (by the simple type assumption)

and since the action of Λk(H1(X;Z)/Tors) lowers the degree by k, by grading considerations
we have

ΦX,s(h⊗ ξ) = 0

whenever h ∈
⊕

k≥1 Λ
k(H1(X;Z)/Tors) ⊂ A(X) or ξ ∈ U · HF−(S3) ⊂ HF−(S3). Thus, the

fact that ΦX,s ̸= 0 implies that the following relation holds:

ΦX,s(1A(X) ⊗ 1HF−(S3)) = 1HF+(S3).

Thus, the fact that ΦX̂−n ,̂s
̸= 0 implies that F+(1HF+(S3)) ̸= 0. Because the map induced by

X−n(K) on HF∞ is nontrivial for n > 0 and for all spinc structures [47, Proposition 9.4], F+

must map 1HF+(S3) nontrivially to the tower of HF+(Y, ti). Then, the U -equivariance forces

F+ to send 1HF+(S3) to the bottom element x of such a tower. Thus, we can compute

gr(F+) = gr(x)− gr(1HF+(S3)) = d(S3
−n(K), ti)− d(S3) = d(S3

−n(K), ti).

Finally, we compute

d(ŝ) = D(X̂−n \ B̊4, ŝ)− 1

= (D(X \ B̊4, s)− 1) + D(X−n(K), si)

= d(s) + gr(F+)

= d(S3
−n(K), ti)

proving that X̂−n is of relative Ozsváth–Szabó simple type.
Now, to check when condition (14) is satisfied, we consider the map induced by X−n(K)

on HF∞, which is nontrivial for n > 0 and for all spinc structures [47, Proposition 9.4].
Under our assumption that n > 0 there is a single tower in both the source and the target

of F+. Thus, F+ is nonzero on the bottom element if and only if its grading shift gr(F+)
coincides with d(S3

−n(K), ŝ|S3
−n(K)).
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If we choose the spinc structure s−i on X−n(K), we compute

gr(F+) =
c1(s−i)

2 − 2χ− 3σ

4
=

− (−n+2i)2

n − 2 · 1− 3 · (−1)

4
=

n− (n− 2i)2

4n
.

On the other hand, using S3
−n(K) = −S3

n(K) and d(−Y, t) = −d(Y, t), we get d(S3
−n(K), t−i) =

−d(S3
n(K), t−i), and by Ni-Wu’s formula [44, Proposition 1.6 and Remark 2.10], which holds

for n > 0, we get

d(S3
−n(K), t−i) =

n− (n− 2[−i])2

4n
+max

{
V[−i](K), Vn−[−i](K)

}
,

where [−i] ∈ {0, 1, . . . , n− 1} denotes the reduction of −i (mod n).
By imposing gr(F+) = d(S3

−n(K), t−i), we get

(15)
(n− 2[−i])2

4n
=

(n− 2i)2

4n
+max

{
V[−i](K), Vn−[−i](K)

}
.

Since the Vk’s are non-negative, for i < 0 or i > n the right hand side of Equation (15) is
stricly bigger the the left hand side, so the equality cannot hold. For 0 ≤ i ≤ n, the terms
(n−2[−i])2

4n and (n−2i)2

4n coincide, so Equation (15) reduces to

max{Vn−i(K), Vn−(n−i)(K)} = 0.

Since the Vk’s are non-increasing, we can rewrite it as

Vmin{i,n−i}(K) = 0.

This is possible if and only if ν+(K) ≤ n/2. So we can satisfy the third bullet point by
choosing n ≥ 2ν+(K). When X is simple type, we can choose any n ≥ max

{
1, 2ν+(K)

}
.

The other case was [Σ]2 > 0: recall that in such a case we previously chose 0 < n ≤ [Σ]2, so
we understand the necessity of our hypothesis 2ν+(K) ≤ [Σ]2.

For any such an n, we will try to maximize the left hand side of equation (13). Towards

that aim, choose ŝ = s#s−i on X̂−n, then

⟨c1(ŝ), [Σ̂−n]⟩ = ⟨c1(s), [Σ]⟩+ ⟨c1(s−i), H⟩ = ⟨c1(s), [Σ]⟩+ (−n+ 2i).

Therefore, Equation (13) becomes

(16) ⟨c1(s), [Σ]⟩+ [Σ]2 − 2n+ 2i ≤ 2g(Σ)− 2.

To maximize the left hand side of equation 16 we should choose i = n − ν+(K), which
yields precisely the inequality (12).

We now consider the case when [Σ]2 = 0 (and whenX is not of Ozsváth–Szabó simple type).
In such a case, our hypothesis [Σ]2 ≥ 2ν+(K) forces ν+(K) = 0, and therefore V0(K) = 0 too.
Let X0(K) be the trace of the 0-surgery, endowed with the spin structure s0, characterised
by c1(s0)

2 = 0, and let t0 denote the restriction of s0 to S3
0(K). By [20, Proposition 22],

HF+(S3
0(K), t0) = T +

− 1
2
+2V0(K)

⊕ T +
1
2
−2V0(K)

⊕HFred(S
3
0(K), t0).

Since U decreases the Maslov grading by 2, the homogeneous elements of T +
− 1

2
+2V0(K)

have

Maslov grading in 2Z− 1
2 , while those of T +

1
2
−2V0(K)

have Maslov grading in 2Z+ 1
2 .

By [47, Proposition 9.3], the map

F+
s0 : HF+(S3) → HF+(S3

0(K), t0)
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is non-trivial, so its image must be one of the two towers. Since the grading shift is

gr(F+
s0 ) =

c21(s0)− 2χ(X0(K))− 3σ(X0(K))

4
= −1

2
∈ 2Z− 1

2
,

we deduce that im(F+
s0 ) = T +

− 1
2
+2V0(K)

. Then, the condition V0(K) = 0 and the fact that

gr(F+
s0 ) = −1

2 guarantee that the bottom element of HF+(S3) is sent to the bottom element

of T +
− 1

2
+2V0(K)

= T +
− 1

2

. Thus, condition (14) is satisfied. □

Hom and Wu proved in [25] that

0 ≤ ν+(K) ≤ g4(K),

so the inequality (12) is stronger than (11). On the other hand, the inequality (12) says
nothing about null-homologous surfaces, because ν+(K) ≥ 0 is already automatic.

Remark 4.9. Theorem 1.1 should be compared to another relative adjunction inequality, due
to Hedden and Raoux [23]. They proved that, if X be a smooth, oriented four-manifold with
boundary Y and Σ ⊂ X a properly smoothly embedded surface such that the relative element

FX,s ∈ ĤF (Y ) is nontrivial, then

2τ(K) + ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ).

When Y = S3, the hypotheses are only satisfied for negative definite 4-manifolds, and we get
the inequality

2τ(K) + ∥[Σ]∥L1 + [Σ]2 ≤ 2g(Σ),

which was previously proved by Ozsváth and Szabó [48].

Remark 4.10. In [42], Mrowka and Rollin proved a genus bound for surfaces in four-manifolds
with contact boundary. Specializing to the case when the boundary is S3 (with its standard
tight contact structure ξ), their result says that if X◦ has non-trivial Seiberg-Witten invariant
in the spinc structure s, relative to ξ, and Σ ⊂ X◦ is a smoothly, properly embedded surface,
then

(17) ⟨c1(s), [Σ]⟩+ [Σ]2 ≤ 2g(Σ)− 1− sl(K),

where sl(K) is the maximal self-linking number of transverse knots in the isotopy class of
K. However, the Seiberg-Witten invariant of X◦ is different from that of X; it is expected
to correspond to the image of the cobordism map on HF+ rather than the mixed map, and
therefore should be non-trivial only when X is negative definite.

We note that the work in [42] was preceded by genus bounds in Stein manifolds [2, 38].
Another related result is a version of the symplectic Thom conjecture for manifolds with
boundary, which was proved in [6, Theorem 7.2.3] and [19, Theorem 1.2]: If X is a symplectic
four-manifold with convex boundary, and Σ ⊂ X is a symplectic surface with boundary a
transverse knot K ⊂ ∂X, then Σ is genus minimizing in its relative homology class.

4.4. Applications.

Corollary 4.11. Let X be the K3 surface. If ν+(K) = 0, then the knot K does not bound a
positive self-intersection surface with genus g(Σ) ≤ 1 in X◦.

Proof. The K3 surface has one basic class, namely the spinc structure satisfying c1(s) = 0. If
g(Σ) = 1, we can apply (12) to this case. If g(Σ) = 0, we stabilize Σ once before applying
(12). □
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Example 4.12. By Theorem 4.8, if K is one of the trefoils or the figure-eight knot, then K
does not bound a disk ∆ with [∆]2 > 0 in the K3 surface.

Since the left-handed trefoil and the figure-eight knots have ν+ = 0, we get better bounds
from Theorem 1.1. Indeed, by Corollary 4.11, the right-handed trefoil or the figure-eight knot
do not even bound a genus-1 surface Σ with [Σ]2 > 0 in K3.

More generally, by Theorem 4.8 we see that for p, q > 0 and coprime, if the torus knot Tp,q

bounds a surface Σ of genus g inside K3, then [Σ]2 ≤ 2g − 2 + (p − 1)(q − 1). However, by
Theorem 1.1 we get a better bound, namely [Σ]2 ≤ 2g − 2 (provided g > 0).

Remark 4.13. The applications in this section were stated for the K3 surface, but they apply
just as well to any 4-manifold with b+2 > 0 that admits a basic class s with c1(s) = 0.

4.5. An application using the Bauer-Furuta invariants.

Proposition 4.14. Let X be a smooth closed 4-manifold with b+2 (X) ≡ 3(mod 4), admitting
a spinc structure s such that d(s) = 0 and SWX,s odd. Let X ′ be another 4-manifold with the

same properties. Suppose that a knot K ⊂ S3 is such that the mirror K bounds a smooth,
properly embedded disk ∆ ⊂ X◦ with [∆]2 ≥ 0 and [∆] ̸= 0. Then K is not H-slice in X ′.

Proof. Since d(s) = 0 and b+2 (X) ≡ 3(mod 4), the Bauer-Furuta invariant

BFX,s ∈ πst
1 (S

0) ∼= Z/2
is the mod 2 reduction of the Seiberg-Witten invariant; see [4, proof of Proposition 4.4]. By
our assumption SWX,s is odd, so BFX,s is the nontrivial element η (the Hopf map) in πst

1 (S
0).

The same is true for BFX′,s′ . Applying the connected sum formula ([4, Theorem 1.1]), we
obtain

(18) BFX#X′,s#s′ = η2 ̸= 0 ∈ πst
2 (S

0) ∼= Z/2.
Suppose thatK bounds an H-slice disk ∆′ in (X ′)◦. By gluing ∆ to ∆′ we obtain a smoothly

embedded sphere S ⊂ X#X ′ with [S]2 ≥ 0 and [S] ̸= 0. From (18) and Theorem 4.5, we
derive a contradiction. □

Theorem 1.3. Let X and X ′ be closed symplectic 4-manifolds satisfying b+2 (X) ≡ b+2 (X
′) ≡ 3

(mod 4). Suppose that a knot K ⊂ S3 is such that the mirror K bounds a smooth, properly
embedded disk ∆ ⊂ X◦ with [∆]2 ≥ 0 and [∆] ̸= 0. Then K is not H-slice in X ′.

Proof. This follows from Proposition 4.14, using the facts that the canonical class k of a
symplectic manifold satisfies d(k) = 0 and SWX,k = ±1; cf. [61]. □

Corollary 1.4. There exist smooth, homeomorphic four-manifolds X and X ′ and a knot
K ⊂ S3 that is H-slice in X but not in X ′. For example, one can take

X = #3CP2#20CP2, X ′ = K3#CP2,

and K to be the right-handed trefoil.

Proof. Note that X = #3CP2#20CP2 and X ′ = K3#CP2 are simply connected smooth four-
manifolds with the same intersection form, so they are homeomorphic by Freedman’s theorem
[15].

Let K be the right handed trefoil. Then K is H-slice in X because it is already H-slice in
CP2; see Example 2.3.

Recall from Example 2.5 that the left-handed trefoil K bounds a slice disk ∆ in K3 with

[∆]2 = 0 and [∆] ̸= 0. Since both K3 and its blow-up X ′ = K3#CP2 are complex projective
surfaces (hence symplectic), we can apply Theorem 1.3 to deduce that K is not H-slice in
X ′. □
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5. Relative Donald-Vafaee obstructions

The following theorem is a generalization of [11] and [65] to spin 4-manifolds.

Theorem 1.5. Let K ⊂ S3 be an H-slice knot in a closed spin 4-manifold X, and let W be
a spin 2-handlebody with ∂W = S3

0(K). If b2(X) + b2(W ) ̸= 1, 3, 23, then

b2(X) + b2(W ) ≥ 10

8
· |σ(X)− σ(W )|+ 5.

Proof. The proof is analogous to [11]. A neighborhood of the slice disk Σ in X◦ together with
the removed B̊4 gives an embedding of X0(K), the trace of the 0-surgery on K, inside X.
Thus, we have a splitting X = X0(K) ∪ V . The manifold V is spin (by restricting the spin
structure on X). We will show in the next paragraph that the map

H1(V ;F2) → H1(∂V ;F2)

is surjective, which implies that both spin structures on S3
0(K) extend to V .

Consider the following portion of the Mayer–Vietoris long exact sequence in homology
associated to X = X0(K) ∪ V , with F2 coefficients:

H2(X)
f−→ H1(S

3
0(K))

g−→ H1(X0(K))⊕H1(V ).

Since H1(S
3
0(K)) is 1-dimensional, generated by the meridian µ, and H1(X0(K)) = 0, we get

H2(X)
f−→ F2⟨µ⟩

g−→ H1(V ).

If F is a closed surface in X◦ ⊂ X transverse to Σ, then F ∩S3
0(K) consists of copies of the

meridian µ, and each copy of µ corresponds to an intersection point F ∩ Σ. Thus, f([F ]) =
([F ] · [Σ])µ (mod 2). Since [Σ] = 0 (with Z coefficients, and hence with F2 coefficients), the
map f is vanishing, and by exactness

g : H1(S
3
0(K);F2) → H1(V ;F2)

is injective. By taking duals, the restriction map

H1(V ;F2) → H1(∂V ;F2)

is surjective. Thus, both spin structures on S3
0(K) extend to V .

We now consider Z = (−V ) ∪W . The spin structure on W extends to a spin structure on
Z. Moreover, Mayer-Vietoris shows that b2(Z) = b2(V ) + b2(W ) − 1 = b2(X) + b2(W ) − 1.
By Novikov’s additivity theorem σ(Z) = −σ(V )+σ(W ) = −σ(X)+σ(W ). Thus, by [26], we
get

b2(X) + b2(W ) ≥ 10

8
· |σ(X)− σ(W )|+ 5. □

Remark 5.1. A version of Theorem 1.5 still holds if we allow W to be any spin 4-manifold
with ∂W = S3

0(K) instead of a 2-handlebody. In that case, we obtain the weaker inequality

b2(X) + b2(W ) ≥ 10

8
· |σ(X)− σ(W )|+ 4.

Indeed, the same proof applies, except that b+2 (Z) can now be either b+2 (V ) + b+2 (W ) or
b+2 (V ) + b+2 (W )− 1.

Corollary 1.6. Let KDV be the topologically slice knot in [11, Figure 3], which is the closure
of the braid in Figure 5. Then KDV is not H-slice in the K3 surface.
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+
8

9

−1

−1

−1
−1

−1

Figure 5. The closure of the braid above is the topologically slice knot from
[11, Figure 3]. The number within each box indicates the number of full twists
performed there. The fractional number +8

9 indicates 8 ninths of positive full
twist, assuming that the strands locally lie on a cylinder, equally spaced from
each other.

Proof. It is shown in [11, Example 3.4] that S3
0(KDV) bounds a 2-handlebodyW with b2(W ) =

21 and σ(W ) = 16. Since b2(K3) = 22 and σ(K3) = −16, if the knot were H-slice in K3 we
would get

22 + 21 ≥ 10

8
· 32 + 5,

which is false. □

Remark 5.2. What is really needed for Corollary 1.6 is the non-existence of a smooth, closed,
simply connected 4-manifold with intersection form 4(−E8) ⊕ 5 ( 0 1

1 0 ). This does not quite
follow from Furuta’s 10/8 + 2 theorem [17], but it was known before the general 10/8 + 4
theorem from [26]. Indeed, it is due to Furuta, Kametani and Matsue [18].

6. Open problems

Theorems 3.2, 3.4, 1.3 and 1.5 provide obstructions for a knot to be H-slice in an indefinite
4-manifold. For example, H-slice knots K in the K3 surface must satisfy Arf(K) = 0 and
σK(ω) ∈ [−6, 38] for all ω ∈ S1

! . Theorems 3.1, 3.6 and 1.1 give additional constraints on
the homology class of a slice disk in such a four-manifold. One can ask whether, by these
and other methods, one can rule out all homology classes for a slice disk for a knot K in an
indefinite 4-manifold, in the spirit of Yasuhara’s proof that T2,−15 is not slice in CP2 [68]. In
particular, we raise the following:

Question 6.1. Is there a knot that is not slice in the K3 surface?

Also, we can ask whether the analogue of Corollary 1.4 holds for slice knots (instead of
H-slice knots).

Question 6.2. Can the set of slice knots detect exotic smooth structures? In other words, do
there exist smooth, homeomorphic four-manifolds X and X ′ and a knot K ⊂ S3 that is slice
in X but not in X ′?

Finally, in view of Corollaries 1.4 and 1.6, we propose the following problem.

Question 6.3. Is it true that for every closed 4-manifold X, there is a knot K that is topo-
logically but not smoothly H-slice in X?
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