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Abstract. Link Floer homology is an invariant for links defined using a suitable version of La-
grangian Floer homology. In an earlier paper, this invariant was given a combinatorial description
with mod 2 coefficients. In the present paper, we give a self-contained presentation of the basic
properties of link Floer homology, including an elementary proof of its invariance. We also fix signs
for the differentials, so that the theory is defined with integer coefficients.

1. Introduction

Heegaard Floer homology [12] is an invariant for three-manifolds, defined using holomorphic disks
and Heegaard diagrams. In [11] and [15], this construction is extended to give an invariant, knot
Floer homology, for null-homologous knots in a closed, oriented three-manifold. This construction
is further generalized in [9] to the case of oriented links. The definition of all these invariants
involves counts of holomorphic disks in the symmetric product of a Riemann surface, which makes
them rather challenging to calculate.

More recently, Sucharit Sarkar discovered a principle which ensures that for Heegaard diagrams
with a certain property, the counts of holomorphic disks are combinatorial. In [6], the Heegaard
diagrams of the needed form are constructed from grid presentations of knots or links in S3, leading
to an explicit, combinatorial description of the knot or link Floer complex, taken with coefficients
in Z/2Z, henceforth called F2. (See also [16] for a different application of this principle.)

The purpose of the present paper is to develop knot (or link) Floer homology in purely elementary
terms, starting from a grid presentation, and establish its topological invariance without appealing
to the earlier theory. We also give a sign-refinement of this description, leading to a homology
theory with coefficients in Z.

We recall the chain complex from [6]; but first, we need to review some topological notions.
A planar grid diagram G lies on an n× n grid of squares in the plane. Each square is decorated

either with an X, an O, or nothing. Moreover, the decorations are arranged so that:

• every row contains exactly one X and one O;
• every column contains exactly one X and one O.

The number n is called the grid number of G. Sometimes we find it convenient to number the O’s
and X’s by {Oi}

n
i=1 and {Xi}

n
i=1. We denote the set of all O’s and X’s by O and X, respectively.

As a point of comparison: the Oi correspond to the “white dots” of [6] and the wi of [9], while the
Xi to the “black dots” of [6] and the zi of [9]. We find the current notation clearer for pictures.

Given a planar grid diagram G, we can place it in a standard position on the plane as follows: the
bottom left corner is at the origin, and each cell is a square of edge length one. We then construct
an oriented, planar link projection by drawing horizontal segments from the O’s to the X’s in each
row, and vertical segments from the X’s to the O’s in each column. At every intersection point,
we let the horizontal segment be the underpass and the vertical one the overpass. This produces

CM was supported by a Clay Research Fellowship.
PSO was supported by NSF grant number DMS-0505811 and FRG-0244663.
ZSz was supported by NSF grant number DMS-0406155 and FRG-0244663.
DPT was supported by a Sloan Research Fellowship.

1
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Figure 1. A grid presentation. Grid presentation for the figure eight knot.

a planar diagram for an oriented link ~L in S3. We say that ~L has a grid presentation given by G.
See Figure 1 for an example.

We transfer our grid diagrams to the torus T obtained by gluing the topmost segment to the
bottom-most one, and the leftmost segment to the rightmost one. In the torus, our horizontal
and vertical arcs become horizontal and vertical circles. The torus inherits its orientation from the
plane. We call the resulting object a toroidal grid diagram, or simply a grid diagram, for ~L. We
will again denote it by G.

Given a toroidal grid diagram, we associate to it a chain complex
(
C−(G), ∂−

)
as follows. The

set of generators of C−(G), denoted S or S(G), consists of one-to-one correspondences between the
horizontal and vertical circles. More geometrically, we can think of the generators as n-tuples of
intersection points between the horizontal and vertical circles, with the property that no intersection
point appears on more than one horizontal (or vertical) circle.

Before defining the differentials, we turn to a grading and a filtration on the complex, determined
by two functions M : S −→ Z and A : S −→ (1

2Z)ℓ.
The function M is defined as follows. Given two collections A, B of finitely many points in

the plane, let I(A,B) be the number of pairs (a1, a2) ∈ A and (b1, b2) ∈ B with a1 < b1 and
a2 < b2. (For instance, for a generator x, I(x,x) is the number of inversions of the permutation
corresponding to x.) Let J (A,B) = (I(A,B) + I(B,A))/2. Take a fundamental domain [0, n) ×
[0, n) for the torus, cut along a horizontal and vertical circle, with the left and bottom edges
included. Given a generator x ∈ S, we view x as a collection of points with integer coordinates in
this fundamental domain. Similarly, we view O = {Oi}

n
i=1 as a collection of points in the plane

with half-integer coordinates. Define

M(x) = J (x,x) − 2J (x,O) + J (O,O) + 1.

We find it convenient to write this formula more succinctly as

(1) M(x) = J (x − O,x− O) + 1,

where we extend J bilinearly over formal sums (or differences) of subsets. Note that the definition
of M appears to depend on which circles we cut along to create a fundamental domain. In fact,
it does not (see Lemma 2.4 below). Note also that this definition of the Maslov grading is not
identical with that given in [6], but it is not difficult to see they agree. See Lemma 2.5 below, and
the remarks following it.
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Figure 2. Rectangles. The small dark circles describe the generator x and the
hollow ones describe y. There are two rectangles in Rect(x,y), shown here shaded
by two types of diagonal hatchings. The rectangle on the left is in Rect◦(x,y) while
the other one is not, because it contains a dark circle in its interior.

For an ℓ-component link, we define an ℓ-tuple of Alexander gradings A(x) = (A1(x), . . . , Aℓ(x))
by the formula

(2) Ai(x) = J (x −
1

2
(X + O),Xi − Oi) −

(ni − 1

2

)
,

where here Oi ⊂ O is the subset corresponding to the ith component of the link, Xi ⊂ X is the
set of X’s belonging to the ith component of the link, and where we once again use the bilinear
extension of J . For links, the Ai may take half-integral values. Again, this quantity is independent
of how the torus is cut up to form a planar rectangle (see Lemma 2.6 below).

Given a pair of generators x and y, and an embedded rectangle r in T whose edges are arcs in
the horizontal and vertical circles, we say that r connects x to y if x and y agree along all but two
horizontal circles, if all four corners of r are intersection points in x∪y, and if, as we traverse each
horizontal boundary component of r in the direction dictated by the orientation that r inherits
from T , then the arc is oriented from a point in x to the point in y. (See Figure 2 for an example.)
Let Rect(x,y) denote the collection of rectangles connecting x to y. If x,y ∈ S agree along all but
two horizontal circles, then there are exactly two rectangles in Rect(x,y); otherwise Rect(x,y) = ∅.
Let Int(r) denote the interior of the subset of T determined by r. A rectangle r ∈ Rect(x,y) is
said to be empty if Int(r) ∩ x = ∅, or equivalently if Int(r) ∩ y = ∅. The space of empty rectangles
connecting x and y is denoted Rect◦(x,y).

Let R denote the polynomial algebra over F2 generated by variables which are in one-to-one
correspondence between the elements of O, and which we denote {Ui}

n
i=1. We think of this ring

as endowed with a Maslov grading, defined so that the constant terms are in Maslov grading zero,
and Ui are in grading −2. The ring is also endowed with an Alexander multi-filtration, defined
so that constant terms are in filtration level zero, while the variables Uj corresponding to the ith

component of the link drop the ith multi-filtration level by one and preserve all others.
Let C−(G) be the free R-module with generating set S.
We endow this module with an endomorphism ∂− : C−(G) −→ C−(G) defined by

(3) ∂−(x) =
∑

y∈S

∑

r∈Rect◦(x,y)

U
O1(r)
1 · · ·UOn(r)

n · y,

where Oi(r) denotes the number of times Oi appears in the interior of r (so Oi(r) is either 0 or 1).
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The results of [6] can be summarized by the following:

Theorem 1.1. (Manolescu-Ozsváth-Sarkar) The data (C−(G), ∂−) is a chain complex for the
Heegaard-Floer homology CF−(S3), with grading induced by M , and the filtration induced by A
coincides with the link filtration of CF−(S3).1

In particular, appealing to the earlier theorem defined using holomorphic disks [9, 11, 15], the
filtered quasi-isomorphism type of this chain complex C− is a link invariant. Other knot and link
invariants can be found by routine algebraic manipulations of C− as well (for example, by taking
the homology of the associated graded object).

Our main goal here is to prove the topological invariance of the filtered quasi-isomorphism type
of the resulting chain complex C−(G), without resorting to any of the holomorphic disk theory,
and in particular without resorting to Theorem 1.1. We prove the following:

Theorem 1.2. Let ~L be an oriented, ℓ-component link. Number the elements of O = {Oi}
n
i=1 so

that O1, . . . , Oℓ correspond to different components of the link. Then the filtered quasi-isomorphism
type of the complex (C−(G), ∂−) over Z[U1, . . . , Uℓ] is an invariant of the link.

We also give independent verification of the basic algebraic properties of C−(G) which, with F2

(i.e., Z/2Z) coefficients, follow from Theorem 1.1, together with properties of the “Heegaard Floer
homology package”. Note that for technical reasons, for links with more than one component the
chain complex in [9] was originally defined only with coefficients in F2.

There are some related constructions one could consider. In one of these, we set U1 = · · · = Uℓ =

0, let Ĉ(G) denote the resulting chain complex, equipped with its Alexander filtration. Taking the
homology of the associated graded object, we get a group whose multi-graded Euler characteristic is
the multi-variable Alexander polynomial of ~L, times a suitable normalization factor (this is proved
in Equation (1) of [9], see also Theorem 6.1 below).

We have endeavoured to separate the discussion of signs from the rest of the body of the paper,
to underscore the simplicity of the F2 version which is sufficient for the knot-theoretic applications,
and also simpler to calculate. In particular, in Section 3, we establish Theorem 1.2, working over
coefficients in F2, where it could alternately be seen as an immediate consequence of Theorem 1.1.
We hope, however, that the present combinatorial proof of invariance has value in its own simplicity;
see also [13] for another application. The sign-refinements are dealt with in Section 4.

This paper is organized as follows. The algebraic properties are established in Section 2, and
topological invariance with coefficients in F2 is established in Section 3. In Section 5, we describe
some further properties of C−. In Section 4, we describe the sign conventions, and the modifications
needed for the earlier discussion to establish Theorem 1.2 over Z. Finally, in Section 6, we show
that the Euler characteristic of the homology is the Alexander polynomial.

Acknowledgements. We would like to thank Dror Bar-Natan, Sergei Duzhin, Sergey Fomin,
John Morgan, and Sucharit Sarkar for helpful conversations.

2. Properties of the chain complex C−(G)

2.1. Algebraic terminology. We recall some standard terminology from homological algebra.
For simplicity, we use coefficients in F2 = Z/2Z for this section, and also the next two. The

definitions from algebra can be made with Z coefficients with little change. Other aspects of Z
coefficients will be handled in Section 4. (And in fact, the choices of signs in the formulas below
which, of course, are immaterial over F2, have been chosen so as to work over Z.)

1The reader should be warned: our conventions here on the Maslov grading are such that the total homology
H∗(CF−(S3)) is isomorphic to a copy of the polynomial algebra in U , where the constants have grading equal to
zero. In [12], the convention is that the constants have grading equal to −2.
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Definition 2.1. We give Qℓ its usual partial ordering, (a1, . . . , aℓ) ≤ (b1, . . . , bℓ) if for all i =
1, . . . , ℓ, ai ≤ bi. Let R be the ring F2[U1, . . . , Un]. A function g : {1, . . . , n} −→ (Q≥0)ℓ specifies a
Qℓ grading on R. Fix a grading on R. Let M be a module over R. A Qℓ-filtration on a module M
is a collection of R-submodules {Fs(M)}s∈Qℓ of M satisfying the following properties:

• Fs(M) ⊂ Ft(M) if s ≤ t
• multiplication by Ui sends Fs(M) into Fs−g(i)(M).
• for all sufficiently large s (with respect to ≤), Fs(M) = M .

A filtered R-module map φ : M −→ N is an R-module map which carries Fs(M) into Fs(N). A
filtered chain complex (C, ∂) is a graded and filtered R-module, equipped with a filtered endomor-
phism ∂ which drops grading by one. Given filtered chain complexes A and B, a filtered chain
map is a chain map φ : A −→ B which is a grading-preserving, filtered R-module map. Given two
filtered chain maps φi : A −→ B for i = 1, 2, a filtered chain homotopy is a filtered R-module map
H : A −→ B which raises grading by one and satisfies the formula

∂B ◦H +H ◦ ∂A = φ1 − φ2.

If a filtered chain homotopy exists between φ1 and φ2, then we say that φ1 and φ2 are filtered chain
homotopic. Let φ : A −→ B be a filtered chain map. We say that φ is a filtered chain homotopy
equivalence if there is a map ψ : B −→ A with the property that φ ◦ ψ and ψ ◦ φ are filtered chain
homotopic to the identity maps. A filtered quasi-isomorphism is a filtered map φ : A −→ B which
induces an isomorphism from the homology groupsH∗(Fs(A)) to H∗(Fs(B)). The associated graded
object of a filtered chain complex C is the Qℓ-graded chain complex

gr(C) =
⊕

s∈Qℓ

grs(C),

where grs(C) is the quotient of Fs(C) by the submodule generated by Ft(C) for all t < s, endowed
with the differential induced from ∂.

A filtered chain homotopy equivalence is a filtered quasi-isomorphism. Moreover a map is a
filtered quasi-isomorphism if and only if it induces an isomorphism on the homology of the associated
graded object.

Definition 2.2. Given a filtered chain map φ : A −→ B, we can form a new filtered chain complex,
the mapping cone M(φ) whose underlying module is A⊕B, and which is endowed with the differ-
ential D(a, b) = (∂a, φ(a)− ∂b), where here ∂a and ∂b denotes the differentials of a and b within A
and B, respectively.

The mapping cone fits into a short exact sequence of chain complexes (where the maps are all
filtered chain maps)

0 −−−−→ B −−−−→ M(φ) −−−−→ A −−−−→ 0,

and whose connecting homomorphism agrees with the map induced by φ.

Definition 2.3. Two filtered chain complexes A and B are quasi-isomorphic if there is a third
filtered chain complex C and filtered quasi-isomorphisms from C to A and to B.

If φ1 : A −→ B and φ2 : A −→ B are chain homotopic, then their induced mapping cones are
quasi-isomorphic.

Our chain complexes will always be finitely generated over F2[U1, . . . , Un].

2.2. The chain complex C−. We verify that C−(G) as defined in the introduction (using coef-
ficients in F2) is a filtered chain complex in the above sense, with (Alexander) filtration induced
from the function A and (Maslov) grading induced from the function M .

Lemma 2.4. The function M is well-defined, i.e., it is independent of the manner in which a given
generator x ∈ S is drawn on the square.
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Proof. Fix x ∈ S, thought of as drawn in the usual fundamental domain with the bottom and
left edges included, so there is one component a with coordinates (m, 0). Let x′ denote the same
generator in the fundamental domain with the top and left edges included, so there is now a
component b with coordinates (m,n). For each i with 0 ≤ i < n, i 6= m, there is one component
ci in x and x′ with first coordinate i. For m < i < n, the pair (a, ci) contributes 1 to the count
of J (x,x), whereas the corresponding pair (ci, b) does not contribute to J (x′,x′). Symmetrically,
for each i with 0 ≤ i < m, the pair (ci, a) does not contribute to J (x,x), whereas (ci, b) does
contribute to J (x′,x′). It follows that J (x,x) + m = J (x′,x′) + n − m − 1. We can similarly
analyze J (x′,O) to find

J (x′,x′) = J (x,x) + 2m− n+ 1

2J (x′,O) = 2J (x,O) + 2m− n

In particular MO(x′) = MO(x) + 1.
To complete the rotation, we have to change O to O′ by moving the O in the bottom row, with

coordinates (l − 1
2 ,

1
2), to (l − 1

2 , n+ 1
2). A similar analysis yields

2J (x′,O′) = 2J (x′,O) + 2l − n

J (O′,O′) = J (O,O) + 2l − n− 1.

Thus MO′(x′) = MO(x′) − 1 = MO(x), which is the desired cyclic invariance.
The same reasoniong also establishes invariance under horizontal rotation. �

The Maslov grading on R and the generating set S induces a Maslov grading on the chain
complex C−. Explicitly, the summand C−

d (G) is generated by expressions Um1

1 · · ·Umn
n · x, with

x ∈ S, where

d = M(x) − 2

n∑

i=1

mi.

Lemma 2.5. Suppose that x,y ∈ S, and r ∈ Rect(x,y) is a rectangle with x ∩ Int(r) = ∅. Then

(4) M(x) = M(y) + 1 − 2
n∑

i=1

Oi(r).

Proof. Draw the torus T on a square in such a manner that the lower left corner of r coincides
with the lower left corner of the square. Then it is clear that J (x,x) = J (y,y) + 1 (since the two
new coordinates y1 and y2 in y are the only pair counted in J (x) which are not also counted in
J (x)), while J (O,x) = J (O,y)+#{O∩r}, since each Oi ∈ r gives rise to exactly one pair (x1, Oi)
counted in J (O,x) which is not also counted in J (O,x). Similarly, J (x,O) = J (y,O)+#{O∩r}.
Equation (4) now follows when M is calculated with respect to a particular manner of lifting the
data on T to data on a square. But according to Lemma 2.4, the Maslov grading is independent
of this data. �

The alert reader might notice that the definition of Maslov grading we give here does not iden-
tically agree with that given in [6], which we denote by M ′. However, by connecting any two
generators x ∈ S by a sequence of rectangles satisfying Lemma 2.5 (the existence of which can be
deduced from the fact that the symmetric group is generated by transpositions), we see at once that
M is uniquely characterized, up to an additive constant, by Equation (4), which is also satisfied by
M ′. It now remains to show that M(x0) = M ′(x0) for some x0 ∈ S. To this end, we take x0 to be
the generator for which xi is on the lower left corner of the square marked with Oi. According to
the conventions from [6], M ′(x0) = 1 − n; it is easy to verify that M(x0) = 1 − n, as well.

For the Alexander gradings, we have the following analogue of Lemma 2.4:
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Lemma 2.6. For a given link component i, the function Ai is well-defined, i.e., it is independent
of the manner in which a given generator x ∈ S is drawn on the square.

Proof. For a point p ∈ Z2, the quantities I(p,Xi −Oi) and I(Xi −Oi, p) both compute the winding
number of the ith component of the knot around the point p. This quantity is unchanged if p
is moved from the very bottom to the very top of the diagram (since in that case the winding
number is 0), and if Xi and Oi are rotated vertically once, it changes by ±1 if p is in between
the X and the O that are moved, and is unchanged otherwise. For a point p with half-integer
coordinates, the inequalities used in the definition of I(p,Xi − Oi) effectively shift p up and to
the right by (1

2 ,
1
2) before computing the winding number. Similarly, I(Xi − Oi, p) computes the

winding number around p− (1
2 ,

1
2). Therefore Ai(x), defined as J (x− 1

2(X+O),Xi−Oi), computes

the winding number of the ith component around a weighted sum of points which has total weight 0
in each row and column. This combination is therefore invariant under cyclic rotation of the whole
diagram. �

The function A : S(G) −→ (1
2Z)ℓ ⊂ Qℓ endows C−(G) with a Qℓ-filtration in the sense of

Definition 2.1, for the function g : {1, . . . , n} −→ Zℓ which associates to i the jth standard basis
vector in Zℓ if Oi belongs to the jth component of the link. The element (Um1

1 · · ·Umn
n )x has

filtration level a = (a1, . . . , aℓ), where

a = A(x) −
n∑

i=1

mi · g(i).

It is sometimes useful to consider objects more general than rectangles, called domains. To define
them, let us view the torus T as a two-dimensional cell complex, with the toroidal grid diagram
inducing the cell decomposition with n2 zero-cells, 2n2 one-cells and n2 two-cells (the little squares).
Let Uα be the one-dimensional subcomplex of T consisting of the union of the n horizontal circles.

Definition 2.7. Given x,y ∈ S, a path from x to y is a 1-cycle γ on the cell complex T , such that
the boundary of the intersection of γ with Uα is y − x.

Definition 2.8. A domain p from x to y is a two-chain in T whose boundary ∂p is a path from
x to y. The support of p is the union of the closures of the two-cells appearing (with nonzero
multiplicity) in the two-chain p.

Given x,y ∈ S, let π(x,y) denote the space of domains from x to y. There is a natural
composition law

∗ : π(a,b) × π(b, c) −→ π(a, c).

For a domain p ∈ π(x,y), we let Xi(p) and Oi(p) denote the multiplicity with which Xi and Oi,
respectively, appear in p.

Proposition 2.9. The differential ∂− drops Maslov grading by one, and respects the Alexander
filtration. Specifically, if x ∈ S has M(x) = d, then ∂−(x) is written as a sum of elements in
Maslov grading d−1. Also, if A(x) = a, then ∂−(x) is a sum of elements with Alexander filtrations
≤ a.

Proof. The fact that ∂− drops Maslov grading by one follows at once from Equation (4), together
with the definition of ∂−.

The fact that ∂− respects the Alexander filtration follows from basic properties of winding
numbers. Specifically, given x,y ∈ S and r ∈ Rect(x,y), it is easy to see that

A(x) −A(y) =
∑

i

(Xi(r) −Oi(r)) · g(i).
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Figure 3. ∂− ◦ ∂− = 0. The four combinatorially different ways the composite of
two empty rectangles r1 ∗ r2 can appear. The initial point is indicated by the dark
circles, the final by the hollow ones.

Thus if Um1

1 · · ·Umn
n ·y appears with non-zero coefficient in ∂−(x), then the Alexander filtration

level of the corresponding term is smaller than the Alexander filtration level of x by
∑n

i=1Xi(r) ·
g(i). �

With the terminology in place, we now verify that ∂− is the differential of a chain complex.

Proposition 2.10. The endomorphism ∂− of C−(G) is a differential, i.e., ∂− ◦ ∂− = 0.

Proof. Consider an element x ∈ S, viewed as a generator of C−(G). We can view ∂− ◦ ∂−(x) as a
count

∂− ◦ ∂−(x) =
∑

z∈S

∑

p∈π(x,y)
x 6∈Intp

N(p) · U
O1(p)
1 · · ·UOn(p)

n · z.

where here N(p) denotes the number of ways of decomposing a domain as a composite of two empty
rectangles p = r1 ∗ r2, where r1 ∈ Rect◦(x,y) and r2 ∈ Rect◦(y, z) for some y ∈ S.

If z 6= x, and if p has a decomposition p = r1 ∗ r2, then we claim that there is a unique alternate
decomposition p = r′1 ∗ r

′
2, where here r′1 ∈ Rect(x,y′) and r′2 ∈ Rect(y′, z). In fact, if p = r1 ∗ r2

is a domain obtained from two empty rectangles r1 and r2, then we claim that there are three
possibilities for p:

• two disjoint rectangles;
• two rectangles with overlapping interiors (the darker region in Figure 3); and
• two rectangles which share a corner.

These three cases are illustrated in the first three diagrams in Figure 3. In each case, there are
exactly two decompositions of the obtained domain as a juxtaposition of empty rectangles: in the
first two cases by taking the rectangles in the two possible orders, and in third case by decomposing
either along the thin or dotted lines, cf. Figure 4. It follows at once that the z component of
∂− ◦ ∂−(x) vanishes for z 6= x.

When z = x, however, the only domains p ∈ π(x,x) which can be decomposed as a union of
two empty rectangles are width one annuli, as in the fourth diagram in Figure 3, or height one
annuli in the torus. There are 2n of these annuli. Each such annulus p has a unique decomposition
p = r1 ∗ r2 with r1 ∈ Rect(x,y) and r2 ∈ Rect(y,x) (for some uniquely specified y). The row or
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Figure 4. The third case of Figure 3. The three black dots are permuted to give
four different generators. Each arrow represents a rectangle, which is shown shaded.
There are two ways of connecting the initial generator x to the final generator z:
by following the top arrows, or the bottom ones. Each way gives a contribution to
∂− ◦ ∂−, and in the final count these contributions cancel out.

column containing Oi contributes Ui in the formula for ∂− ◦ ∂−(x). Since Oi appears in exactly
one row and exactly one column, it follows now that the x component of ∂− ◦ ∂−(x) vanishes, as
well. �

The proof of the above proposition is elementary, depending on evident properties of rectangles in
the torus. However, it does deserve a few extra words, since it is the starting point of this paper, and
indeed a recurring theme throughout. Specifically, the alert reader will observe that the remarks
concerning juxtapositions of pairs of rectangles is one of the last vestiges of Gromov’s compactness
theorem, the foundation upon which Floer’s theory of Lagrangian intersections is built [4] (and
knot Floer homology can be viewed as a variant of that latter theory). The assertions about annuli
can also be seen as remnants of Gromov’s theory, as they are counting boundary degenerations.

In terms of combinatorics, we see a pattern that will be repeated throughout the paper: in order
to prove an identity with differentials (e.g., that (∂−)2 = 0, or that a map is a chain map) we
consider the composites of two domains; generally the composite domain will have exactly two
decompositions. In some cases we need to add or delete annuli of width or height one while taking
care not to change the factors of Ui that appear.

2.3. Algebraic properties of C−. We now turn to the basic algebraic properties of the chain
complex.

In the following lemma, just as Ui is a chain map which drops filtration level by one, the filtered
chain homotopy drops the filtration level by one.

Lemma 2.11. Suppose that Oi and Ok correspond to the same component of ~L. Then multiplication
by Ui is filtered chain homotopic to multiplication by Uk.

Proof. Since filtered chain homotopies can be composed, it suffices to show that if Oi lies in the
same row as some Xj which in turn is in the same column as Ok, then multiplication by Ui is filtered
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chain homotopic to multiplication by Uk. The filtered chain homotopy is furnished by counting
rectangles which contain Xj .

Specifically, define

H : C−(G) −→ C−(G).

by the formula

H(x) =
∑

y∈S

∑

r∈Rect◦(x,y)
Xj∈r

U
O1(r)
1 · · ·UOn(r)

n · y.

We claim that

∂− ◦H +H ◦ ∂− = Ui − Uk.

This follows from the same argument as Proposition 2.10: Most composite domains on the left
hand side can be decomposed in exactly two ways. The exception are the horizontal and vertical
annuli, necessarily containing Xj which contribute Ui and Uk, respectively. �

Proposition 2.12. Suppose that the oriented link ~L has ℓ components. Choose an ordering of

O = {Oi}
n
i=1 so that for i = 1, . . . , ℓ, Oi corresponds to the ith component of ~L. Then the filtered

chain homotopy type of C−(G), viewed as a chain complex over F2[U1, . . . , Uℓ], is independent of
the ordering of O.

Proof. Different numberings can be connected via the filtered chain homotopies of Lemma 2.11. �

The basic link invariant is the filtered quasi-isomorphism class of C−(~L), thought of as a complex
of F2[U1, . . . , Uℓ] modules. But there are some other natural constructions one can consider.

For example, we can consider the chain complex Ĉ(G), which is a chain complex over F2, once
again which is freely generated by elements of S, by setting the Ui = 0 for i = 1, . . . , ℓ. We

let ĈL(G) denote the graded object gr(Ĉ(G)) associated to the Alexander filtration, and let ĤL(G)
denote its homology.

Lemma 2.13. The group ĤL(G) is a finitely-generated F2-module.

Proof. Clearly, ĈL(G) is a finitely generated R-module. It follows from Lemma 2.11 that once we
set Ui = 0 for i = 1, . . . , ℓ, then multiplication by Uj is null-homotopic for all j = 1, . . . , n, and

in particular it acts trivially on homology. It follows at once that ĤL(G) = H∗(ĈL(G)), which is
clearly a finitely generated R-module, is in fact a finitely generated F2-module. �

There is another construction which is quite convenient to consider for calculations [1]. This is

the chain complex C̃(G), which is obtained from C−(G) by setting all the Ui = 0, and then taking
the associated graded object. (This complex is denoted simply C(G) in [6], but we prefer to reserve
this notation for later use.) Explicitly, this is the free F2-module generated by S, endowed with the
differential

∂̃(x) =
∑

y∈S

#

{
r ∈ Rect(x,y)

∣∣∣ ∀x ∈ x, x 6∈ Int(r),
∀i, Oi 6∈ r and Xi 6∈ r

}
· y.

It is easy to relate the homology of C̃L(G) = gr(C̃(G)) with the homology of ĈL(G), by some
principles in homological algebra.

Lemma 2.14. Let C be a filtered, graded chain complex of free modules over F2[U1, . . . , Un], such
that Ui decreases the homological grading by two and the filtration by one, and such that multipli-
cation by Ui is chain homotopic to multiplication by Uj for any i, j. Then H∗(C/{Ui = 0}n

i=1)
∼=

H∗(C/U1)⊗V
n−1, where V is the two-dimensional bi-graded vector space spanned by one generator

in bi-grading (−1,−1) and another in bi-grading (0, 0).



ON COMBINATORIAL LINK FLOER HOMOLOGY 11

Proof. Suppose for notational simplicity that n = 2. Consider the chain map from the mapping
cone of the chain map U1 : C −→ C to C/U1 gotten by taking the quotient on the second summand.
It follows easily from the five-lemma that this map is a quasi-isomorphism. Moreover, by iterating
this observation, we see that C/(U1, U2) is quasi-isomorphic to the mapping cone

C
U1−−−−→ C

U2

y
yU2

C
U1−−−−→ C,

which in turn is quasi-isomorphic to the mapping cone of

U2 : C/U1 −→ C/U1.

But since U1 and U2 are chain homotopic in C, we obtain an induced null-homotopy of the map
induced by U2 on C/U1. Thus, this latter mapping cone is isomorphic to the mapping cone of zero,
i.e., to the direct sum C/U1 ⊕ C/U1, which in turn is quasi-isomorphic to (C/U1) ⊗ V .

We investigate now the filtrations and gradings. In order for the quasi-isomorphism from
U1 : C −→ C to C/U1 to be a filtered and graded map, we must shift gradings an filtrations
on the mapping cone M(U1) appropriately. Specifically, let C[a, b] denote the graded and filtered
chain complex with the property that Fs(Cd[a, b]) = Fs+b(Cd+a). Then the mapping cone M(U1)
is C[1, 1] ⊕ C. Following through the above discussion, we see that the mapping cone C/(U1, U2)
is filtered and graded quasi-isomorphic to C[1, 1]/U1 ⊕ C/U1

∼= (C/U1) ⊗ V .
This discussion generalizes readily to the case where n > 2. �

Proposition 2.15. The homology groups ĤL(G) determine H̃L(G); specifically,

H∗(C̃L(G)) ∼= ĤL(G) ⊗
ℓ⊗

i=1

V
⊗(ni−1)
i ,

where Vi is the two-dimensional vector space spanned by two generators, one in zero Maslov and
Alexander multi-gradings, and the other in Maslov grading minus one and Alexander multi-grading
corresponding to minus the ith basis vector.

Proof. This follows easily from Lemma 2.14, applied component by component. �

Notation. Perhaps the reader will find it convenient if we collect our notational conventions
here. The chain complex C−(G) refers to the full chain complex (and indeed, we soon drop the
minus from the notation here), CL−(G) denotes its associated graded object, and HL−(G) is the

homology of the associated graded object. Ĉ(G) denotes the chain complex where we set one

Ui = 0 for each component of the link, ĈL(G) is its associated graded object, and ĤL(G) is the

homology of the associated graded object. C̃(G) is the chain complex C−(G) modulo the relations

that every Ui = 0, C̃L(G) is the associated graded complex, and H̃L(G) is its homology. Most of
these constructions have their analogues in Heegaard Floer homology; for example, according to [6],

HL−(G) is identified with HFL−(L), and ĤL(G) with ĤFL(L). We find it useful to distinguish
these objects, especially when establishing properties of the combinatorial complex which could
alternatively be handled by appealing to [6], together with known properties of Heegaard Floer
homology.

3. Invariance of combinatorial knot Floer homology

Our goal in this section is to use elementary methods to show that combinatorial knot Floer
homology is independent of the grid diagram, proving Theorem 1.2 with coefficients in F2.



12 CIPRIAN MANOLESCU, PETER S. OZSVÁTH, ZOLTÁN SZABÓ, AND DYLAN P. THURSTON
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Figure 5. Commutation. The two grid diagrams differ from each other by inter-
changing the two columns, but correspond to the same link.

Following Cromwell [2] (compare also Dynnikov [3]), any two grid diagrams for the same link
can be connected by a sequence of the following elementary moves:

(1) Cyclic permutation. This corresponds to cyclically permuting the rows and then the
columns of the grid diagram.

(2) Commutation. Consider a pair of consecutive columns in the grid diagram G with the
following property: if we think of the X and the O from one column as separating the
vertical circle into two arcs, then the X and the O from the adjacent column occur both
on one of those two arcs. Under these hypotheses, switching the decorations of these two
columns is a commutation move, cf. Figure 5. There is also a similar move where the roles
of columns and rows are interchanged.

(3) Stabilization/destabilization. Stabilization is gotten by adding two consecutive breaks
in the link. More precisely, if G has arc index n, a stabilization H is an arc index n + 1
grid diagram obtained by splitting a row in G in two and introducing a new column. For
convenience, label the original diagram so it has decorations {Xi}

n+1
i=2 , {Oi}

n+1
i=2 . Let Oi and

Xi denote the two decorations in the original row. We copy Oi onto one of the two new
copies of the row it used to occupy, and copy Xi onto the other copy. We place decorations
O1 and X1 in the new column so O1 resp. X1 occupy the same row as Xi resp. Oi in
the new diagram, cf. Figure 6. Destabilization is the inverse move to stabilization. Note
that stabilization can be alternatively done by reversing the roles of rows and columns in
the above description; however, such a stabilization can be reduced to the previous case,
combined with a sequence of commutation moves. In fact, we can consider only certain
restricted stabilization moves, where three of the four squares O1, X1, Oi, and Xi share a
common vertex; i.e., the new column is introduced next to Oi or Xi. However, there are
now different types of stabilizations corresponding to the different ways of dividing the O’s
and X’s among the two new rows.

Of course, since our complex is associated not to the planar grid diagram, but rather to the
induced picture on the torus, the fact that it is invariant under cyclic permutation is a tautology.

We turn to commutation invariance next, and then stabilization invariance.

Note that all the chain complexes Ĉ(G), C̃(G) depend on the quasi-isomorphism type of C−(G);
thus, the latter is the most basic object. Thus, to streamline notation, we choose here to drop the
superscript ‘−’ from the notation of this chain complex and its differential.

3.1. Commutation invariance. Let G be a grid diagram for ~L, and let H be a different grid
diagram obtained by commuting two vertical edges. It is convenient to draw both diagrams on the
same torus, replacing a distinguished vertical circle β for G with a different one γ for H, as pictured
in Figure 7. The circles β and γ meet each other transversally in two points a and b, which are not
on a horizontal circle.
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1

β2

α

β1

Figure 6. Stabilization. On the left, we have an initial grid diagram; on the
right, a new diagram obtained by inserting the pictured row and column. Another
stabilization is given by switching the roles of the new middle two rows.

b

a

β γ

Figure 7. Commutation. A commutation move, viewed as replacing one vertical
circle (β, undashed) with another (γ, dashed).

We define a chain map Φβγ : C(G) −→ C(H) by counting pentagons. Given x ∈ S(G) and y ∈
S(H), we let Pentβγ(x,y) denote the space of embedded pentagons with the following properties.
This space is empty unless x and y coincide at n − 2 points. An element of Pentβγ(x,y) is an
embedded disk in T , whose boundary consists of five arcs, each contained in horizontal or vertical
circles. Moreover, under the orientation induced on the boundary of p, we start at the β-component
of x, traverse the arc of a horizontal circle, meet its corresponding component of y, proceed to an
arc of a vertical circle, meet the corresponding component of x, continue through another horizontal
circle, meet the component of y contained in the distinguished circle γ, proceed to an arc in γ,
meet an intersection point of β with γ, and finally, traverse an arc in β until we arrive back at
the initial component of x. Finally, all the angles here are required to be less than straight angles.
These conditions imply that there is a particular intersection point, denoted a, between β and γ
which appears as one of the corners of any pentagon in Pentβγ(x,y). The other intersection point
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Figure 8. Pentagons. We have indicated here two allowed pentagons in
Pentβγ(x,y), where components of x are indicated by solid points, and those of
y are indicated by hollow ones.

b appears in all of the pentagons in Pentγβ(y,x). Examples are pictured in Figure 8. The space of
empty pentagons p ∈ Pentβγ(x,y) with x ∩ Int(p) = ∅, is denoted Pent◦βγ .

Given x ∈ S(G), define

Φβγ(x) =
∑

y∈S(H)

∑

p∈Pent◦βγ(x,y)

U
O1(p)
1 · · ·UOn(p)

n · y ∈ C(H).

Lemma 3.1. The map Φβγ is a filtered chain map.

Proof. The fact that Φβγ preserves Alexander filtration and Maslov gradings is straightforward.
Like the proof of Proposition 2.10, the proof that Φβγ is a chain map proceeds by considering
domains which are obtained as a juxtaposition of a pentagon and a rectangle, representing terms
in ∂ ◦Φβγ , and observing that such domains typically have an alternate decomposition to represent
a term in Φβγ ◦ ∂. One example is illustrated in Figure 9. Other terms are more straightforward,
consisting either of a disjoint rectangle and pentagon, a rectangle and pentagon with overlapping
interior, or a rectangle and a pentagon which meet along a different edge; the pictures are similar to
those in Figure 3. There is one special case, of a type of domain which has only one decomposition:
these are the domains obtained as the union of a width one pentagon p and a width one rectangle
r. In this case, if we let x ∈ S(G), there is a canonical closest generator c(x) ∈ S(H) (with the
property that x and c(x) agree at all intersection points away from β ∪ γ). It is easy to see, then,
that our domain has the form r ∗ p or p ∗ r (depending on the local picture of x), and it connects x
to c(x). But then, such domains are in one-to-one correspondence with domains of the form r′ ∗ p′

or p′ ∗ r′, where if p is a left pentagon, then p′ is a right pentagon, and vice versa. See Figure 10.
�

We can define chain homotopy operators analogously, only now counting hexagons.
More specifically, given x,y ∈ S(G), we let Hexβγβ(x,y) denote the space of embedded hexagons

with the following property. This space, too, is empty unless x and y coincide at n − 2 points.
Moreover, an element of Hexβγβ(x,y) is an embedded disk in T , whose boundary consists of
six arcs, each contained in horizontal or vertical circles. More specifically, under the orientation
induced on the boundary of p, we start at the β-component of x, traverse the arc of a horizontal
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Figure 9. Chain map. The given domain can be decomposed either as a pen-
tagon followed by a rectangle, or a rectangle followed by a pentagon. The first
decomposition represents a term in ∂ ◦ Φβγ , the second a term in Φβγ ◦ ∂.

Figure 10. Special case. The generators x and c(x) are marked by dark circles;
they differ from each other only on one row. The arrow indicates how the dark
circle in x is replaced by a corresponding dark circle in c(x). On the left we have a
(darkly-shaded) pentagon followed by a (lightly-shaded) rectangle, and on the right
we have a rectangle followed by a pentagon. The intermediate generators are marked
by hollow circles.

circle, meet its corresponding component of y, proceed to an arc of a vertical circle, meet its
corresponding component of x, continue through another horizontal circle, meet its component of
y, which contained in the distinguished circle β, continue along β until the intersection point b of
β, with γ, continue on γ to the intersection point a of β and γ, proceed again on β to the the
β-component of x, which was also our initial point. Moreover, all corner points of our hexagon
are again required to be less than straight angles. An example is given in Figure 11. We define
the space of empty hexagons Hex◦βγβ, with interior disjoint from x, as before. There is also a

corresponding notion Hexγβγ . We now define the function Hβγβ : C(G) −→ C(G) by

Hβγβ(x) =
∑

y∈S(G)

∑

h∈Hex◦

βγβ(x,y)

U
O1(h)
1 · · ·UOn(h)

n · y.
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Figure 11. Hexagon. We have illustrated here a hexagon in Hexβγβ .

Proposition 3.2. The map Φβγ : C(G) −→ C(H) is a chain homotopy equivalence; more precisely

I + Φγβ ◦ Φβγ + ∂ ◦Hβγβ +Hβγβ ◦ ∂ = 0

I + Φβγ ◦ Φγβ + ∂ ◦Hγβγ +Hγβγ ◦ ∂ = 0.

Proof. Juxtaposing two pentagons appearing in Φγβ◦Φβγ , we generically obtain a composite domain
which admits a unique alternative decomposition as a hexagon and a square, counted in ∂ ◦Hβγβ

or Hβγβ ◦ ∂. Typically, the remaining terms in ∂ ◦Hβγβ cancel with terms Hβγβ ◦ ∂.
There is, however, one composite region which has a unique decomposition. Specifically, the

vertical circles β1, β2, and γ divide up T into a collection of components, two of which are annuli
and do not contain any X. Depending on the initial point x, exactly one of these annuli can be
thought of as a juxtaposition of two pentagons, or a hexagon and a rectangle which is counted once
in Φγβ ◦ Φβγ + ∂ ◦Hβγβ +Hβγβ ◦ ∂; but it is also counted in the identity map. See Figure 12. �

3.2. Stabilization invariance. Let G be a grid diagram and H denote a stabilization. We discuss
in detail the case where we introduce a new column with O1 immediately above X1 (and X2 is
immediately to the left or to the right of O1); the case where X1 is immediately above O1 can be
treated symmetrically by a rotation of all diagrams by 180◦.

More specifically, given a horizontal arc from O2 to X2, we introduce a vertical segment (some-
where along the arc) consisting of a new pair O1 and X1, where O1 is on the square right above
X1, which in turn is in the same row as the new copy of O2, as in Figure 6. Indeed, do this in
such a manner that three of the four squares marked O1, O2, X1, and X2 share a common vertex.
Furthermore, by applying commutation, we can assume without loss of generality that these three
squares are O1, X1, and X2. Thus, the grid of H is gotten by inserting a new column of squares,
where two consecutive squares are marked by O1 and X1. We let β1 be the vertical circle on the
left, and β2 the one on the right. Let α denote the new horizontal circle in H which separates O1

from X1.
Let B = C−(G) and C = C−(H). Let C ′ be the mapping cone of

U2 − U1 : B[U1] −→ B[U1],
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Figure 12. Decomposing the identity map. Consider the three configurations
in C(G), indicated by dark circles. The shaded region can be thought of as decom-
posed into a hexagon followed by a rectangle (as on the left), a rectangle followed by
a hexagon (as in the middle), or a pair of pentagons as on the right. The first can be
thought of as counting terms in ∂ ◦Hβγ , the middle terms in Hβγ ◦ ∂, and the right
in Φγβ ◦ Φβγ . There are three more cases, if the β-component of the configuration
lies on the other arc in β; in this case, we must decompose the annulus on the right.

i.e., C ′[U1] = B[U1] ⊕B[U1], endowed with the differential ∂ : C ′ −→ C ′ given by

∂′(a, b) = (∂a, (U2 − U1) · a− ∂b)

where here ∂ denotes the differential within C (actually, in the sequel we drop the prime from
the differential within C ′, as well, and hope that the differential is clear from the context). Note
that B is a chain complex over F2[U2, . . . , Un], so that B[U1] denotes the induced complex over
F2[U1, . . . , Un] gotten by introducing a new formal variable U1. Let L and R ∼= B[U1] be the
subgroups of C ′ of elements of the form (c, 0) and (0, c) for c ∈ B[U1], respectively. The module
R inherits Alexander and Maslov gradings from its identification with B[U1], while L is given the
Alexander and Maslov gradings which are one less than those it inherits from its identification with
B[U1]. With respect to these conventions, the mapping cone is a filtered complex of R-modules.

Lemma 3.3. The map from C ′ to B that takes (a, b) to a/{U1 = U2} is a quasi-isomorphism.

Proof. In general, the mapping cone C ′ of a map f : C1 → C2 fits into a short exact sequence on
homology from C2 to C ′ to C1. The connecting homomorphism in the corresponding long exact
sequence on homology is the map induced by f . In this case, f is U1 − U2, which is injective on
the homology of B[U1], so the map from C ′ to B is a quasi-isomorphism. �

It therefore suffices to define a filtered quasi-isomorphism

(5) F : C −→ C ′.

To do this, we introduce a little more notation.
Let S(G) be the generating set of B, and S(H) be the generating set of C. Let x0 be the

intersection point of α and β1 (the dark dot in Figure 6). Let I ⊂ S(H) be the set of x ∈ S(H)
which contain x0. There is, of course, a natural (point-wise) identification between S(G) and I,
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Figure 13. Types of domains. We have listed here domains in the stabilized
diagram, labeling the initial points by dark circles, and terminal points by empty
circles. The top row lists domains of type L, while the second row lists some of type
R. The marked O and X are the new ones in the stabilized picture. Complexities
from the left on the first row are 3, 5, and 7 respectively; on the second, they are
2, 4, and 6. Darker shading corresponds to higher local multiplicities. Not shown is
the trivial domain of type L, which has complexity 1.

which drops Alexander and Maslov grading by one. More precisely, given x ∈ S(G), let φ(x) ∈ S(H)
denote the induced generator in I which is gotten by inserting x0. We then have

MC(G)(x) = MC(H)(φ(x)) + 1 = MC′(0, φ(x)) = MC′(φ(x), 0) + 1(6)

AC(G)(x) = AC(H)(φ(x)) + g(1) = AC′(0, φ(x)) = AC′(φ(x), 0) + g(1)(7)

where g is the function from Section 2.2, mapping from i to the basis vector corresponding to
the component of the link containing Oi. With this said, we will henceforth suppress φ from the
notation, thinking of L and R as generated by configurations in I ⊂ S(H).

As such, the differentials within L and R count rectangles which do not contain x0 on their
boundary, although they may contain x0 in their interior. Note however that the boundary operator
(in L and R) for rectangles containing x0 does not involve the variable U1.

Definition 3.4. For x ∈ S(H) and y ∈ I ⊂ S(H), a domain p ∈ π(x,y) is said to be of type L or
R if either it is trivial, in which case p has type L, or it satisfies the following conditions:

• p has only non-negative local multiplicities.
• For each c ∈ x∪y, other than x0, at least three of the four adjoining squares have vanishing

local multiplicities.
• In a neighborhood of x0 the local multiplicities in three of the adjoining rectangles are the

same number k. When p has type L, the lower left corner has local multiplicity k−1, while
for p of type R the lower right corner has multiplicity k + 1.
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• ∂p is connected.

The complexity of the trivial domain is 1; the complexity of any other domain is the number of
horizontal lines in its boundary. The set of type L (or R) domains from x to y is denoted πL(x,y)
(or πR(x,y)). We set πF (x,y) = πL(x,y) ∪ πR(x,y), and call its elements domains of type F . See
Figure 13 for examples.

The innermost height (resp. width) of a domain in πF is the vertical (resp. horizontal) distance
from the corner adjacent horizontally (resp. vertically) to x0 to the corner after that.

We now define maps

FL : C −→ L

FR : C −→ R

where FL (resp. FR) counts domains of type L (resp. R) without factors of U1. Specifically, define

FL(x) =
∑

y∈S

∑

p∈πL(x,y)

U
O2(p)
2 · · ·UOn(p)

n · y

FR(x) =
∑

y∈S

∑

p∈πR(x,y)

U
O2(p)
2 · · ·UOn(p)

n · y.

We put these together to define a map

F =

(
FL

FR

)
: C −→ C ′.

Lemma 3.5. The map F : C −→ C ′ preserves Maslov grading, respects Alexander filtrations, and
is a chain map.

Proof. The fact that the gradings and filtrations are respected is straightforward. For instance, the
Alexander filtration shift of a region p is given by counting the number of O’s minus the number
of X’s contained in p. A region of type L contains O1 and X1 an equal number of times, and every
other Oi comes with a cancelling factor of Ui, so the Alexander filtration shift is negative. The
other shifts can be checked in a similar way.

To prove that F is a chain map, we consider all the terms in the expression ∂ ◦F or F ◦ ∂. Most
of these are counts of composite domains p∗ r or r ∗p, where r is a rectangle and p is a type L or R
domain. A rectangle r ∈ π(x,y) cannot contribute to this count if any component x ∈ x is in the
interior of r, except in the special case where x = x0, and the rectangle is thought of as connecting
two intersection points in L or R, in which case we say it is of Type 2. All other empty rectangles
are said to be of Type 1.

There are several cases of domains contributing to ∂ ◦ F or F ◦ ∂ , which we group according to
whether r is a Type 1 or Type 2 rectangle, and to how many corners p and r have in common. We
list the cases below; verifying that these are the only cases is a straightforward exercise in planar
geometry.

If r is of Type 1, we have the following possibilities:

I(0) A composition in either order of a domain p ∈ πF and an empty rectangle r of Type 1, with
all corners distinct. This domain appears in both ∂ ◦ F and F ◦ ∂ as compositions in two
different orders, p ∗ r and r′ ∗ p′, where r has the same support as r′ and p has the same
support as p′.

I(1) A composition in either order of a non-trivial domain p ∈ πF and an empty rectangle r,
with p and r sharing one corner and r disjoint from x0 (including the boundary). The union
of these two domains has a unique concave corner not at x0, and we can slice this into a
domain in πF and a rectangle of Type 1 in two ways by cutting in either way from this
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Figure 14. Case I(1). An example of a domain with two decompositions r ∗ p =
r′ ∗ p′, both accounted for in case I(1).
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Figure 15. Cases I(1′) and II(1). There are two terms in ∂◦FL+FL◦∂ starting
at the black dots and ending at the white dots, thought of as elements of L. The
term on the left is a juxtaposition r ∗p (as in I(1′)), while the second is p′ ∗ r′, where
p′ is of type L and r′ is of Type 2 (as in II(1)).

concave corner. This gives the domain as a composition in exactly two ways. An example
is shown in Figure 14.

I(1′) A composition r ∗ p with r and p sharing one corner and x0 appearing on the horizontal
or vertical boundary of r. The composite looks again like a domain in πF or the rotation
by 180◦ of such a domain. See Figure 15. A special case worth mentioning is when r ∈
Rect◦(x,y) with y ∈ I; in this case p is trivial, with complexity 1, as in Figure 16.

I(2) A composition in either order of p ∈ πF and r ∈ Rect◦, where p and r share two corners
other than possibly x0, see Figures 20 and 21. In this case p has complexity at least 3.

I(3) A domain that wraps around the torus with a decomposition as p ∗ r or r ∗ p, where r
is an empty rectangle of Type 1 and p ∈ πF has innermost height or width equal to 1,
and r and p share three corners other than possibly x0. This decomposition is unique. The
total domain contains a unique vertical or horizontal annulus of height or width equal to 1.
When the complexity m of p is equal to 2, the domain is just this annulus. Examples are
shown in Figures 16 (m = 3, horizontal), 17 (m = 5, horizontal), 18 (m = 5, vertical), and
19 (m = 4, horizontal).
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Figure 16. Cases I(1′) and I(3), where m = 1. In both pictures, the darkly-
shaded rectangle represents a map from the black generator to the white one, fol-
lowed by the natural map (induced by the trivial domain, which has complexity 1)
to the white generator thought of as an element of in L. This is accounted for in
I(1′). Depending on the placement of the black dot in the top row, we can cancel
this either with a term in FL ◦ ∂ or ∂ ◦ FL. In the first case (on the left), we have
the domain r ∗ p, where r is the height one (lightly-shaded) rectangle in the row
through O1, to the intermediate generator (labelled by the shaded circle), thought
of as a differential within C(H), followed by a Complexity 3 domain p with inner-
most height equal to one, which we trust the reader can spot. In the second case
(on the right), we have the decomposition p∗r, where p is the Complexity 3 domain
with innermost height equal to one from the black generator to the intermediate
generator, which is bounded by the dark line, followed by a rectangle to the white
generator, which again we leave to the reader to find. In both cases the alternate
term is accounted for in case I(3).
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Figure 17. Cases I(1′) and I(3), horizontal annulus. There are two terms in
∂ ◦FL +FL ◦∂ starting at the black dots and ending at the white dots. One of them
counts the composite domain r′ ∗ p′ where r′ is the hatched rectangle containing X,
and p′ is the darkly-shaded complexity 3 domain (accounted for in I(1′)); and the
other is a count of r ∗p, where r is the height one, lightly shaded rectangle, followed
by a complexity 5 domain with innermost height equal to one (accounted for in
I(3)).

If r is of Type 2, the composition must be of the form p ∗ r, because Type 2 rectangles only
appear in the differential of the target complex C ′. We only have two possibilities:

II(0) All the corners of p and r are disjoint.
II(1) A domain that wraps around the torus with a decomposition as p∗ r, where r is a rectangle

of Type 2 that shares one corner with p. This decomposition is unique, and the total domain
again contains a unique thin (i.e., width one or height one) annulus. See Figure 15.

Apart from these, there is one other special contribution to F ◦ ∂, which does not come from a
decomposition of a domain into p ∗ r or r′ ∗ p′:

(S) A domain p ∈ πL followed by the differential from L to R, which multiplies by U2 − U1.
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Figure 18. Cases I(1′) and I(3), vertical annulus. There are two terms in
∂ ◦FL +FL ◦∂ starting at the black dots and ending at the white dots. One of them
counts the composite domain r′ ∗ p′ where r′ is the hatched rectangle containing
the white dot x0 in its boundary, and p′ is the darkly-shaded complexity 3 domain
(accounted for in I(1′)); and the other is a count of r ∗ p, where r is the height one,
lightly shaded rectangle, followed by a complexity 5 domain with innermost height
equal to one (accounted for in I(3)).

Figure 19. Cases I(1′), I(3), and (S). This case is similar to those in Figures 17
and 18, except that it also involes a domain of type (S). We count terms in ∂◦F+F ◦∂
starting at the black dots and ending at the white dots (thought of as representing
an element of R). The darkly-shaded polygon represents a domain of type L from
the black to the white generator. Post-composing with the differential from L to
R, we get (U2 − U1) times the white generator. Alternatively, the region can be
decomposed as a rectangle containing O1 (with a factor of U1), composed with the
rectangle containing X1, thought of as a polygon of type R. Alternatively, there is a
term induced by the height one (lightly-shaded) rectangle, followed by a Complexity
4 domain of type R, which the reader can easily spot. One of these two domains
contains O2, and hence the composite will count with a factor of U2.

Contributions from case I(0) cancel each other out, and the same goes for those from case I(1).
In fact, these cases are the exact analogs of the first three cases in Figure 3 for the proof of
Proposition 2.10. See Figure 14 for an example.

We claim that contributions from case I(1′) cancel with contributions from case II(1) or I(3),
together with possibly a contribution from case (S). Indeed, for each domain of type I(1′) made of
a rectangle r1 ∈ Rect◦(x,y) and a domain p1 ∈ πF (y, z) of complexity m, let p0 = r1 ∗ p1. We can
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Figure 20. Cases I(2) and II(0), with complexity m = 3. The simplest case
of the pairing between cases I(2) and II(0).

Figure 21. Cases I(2) and II(0). The illustrated domain can be decomposed
as a Complexity 3 domain of type L followed by a Type 2 rectangle (accounted for
in II(0)), or alternatively a Complexity 5 domain of type L followed by a Type 1
rectangle (accounted for in I(2)).

make a new domain p′0 by adding a thin annulus abutting x0 on the opposite side of x0 from r1. (For
instance, if the right side of r touches x0, add a vertical annulus of width one whose left side touches
x0.) In the case when m = 1, when r1 touches x0 at a corner, we attach a horizontal annulus if
r1 contains X1 and a vertical annulus otherwise, as in Figure 16. If the innermost height or width
of p1 is 1, then p0 decomposes as p2 ∗ r2, where p2 ∈ πF has complexity m. This corresponds to a
contribution from case II(1), as in Figure 15. If, on the other hand, the innermost height or width
(as appropriate) of p1 is not 1, the new domain p′0 is of type I(3) and in turn decomposes as p2 ∗ r2
or r2 ∗ p2, depending on the placement of the generator on the new row or column, where p2 ∈ πF

has complexity m+ 2. See Figures 16–19.
In these cases involving annuli, if pi ∈ πR and the annulus is horizontal, the rectangle r1 con-

tains O1 and so has a contribution which is multiplied by U1, while the domain p′0 contains O2 and
so has a contribution which is multiplied by U2. Thus these two terms contribute U1 − U2 to the
composite map from x to z. On the other hand, in this case the domain p0 is itself in πL(x, z), and
so we get a cancelling contribution of type (S), as in Figure 19. In other cases the two domains p0

and p′0 give the same contribution to the boundary map.
Compositions r ∗ p or p ∗ r from case I(2), with p of complexity m ≥ 3, cancel out compositions

r′ ∗ p′ from case II(0), with p′ of complexity m − 2, as illustrated in Figures 20 (m = 3) and 21
(m = 5).

The only domains left to cancel are those of type I(3) with m = 2 and type (S) with m = 1. There
are two kinds of domains of type I(3) withm = 2: a vertical and a horizontal annulus, containing O1
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and O2, respectively, and in both cases containing X1. These domains map a generator x ∈ I to
itself, and so cancel the remaining contribution from the maps of type (S). �

In order to see that F is a quasi-isomorphism, we will introduce an appropriate filtration. Con-

sider C̃(H). Let Q be a collection of (n− 1)2 dots, one placed in each square which do not appear

in the row or column through O1. Given h ∈ (1
2Z)ℓ, let C̃(H,h) denote the summand generated by

generators x with Alexander gradings equal to h.
Note that for fixed x,y ∈ Sh, for any two domains p, p′ ∈ π(x,y) with Oi(p) = Xi(p) = Oi(p

′) =
Xi(p

′) for all i, we have that #(Q∩ p) = #(Q∩ p′). Thus, we can find a function F so that for any
x,y ∈ S, if p ∈ π(x,y) is a domain with Oi(p) = Xi(p) = 0 for all i, then

F(x) −F(y) = #(Q ∩ p).

The function F determines a filtration on C̃(H,h), whose associated graded object counts only
those rectangles which contain no Oi, Xi, or points in Q. Thus, these rectangles must be supported

in the row or column through O1. We let C̃Q denote this associated graded object, and typically
drop h from the notation.

We recall now a well-known principle from homological algebra (see for example Theorem 3.2
of [7]).

Lemma 3.6. Suppose that F : C −→ C ′ is a filtered chain map which induces an isomorphism on
the homology of the associated graded object. Then F is a filtered quasi-isomorphism.

We decompose S = I∪(NI)∪(NN), where NI consists those configurations whose β2 component
is α ∩ β2 and whose β1 component is not in α, while NN consists of those whose β2 component
and β1 component are not on α. We have corresponding decompositions of modules: C = CI ⊕
CNI ⊕ CNN.

Lemma 3.7. H∗(C̃Q) is isomorphic to the free F2-module generated by elements of I and NI.

Proof. There are two cases, according to whether the X2 marks the square to the left or the right
of O1.

Suppose X2 is in the square just to the right of the square marked O1. Then we have a direct

sum splitting C̃Q
∼= C̃NI

Q ⊕ B, where the differentials in C̃NI

Q are trivial, hence its homology is the
free F2-module generated by elements of NI; and where B is a chain complex fitting into an exact
sequence

0 −−−−→ C̃I
Q −−−−→ B −−−−→ C̃NN

Q −−−−→ 0.

Moreover, it is easy to see that H∗(C̃
NN

Q ) = 0. Finally, the differentials in C̃I
Q are trivial, so its

homology is the free F2-module generated by elements of I.
Suppose on the other hand that X2 is just to the left of O1. Then there is a direct sum splitting

C̃Q
∼= C̃I

Q⊕B′, where once again the differentials on C̃I
Q are trivial and B′ fits into an exact sequence

0 −−−−→ C̃NN

Q −−−−→ B′ −−−−→ C̃NI

Q −−−−→ 0,

where H∗(C̃
NN

Q ) = 0 and the differentials on C̃NI

Q are trivial. �

Proposition 3.8. The map F is a filtered quasi-isomorphism.

Proof. We consider the map induced by F :

F̃Q : C̃Q −→ C̃ ′
Q.

C̃ ′
Q splits as a direct sum of chain complexes LQ ⊕ RQ, both of which are freely generated by

elements in I.
There are two cases. First take the case where X2 is in the square just to the right of the square

marked O1. Consider the subcomplex C̃I
Q ⊕ C̃NI

Q ⊂ C̃Q. By Lemma 3.7, this subcomplex carries



ON COMBINATORIAL LINK FLOER HOMOLOGY 25

the homology, and hence it suffices to show that the restriction of F̃Q to this subcomplex induces
an isomorphism in homology.

To this end observe that F̃L
Q restricted to C̃I

Q is an isomorphism. Moreover, F̃R
Q restricted to

C̃NI

Q counts rectangles supported in the row and column through O1 and which contain X1 in their

interior and end up in I (since no other domains of type R is disjoint from Q). But for each element

of NI, there is a unique such rectangle. Thus F̃Q is a quasi-isomorphism when X2 is just to the
right of O1.

In the second case, where X2 is just to the left of O1, we proceed as follows. In this case C̃I
Q is a

direct summand of the complex C̃Q (cf. the proof of Lemma 3.7). Moreover, it is easy to see that

F̃L
Q restricted to C̃I

Q is an isomorphism of chain complexes. It remains to show that the restriction

of F̃R
Q is a quasi-isomorphism. This is true because the only domains of type R which do not contain

X2 are rectangles, and those which are supported in the allowed region connect configurations of
type NI to I. Once again, the result now follows from the fact that there is a unique rectangle of
type R connecting a given element of NI to an element of I. This completes the verification that

F̃Q is a quasi-isomorphism.

We now appeal to Lemma 3.6 to conclude that F̂ is quasi-isomorphism; and another application
of the same principle gives that F is a quasi-isomorphism, as well. �

Remark 3.9. The chain complex C ′ used in this stabilization proof can be viewed as the chain
complex associated to the Heegaard diagram where the vertical circle β1 is replaced by a small
circle enclosing O1 and X1. In this Heegaard diagram it is straightforward to check that the counts
of holomorphic disks are still combinatorial and equivalent to the boundary operator in C ′.

3.3. Completion of topological invariance, without signs. We have now all the pieces needed
to establish Theorem 1.2, with coefficients in F2 = Z/2Z.

Proof of Theorem 1.2. This result now is an immediate consequence of Cromwell’s theorem, our
earlier remarks on cyclic permutation, and Propositions 3.8 and 3.2. �

4. Signs

Definition 4.1. A true sign assignment, or simply a sign assignment, is a function

S : Rect◦ −→ {±1}

with the following properties:

(Sq) For any four distinct r1, r2, r
′
1, r

′
2 ∈ Rect◦ with r1 ∗ r2 = r′1 ∗ r

′
2, we have that

S(r1) · S(r2) = −S(r′1) · S(r′2).

(V) If r1, r2 ∈ Rect◦ have the property that r1 ∗ r2 is a vertical annulus, then

S(r1) · S(r2) = −1.

(H) If r1, r2 ∈ Rect◦ have the property that r1 ∗ r2 is a horizontal annulus, then

S(r1) · S(r2) = +1.

Theorem 4.2. There is a sign assignment in the sense of Definition 4.1. Moreover, this sign
assignment is essentially unique: if S1 and S2 are two sign assignments, then there is a function
f : S −→ {±1} so that for all r ∈ Rect◦(x,y), S1(r) = f(x) · f(y) · S2(r).

We turn to the proof of this theorem in Subsection 4.1. We can use the sign assignment from
Theorem 4.2 to construct the chain complex over Z as follows. Fix a true sign assignment S. Define
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C−(G) to be the free Z[U1, . . . , Un]-module generated by x ∈ S(G), endowed with Maslov grading
and Alexander filtration as before. We endow this with the endomorphism

∂−S : C−(G) −→ C−(G)

∂−S (x) =
∑

y∈S

∑

r∈Rect◦(x,y)

S(r) · U
O1(r)
1 · · ·UOn(r)

n · y.

We will check that this endomorphism gives the sign refinement of C−(G) needed in Theorem 1.2.
In turn, the proof of that theorem involves reexamining the invariance proof from Section 3, and
constructing sign refinements for the chain maps and homotopies used there. We turn to this task
in Subsection 4.2. However, first we construct the sign assignments, proving Theorem 4.2.

4.1. The existence and uniqueness of sign assignments.

Definition 4.3. A thin rectangle is a rectangle with width one. We denote the set of thin rectangles
tRect; given x,y ∈ S, we let tRect(x,y) = tRect ∩ Rect(x,y). For fixed x and y and n > 2, there
can be at most one element in tRect(x,y).

Sign assignments as in Theorem 4.2 are constructed in the following six steps.

(1) Define sign assignments in a more restricted sense, sign assignments for the Cayley graph.
These are analogues of sign assignments defined only for thin rectangles supported in an
(n − 1) × (n − 1) subsquare of the torus, satisfying a suitable restriction of Property (Sq)
from Definition 4.1.

(2) Show that sign assignments for the Cayley graph satisfy a uniqueness property. Establish
existence by giving an explicit formula. (This formula will be used in the next step, though
it is also possible to give a more abstract existence argument.)

(3) Extend the formula to include all thin rectangles on the torus, and show that it satisfies,
once again, axioms gotten by restricting Properties (Sq) and (V) to thin rectangles.

(4) Show that a sign assignment on thin rectangles can be extended uniquely to a function
satisfying Properties (Sq) and (V), but not necessarily Property (H).

(5) Given the sign assignment on thin rectangles chosen in Step 3, establish a formula for the
values of the function from Step 4 on empty rectangles supported in the (n − 1) × (n − 1)
subsquare of the torus.

(6) With our choices of signs, use the explicit formulas from Step 5 to show that the function
from Step 4 satisfies Property (H), thus giving a sign assignment in the sense of Defini-
tion 4.1.

Step 1: Define sign assignments on the Cayley graph. We denote by Σ = [0, n−1]×[0, n−1]
the (n− 1) × (n− 1)-subsquare of the torus with the lower left corner at the origin.

Definition 4.4. Given x,y ∈ S, a thin rectangle in Σ from x to y is a rectangle r ∈ tRect(x,y)
supported inside Σ. A thin rectangle in Σ connects x and y if it is a thin rectangle in Σ from x to
y or from y to x. The set of all thin rectangles in Σ is denoted tRect∗.

The set tRect∗ has an interpretation in terms of a Cayley graph of the symmetric group in the
following sense.

Consider the graph Γ whose vertices are elements in the symmetric group on n letters Sn, and
whose edges are labeled by the n− 1 adjacent transpositions {τi}

n−1
i=1 in Sn, with an edge labelled

τi connecting σ1, σ2 ∈ Sn precisely when σ2 = σ1 · τi. When σ2 = σ1 · τi, we join σ1 and σ2 by
exactly one edge, i.e. we do not draw an additional one for the relation σ1 = σ2 · τi. Γ is the Cayley
graph of Sn with respect to the generators τi.

There is a one-to-one correspondence between elements in Sn and generators S, which is obtained
by viewing elements of S as graphs of permutations σx. (To this end, we think of Sn as permutations
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r1 r2

r
′

2

r
′

1

Figure 22. The rectangles in the square rule.

of the letters {0, . . . , n− 1}.) This can be extended to a one-to-one correspondence between edges
in the Cayley graph Γ and elements of tRect∗, sending a rectangle r ∈ tRect∗ which connects x
and y to the corresponding edge in the Cayley graph connecting σx and σy:

(8) tRect∗ ∼= Edges(Γ).

Definition 4.5. A sign assignment on the Cayley graph is a function

S0 : Edges(Γ) −→ {±1}

with the following properties:

(Sq) If {e1, . . . , e4} are four edges which form a square, then

S0(e1) · · · S0(e4) = −1.

(Hex) If {e1, . . . , e6} are six edges which form a hexagon, then

S0(e1) · · · S0(e6) = 1.

Note that a square in the Cayley graph corresponds to two pairs of disjoint rectangles ri ∈
tRect(xi,xi+1) and r′i ∈ tRect(x′

i,x
′
i+1) for i = 1, 2, with x1 = x′

1 and x2 = x′
2, as pictured

in Figure 22. Similarly, a hexagon in the Cayley graph corresponds to six thin rectangles ri ∈
tRect(xi,xi+1) and r′i ∈ tRect(x′

i,x
′
i+1) for i = 1, 2, 3 with x1 = x′

1 and x3 = x′
3, such that the

union of the support of r1, r2, and r3 is a rectangle (with width two), as pictured in Figure 23.
We can relate the above notion of a sign assignment to the earlier notion of sign assignments

(Definition 4.1):

Lemma 4.6. The restriction of a sign assignment in the sense of Definition 4.1 to the Cayley
graph of Sn is a sign assignment on the Cayley graph as defined in Definition 4.5.

Proof. The first property follows from the corresponding property in Definition 4.1. For the second
property, note that there is a rectangle r4 of width 2 that cuts across a diagonal of the hexagon, cf.
Figure 23. Two applications of Property (Sq) (both involving r4) now shows that the total number
of sign changes around the hexagon must be even. �
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r2

r3

r′
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1
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3
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Figure 23. The rectangles in the hexagon rule. Two applications of the
square rule (Sq) in Definition 4.1 give S(r1) ·S(r2) = S(r′1) ·S(r4) and S(r4) ·S(r3) =
S(r′2) ·S(r′3). These imply the hexagon rule S(r1) ·S(r2) ·S(r3) = S(r′1) ·S(r′2) ·S(r′3).

Step 2: Signs assignments on the Cayley graph exist and are unique.

Proposition 4.7. A sign assignment on the Cayley graph exists and is unique up to equivalence
given by changing the sign of the basis elements (as in Theorem 4.2).

Proof. Recall that for A,B ⊂ R2, we defined I(A,B) to be the number of pairs (a1, a2) ∈ A and
(b1, b2) ∈ B with a1 < b1 and a2 < b2.

Given an edge of the Cayley graph, let r ∈ tRect∗(x,y) denote its corresponding rectangle. Let
h = h(r) denote the height of the top edge of r (i.e., the four corners of r are (i, a), (i, h), (i+ 1, a)
and (i+ 1, h), where (i, a) and (i+ 1, h) belong to x and (i, h) and (i+ 1, a) belong to y).

We then define

(9) S(r) = (−1)I(x,{(x1,x2)∈x|x2≤h(r)}).

We check that each square anti-commutes. To this end, observe that a square in the Cayley
graph corresponds to four rectangles r1 ∈ tRect∗(x,y), r2 ∈ tRect∗(y, z), r′1 ∈ tRect∗(x,y′) and
r′2 ∈ tRect∗(y′, z), where r1 and r2 have distinct corners and r1 ∗ r2 = r′1 ∗ r′2 as in Figure 22.
Number the rectangles so that h(r1) = h(r′2) < h(r2) = h(r′1). It is easy to see that

S(r1) = S(r′2),

S(r2) = −S(r′1).

We can similarly check that a hexagon commutes. Consider the six thin rectangles corresponding
to a a hexagon in the Cayley graph ri ∈ tRect(xi,xi+1) and r′i ∈ tRect(x′

i,x
′
i+1) for i = 1, 2, 3 with

x1 = x′
1 and x3 = x′

3, as pictured in Figure 23. One can check that

S(r1) = S(r′3)

S(r2) = S(r′2)

S(r3) = S(r′1),

so that in particular
S(r1)S(r2)S(r3) = S(r′1)S(r′2)S(r′3),
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as needed.
We will now prove uniqueness. Let S and S ′ be two sign assignments on Sn. Define a new

function T on the Cayley graph by

T (x; τi) = S(x; τi)S
′(x; τi)

Then the product of T around any square or hexagon is equal to 1.
Let W be the Cayley complex of Sn: the 2-complex whose edges and vertices form the Cayley

graph of Sn, and whose 2-cells are the squares connecting {x,xτi,xτiτj,xτj} for |i− j| > 1 and the
hexagons connecting {x,xτi,xτiτi+1,xτiτi+1τi,xτi+1τi,xτi+1}. Since these squares and hexagons
(together with the relations τ2

i = 1, which are suppressed in the definition of Γ) form a complete
set of relations for Sn, the complex W is simply connected.

Now consider T as an element of C1(W ; {±1}). The conditions on T are equivalent to saying that
it is a cocycle: δT = 0. Since W is simply connected, there is therefore a function f ∈ C0(W ; {±1})
so that δf = T . This function f gives the desired choice of signs on the basis. �

Remark 4.8. We could prove Proposition 4.7 without explicitly exhibiting the sign assignment: In
general, suppose we have a 2-complex W and are looking for an assignment of ±1 to the edges
of the 2-complex so that the number of −1 signs is odd around a prescribed set of 2-cells. Such
an assignment is unique (if it exists) iff H1(W ; {±1}) is trivial, as in the proof of the Proposition.
Furthermore, such an assignment exists if there is a 3-complex W ′ with W as its 2-skeleton so that
H2(W ′; {±1}) = 0 and the set of faces with an odd number of −1 signs, considered as a 2-cocycle on
W ′, is coclosed. In the case at hand, we can take W ′ to be the 2-skeleton of the permutahedron [17],
which can be defined as the convex hull of the vectors obtained by permuting the coordinates of
(1, 2, . . . , n). This 2-skeleton is W with the following types of 3-cells attached:

• Cubes corresponding to 3 disjoint transpositions, an S2 × S2 × S2 ⊂ Sn;
• Hexagonal prisms corresponding to S3 × S2 ⊂ Sn; and
• Truncated octahedra corresponding to S4 ⊂ Sn.

(For the last case, note that the Cayley graph of S4 is the boundary of a truncated octahedron.)
In each case the number of squares on the boundary of the 3-cell is even, so an assignment of signs
exists. The permutahedron is a polytope (hence contractible), so W ′ is 2-connected.

Step 3: Extend sign assignments to all thin rectangles in the torus.

Definition 4.9. A vertical sign assignment for thin rectangles is a function

S : tRect −→ {±1},

which satisfies the following properties:

(Sq) Given thin rectangles r1 ∈ tRect(x,y) and r2 ∈ tRect(y, z) with distinct corners, if we let
r′1 ∈ tRect(x,y′) and r′2 ∈ tRect(y′, z) be two other rectangles such that r1 ∗ r2 = r′1 ∗ r

′
2,

we have that

S(r1)S(r2) = −S(r′1)S(r′2).

(See Figure 22.)
(Hex) Given six thin rectangles ri ∈ tRect(xi,xi+1) and r′i ∈ tRect(x′

i,x
′
i+1) for i = 1, 2, 3 with

x1 = x′
1 and x3 = x′

3, such that the union of the support of r1, r2, and r3 is a rectangle
(with width two), we have that

S(r1)S(r2)S(r3) = S(r′1)S(r′2)S(r′3).

(See Figure 23.)
(V) If r1 ∈ tRect(x,y) and r2 ∈ tRect(y,x), then S(r1) = −S(r2).

Proposition 4.10. There is a vertical sign assignment for thin rectangles.
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Proof. We extend Equation (9), as follows.
Note that T is obtained from Σ by adding one more row of squares, which are of the form

{[i, i + 1] × [n− 1, n]}n−1
i=0 ,

and one more column of squares which are of the form

{[n− 1, n] × [j, j + 1]}n−1
j=0 .

Consider a thin rectangle r in the torus. If r is contained in Σ ⊂ T , then S(r) is as in Equation (9).
If r ∈ tRect(x,y) is a thin rectangle which is supported in the new column, but which is disjoint
from the new row, so that it is of the form [n− 1, n] × [a, b] with 0 ≤ a < b < n we define

(10) S(r) = (−1)I
(
x,{(x1,x2)∈x|x2≤a}

)
+I

(
x,{(x1,x2)∈x|a<x2<b and x2 even}

)
+b.

The thin rectangles not covered by the above two cases are those whose interiors meet the new row
of squares. It is easy to see that for each such rectangle r ∈ tRect(x,y), there is a unique other
thin rectangle r′ ∈ tRect(y,x), whose interior does not meet the row of squares, and hence whose
sign is defined either by Equation (9) or by Equation (10). We then define

S(r) = −S(r′).

This ensures that Property (V) in Definition 4.9 is satisfied. We must now verify Properties (Sq)
and (Hex).

If all the thin rectangles involved are contained in Σ, then the two conditions were already
checked in the proof of Proposition 4.7. Let us consider the cases when all the rectangles involved
are disjoint from the new row, but at least one of them is supported in the new column, so that its
sign is given by Equation (10).

Let us consider the square rule, with the support of r1 (which is the same as the support of r′2)
being in the last column, and the support of r2 (the same as that of r′1) in Σ. Let h(r1) and h(r2)
be the heights of the top edges of r1 and r2, respectively. If h(r1) ≤ h(r2), then, just as in the proof
of Proposition 4.7, we have:

S(r1) = S(r′2), S(r2) = −S(r′1).

If h(r1) ≥ h = h(r2), cf. Figure 24, let r1 = [n− 1, n] × [a, b]. If h < a, we obtain:

S(r1) = −S(r′2), S(r2) = S(r′1).

If h ∈ (a, b) as in Figure 24 then, in comparing S(r2) and S(r′1) using Equation (9), there is a
discrepancy coming from a pairs of points where the second point has coordinates (n − 1, a), and
h− a pairs of points where the first point has coordinates (0, a). Therefore,

S(r2) = (−1)hS(r′1).

On the other hand, in comparing S(r1) and S(r′2) using Equation (10), there can only be a
discrepancy of one extra pair (two corners of r2), which appears in case h is even. Thus,

S(r1) = (−1)h+1S(r′2),

which implies that S(r1)S(r2) = −S(r′1)S(r′2), as desired.
Let us now consider the hexagon rule, where the rectangles are supported in the last two columns,

as in Figure 25. We denote by a, b, and c (with a < b < c) the three possible heights at which the
relevant rectangles have their horizontal edges. We use the notation from Definition 4.9, where x is
the initial generator of r1 and r′1. When applying formulas (9) and (10), we must keep in mind that
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... n− 1
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b

n ≡ 0

r1

r2

Figure 24. Anti-Commutation of width one rectangles. In computing the
sign of the rectangle r2 we use the black dot on the horizontal line of height a,
while for the rectangle r′1, which has the same support, we use the white dot on the
leftmost vertical edge.

... n− 2

b

a

c

0 n ≡ 0

Figure 25. Hexagon rule in the last two columns. We compute the signs in
terms of the generator x; some of its components are the black dots shown here.

the initial point of the relevant rectangle may differ from x (at heights a, b and c), cf. Figure 25.
After finding the relevant discrepancies, we can express everything in terms of x :

S(r1) = (−1)I
(
x,{(x1,x2)∈x|x2≤b}

)
+I

(
x,{(x1,x2)∈x|b<x2<c, x2 even)}

)
+c

S(r′1) = (−1)I
(
x,{(x1,x2)∈x|x2≤b}

)

S(r2) = (−1)I
(
x,{(x1,x2)∈x|x2≤a}

)
+I

(
x,{(x1,x2)∈x|a<x2<c}

)
+1

S(r′2) = (−1)I
(
x,{(x1,x2)∈x|x2≤a}

)
+I

(
x,{(x1,x2)∈x|a<x2<c, x2 even)}

)
+b+c+1

S(r3) = (−1)I
(
x,{(x1,x2)∈x|x2≤a}

)
+I

(
x,{(x1,x2)∈x|a<x2≤b, x2 even)}

)
+b

S(r′3) = (−1)I
(
x,{(x1,x2)∈x|x2≤a}

)
+I

(
x,{(x1,x2)∈x|a<x2<c}

)
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Putting these relations together, we obtain the required identity:

S(r1)S(r2)S(r3) = S(r′1)S(r′2)S(r′3).

There is a similar computation that needs to be done for the hexagon rule when the rectangles
are supported in the first and the last column. We leave this case as an exercise for the reader.

Finally, we need to check the square and the hexagon rule when some of the rectangles involved
wrap vertically around the torus, i.e., their support has nontrivial intersection with the horizontal
line l of height n − 1

2 . We call such rectangles vertically wrapped. For the square rule, either two
or all four of the four rectangles involved are vertically wrapped. For the hexagon rule, exactly
four out of the six rectangles involved are vertically wrapped. The square and the hexagon rules
now follow from the corresponding ones when we replace the vertically wrapped rectangles r with
their counterparts r′ such that r ∗ r′ are vertical annuli. Indeed, from equations of the form
S(r) = −S(r′) we always pick up an even number of minus signs (either two or four), so the overall
signs are unchanged. �

Step 4: Extend vertical sign assignment to all empty rectangles. We weaken the notion
of sign assignments from Definition 4.1 a little.

Definition 4.11. A vertical sign assignment is a function

S : Rect◦ −→ {±1}

which satisfies Properties (Sq) and (V) from Definition 4.1. Sometimes, we call this a vertical
sign assignment on all empty rectangles, to distinguish it from the seemingly weaker vertical sign
assignments on thin rectangles.

Our goal in this step is to show that a vertical sign assignment for thin rectangles can be uniquely
extended to a vertical sign assignment on all empty rectangles.

Given a vertical sign assignment for thin rectangles S0, we define an extension

S : Rect◦ −→ {±1},

by extending the definition inductively on the width w of the rectangle. Explicitly, if r ∈ Rect◦(x,y)
is a rectangle with width 1, then S(r) = S0(r). Suppose next that S is defined for all rectangles of
width less than w for some w > 1. Given r ∈ Rect◦(x,y) of width w, there is exactly one rectangle
r1 ending at x with width one whose upper left corner coincides with the lower left corner of r, as
in the first diagram in Figure 26. Then r1 ∗ r has an alternate decomposition as r2 ∗ r3, where r2
has width w − 1, and r3 has width one. We can then define

(11) S(r) = −S0(r1)S(r2)S0(r3).

(The right hand side is defined, since the width of r2 is w − 1.)
We verify that S is a vertical sign assignment in the sense of Definition 4.1, which we do in

stages.

Lemma 4.12. Suppose that we have four rectangles r1, r2, r
′
1, r

′
2 ∈ Rect◦ with r1 ∗ r2 = r′1 ∗ r′2,

where r1 and r′2 have width one, and r1 and r2 share exactly one corner. Then

(12) S(r1)S(r2) = −S(r′1)S(r′2).

Proof. There are four cases in the proof, as illustrated in Figure 26. In the first case, when the
upper-left corner of r1 is the lower-left corner of r2, the conclusion holds by the definition of the
extension of S, Equation (11). In the second case, when the lower-right corner of r1 is the lower-left
corner of r2, the conclusion follows from Property (V) of the vertical sign assignment: if we relate
both thin rectangles, r1 and r′2, to the other rectangle in the same vertical column, we get the same
rectangles as in the previous case.
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Figure 26. The four cases in Lemma 4.12. Each case is a decomposition r1∗r2,
where r1 is shown shaded. The dotted line gives the alternate decomposition r′1 ∗ r

′
2.

Otherwise, we will prove the result by induction on the maximum of the widths of r2 and r′1.
We treat the base case first, where this maximum is equal to two. There are two cases:

• If the upper-left corner of r1 is the upper-right corner of r2, Equation (12) follows from
Property (Sq) of the vertical sign assignment, the hexagon rule, and the definition of S.

• If the lower-right corner of r1 is the upper-right corner of r2, Equation (12) follows from
Property (V) applied to the case above.

We now treat the induction on the maximum of the widths of r2 and r′1, which we may assume
is greater than two. If the upper-left corner of r1 is the upper-right corner of r2 (the third case in
the figure), we may again apply Property (V) to change to the last case. So we may assume that
the lower right corner of r1 is shared with the upper right corner of r2. Since the width of r2 is
greater than two, we can find a thin rectangle r0 to x, the initial point of r1, disjoint from r1 with
the property that r0 and r2 share a corner. We consider now the composite p = r0 ∗ r1 ∗ r2. We
organize the various decompositions of p into the graph in Figure 27. Each edge corresponds to some
rectangle in some decomposition of p, and each vertex corresponds to one of the various elements
of S which can be connected by rectangles in some decomposition of p. Each face corresponds
to two decompositions of p which have some rectangle in common. Thus we have organized the
decompositions of p in a cube. A face is said to anti-commute if the product of the signs associated to
its four edges is −1. Our goal is to show that the face belonging to the two decompositions r0∗r

′
1∗r

′
2

and r0 ∗ r1 ∗ r2 anti-commutes. To see this, we observe that the other five faces anti-commute: two
of them do, as they correspond to rearranging two disjoint thin rectangles (Property (Sq) of the
vertical sign assignment for thin rectangles), two of the faces anti-commute by the definition of the
extension, Equation (11), and the fifth face anti-commutes by induction on the width of r2. �

Lemma 4.13. Suppose that we have four distinct rectangles r1, r2, r
′
1, r

′
2 ∈ Rect◦ with r1 ∗ r2 =

r′1 ∗ r
′
2, where r1 and r′2 have width one, then

S(r1)S(r2) = −S(r′1)S(r′2).

Proof. We prove the result by induction on the width of r2.
The case where r2 shares exactly one corner with r1 was handled in Lemma 4.12, so we may

assume the corners of r1 and r2 are distinct. According to Property (V), we can assume without
loss of generality that the supports of r1 and r2 are disjoint. If r2 also has width one, we are done
by Property (Sq).

Otherwise, we proceed by induction in a way similar to the last case of Lemma 4.12. Specifically,
we can find another width one rectangle r0 ending at the initial point of r1 which shares one
corner with r2. Consider the polygon p = r0 ∗ r1 ∗ r2. We can once again organize the various
decompositions of this polygon into a cube. In the case where r0 and r1 are disjoint, two of the
faces anti-commute according to Property (Sq) of S0, two anti-commute by Lemma 4.12, and a
fifth anti-commutes by induction on the width of r2. Thus, the sixth must anti-commute, as well.
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Figure 27. The cube of decompositions in Lemma 4.12. Each vertex is a
configuration (shown by black dots); each edge is a rectangle (shown shaded). The
different decompositions are the different ways to go from the lower-left corner to
the upper-right corner following three edges. We are trying to show that the back
face anti-commutes; the front face is the inductive case.

In the other case, where r0 and r1 share a corner (which we need to consider only when the width
of r2 is three), four of the squares in the cube anti-commute according to Lemma 4.12. The fifth
involves a domain r′1 ∗ r

′
2 where r′1 and r′2 are both rectangles of width two, with r′1 containing r1

and r′2 contained in r2. To show that this last face anti-commutes, we can find another rectangle r′0
that can be pre-composed with these two to give a domain r′0 ∗ r

′
1 ∗ r

′
2. The various decompositions

of this domain can again be arranged into a cube, in which four of the squares anti-commute by
Lemma 4.12, the fifth anti-commutes by Property (Sq), and the sixth is the face with domain r′1∗r

′
2,

as desired. �

Proposition 4.14. Given any four empty rectangles r1, r2, r
′
1, r

′
2 ∈ Rect◦ with r1 ∗ r2 = r′1 ∗ r

′
2, we

have that

S(r1)S(r2) = −S(r′1)S(r′2).

Proof. Using suitably-placed width one rectangles as before, we can narrow r1 and/or r2 by induc-
tion, until one or the other has width one and hence is covered by Lemma 4.13. �

In effect, the above proposition shows that a vertical sign assignment for thin rectangles S0 can
be canonically extended to a vertical sign assignment for arbitrary rectangles S in the sense of
Definition 4.11.



ON COMBINATORIAL LINK FLOER HOMOLOGY 35

0

n = 0

n− 1

Σ

ba n− 1 n = 0

d

c

r

Figure 28. Signs for rectangles on the square. The subsquare Σ of the torus
is shown bordered by the thick lines. Inside we have a rectangle r. The quantity
D(r) counts the number of points in x which lie in the lightly shaded region below r.

Step 5: Signs for rectangles supported in Σ. In Proposition 4.10 we constructed a vertical
sign assignment for thin rectangles. According to Step 4 above, this gives a vertical sign assignment
S : Rect◦ → {±1} on all empty rectangles. We aim to give an explicit formula for S(r) in the case
when r is supported in the subsquare Σ = [0, n − 1] × [0, n − 1].

Proposition 4.15. Let r = [a, b]×[c, d] ∈ Rect◦(x,y), with 0 ≤ a < b ≤ n−1 and 0 ≤ c < d ≤ n−1.
Denote by D(r) the number of points (x1, x2) ∈ x which lie strictly below r, i.e., x1 ∈ (a, b) and
x2 ∈ [0, c), cf. Figure 28. Then:

(13) S(r) = (−1)I
(
x,{(x1,x2)∈x|x2≤d}

)
+D(r)·

(
I
(
x,{(x1,x2)∈x|c<x2≤d}

)
+1

)
.

Proof. We use induction on the width w of r. When r has width one, (13) is just the formula (9).
Assume w > 1. We distinguish two cases, according to the position of the point (a+ 1, l) ∈ x in

the vertical line x1 = a+ 1. When it is below the support of r, the inductive step follows by using
the anti-commutation rule for a decomposition of the form r ∗ r1 = r2 ∗ r

′, where the rectangles r1
and r2 have width one and lie in the ath column, so that their signs can be computed using (9), and
r′ has width w−1. The latter case is similar, but the decompositions are of the form r1 ∗r = r′ ∗r2.
In both cases the computations are straightforward. �

Step 6: From vertical sign assignments to true sign assignments.

Lemma 4.16. If S is a vertical sign assignment, then there is some function ρ : {1, . . . , n} → {±1}
with the property that if r1 and r2 are two height one rectangles, with r1 ∗ r2 connecting some x ∈ S
to itself, then S(r1)S(r2) = ρ(i), where the support of r1 ∗ r2 consists of the ith row.

Proof. We claim first that when the support of r1 ∗ r2 is a horizontal annulus [0, n) × [i, i + 1],
S(r1)S(r2) depends only on i and the components of x in the ith and (i + 1)st rows. This follows
readily from the square rule; if x and x′ are two generators whose components on the ith and
(i+ 1)st agree and there is some r ∈ Rect◦(x,x′), then two applications of the square rule establish
the claim. More generally, we can always get between two generators x and x′ that agree on these
two rows by a sequence of squares whose corners are disjoint from the ith row, verifying the claim.

We next verify that if r1 ∈ Rect◦(x,y) are r2 ∈ Rect◦(y,x) are two rectangles which, together,
form the ith row, then S(r1)S(r2) depends only on the row in which r1 and r2 are supported. To
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Figure 29. Computing ρ(i) for i ≤ n. The generator x is shown in black dots,
and y in hollow dots. When computing the sign of r2 with formula (10), we need to
use y in the place of x.

this end, observe that there is another rectangle r3 ∈ Rect(x, z) with height one supported in the
row i+1, and r4 ∈ Rect(z,x). We now claim that r1 ∗r2 ∗r3 ∗r4 differs from another decomposition
r′1 ∗ r

′
2 ∗ r

′
3 ∗ r

′
4 in two steps, in such a way that the supports of r3 and r4 agree with those of r′3 and

r′4 (hence together they occupy the i+ 1st row), and the supports of r′1 and r′2 also occupy the ith

row, but the support of r′1 and r′2 are different from the supports of r1 and r2. Thus, it follows from
the square rule that S(r1)S(r2) = S(r′1)S(r′2). It is easy to see that any two r1 ∈ Rect◦(x,y) and
r2 ∈ Rect◦(y,x) which occupy the ith row can be connected by a finite sequence of such moves. �

We now specialize to the vertical sign assignment S constructed (in Step 3) from the vertical
sign assignment on thin rectangles exhibited in Proposition 4.10, which was based on the formulas
(9) and (10). We claim that the function ρ from Lemma 4.16 is identically 1.

Lemma 4.17. ρ(i) = 1 for i = 1, . . . , n− 1.

Proof. It suffices to check that S(r1)S(r2) = 1 when r1 ∈ Rect(x,y) is of the form [0, n − 1] ×
[i − 1, i], and r2 ∈ Rect(y,x) is the square [n − 1, n] × [i − 1, i] in the last column, cf. Figure 29.
Proposition 4.15 gives

S(r1) = (−1)I
(
x,{(x1,x2)∈x|x2≤i}

)
+i+1 = (−1)I

(
x,{(x1,x2)∈x|x2≤i−1}

)
+1.

On the other hand, from Equation (10) we get

S(r2) = (−1)I
(
y,{(y1,y2)∈y|y2≤i−1}

)
+i = (−1)I

(
x,{(x1,x2)∈x|x2≤i−1}

)
+1.

�

To check that ρ(n) = 1, we first prove the following:

Lemma 4.18. Let k ∈ 1, 2, . . . , n− 1. Denote by xk,yk ∈ S the configurations

xk = {(i, n − 1 − i)|0 ≤ i < k} ∪ {(k, 0)} ∪ {(i, n − i)|k < i < n},

yk = {(0, 0)} ∪ {(i, n − 1 − i)|1 ≤ i < k} ∪ {(k, n − 1)} ∪ {(i, n − i)|k < i < n}.

Let rk ∈ Rect(xk,yk) be the rectangle of width k and height 1 supported in the last row, cf. Figure 30.
Then, its sign is given by:

S(rk) = (−1)n.
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Figure 30. Computing ρ(n). The rectangles rk is darkly shaded, and r′k lightly
shaded. The generators xk and yk are represented by the black and white dots,
respectively. There is an alternate decomposition of rk ∗ r′k given by cutting along
the dashed line in the top row.

Proof. Induction on k. When k = 1, the sign of r1 is minus the sign of a thin rectangle of width
one and height n − 1 supported in the first column. The latter can be computed using Equation
(9), which gives the answer (−1)n−1; therefore, S(r1) = (−1)n.

For k > 1, let r′k ∈ Rect(yk, zk) be the rectangle of width one supported in the kth column, cf.

Figure 30. Its sign is (−1)n+k by formula (9). The domain rk ∗ r′k has an alternate decomposition

as pk ∗ rk−1, where the rectangle pk is again supported in the kth column and has a counterpart
p′k such that pk ∗ p′k is a vertical annulus. Formula (9) gives S(p′k) = (−1)n+k, so that S(pk) =

(−1)n+k+1. The inductive step now follows form the anti-commutation relation S(rk)S(r′k) =
−S(rk−1)S(pk). �

Lemma 4.19. ρ(n) = 1.

Proof. By the previous lemma, the sign of rn−1 ∈ Rect(xn−1,yn−1) is (−1)n. There is also a
thin vertical rectangle r′ ∈ Rect(xn−1,yn−1) supported in the last column, whose sign is (−1)n−1

by (10). For the little square r′′ ∈ Rect(yn−1,xn−1) supported in the top right corner we have
S(r′′) = −S(r′). Since rn−1 ∗ r

′′ is a horizontal annulus and S(r′′) = S(rn−1), we get ρ(n) = 1, as
desired. �

We can now complete Step 6:

Proof of Theorem 4.2. We proved existence of vertical sign assignments in Step 4. According to
Lemma 4.16, the resulting signs give a true sign assignment provided that the function ρ defined
there is identically one. This was checked in Lemmas 4.17 and 4.19.

To see uniqueness, let S1 and S2 be two true sign assignments. We can restrict them to the
square Σ and get sign assignments on the Cayley graph (cf. Lemma 4.6). Using the uniqueness
part of result of Proposition 4.7, we obtain a function f : S −→ {±1} such that the composite

B : Rect◦ −→ {±1}, B(r) = f(x) · f(y) · S1(r) · S2(r) for r ∈ Rect◦(x,y)

satisfies the following properties:

• B(r) = 1 for any rectangle of width one supported in Σ;
• (Commutation rule) B(r1) · B(r2) = B(r′1) · B(r′2) whenever r1, r2, r

′
1, r

′
2 ∈ Rect◦ are distinct

and satisfy r1 ∗ r2 = r′1 ∗ r
′
2;

• B(r1) = B(r2) if r1 ∗ r2 is a vertical annulus;
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• B(r1) = B(r2) if r1 ∗ r2 is a horizontal annulus.

We claim that B is identically 1. Indeed, the third property above implies that B(r) = 1 whenever
r has width one and is not supported in the last column. The fourth property implies that B(r) = 1
when r is a square of side length one supported in the last column; the same must be true for all
width one rectangles in the last column by induction on height, applying the commutation rule.
Thus B takes the value one on all vertical thin rectangles. The fact that B(r) = 1 for all r follows
by induction on width, again using the commutation rule. This shows that f satisfies the property
required in the statement of Theorem 4.2. �

4.2. Properties of the sign-refined chain complex, and the proof of Theorem 1.2.

Proposition 4.20. Let S be a sign assignment. The Z[U1, . . . , Un]-module C−(G), endowed with
the endomorphism ∂−S , is a chain complex. Moreover, if S1 and S2 are two different sign assign-

ments, then there is an isomorphism of chain complexes (C−, ∂−S1
) ∼= (C−, ∂−S2

).

Proof. In the expression ∂S ◦ ∂S(x), terms can be paired off as in the proof of Proposition 2.10.
These terms cancel, according to the axioms on S.

Suppose we are given sign assignments S1 and S2. Consider the map

Φ: (C−(G), ∂S1
) −→ (C−(G), ∂S2

)

defined by Φ(x) = f(x) · x, where f is the function from Theorem 4.2. It is straightforward to see
that Φ is an isomorphism of chain complexes. �

Other algebraic properties from Section 2 have straightforward generalizations to this context.
For example:

Lemma 4.21. Suppose that Oi and Ok correspond to the same component of ~L. Then multiplication
by Ui is filtered chain homotopic to multiplication by Uk.

Proof. The chain homotopy from Lemma 4.21 works to establish the present lemma. It is important
here that for x ∈ S, and r1 and r2 are the decompositions of the horizontal annulus containing
Xj , and r3 and r4 are the analogous decompositions of the vertical annulus, then S(r1)S(r2) =
−S(r3)S(r4), but this is ensured by the axioms of the sign assignment. This ensures that Ui is
chain homotopic to Uk (rather than, say, −Uk). �

Again, we view the chain complex (C−(G), ∂−) as a module over Z[U1, . . . , Uℓ] where the {Ui}
ℓ
i=1

correspond to the ℓ components of our link ~L. As before, we have the following:

Proposition 4.22. Suppose that the oriented link ~L has ℓ components. Choose an ordering of

O = {Oi}
n
i=1 so that for i = 1, . . . , ℓ, Oi corresponds to the ith component of ~L. Then the filtered

chain homotopy type of C−(G), viewed as a chain complex over Z[U1, . . . , Uℓ], is independent of

the ordering of O. Then ĤL(G) and H̃L(G) are finitely generated Abelian groups. Moreover,

H∗(C̃L(G)) ∼= ĤL(G) ⊗
ℓ⊗

i=1

V
⊗(ni−1)
i ,

where Vi is the two-dimensional vector space spanned by two generators, one in zero Maslov and
Alexander multi-gradings, and the other in Maslov grading minus one and Alexander multi-grading
corresponding to minus the ith basis vector.

Proof. This is a routine adaptation of Proposition 2.12, Lemma 2.13, and Proposition 2.15 from
Section 2. �
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We now turn to the proof of the main theorem, Theorem 1.2, with signs.
We adopt the strategy from Section 3; however, we must specify the signs used in defining our

various chain maps and chain homotopies, and verify that they are indeed chain maps and chain
homotopies with appropriate signs. As in Section 3, we begin with the case of commutation.

We adopt notation from Subsection 3.1. Consider the pentagons Pentβγ(x,y) used there.
Straightening out the β ∩ γ-corner of the pentagons naturally induces rectangles in G. (We could
have in fact defined the map in Section 3.1 as counts of rectangles, where the O’s and X’s in the
central column are moving, but then it would have been a little confusing to write down exactly
when they are counted with powers of the U ’s.)

Formally, we obtain a “straightening map”

e : Pentβγ(x,y) −→ Rect(x,y′),

where y′ is the generator corresponding to y, where we slide horizontally from the γ back to the β
component. Clearly, the image of e consists of rectangles with a vertical segment along β. There
are two possibilities: either the rectangle lies to the right of this vertical segment (i.e., the segment
is a left edge of the rectangle), or it lies to the left of this vertical segment. In the first case, we
say the pentagon is a right pentagon, in the latter, we say it is a left pentagon. In Figure 8, the one
pictured on the left is a left pentagon, and the one on the right is a right pentagon.

We define

Φβγ(x) =
∑

y∈S(H)

∑

p∈Pentβγ(x,y)
x∩Int(p)=∅

ǫ(p) · U
O1(p)
1 · · ·UOn(p)

n · y,

where

ǫ(p) =

{
S(e(p)) if p is a left pentagon

−S(e(p)) if p is a right pentagon.

We obtain the following analogue of Lemma 3.1:

Lemma 4.23. The map Φβγ is a filtered anti-chain map, i.e.,

∂ ◦ Φβγ + Φβγ ◦ ∂ = 0.

Proof. Again, the proof follows from the proof of Lemma 3.1. In fact, the fact that the terms cancel
in pairs typically follows from the same pairing which we see in Proposition 4.20. There are two
cases which look different, though. One of these corresponds to the two decompositions pictured
as in Figure 9. After projecting via e, both decompositions of the composite region in this case
correspond to the same decomposition of the composite region into two rectangles. However, in
one case, the rectangle corresponding to the pentagon is on the left, in the other, it is on the right.
Thus, the signs given by ǫ are opposite. The other case, the rotation by 180◦ of Figure 9, works
similarly. �

It seemed more natural in the above proposition to consider anti-chain maps, rather than the
more traditional chain maps. Just as chain maps induce maps on homology, so do anti-chain maps.

One could alternatively consider the chain map Φ̃ defined by

Φ̃βγ(x) = (−1)M(x) · Φβγ .

We now turn to the chain homotopies gotten by counting hexagons.
Once again, there is a straightening map

e′ : Hexβγβ(x,y) −→ Rect(x,y),
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and we can define a homotopy operator Hβγβ : C(G) −→ C(G) by

Hβγβ(x) =
∑

y∈S(G)

∑

h∈Hexβγβ(x,y)
x∩Int(h)=∅

ǫ′(h) · U
O1(h)
1 · · ·UOn(h)

n · y,

where
ǫ′(h) = S(e′(h)).

Similarly define Hγβγ .

Proposition 4.24. With respect to the sign refinements, the map Φβγ induced by commuting two
columns induces an isomorphism in homology.

Proof. The proof of Proposition 3.2 adapts readily to show that

I + Φγβ ◦ Φβγ + ∂ ◦Hβγβ +Hβγβ ◦ ∂ = 0

I + Φβγ ◦ Φγβ + ∂ ◦Hγβγ +Hγβγ ◦ ∂ = 0.

Note that in the terms Φγβ ◦ Φβγ and Φβγ ◦ Φγβ, the two pentagons that appear are either both
right pentagons or both left pentagons, so the extra minus sign for right pentagons has no effect.
The proposition now follows. �

With commutation invariance in hand, we now turn to stabilization invariance, following the
steps in Subsection 3.2.

As a first step, we need a sign in the definition of C ′, the mapping cone of the chain map

U1 − U2 : B[U1] −→ B[U1],

to ensure it is a chain complex. One way of doing this is to define

∂′(a, b) = (∂a, (U2 − U1) · a− ∂b).

We will find the following terminology useful.

Definition 4.25. Suppose p ∈ π(x,y) can be decomposed as p = r1 ∗ · · · ∗ rm for some n and
ri ∈ Rect◦. Suppose moreover that for some i we have ri ∗ri+1 = r′i ∗r

′
i+1, for some r′i, r

′
i+1 ∈ Rect◦.

Then we say that the decompositions r1 ∗ · · · ∗ rm and r1 ∗ · · · ∗ r′i ∗ r
′
i+1 ∗ · · · ∗ rm differ by an

elementary move.

Recall that in Subsection 3.2, we identified C(G) with a chain complex whose generators are
I ⊂ S(H), which contain the distinguished point x0. The differentials count either empty rectangles
which do not contain x0 as corner points, or those of “Type 2”, i.e., those which include x0 (and
hence also O1 and X1) in their interior. These rectangles are counted, but not with a power of U1.

Starting with a sign assignment S on rectangles in H, we can induce one on I with the above two
types of differential. To do this, we must give an explicit decomposition of each Type 2 rectangle r′

as a product of three empty rectangles. There are four ways of doing this. We choose the following
one: the initial rectangle is lower left (and involves x0), and the third (final) one uses the upper
left corner, cf. Figure 31, and call it the standard decomposition D0(r

′) of the rectangle r′. For
consistency, if r is a Type 1 rectangle in G, and r′ is the corresponding rectangle viewed as a
rectangle in H, we let D0(r

′) denote the length 1 decomposition D0(r
′) = r′.

Lemma 4.26. Fix x,y ∈ S(G) and let r ∈ Rect◦(x,y) correspond to the rectangle r′ connect-
ing x′,y′ ∈ S(H) under the correspondence above between S(G) with I ⊂ S(H). For any sign
assignment S for H, define

S0(r) =

{
S(r′) if r′ has Type 1

S(r1)S(r2)S(r3) if r′ has Type 2 and D0(r
′) = r1 ∗ r2 ∗ r3.

Then S0 induces a sign assignment in the sense of Definition 4.1 for rectangles in G.
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Figure 31. Decomposing polygons. On the left, we a have a standard decompo-
sition of a Type 2 rectangle: more precisely, the decomposition consists of r1 ∗r2∗r3,
and the number on a region indicates which rectangle it belongs to. On the right,
we have indicated the standard decomposition of a complexity 5 polygon of type
L, r1 ∗ · · · ∗ r4. Some regions (which have local multiplicity 2) are contained in the
support of more than one rectangle, and hence are labelled with more than one
integer.

Proof. We must show that if r1 ∗ r2 = r′1 ∗ r′2 in G, then the decompositions D0(r1) ∗ D0(r2)
and D0(r

′
1) ∗D0(r

′
2) can be connected by an odd number of elementary moves. This follows from

a routine case analysis of how r1 and r2 can interact. When one rectangle is Type 1 and the
other is not, it takes 3, 5, or 7 elementary moves to connect the two decompositions. The most
complicated case is the one where both are Type 2 rectangles; in that case, we can connect the
two decompositions by nine moves: Write the standard decomposition D0(r1) = s1 ∗ s2 ∗ s3 and
D0(r2) = t1 ∗ t2 ∗ t3, then we have a decomposition D0(r1)∗D0(r2) = s1 ∗s2 ∗s3 ∗ t1 ∗ t2 ∗ t3. In three
moves, we commute t1 to the beginning, then in three more moves we commute t2 to the second
place, and in three more moves we commute t3 to the third spot. The resulting decomposition can
be easily seen to agree with D0(r

′
1) ∗D0(r

′
2). The other two axioms of a sign assignment are also

easily verified. �

Remark 4.27. By “commuting the t1 to the beginning of s1∗s2∗s3∗t1∗t2∗t3”, we mean the following
string of operations: apply three elementary moves, the first of which replaces the consecutive terms
s3 ∗ t1 by an alternative pair t′1 ∗ s

′
3, then apply another elementary move to the consecutive pair

s2 ∗ t
′
1, to get t′′1 ∗ s′2, and finally apply an elementary move to the pair s1 ∗ t

′′
1 to get t′′′1 ∗ s′1. We

will use this shorthand in several future proofs, as well.

We need now to introduce signs in the definition of the stabilization map F of Equation (5) to
ensure that it is, in fact, a chain map.

As a first step, we define a function

µ : πF −→ {±1}.

For this, we give a specific decomposition of p ∈ πF (x,y) as an ordered juxtaposition of rectangles.
Specifically, recall that ∂p can be thought of as an oriented, connected, curve. Order now the β-arcs
{vi}

m
i=1 so that they inherit the cyclic ordering from the orientation of ∂p, and so that vm contains

the stabilization point x0 (which in turn is a component of y). We can decompose

p = r1 ∗ · · · ∗ rm−1,

where ri is a rectangle containing vi, compare Figure 31, and define

µ(p) = S(r1) · · ·S(rm−1).
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Note that the left edge of each odd rectangle is contained in the circle β1 containing x0, while the
right edge of each even rectangle is contained in β1. We call this decomposition the standard decom-
position D(p). For polygons with complexity m, there are m− 1 rectangles in this decomposition;
m is odd if the polygon is of type L and even if the polygon is of type R.

We will analyse the signs according to the cases in the proof of Lemma 3.5.

Lemma 4.28. Fix a complexity m domain p ∈ πF and a rectangle r as in cases I(0) or I(1); that
is, they are either disjoint or share one corner, with r disjoint from x0. Then we can either compose
r ∗p or p∗r, and this composite has an alternate decomposition which is either of the form r′ ∗p′ or
p′ ∗ r′ where r′ is an empty rectangle distinct from r and p′ is a domain of type F distinct from p.
We have the following cases:

• if p ∗ r = r′ ∗ p′ (or r ∗ p = p′ ∗ r′), then µ(p)S0(r) + (−1)mS0(r
′)µ(p′) = 0;

• if r ∗ p = r′ ∗ p′ or p ∗ r = p′ ∗ r′, then S0(r)µ(p) + S0(r
′)µ(p′) = 0.

Proof. If r ∗ p = p′ ∗ r′ and p has complexity m, then the decomposition r ∗D(p) can be obtained
from D(p′) ∗ r′ by m− 1 elementary moves: we successively commute the rectangles in D(p) past
the rectangle r. The case where r′ ∗ p′ = p ∗ r is symmetric.

Otherwise, r shares an edge with some rectangle ri contained in D(p). With some number k of
elementary moves, we can change to a composition series where some rectangle s, with the same
support as r, appears next to ri. Then we can perform one elementary move to change these
two rectangles (s and ri) to s′ and r′i, respectively, where s has the same support as r′; then k
more elementary moves returns us to the composition series for r′ and D(p′), for a total of 2k + 1
elementary moves, which is odd, as desired. �

Lemma 4.29. Suppose that p ∈ πF (x,y′) is a domain of complexity m, r ∈ Rect(y, z) is a Type 2
rectangle, and the corners of p and r are distinct; that is, they are in case II(0). This case matches
with case I(2), so either p ∗ r has an alternate decomposition r′ ∗ p′, in which case

(14) µ(p)S0(r) + (−1)mµ(p′)S0(r
′) = 0,

or p ∗ r has an alternate decomposition as p′ ∗ r′, where r′ is a Type 1 rectangle, in which case

(15) µ(p′)S0(r
′) + µ(p)S0(r) = 0.

Proof. In the first case, we find it convenient to start with the decomposition r′ ∗ p′, and write the
standard decomposition

D(p′) = r′1 ∗ · · · ∗ r
′
m+1.

Recall that r′ shares two corner points with p′. There are two cases, according to whether these
two corner points are upper right or lower left corners of p′. We consider the upper right case. In
this case, the boundary of r′ meets the boundary of two consecutive odd rectangles, as in Figure 32.
Write the first as r′2i−1. Starting from r′ ∗D(p′), we perform 2i− 1 elementary moves, to commute
r′ past r′2i−1, to obtain a new decomposition r1 ∗ · · · ∗ r2i−1 ∗ r

′′ ∗ r′2i ∗ r
′
2i+1 ∗ · · · ∗ r

′
m−1. The support

of the union of the three consecutive rectangles r′′ ∗ r′2i ∗ r
′
2i+1 is a rectangle, which is decomposed

so that the upper right rectangle r′′ comes first.
We now need some terminology, and then a simple observation. Suppose that s1 ∗ s2 ∗ s3 are

three rectangles, whose union is a rectangle (so that some point x in its interior is a corner of two
of the three original rectangles). Suppose also that s1, s2, and s3 are ordered so that the lower left
corner of the total rectangle is the lower left corner of s1, while the upper left corner in the total
rectangle is the upper left corner of s3. We then say that s1∗s2∗s3 is the standard decomposition of
a rectangle. (This notion coincides with the earlier standard decomposition of a Type 2 rectangle,
when the central point x = x0.) Suppose now that r is some rectangle which can be post-composed
with s1 ∗ s2 ∗ s3, and which has two corners inside the support of s1 ∗ s2 ∗ s3. Then after an odd
number of elementary moves (actually, 3 or 5), we can transform s1 ∗ s2 ∗ s3 ∗ r to r′ ∗ s′1 ∗ s

′
2 ∗ s

′
3, so

that the supports of r and r′ coincide, and s′1 ∗ s
′
2 ∗ s

′
3 is a standard decomposition of the rectangle.
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Figure 32. p ∗ r = r′ ∗ p′, where r has Type 2. The rectangle labeled by 0 is
the rectangle r′, and p′ is a polygon with complexity 5, whose standard decompo-
sition is indicated by the numbers. This decomposition can be transformed into a
decomposition D(p) ∗D(r), where r has Type 2, in an odd number of steps.

Starting from the composition r′′ ∗ r′2i ∗ r
′
2i+1, we can apply two elementary moves to transform

it into the standard decomposition s1 ∗ s2 ∗ s3 of a rectangle. Then, applying the principle in the
previous paragraph m− 2i times, we can commute s1 ∗ s2 ∗ s3 to the end of the decomposition

D′ = r1 ∗ · · · ∗ r2i−1 ∗ s1 ∗ s2 ∗ s3 ∗ r
′
2i+1 ∗ · · · ∗ r

′
m−1,

turning it into the desired decomposition D(p) ∗D0(r), where r is a Type 2 rectangle. In all, the
number of elementary moves has the same parity as m + 1, verifying Equation (14) in the case
where r′ is on the upper right side of the support of p′. The case when r′ meets p′ in lower left
cornes of p′ is similar.

For Equation (15), again there are two cases, according to whether r′ shares two lower right or two
upper left corner points of p′. Assume they are lower right, and write the standard decomposition
of p′, D(p′) = r′1 ∗ · · · ∗ r

′
m+1. Now, one edge of r′ is contained in r′2i−1, while the other is contained

in r′2i+1. Consider now the decomposition D(p′) ∗ r′. In m− 2i elementary moves, we commute r′

before r′2i−1, to obtain a new decomposition

r′1 ∗ · · · ∗ r
′
2i−2 ∗ r2i−1 ∗ s1 ∗ s2 ∗ s3 ∗ t2i+2 ∗ · · · ∗ tm+2,

where s1 ∗ s2 ∗ s3 is a decomposition of a rectangle. After two elementary moves, we can change it
to a standard decomposition of the rectangle. Applying the observation about commuting rectan-
gles discussed above, we can now commute this decomposition of the rectangle to the end of our
discussion; the number of steps is congruent to m+ 1 modulo two. The new decomposition is the
decomposition D(p)∗ r, and it was obtained from D(p′)∗ r by an odd number of elementary moves.
Once again, the case when r′ meets p′ in upper left corners of p′ works similarly. �

Lemma 4.30. Let r ∈ Rect◦(x,y) and p ∈ πF (y, z) a domain with complexity m. Suppose that
r and p share one corner, and suppose that x0 appears in the interior of the boundary of r (Case
I(1 ′)). Then there is a horizontal or vertical annulus so that the domain p′0 obtained by adding the
annulus to r ∗ p has an alternate decomposition. We have the following cases:

(1) if there is a y′ 6= y and r′ ∈ Rect◦(x,y′) and p′ ∈ πF (y′, z) so that r′ ∗ p′ = p′0 (Case I(3)),
then S0(r)µ(p) + S0(r

′)µ′(p) = 0.
(2) if there is a y′ 6= y and p′ ∈ πF (x,y′) and r′ ∈ Rect◦(y′, z) so that p′ ∗ r′ = p′0 (Case I(3)

if r′ has Type 1, Case II(1) if r′ has Type 2) then S0(r)µ(p) + (−1)mµ(p′)S0(r
′) = 0.

Proof. Note that in the alternate decomposition, in the case where r′ is of Type 1, the rectangles
r′ and p′ meet in three points, and the composite domain of r′ and p′ contains an annulus.
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Figure 33. Case (1) of Lemma 4.30. We have illustrated examples of Case (1)
in Lemma 4.30. The domains on the right column correspond to decompositions
of the form r ∗ p, where x0 is contained in a boundary of r. On the left, we have
corresponding alternate composite domains r′∗p′. The domains here are decomposed
into ordered rectangles; the integers in a region give the number of the rectangle the
given region belongs to.

Consider Case (1). This can be subdivided into two subcases: either the annulus is vertical or
horizontal. Suppose the annulus is horizontal. In this case, write D(p′) = r′1 ∗ · · · ∗ r

′
m+1. Consider

the decomposition r′∗D(p′). After m elementary moves (commuting r′ so that it is next-to-last), we
obtain an alternate decomposition, where the last two rectangles compose to the row through O1.
Cancelling these last two, and performing m− 1 more elementary moves (bringing the last term to
the first), we obtain the decomposition r ∗D(p). The total change in sign is (−1)2m−1 = −1, so
S0(r)µ(p) + S0(r

′)µ(p′) = 0 as claimed.
Consider next the case that the annulus is vertical. Write D(p′) = r′1 ∗ · · · ∗ r

′
m+1, and consider

the decomposition r′∗r′1∗· · ·∗r
′
m+1. The rectangles r′ and r′1 together form the column through O1.

Thus, cancelling the first two terms (and introducing a minus sign by Property (V)), we obtain a
decomposition r′2 ∗ · · · ∗ r

′
m+1. Now r′2 = r, and r′3 ∗ · · · ∗ r

′
m+1 is a decomposition of p. We have

changed signs only once, so again S0(r)µ(p) + S0(r
′)µ(p′) = 0.

Examples of both possibilities for Case (1) are given in Figure 33.
Consider Case (2), which we divide into subcases: either r′ has Type 1 or Type 2. Consider

first the case where r′ has Type 1. This again can be divided into two subcases, according to
whether the annulus in the decomposition r ∗ p is horizontal or vertical. Suppose first that it is
horizontal. Write p′ = r′1 ∗ · · · ∗ r′m+1, and consider the decomposition D(p′) ∗ r′. Performing an
elementary move on the last two rectangles, and then on the next-to-last two, we obtain a new
decomposition r′1 ∗ · · · ∗ r

′
m−1 ∗ sm ∗ sm+1 ∗ sm+2, with the property that sm and sm+1 form the row
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through O1. Thus, they can be cancelled; performing m−1 elementary moves (commuting sm+2 to
the beginning of the decomposition), we obtain the decomposition r ∗D(p) with total sign change
(−1)m+1, verifying the claim. In the case where the annulus is vertical, write D(p′) = r′1 ∗· · · ∗r

′
m+1

and consider the decomposition D(p′)∗ r′. We commute the last rectangle r′ to the second place in
m moves, then cancel the first two rectangles (which, since they form a vertical annulus, introduces
the sign −1) to obtain the alternate decomposition r∗D(p) (with total sign change (−1)m+1). This
verifies the stated relation when r′ has Type 1.

We turn to the case where r′ has Type 2. Again, we have two cases, according to whether the
annulus is vertical or horizontal. Assume the annulus is horizontal. Write the standard decom-
positions D(p′) = r′1 ∗ · · · ∗ r

′
m−1 and D0(r

′) = r′m ∗ r′m+1 ∗ r
′
m+2, and consider the decomposition

D(p′)∗D0(r
′) = r′1 ∗· · · ∗r

′
m+2. Performing one elementary move, replacing r′m ∗r′m+1 by sm ∗sm+1,

we obtain a new decomposition in which the rectangles r′m−1 and sm form a row, and hence can be
cancelled. Finally, in m− 2 elementary moves (commuting sm+1 to the beginning of the decompo-
sition), we obtain the decomposition r ∗D(p), with total sign change (−1)m−1.

Consider the final case, where r′ has Type 2 and the annulus is vertical. Again, write the
decomposition D(p′) = r′1 ∗ · · · ∗ r

′
m−1, and D(r′) = r′m ∗ r′m+1 ∗ r

′
m+2. Moving r′m+1 to the second

place in m − 1 steps, we obtain a new decomposition whose first two terms make up a column.
Cancel this, at the cost of introducing one more −1. Next, commute the last two rectangles, and
then move the pair to the first two spots in an even number of steps. In this way, we end up with
the decomposition D(r) ∗D(p), with a change in sign of (−1)m+1, as needed.

Examples for all posibilities of Case (2) are shown in Figure 34.
�

We can now define the stabilization map. In the same way as in Subsection 3.2, define

FL(x) =
∑

y∈S

∑

p∈πL(x,y)

µ(p) · U
O2(p)
2 · · ·UOn(p)

n · y

FR(x) =
∑

y∈S

∑

p∈πR(x,y)

µ(p) · U
O2(p)
2 · · ·UOn(p)

n · y.

and put them together to give:

F =

(
FL

FR

)
: C −→ C ′.

We have the following sign-refinement of Lemma 3.5:

Lemma 4.31. The map F : C −→ C ′ preserves Maslov grading, respects Alexander filtrations, and
is a chain map with coefficients in Z.

Proof. Our goal is to show that
F ◦ ∂C − ∂C′ ◦ F = 0.

Recall that ∂′C has three terms: rectangles in L, rectangles in R (counted with the opposite sign)
and the differential from L to R, multiplication by (U2 − U1). Again, we can collect the terms in
F ◦ ∂C − ∂C′ ◦F into terms of Types I(0), I(1), I(1′), I(2), I(3), II(0), II(1), and (S). In the proof of
Lemma 3.5, we have seen that these terms can be grouped into pairs. We must show that in each
pair, the associated signs cancel.

Lemma 4.28 ensures that the terms in Case I(0) and Case I(1) drop out in cancelling pairs. The
interesting case is when we have alternate decompositions p ∗ r = r′ ∗ p′; in this case, if p is of
type L, m is odd and the differential in L corresponding to r is taken with the usual sign S0(r),
while if p is of type R, m is even and the differential in R is taken with sign −S0(r). In both cases
the terms cancel. Similarly, Lemma 4.29 ensures that all terms with complexity m ≥ 3 in Case I(2)
drop out with their corresponding terms in II(0).
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Figure 34. Case (2) of Lemma 4.30. We have illustrated examples of Case (2)
in Lemma 4.30. The conventions are the same is an Figure 33.
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Lemma 4.30 ensures that all terms in I(1′) cancel with their corresponding terms of types I(3)
or II(1), leaving possible terms of Type (S). Specifically, a term of type I(1′) corresponds to a
decomposition p0 = r1 ∗ p1, where r1 is an empty rectangle and p1 is a term of type F and
complexity m. Adding an annulus to p0 as in the proof of Lemma 3.5, we obtain a new domain p′0,
which in turn decomposes as r2 ∗ p2 or p2 ∗ r2 as in case I(3) or II(1). In cases where O1 6∈ r1, these
terms appear in cancelling pairs according to Lemma 4.30.

In the cases where O1 ∈ r1, the decomposition r1 ∗ p1 contributes once counted with a multiple
of U1 (as r1, which contains O1, is thought of as a differential in C), the decomposition p2 ∗ r2
or r2 ∗ p2 contributes with a multiple of U2 (as it contains the row through X1), but there is also
a contribution coming from the composite domain p0, thought of as a domain of type L, times
(U2 − U1), the differential from L to R within C ′. Cancellation of the terms involving U1 follows
from the observation that r1 ∗D(p1) differs from the standard decomposition of p0 by a sequence
of m− 1 elementary moves (commuting r1 to the very end), where here m denotes the complexity
of p1 (which is necessarily even). Cancellation of the terms involving U2 follows since they have the
opposite sign from the terms involving U1.

It is straightforward to see that the remaining possible m = 2 terms in II(2) cancel the remaining
possible two m = 1 terms of type (S). �

Putting everything together, we have the following:

Proof of Theorem 1.2. This result now is an immediate consequence of Cromwell’s theorem and
the sign refinements discussed above. Specifically, independence of the choice of sign assignment
is established in the uniqueness statement of Theorem 4.2. Commutation invariance follows from
Proposition 4.24. Stabilization invariance follows from Lemma 4.31, together with a straightforward
adaptation of the proof of Proposition 3.8. �

It is sometimes convenient to consider the chain complex CL−(G) which is the graded object
associated to the Alexander filtration of C−(G). Explicitly, it is the group with the same underlying
chain complex, endowed with a differential as in Equation (3). It is a formal consequence of
Theorem 1.2 that the homology HL−(G) of CL−(G), thought of as a module over Z[U1, . . . , Uℓ], is
a link invariant.

5. More properties

We next give a few of the basic properties of knot and link Floer homology. Again, most of these
properties are well-known [11, 15, 9]; but again, we can give a self-contained derivation here. Let

ĤLd(~L, s) be the part of ĤL(~L) with Alexander grading s and Maslov grading d.

Proposition 5.1. The total homology groups of the chain complex C−(G) are isomorphic to the

module Z[U ], where all the Ui act as multiplication by U . The homology groups of Ĉ(G) are
isomorphic to Z.

Proof. The chain complex C−(G) refers to the {Xi}
n
i=1 only through its Alexander filtration; in

particular, the homology of C−(G) makes no reference to this placement, and it is unchanged by
a rearrangement of these decorations (though it does appear to depend on the placement of the
{Oi}

n
i=1). Now, given any grid diagram G, we can consider instead the alternate grid diagram H

gotten by placing Xi in the square immediately under each Oi. This new diagram clearly represents
a suitably stabilized diagram for the unknot. Indeed, after destabilizing sufficiently many times,
we can reduce to the 2 × 2-grid diagram J for the unknot. A direct calculation in this case gives
that H∗(C

−(J)) ∼= Z[U ] (or F2[U ] with coefficients modulo 2).

The analogous statement for Ĉ(G) follows similarly. �
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Proposition 5.1 allows us to define the invariant τ(K) for a knot K (see [10, 15], compare

also [14]): If we consider the natural inclusion map ιm : Fm(Ĉ(G)) −→ Ĉ(G), then τ(K) is the
smallest integer m for which the map induced on homology by ιm is non-trivial, as a map to

H∗(Ĉ(G)) ∼= Z.
The Alexander polynomial of a link remains unchanged under overall orientation reversal, it

is a symmetric polynomial, and it is invariant under mirror. These three facts are reflected in
Propositions 5.2, 5.3, and 5.5, respectively.

Proposition 5.2. The filtered quasi-isomorphism type of the complex C−(G) does not change if

we reverse the orientation of all components of the link ~L.

Proof. Consider the diagram G′ obtained by switching the x and y coordinates, thus flipping G
along the diagonal from the bottom left to upper right corner. Switching the x and y coordinates
also gives a map from the original set of generators S to the new set of generators S′ which preserves

both degrees and is a chain map. The new diagram G′ is a diagram for ~L with the orientation of
each component reversed.

A few more remarks are needed when working over Z, since the pre-composition of a sign as-
signment with reflection through the diagonal is not quite a sign assignment, in the sense of Def-
inition 4.1: the roles of rows and columns are reversed. However, this is remedied by substituting
−Ui in place of Ui. �

Proposition 5.3. Given s = (s1, . . . , sℓ) ∈ (1
2Z)ℓ, we have that

ĤLd(~L, s) ∼= ĤLd−2S(~L,−s),

where S =
∑ℓ

i=1 si.

Proof. Fix a grid diagram for ~L, and let A1 and M1 denote its total Alexander filtration and Maslov
grading. (By total Alexander filtration, we mean the sum of the components of the Alexander multi-

filtration.) Switching the roles of O and X, we obtain a grid diagram for −~L. Differentials within

C̃ are the same for the two diagrams, but the Alexander and Maslov gradings are different. We let
A2 and M2 denote the Alexander and Maslov gradings of the new diagram. We find it convenient
to symmetrize Ai, defining

Ãi(x) = Ai(x) +
(n1 − 1

2
, . . . ,

nℓ − 1

2

)

for i = 1, 2. It is a straightforward calculation from Equations (1) and (2) that

M1 − 2

ℓ∑

i=1

Ã1
i = M2

−Ã1 = Ã2.

The result now follows from Proposition 5.2 together with Proposition 4.22. �

Indeed, we have the following more general version:

Proposition 5.4. Let ~L be an oriented, ℓ-component link, and let ~L′ be the oriented link obtained

from ~L by reversing the orientation of its ith component. Then, writing s = (s1, . . . , sℓ),

ĤLd(~L, (s1, . . . , sℓ)) ∼= ĤLd−2si+ℓi
(~L′, (s1, . . . , si−1,−si, si, . . . , sℓ)),

where here ℓi denotes the total linking number of the ith component of ~L with the remaining com-
ponents.
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Proof. From a grid diagram for ~L we can obtain a grid diagram for ~L′ by switching the roles of Oi

and Xi, i.e., those markings which correspond to the ith component of the link. As in the proof of

Proposition 5.3, the complexes C̃ agree, but the Maslov and Alexander functions change, as follows.

Let Ã1
j and M1 be the jth symmetrized Alexander filtration and Maslov grading for ~L, respectively,

and let Ã2
j and M2 be the corresponding functions for ~L′. Let Õi = O \ Oi and X̃i = X \ Xi.

By a direct application of Equation (2),

Ã2
j (x) =

{
Ã1

j(x) i 6= j

−Ã1
i (x) i = j

and, using Equations (1) and (2),

M2(x) −M1(x) = −2J (x − O,Xi − Oi) + J (Xi − Oi,Xi − Oi)

= −2Ãi(x) − J (X − O,Xi − Oi) + J (Xi − Oi,Xi − Oi)

= −2Ã1
i (x) + J (X̃i − Õi,Xi − Oi).

Moreover, it is straightforward to see that J (X̃i − Õi,Xi − Oi) = ℓi. �

Proposition 5.5. Let ~L be a link, and let r(~L) denote its mirror. In this case, we have an
identification

ĤLd(~L, s) ∼= ĤL
2S−d

(Ĉ(r(~L), s));

note the right-hand-side denotes cohomology.

Proof. Rotating the grid diagram G ninety degrees to get a new diagram G′ corresponds to passing

from the knot to its mirror. There is an induced map φ from S(G) to S(G′). Letting Ã, M̃ and

Ã′, M̃ ′ be the Alexander and Maslov gradings of G and G′ respectively, it is clear that Ã(x) =

−Ã′(φ(x)), M̃(x) = −M̃ ′(φ(x)). Indeed, if we think of φ as taking x to x∗, the dual basis element

of C̃(H) which is one on x ∈ S(H) and zero on all other y ∈ S(H), then φ induces an isomorphism
of chain complexes. The shift in absolute grading now follows from Proposition 5.3. �

6. Relation to the Alexander polynomial

In this section we will show that the Euler characteristic of the multi-graded complex ĈL with
respect to the Maslov grading is the Alexander polynomial. Precisely, fix a grid diagram G of a

link ~L with ℓ components. Given s ∈ (1
2Z)ℓ, let t = (t1, . . . , tℓ) be a collection of variables, and for

s = (s1, . . . , sℓ) an element of (1
2Z)ℓ, define

ts = ts1

1 · · · tsℓ

ℓ .

For any multi-graded groups Ci(s) with Maslov grading i and Alexander grading s, define

χ(C; t) =
∑

i,s

(−1)its rank(Ci(s)).

Theorem 6.1. For any link ~L, the Euler characteristic of ĤL determines the multi-variable Alexan-
der polynomial up to sign. Precisely,

χ(ĤL(~L)) =

{
±

∏ℓ
i=1(t

1/2
i − t

−1/2
i )∆A(~L; t) ℓ > 1

±∆A(~L; t) ℓ = 1

where ∆A(~L; t) is the multi-variable Alexander polynomial, normalized so that it is symmetric up
to sign under the involution of sending all ti to their inverses.
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We will prove this by taking the Euler characteristic of the alternate complex C̃(~L). The Maslov
grading of a generator x ∈ S is, up to an overall sign, the sign of x considered as a permutation.
The Alexander grading is, up to an overall shift, minus the sum of the winding numbers around
the generators. Summing over all generators x, we get a “minesweeper determinant” as illustrated
below: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t t t t

t t t

t

t

t t

t t

t t t

1 1 1 1 1 1

11

1

1

1 1

1 1 1

1 1

1t−1

t2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

This turns out to give the Alexander polynomial, up to a sign, powers of the variables ti, and
factors of (1 − ti).

More formally, given a grid diagram G of size n, define an n× n matrix M(G) by

M(G)ij = ta(i,j)

where a(i, j) ∈ (1
2Z)ℓ is the vector whose kth component is the minus the winding number of the

kth component of the link around the point (i, j). (Here we use the convention that the links
runs between the O’s and the X’s, which have half-integer coordinates, so this winding number is
well-defined.) Then we have:

Proposition 6.2. For any grid diagram G of a link ~L with ℓ components, let ni be the number of
vertical segments corresponding to component i. Then

detM(g) =




±tk(1 − t)n−1∆(~L; t) ℓ = 1

±

(∏ℓ
i=1 t

ki

i (1 − ti)
ni

)
∆(~L; t) ℓ > 1

for some integers ki. In the case ℓ = 1, we write t, n, k for t1, n1, k1 for convenience.

This proposition implies Theorem 6.1:

Proof of Theorem 6.1. It follows from Proposition 4.22 that
(∏

i

(1 − ti)
ni−1

)
χ(ĤL(~L)) = χ(H̃L(G)) = χ(C̃(G)).

The theorem follows by Proposition 6.2 up to an overall sign and powers of the ti. The powers of ti
are determined by Proposition 5.3 and the chosen normalization of the Alexander polynomial. �

Proof of Proposition 6.2. We will use Fox’s free differential calculus [5] with respect to a presenta-
tion associated to a grid diagram for a link. This presentation was described by Neuwirth [8], who
also proved that it is actually a presentation of the knot group.

The presentation, as shown in Figure 35, has one generator for each vertical segment of the link,
starting from the basepoint (outside of the page at the position of the reader), coming down to the
left of a vertical segment, going under the segment, and coming back out of the page. There are n
generators, one for each vertical segment. There are n− 1 relations, one for each position between
horizontal segments. The path of the relation comes down to the left of the diagram, runs across
the diagram at a constant horizontal level, and comes back up out of the page. On the one hand
this loop is contractible (pull it beneath the diagram); on the other hand it is equal to the product
of the generators corresponding to the vertical segments that we cross.
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x0 x1 x2 x3 x4 x5

r1 = x2x5

r2 = x1x2x3x5

r3 = x0x1x3x5

r4 = x0x3x4x5

r5 = x0x4

Figure 35. Generators and relations from a gridlink presentation.

In the example in Figure 35, there are six generators, x0 through x5, and five relations:

r1 = x2x5

r2 = x1x2x3x5

r3 = x0x1x3x5

r4 = x0x3x4x5

r5 = x0x4.

The Fox derivative matrix is particularly easy to compute in this case, since the generators appear
only positively in the relations and at most once in each relation. The entries are the initial portions
of the relations, and they appear in the positions given by the vertical strands. In our running
example, we get

( ∂ri
∂xj

)
ij

=




0 0 1 0 0 x2

0 1 x1 x1x2 0 x1x2x3

1 x0 0 x0x1 0 x0x1x3

1 0 0 x0 x0x3 x0x3x4

1 0 0 0 x0 0




To find the Alexander polynomial, map this matrix to the abelianization of the knot group,
mapping each xj to t±1

i , depending on which component the vertical segment belongs to and whether
the corresponding vertical strand is oriented upwards or downwards. For knots, the Alexander
polynomial is the determinant of a maximal minor of the resulting n by n − 1 matrix, up to a
factor of ±tk. For links, the multi-variable Alexander polynomial is, up to the same factor, the
determinant of a maximal minor divided by (1− ti) for each component i that is not the component
of the deleted column.

In the example, we get

∆(t) = ±tk

∣∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 1 t−1 1 0
1 t 0 1 0
1 0 0 t t2

1 0 0 0 t

∣∣∣∣∣∣∣∣∣∣
Now let us turn to computing det(M) where M is the minesweeper matrix defined earlier.

Subtract each column from the next one. The winding numbers change by at most one when we
move from one square to a neighbor. Therefore in every column but the first we have zero entries
where the vertical segment does not intervene, and where a vertical segment of component i does
intervene every entry is divisible by t±1

i − 1. Thus, for each column but the first, we can factor out

ti − 1 if the column is oriented upwards or t−1
i − 1 if it is oriented downwards. Furthermore, after
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this operation the last row contains only a single non-zero entry, 1 in the first column, so we can
delete the first column and last row without changing the determinant (up to sign).

In the example, we get

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 t t t
1 1 t−1 1 t t
1 t 1 1 t t
1 t t t t2 t
1 t t t t 1
1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 t− 1 0 0
1 0 t−1 − 1 1 − t−1 t− 1 0
1 t− 1 1 − t 0 t− 1 0
1 t− 1 0 0 t2 − t t− t2

1 t− 1 0 0 0 1 − t
1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

= ±(t− 1)3(t−1 − 1)2

∣∣∣∣∣∣∣∣∣∣

0 0 1 0 0
0 1 t−1 1 0
1 t 0 1 0
1 0 0 t t2

1 0 0 0 t

∣∣∣∣∣∣∣∣∣∣

.

Up to the expected factors of 1 − ti and ±tk, this is the same determinant we got from the Fox
derivative calculations. �

References

[1] J. A. Baldwin and W. D. Gillam, Computations of Heegaard-Floer knot homology, preprint, math.GT/0610167.
[2] P. R. Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl., 64(1995), no. 1,

37–58.
[3] I. Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math., 190(2006), 29–76, math.GT/

0208153.
[4] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geometry, 28(1988), 513–547.
[5] R. H. Fox, Free differential calculus. I: Deriviation in the free group ring, Ann. of Math. (2), 57(1953), no. 3,

547–560.
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[11] P. S. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math., 186(2004), no. 1, 58–116,
math.GT/0209056.
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