
COMBINATORIAL COBORDISM MAPS IN HAT HEEGAARD FLOER

THEORY

ROBERT LIPSHITZ, CIPRIAN MANOLESCU, AND JIAJUN WANG

Abstract. In a previous paper, Sarkar and the third author gave a combinatorial description
of the hat version of Heegaard Floer homology for three-manifolds. Given a cobordism between
two connected three-manifolds, there is an induced map between their Heegaard Floer homologies.
Assume that the first homology group of each boundary component surjects onto the first homology
group of the cobordism (modulo torsion). Under this assumption, we present a procedure for finding
the rank of the induced Heegaard Floer map combinatorially, in the hat version.

1. Introduction

In their papers [7], [8], [9], Ozsváth and Szabó constructed a decorated topological quantum field
theory (TQFT) in 3 + 1 dimensions, called Heegaard Floer theory. (Strictly speaking, the axioms
of a TQFT need to be altered slightly.) In its simplest version (called hat), to a closed, connected,

oriented three-manifold Y and a Spinc structure s on Y one associates a vector space ĤF (Y, s)
over the field F = Z/2Z. Also, to a connected, oriented four-dimensional cobordism from Y1 to Y2

decorated with a Spinc structure t, one associates a map

F̂W,t : ĤF (Y1, t|Y1
) → ĤF (Y2, t|Y2

).

The maps F̂W,t can be used to detect exotic smooth structures on 4-manifolds with boundary. For
example, this can be seen by considering the nucleus X = N(2) of the elliptic surface E(2) = K3,
i.e. a regular neighborhood of a cusp fiber and a section, cf. [2, p. 74]. Let X ′ = N(2)p be
the result of a log transform with multiplicity p (p > 1, odd) on a regular fiber T 2 ⊂ X, cf. [2,
Section 3.3]. Then X and X ′ are homeomorphic 4-manifolds (with π1 = 1), having as boundary
the Brieskorn sphere Σ(2, 3, 11). However, they are not diffeomorphic: this can be shown using the
Donaldson or Seiberg-Witten invariants (see [4], [6], [1]), but also by comparing the hat Heegaard

Floer invariants F̂W,t and F̂W ′,t, where W and W ′ are the cobordisms from S3 to Σ(2, 3, 11) obtained
by deleting a 4-ball from X and X ′, respectively. Indeed, the arguments of Fintushel-Stern [1] and
Szabó-Stipsicz [16] can be easily adapted to show that W and W ′ have different hat Heegaard Floer

invariants; one needs to use the computation of ĤF (Σ(2, 3, 11)), due to Ozsváth-Szabó [10, p.47],

and the rational blow-down formula of Roberts [13]. (It is worth noting that the maps F̂ give no
nontrivial information for closed 4-manifolds, cf. [9]; exotic structures on those can be detected
with the mixed Heegaard Floer invariants of [9].)

The original definitions of the vector spaces ĤF and the maps F̂ involved counting pseudoholo-
morphic disks and triangles in symmetric products of Riemann surfaces; the Riemann surfaces are
related to the three-manifolds and cobordisms involved via Heegaard diagrams. In [15], Sarkar and
the third author showed that every three-manifold admits a Heegaard diagram that is nice in the
following sense: the curves split the diagram into elementary domains, all but one of which are
bigons or rectangles. Using such a diagram, holomorphic disks in the symmetric product can be

counted combinatorially, and the result is a combinatorial description of ĤF (Y ) for any Y, as well
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as of the hat version of Heegaard Floer homology of null homologous knots and links in any three-
manifold Y . A similar result was obtained in [5] for all versions of the Heegaard Floer homology
of knots and links in the three-sphere.

The goal of this paper is to give a combinatorial procedure for calculating the ranks of the
maps F̂W,s when W is a cobordism between Y1 and Y2 with the property that the induced maps
H1(Y1; Z)/torsion → H1(W ; Z)/torsion and H1(Y2; Z)/torsion → H1(W ; Z)/torsion are surjective.
Note that this case includes all cobordisms for which H1(W ; Z) is torsion, as well as all those
consisting of only 2-handle additions.

Roughly, the computation of the ranks of F̂W,s goes as follows. The cobordism W is decomposed
into a sequence of one-handle additions, two-handle additions, and three-handle additions. Using
the homological hypotheses on the cobordism and the (H1/torsion)-action on the Heegaard Floer
groups we reduce the problem to the case of a cobordism map corresponding to two-handle additions
only. Then, given a cobordism made of two-handles, we show that it can be represented by a multi-
pointed triple Heegaard diagram of a special form, in which all elementary domains that do not
contain basepoints are bigons, triangles, or rectangles. In such diagrams all holomorphic triangles
of Maslov index zero can be counted algorithmically, thus giving a combinatorial description of the

map on ĤF .

We remark that in order to turn ĤF into a fully combinatorial TQFT (at least for cobordisms
satisfying our hypothesis), one ingredient is missing: naturality. Given two different nice diagrams

for a three-manifold, the results of [7] show that the resulting groups ĤF are isomorphic. However,
there is not yet a combinatorial description of this isomorphism. Thus, while the results of this
paper give an algorithmic procedure for computing the rank of a map F̂W,s, the map itself is
determined combinatorially only up to automorphisms of the image and the target. In fact, if one
were to establish naturality, then one could automatically remove the assumption on the maps on
H1/torsion, and compute F̂W,s for any W , simply by composing the maps induced by the two-
handle additions (computed in this paper) with the ones induced by the one- and three-handle
additions, which are combinatorial by definition, cf. [9].

The paper is organized as follows. In Section 2, we define a multi-pointed triple Heegaard diagram
to be nice if all non-punctured elementary domains are bigons, triangles, or rectangles, and show
that in a nice diagram holomorphic triangles can be counted combinatorially.1 We then turn to
the description of the map induced by two-handle additions. For the sake of clarity, in Section 3
we explain in detail the case of adding a single two-handle: we show that its addition can be
represented by a nice triple Heegaard diagram with a single basepoint and, therefore, the induced

map on ĤF admits a combinatorial description. We then explain how to modify the arguments to
work in the case of several two-handle additions. This modification uses triple Heegaard diagrams
with several basepoints. In Section 4, we discuss the additions of one- and three-handles, and put
the various steps together. Finally, in Section 5 we present the example of +1 surgery on the trefoil.

Throughout the paper all homology groups are taken with coefficients in F = Z/2Z, unless
otherwise noted.
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2. Holomorphic triangles in nice triple Heegaard diagrams

The goal of this section is to show that under an appropriate condition (“niceness”) on triple
Heegaard diagrams, the counts of holomorphic triangles in the symmetric product are combinato-
rial.

2.1. Preliminaries. We start by reviewing some facts from Heegaard Floer theory. A triple Hee-
gaard diagram H = (Σ,α,β,γ) consists of a surface Σ of genus g together with three (g+k)-tuples
of pairwise disjoint embedded curves α = {α1, . . . , αg+k}, β = {β1, . . . , βg+k},γ = {γ1, . . . , γg+k}
in Σ such that the span of each (g + k)-tuple of curves in H1(Σ) is g-dimensional. If we forget one
set of curves (for example γ), the result is an (ordinary) Heegaard diagram (Σ,α,β).

By the condition on the spans, Σ \ α, Σ \ β and Σ \ γ each has k + 1 connected components.
By a multi-pointed triple Heegaard diagram (H, z), then, we mean a triple Heegaard diagram H
as above together with a set z = {z1, . . . , zk+1} ⊂ Σ of k + 1 points in Σ so that exactly one zi lies
in each connected component of Σ \ α, Σ \ β and Σ \ γ.

To a Heegaard diagram (Σ,α,β) one can associate a three-manifold Yα,β. To a triple Heegaard
diagram (Σ,α,β,γ), in addition to the three-manifolds Yα,β, Yβ,γ and Yα,γ , one can associate a
four-manifold Wα,β,γ such that ∂Wα,β,γ = −Yα,β ∪ −Yβ,γ ∪ Yα,γ ; see [7].

Associated to a three-manifold Y is the Heegaard Floer homology group ĤF (Y ). This was
defined using a Heegaard diagram with a single basepoint in [7]. In [12], Ozsváth and Szabó
associated to the data (Σ,α,β, z), called a multi-pointed Heegaard diagram, a Floer homology

group ĤF (Σ,α,β, z) by counting holomorphic disks in Symg+k(Σ \ z) with boundary on the tori
Tα = α1 × · · · × αg+k and Tβ = β1 × · · · × βg+k. It is not hard to show that

(1) ĤF (Σ,α,β, z) ∼= ĤF (Yα,β) ⊗ H∗(T
k).

(Here, T k is the k-torus, and H∗(T
k) means ordinary (singular) homology.) The decomposition (1)

is not canonical: it depends on a choice of paths in Σ connecting zi to z1 for i = 2, · · · , k + 1.
The Heegaard Floer homology groups decompose as a direct sum over Spinc-structures on Yα,β,

ĤF (Yα,β) ∼=
⊕

s∈Spinc(Yα,β)

ĤF (Yα,β , s).

More generally, there is a decomposition

ĤF (Σ,α,β, z) ∼=
⊕

s∈Spinc(Yα,β)

ĤF (Σ,α,β, z, s) ∼=
⊕

s∈Spinc(Yα,β)

(
ĤF (Yα,β , s) ⊗ H∗(T

k)
)

.

Associated to the triple Heegaard diagram (Σ,α,β,γ, z) together with a Spinc-structure t on
Wα,β,γ , is a map

(2) F̂Σ,α,β,γ,z,t : ĤF (Σ,α,β, z, t|Yα,β
) ⊗ ĤF (Σ,β,γ, z, t|Yβ,γ

) → ĤF (Σ,α,γ, z, t|Yα,γ ).

The definition involves counting holomorphic triangles in Symg+k(Σ \ z) with boundary on Tα, Tβ

and Tγ , cf. [7] and [12].
Two triple Heegaard diagrams are called strongly equivalent if they differ by a sequence of

isotopies and handleslides. It follows from [7, Proposition 8.14], the associativity theorem [7,
Theorem 8.16], and the definition of the handleslide isomorphisms that strongly equivalent triple
Heegaard diagrams induce the same map on homology.

Call a (k + 1)-pointed triple Heegaard diagram split if it is obtained from a singly-pointed
Heegaard triple diagram (Σ′,α′,β′,γ ′, z′) by attaching (by connect sum) k spheres with one base-
point and three isotopic curves (one alpha, one beta and one gamma) each, to the component of
Σ′ \ (α′ ∪ β′ ∪ γ′) containing z′. We call (Σ′,α′,β′,γ ′, z′) the reduction of the split diagram.

The following lemma is a variant of [12, Proposition 3.3].
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Lemma 2.1. Every triple Heegaard diagram (Σ,α,β,γ, z) is strongly equivalent to a split one.

Proof. Reorder the alpha circles so that α1, . . . , αg are linearly independent. Let R be the connected
component of Σ \ α containing z2. Since α1, . . . , αg are linearly independent, one of the curves αi,
i > g, must appear in the boundary of R with multiplicity exactly 1. By handlesliding this curve
over the other boundary components of R, we can arrange that the resulting αi bounds a disk
containing only z2. Repeat this process with the other zi, i = 3, . . . , k + 1, being sure to use a
different alpha curve in the role of αi at each step. We reorder the curves αg+1, . . . , αg+k so that
αi encircles zi−g+1. Now repeat the entire process for the beta and gamma curves. Finally, choose
a path ζi in Σ from zi to z1 for each i = 2, . . . , k + 1. Move the configuration (zi, αi, βi, γi) along
the path ζi by handlesliding (around αi, βi or γi) the other alpha, beta and gamma curves that
are encountered along the path ζi. The result is a split triple Heegaard diagram. Note that its
reduction is obtained from the original diagram (Σ,α,β,γ, z) by simply forgetting some of the
curves and basepoints. �

The maps from (2) are compatible with the isomorphism (1), in the following sense. Given a
triple Heegaard diagram (Σ,α,β,γ, z), let (Σ′,α′,β′,γ′, z′) be the reduction of a split diagram
strongly equivalent to (Σ,α,β,γ, z). Then the following diagram commutes:
(3)(

ĤF
(
Yα,β, t|Yα,β

)
⊗ H∗

(
T k

))
⊗

(
ĤF

(
Yβ,γ , t|Yβ,γ

)
⊗ H∗

(
T k

))
//

∼=

��

ĤF
(
Yα,γ , t|Yα,γ

)
⊗ H∗

(
T k

)

∼=

��

ĤF (Σ,α,β, z, t|Yα,β
) ⊗ ĤF (Σ,β,γ, z, t|Yβ,γ

)
F̂Σ,α,β,γ ,z,t

// ĤF (Σ,α,γ, z, t|Yα,γ ).

Here, the map in the first row is F̂Σ′,α′,β′,γ′,z′,t on the ĤF -factors and the usual intersection product

H∗(T
k)⊗H∗(T

k) → H∗(T
k) on the H∗(T

k)-factors. The vertical isomorphisms are induced by the
strong equivalence. The proof that the diagram commutes follows from the same ideas as in [12]:

Each of the k spherical pieces in the split diagram contributes a H∗(S
1) to the H∗(T

k) =
(
H∗(S

1)
)⊗k

factors above; moreover, a local computation shows that the triangles induce intersection product
maps H∗(S

1)⊗H∗(S
1) → H∗(S

1), which tensored together give the intersection product on H∗(T
k).

Remark 2.2. It is tempting to assert that the map F̂Σ,α,β,γ,z,t induced by a singly-pointed triple
Heegaard diagram depends only on Wα,β,γ and t. However, this seems not to be known.

2.2. Index formulas. Fix a triple Heegaard diagram H = (Σ,α,β,γ) as above. The complement
of the 3(g + k) curves in Σ has several connected components, which we denote by D1, . . . ,DN and
call elementary domains.

The Euler measure of an elementary domain D ⊂ Σ is

e(D) = χ(D) −
# vertices of D

4
.

A domain in Σ is a two-chain D =
∑

aiDi with ai ∈ Z. Its Euler measure is simply

e(D) =

N∑

i=0

aie(Di).

As mentioned above, the maps F̂Σ,α,β,γ,z,t induced by the triple Heegaard diagram H are de-

fined by counting holomorphic triangles in Symg+k(Σ) with respect to a suitable almost complex
structure. According to the cylindrical formulation from [3], this is equivalent to counting certain
holomorphic embeddings u : S → ∆×Σ, where S is a Riemann surface (henceforth called the source)
with some marked points on the boundary (which we call corners), and ∆ is a fixed disk with three
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marked points on the boundary. The maps u are required to satisfy certain boundary conditions,
and to be generically (g + k)-to-1 when post-composed with the projection π∆ : ∆×Σ → ∆. More
generally, we will consider such holomorphic maps u : S → ∆ × Σ which are generically m-to-1
when post-composed with π∆; these correspond to holomorphic triangles in Symm(Σ), where m can
be any positive integer. We will be interested in the discussion of the index from [3]. Although this
discussion was carried-out in the case k = 0, m = g, it applies equally well in the case of arbitrary
k and m with only notational changes.

In the cylindrical formulation, one works with an almost complex structure on ∆×Σ so that the
projection π∆ is holomorphic, and the fibers of πΣ are holomorphic. It follows that for u : S → ∆×Σ
holomorphic, π∆ ◦ u is a holomorphic branched cover. The map πΣ ◦ u need not be holomorphic,
but since the fibers are holomorphic, πΣ ◦ u is a branched map. Fix a model for ∆ in which the
three marked points are 90◦ corners, and a conformal structure on Σ with respect to which the
intersections between alpha, beta and gamma curves are all right angles. Since u is holomorphic,
the conformal structure on S is induced via π∆ ◦ u from the conformal structure on ∆. It makes
sense, therefore, to talk about branch points of πΣ ◦ u on the boundary and at the corners, as well
as in the interior. Generically, while there may be branch points of πΣ ◦ u on the boundary of S,
there will not be branch points at the corners.

Suppose u : S → ∆×Σ is as above. Denote by πΣ : ∆×Σ → Σ the projection to Σ. There is an
associated domain D(u) in Σ, where the coefficient of Di in D(u) is the local multiplicity of πΣ ◦ u
at any point in Di. By [3, p. 1018], the index of the linearized ∂̄ operator at the holomorphic map
u is given by

(4) µ(u) = 2e(D(u)) − χ(S) +
m

2
.

For simplicity, we call this the index of u.
Note that, by the Riemann-Hurwitz formula:

(5) χ(S) = e(D(u)) +
3m

4
− br(u),

where br(u) is the ramification index (number of branch points counted with multiplicity) of πΣ ◦u.
(Here, branch points along the boundary count as half an interior branch point.) From (4) and (5)
we get an alternate formula for the index:

(6) µ(u) = e(D(u)) + br(u) −
m

4
.

Note that it is not obvious how to compute br(u) from D(u). A combinatorial formula for the
index, purely in terms of D(u), was found by Sarkar in [14]. However, we will not use it here.

2.3. Nice triple diagrams. Fix a multi-pointed triple Heegaard diagram (H, z) = (Σ,α,β,γ, z).
Recall that a domain is a linear combination of connected components of Σ \ (α ∪ β ∪ γ). The
support of a domain is the union of those components with nonzero coefficients. If the support of
a domain D contains at least one zi then D is called punctured; otherwise it is called unpunctured.

Definition 2.3. An elementary domain is called good if it is a bigon, a triangle, or a rectangle, and
bad otherwise. The multi-pointed triple Heegaard diagram (H, z) is called nice if every unpunctured
elementary domain is good.

This is parallel to the definition of nice Heegaard diagrams (with just two sets of curves) from [15].
A multi-pointed Heegaard diagram (Σ,α,β, z) is called nice if, among the connected components
of Σ \ (α ∪ β), all unpunctured ones are either bigons or squares.

Note that a bigon, a triangle, and a rectangle have Euler measure 1
2 , 1

4 , and 0, respectively. Since
e is additive, every unpunctured positive domain (not necessarily elementary) in a nice diagram
must have nonnegative Euler measure. A quick consequence of this is the following:
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E

S
′
0

v

Figure 1. A hexagon component of the source. The preimages of the alpha,
beta and gamma curves (here shown as thick, thin, and interrupted lines) give an
embedded graph in the source S0. A boundary branch point in the image corresponds
to a valence three vertex v in the source.

Lemma 2.4. If (Σ,α,β,γ, z) is a nice triple Heegaard diagram, then if we forget one set of curves
(for example, γ), the resulting Heegaard diagram (Σ,α,β, z) is also nice.

In order to define the triangle maps it is necessary to assume the triple Heegaard diagram is
weakly admissible in the sense of [7, Definition 8.8]. In fact, nice diagrams are automatically weakly
admissible, cf. Corollary 3.2 below.

Our goal is to give a combinatorial description of the holomorphic triangle counts for nice triple
diagrams.

Proposition 2.5. Let (H, z) be a nice multi-pointed triple Heegaard diagram. Fix a generic almost
complex structure J on ∆×Σ as in [3, Section 10.2]. Let u : S → ∆×Σ be a J-holomorphic map of

the kind occurring in the definition of F̂α,β,γ,z,t. In particular, assume u is an embedding, of index
zero, and such that the image of πΣ ◦ u is an unpunctured domain. Then S is a disjoint union of
m triangles, and the restriction of πΣ ◦ u to each component of S is an embedding.

Proof. Since the image of πΣ ◦ u is unpunctured and positive, we have e(D(u)) ≥ 0. By (4), we get

χ(S) ≥
m

2
> 0.

This means that at least one component of S is topologically a disk. Let S0 be such a component.
It is a polygon with 3l vertices. We will show that l = 1, and that πΣ ◦ u|S0

is an embedding.
Let us first show that S0 is a triangle. The index of the ∂̄ operator at a disconnected curve is

the sum of the indices of its restrictions to each connected component. Therefore, in order for an
index zero holomorphic curve to exist generically, the indices at every connected component, and
in particular at S0, must be zero. Applying (4) to u|S0

we get

l = 2 − 4e(D(u|S0
)) ≤ 2.

If l = 2, then by (6) we have br(u) ≤ 1
2 . Hence, the map πΣ ◦ u has no interior branch points.

If br(u) = 0 then S0 is mapped locally diffeomorphically by πΣ ◦ u to Σ. The image must have
negative Euler measure, which is a contradiction. So, suppose br(u) = 1/2. The preimages of
the alpha, beta, and gamma curves cut S0 into several connected components. Without loss of
generality, assume that the boundary branch point is mapped to an alpha circle. Then, along the
corresponding edge of S0 there is a valence three vertex v, as shown in Figure 1. Let E denote
the edge in the interior of S0 meeting v. Since there is only one boundary branch point, the other
intersection point of the edge E with ∂S0 is along the preimage of a beta or gamma circle. It
follows that one of the connected components S′

0 of S0 \ E is a hexagon or heptagon. Smoothing
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Figure 2. An embedded triangle. The thick (red) lines are α’s, the thin (blue)
ones β’s, and the interrupted (green) ones γ’s. We first show that this is the picture
in the source S0, and then that the same is true for the image of S0 in Σ, i.e. the
images of all the pieces in the tiling are disjoint.

the vertex v of S′
0 we obtain a pentagon or hexagon which is mapped locally diffeomorphically by

πΣ ◦ u to Σ. The image, then, has negative Euler measure, again a contradiction.
Therefore, l = 1, so S0 is a triangle. Furthermore, by (6), br(u) ≤ 1/4, which means that there

are no (interior or boundary) branch points at all. Thus, just as in the hypothetical hexagon case
above, the preimages of the alpha, beta, and gamma curves must cut S0 into 2-gons, 3-gons, and
4-gons, all of which have nonnegative Euler measure. Since the Euler measure of S0 is 1/4, there
can be no bigons; in fact, S0 must be cut into several rectangles and exactly one triangle. It is
easy to see that the only possible tiling of S0 of this type is as in Figure 2, with several parallel
preimages of segments on the alpha curves, several parallel beta segments, and several parallel
gamma segments. We call the type of a segment (α, β or γ) its color.

The tiling consists of one triangle and six different types of rectangles, according to the coloring
of their edges in clockwise order (namely, αβαγ, γαγβ, βαβγ, αβαβ, βγβγ, and γαγα). We claim
that the images of the interiors of each of these rectangles by πΣ ◦ u are disjoint.

Because of the coloring scheme, only rectangles of the same type can have the same image.
Suppose that two different αβαγ rectangles from S0 have the same image in Σ. (The cases γαγβ,
βαβγ are exactly analogous.) Let r1 and r2 be the two rectangles; suppose that r1 is closer to the
central triangle than r2, and r2 is closer to the α boundary of S0. Because of the way the rectangles
are colored, the upper edge of r1 must have the same image as the upper edge of r2. Hence the αβαγ
rectangle right above r1 has the same image as the one right above r2. Iterating this argument, at
some point we get that the central triangle has the same image as some αβαγ rectangle, which is
impossible.

Now suppose that two different αβαβ rectangles, r1 and r2, have the same image. (The cases
βγβγ and γαγα are exactly analogous.) There are two cases, according to whether the upper edge
of r1 has the same image as the upper edge of r2, or as the lower edge of r2.

Suppose first that the upper edge of r1 has the same image as the upper edge of r2. By the β-
height of ri we mean the minimal number of beta arcs that an arc in S\α starting in ri, going right,
and ending at a gamma arc must cross. (The diagram is positioned in the plane as in Figure 2.)
Since πΣ ◦ u is a local homeomorphism, and r1 and r2 have the same image, it is clear that the
β-height of r1 and the β-height of r2 are equal. By the α-height of ri we mean the minimal number
of alpha arcs that an arc in S \ β starting in ri, going up, and ending at a gamma arc must cross.
Again, it is clear that the α-heights of r1 and r2 must be equal. But this implies that r1 and r2 are
equal.
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r1

r2

Figure 3. Two αβαβ rectangles in a grid. If the rectangles r1 and r2 had
the same image in Σ with a 180◦ turn, then the whole shaded rectangle would be
mapped to Σ with a branch point.

Now, suppose that the upper edge of r1 has the same image as the lower edge of r2. There is
a unique rectangle R in S with boundary contained in α ∪ β, containing r1 and r2, and with one
corner the same as a corner of r1 and the opposite corner the same as a corner of r2. It is easy to
see that πΣ ◦u maps antipodal points on the boundary of R to the same point in Σ. It follows that
πΣ ◦ u|∂R is a two-fold covering map. But then πΣ ◦ u must have a branch point somewhere inside
R – a contradiction. See Figure 3.

Finally, suppose some arc A on ∂S has the same image as some other arc A′ in S. If A′ is in the
interior of S then any rectangle (or triangle) adjacent to A has the same image as some rectangle (or
triangle) adjacent to A′. We have already ruled this out. If A′ is on ∂S, then either any rectangle
(or triangle) adjacent to A has the same image as some rectangle (or triangle) adjacent to A′ or
there is a branch point somewhere on ∂S. We have already ruled out both of these cases.

We have thus established that S0 is an embedded triangle. By forgetting S0, we obtain a
holomorphic map to ∆ × Σ, still of index zero, but such that its post-composition with π∆ is
generically (m − 1)-to-1 rather than m-to-1. The result then follows by induction on m. �

Observe that, in Proposition 2.5 above, even though each of the m triangles is embedded, some
of their domains may overlap. It turns out that they may do so only in a specific way, however:

Lemma 2.6. Suppose A is an index zero homology class represented by a union of embedded
holomorphic triangles, in a nice triple diagram. Suppose the union of triangles corresponds to an
embedded holomorphic curve in ∆ × Σ. Then any two triangles in A are either disjoint in Σ or
overlap in Σ “head to tail” as shown in Figure 4.

Proof. Let T and T ′ be two of the triangles in the domain A. For a generic representative of A to
exist, the pair must also have index zero, and be embedded in ∆ × Σ.

We already know that T and T ′ are tiled as in Figure 2. This strongly restricts how T and T ′

can overlap.
One way for T and T ′ to overlap is for T to be entirely contained inside T ′. In this case, it is not

hard to see that the two holomorphic triangles in ∆×Σ intersect in one interior point. Indeed, the
intersection number of two holomorphic curves in a 4-manifold is invariant in families. If we deform
the Heegaard diagram so that the boundary of T in Σ is a single point (i.e., the alpha, beta and
gamma circles involved in ∂T intersect in an asterisk, with vertex the “triangle” T ) then obviously
(T ∩ T ′) ⊂ (∆ × Σ) is a single point. It follows that the same is true for the original triangles T
and T ′.
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Figure 4. Head to tail overlap. A pair of embedded triangles T and T ′ overlap
“head to tail” if their intersection T ∩ T ′ consists of a single connected component,
itself a triangle, which contains one vertex of one of the two triangles and no vertices
of the other. In the picture, the two triangles are shaded; the intersection is darkly
shaded. We have not colored the figure to indicate that any of the three possible
coloring schemes is allowed; however, in all three cases, parallel segments in the
figure are of the same type (α, β or γ).

R1 R2

R3 R4

R5T1 T2

Figure 5. Head to head overlap. If T and T ′ intersect around their αβ vertices
as on the left of the figure (where the intersection is shown by a darker shading),
their union T ∪ T ′ does not have index zero. This can be seen using an alternate
decomposition of the domain T ∪ T ′ as T1 ∪ T2 ∪ R ∪ R′, where R = R1 ∪ R4 ∪ R5

and R′ = R2 ∪ R3 ∪ R5, where Ti(i = 1, 2) and Rj(j = 1, . . . , 5) are the domains
shown on the right. (Note that on the right, there might be overlaps in other parts
of the diagram; for example, we can have the situation in Figure 6.) The cases of
αγ or βγ head to head overlaps are similar.

Another way that T and T ′ might overlap is “head to head” as shown on the left side of Figure 5.
It is then possible to decompose T ∪ T ′ into a pair of rectangles R and R′, and two new embedded
triangles T and T ′, as shown in Figure 5. An immersed rectangle in Σ has index at least 1, since it
admits a generic holomorphic representative. So, each of R1 and R2 has index at least 1. Similarly,
the pair of triangles T1 ∪ T2 has index at least 0. So, by additivity of the index, the whole domain
has index at least 2 – a contradiction.

Using these two observations, and the rulings of T and T ′, it is then elementary to check that
the only possible overlap in index zero is “head to tail” as in Figure 4. �
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Figure 6. A double overlap. The two triangles (each shown lightly shaded) have
a (darkly shaded) overlap with two connected components.

It follows that, for a nice Heegaard diagram, we can combinatorially describe the generic holo-
morphic curves of index 0. If D is the domain of a generic holomorphic curve of index 0 then ∂D
has m components, each of which bounds an embedded triangle in Σ. Each pair of triangles must
either be disjoint or overlap as shown in Figure 4. Any such D clearly has a unique holomorphic
representative with respect to a split complex structure j∆ × jΣ on ∆ × Σ. Further, it is well
known that these holomorphic curves are transversally cut out, and so persist if one takes a small
perturbation of j∆×jΣ. In summary, to count index zero holomorphic curves in ∆×Σ with respect
to a generic perturbation of the split complex structure, it suffices to count domains D which are
sums of m embedded triangles in Σ, overlapping as allowed in the statement of Lemma 2.6.
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3. Nice diagrams for two-handle additions

In [9, Definition 4.2], Ozsváth and Szabó associate to a four-dimensional cobordism W consisting
of two-handle additions certain kinds of triple Heegaard diagrams. The cobordism W from Y1 to
Y2 corresponds to surgery on some framed link L ⊂ Y1. Denote by l the number of components
of L. Fix a basepoint in Y1. Let B(L) be the union of L with a path from each component to
the basepoint. The boundary of a regular neighborhood of B(L) is a genus l surface, which has
a subset identified with l punctured tori Fi, one for each link component. A singly-pointed triple
Heegaard diagram (Σ,α,β,γ, z) is called subordinate to B(L) if

• (Σ, {α1, . . . , αg}, {β1, . . . , βg−l}) describes the complement of B(L),
• γ1, . . . , γg−l are small isotopic translates of β1, . . . , βg−l,
• after surgering out the {β1, . . . , βg−l}, the induced curves βi and γi (for i = g− l +1, . . . , g)

lie in the punctured torus Fi.
• for i = g − l + 1, . . . , g, the curves βi represent meridians for the link components, disjoint

from all γj for i 6= j, and meeting γi in a single transverse intersection point.
• for i = g− l+1, . . . , g, the homology classes of the γi correspond to the framings of the link

components.

A related construction is as follows. Given Y1 and L as above, choose a multi-pointed Heegaard
diagram (ΣL,αL,βL, zL,wL) for L ⊂ Y1 as in [12], of some genus g; here, αL = {α1, . . . , αg+l−1}
and βL = {β1, . . . , βg+l−1}. Precisely, the sets z = {z1, . . . , zl} and w = {w1, . . . , wl} are collections
of distinct points on Σ disjoint from the alpha and the beta curves, with the following two properties:
first, each connected component of ΣL \ αL and ΣL \ βL contains a single zi and a corresponding
wi. Second, if c is an l-tuple of embedded arcs in ΣL \ βL connecting zi to wi (i = 1, . . . , l), and
c′ is an l-tuple of embedded arcs in ΣL \ αL connecting zi to wi (i = 1, . . . , l) then the link L is
the union of small push offs of c and c′ into the two handlebodies (induced by the beta and alpha
curves, respectively). Next, we attach handles hi to ΣL connecting zi to wi (for i = 1, . . . , l), and
obtain a new surface Σ. We choose a new βi (i = g + l, . . . , g + 2l − 1) to be the belt circle of the
handle hi−g−l+1, and a new αi to be the union of the core of hi−g−l+1 with c′i, so αi intersects βi in
one point. Choose γi (i = 1, . . . , g + l − 1) to be a small isotopic translate of βi, intersecting βi in
two points. Let γ0

i (i = g + l, . . . , g + 2l − 1) be the union of ci with a core of the handle hi−g−l+1.
Obtain γi (i = g + l, . . . , g + 2l − 1) by applying Dehn twists to γ0

i around βi; the framing of the
link is determined by the number of Dehn twists.

In this fashion we obtain a multi-pointed triple Heegaard diagram (Σ,α,β,γ, z), with g + 2l− 1
curves of each kind. Note that (Σ,α,β, z) is an l-pointed Heegaard diagram for Y1, (Σ,α,γ, z) is a
l-pointed Heegaard diagram for Y2, and (Σ,β,γ, z) is a l-pointed Heegaard diagram for #g(S1×S2).

The new circles αi, i = g + l, . . . , g + 2l − 1, are part of a maximal homologically linearly
independent subset of α, and similarly for βi and γi (i = g+ l, . . . , g+2l−1). Consequently, by the
proof of Lemma 2.1, there is a split diagram strongly equivalent to (Σ,α,β,γ, z), whose reduction
(Σ′,α′,β′,γ ′, z′) is obtained from (Σ,α,β,γ, z) by forgetting l − 1 of the αi (respectively βi, γi),
1 ≤ i ≤ g + l − 1, as well as z2, . . . , zk. It is then not hard to see that (Σ′,α′,β′,γ ′, z′) is a triple
Heegaard diagram subordinate to a bouquet for L.

In this section we will show that for any two-handle addition, one can construct a nice triple
Heegaard diagram strongly equivalent to a diagram (Σ,α,β,γ, z) as above. This involves finessing
the diagram for the link L inside Y and then, after adding the handles and the new curves, modifying
the diagram in several steps to make it nice. For the most part we will focus on the case when we
add a single two-handle. In the last subsection we will explain how the arguments generalize to
several two-handles.

To keep language concise, in this section we will refer to elementary domains as regions.
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3.1. A property of nice Heegaard diagrams. Let (Σ,α,β, z) be a multi-pointed Heegaard
diagram. Recall that the diagram is called nice if all unpunctured regions are either bigons or
squares.

Lemma 3.1. On a nice Heegaard diagram (Σ,α,β, z), for any alpha circle αi with an arbitrary
orientation, there exists a punctured region D which contains an edge e belonging to αi, and such
that D is on the left of αi. The same conclusion holds for each beta circle.

Proof. Suppose a half-neighborhood on the left of the alpha circle αi is disjoint from all the punc-
tured regions. Then immediately to the left of αi we only have good regions. There are two
possibilities as indicated in Figure 7.

(a) (b)

Figure 7. Alpha curve not adjacent to the bad region. The thick curves
are alpha curves and the thin ones are beta curves.

If there is a bigon region on the left of αi, then the other edge is some beta edge βj . The region on
the other side of βj must be a bigon region or a square since otherwise we would have a punctured
region on the left of αi. If we reach a square, we continue to consider the next region. Eventually
we will reach a bigon region since the number of regions are finite and we will not reach the same
region twice. All regions involved form a disk bounded by αi (as in Figure 7 (a)). In particular,
this means αi is null homologous. This contradicts the fact that the g+k−1 alpha circles represent
linearly independent classes in H1(Σ \ z).

In the second case, there are no bigon regions. Then on the left of αi, we see a chain of squares,
as in Figure 7 (b). The opposite edges on these squares give another alpha circle, say αj . Then αi

and αj are homologous to each other in H1(Σ\z). This contradicts the same fact as in the previous
case. �

Recall that in order to define the triangle maps it is necessary for the triple Heegaard diagram
to be weakly admissible in the sense of [7, Definition 8.8].

Corollary 3.2. If (Σ,α,β,γ, z) is a nice multi-pointed triple Heegaard diagram then (Σ,α,β,γ, z)
is weakly admissible.

Proof. By definition, the diagram is weakly admissible if there are no nontrivial domains D sup-
ported in Σ \ z with nonnegative multiplicity in all regions, and whose boundary is a linear combi-
nation of alpha, beta, and gamma curves. Suppose such a domain D exists, and consider a curve
appearing with a nonzero multiplicity in ∂D. Without loss of generality, we can assume this is an
alpha curve, and all regions immediately to its left have positive multiplicity in D. By Lemma 2.4,
the diagram (Σ,α,β, z) is nice. Lemma 3.1 now gives a contradiction. �

3.2. A single two-handle addition. Let (Y,K) be a three-manifold together with a knot K ⊂
Y . We choose a singly pointed Heegaard diagram (Σ,α,β, z) for Y together with an additional
basepoint w 6= z ∈ Σ \ (α ∪ β) such that the two basepoints determine the knot as in [11]. After
applying the algorithm from [15] to the Heegaard diagram, we can assume that the Heegaard
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diagram is nice, with Dz the (usually bad) region containing the basepoint z. Furthermore, the
algorithm in [15] also ensures that Dz is a polygon.

We denote by Dw the region containing w; note that either Dw = Dz or Dw is good. Throughout
this section, we will suppose that Dw and Dz are two different regions, and that Dw is a rectangle.
The case when Dw = Dz corresponds to surgery on the unknot, which is already well understood.
The case when Dw is a bigon can be avoided by modifying the original diagram by a finger move.
(Alternately, this case can be treated similarly to the case that Dw is a rectangle.)

Let W be the four manifold with boundary obtained from Y × [0, 1] by adding a two handle along
K in Y × {1}, with some framing. W gives a cobordism between Y and Y ′, where Y ′ is obtained
from Y by doing the corresponding surgery along K.

Now we are ready to describe our algorithm to get a nice triple Heegaard diagram for the
cobordism W.

Step 1. Making the knot embedded in the Heegaard diagram.
Let c be an embedded arc in Σ connecting z and w in the complement of beta curves, and c′ be

an embedded arc connecting z and w in the complement of alpha curves. The union of c and c′ is
a projection of the knot K ⊂ Y to the surface Σ, where Σ is viewed as a Heegaard surface in Y.
For convenience, we will always assume that c and c′ do not pass through any bigon regions, and
never leave a rectangle by the same edge through which they entered; this can easily be achieved.

In this step, we modify the doubly pointed Heegaard diagram (Σ,α,β, z, w) to make c ∪ c′

embedded in Σ, while preserving the niceness of the Heegaard diagram.
Typically, c and c′ have many intersections. We modify the diagram inductively by stabilization

at the first intersection p ∈ Dp on c′ (going from z to w) to remove that intersection, while making
sure that the new diagram is still nice.

A neighborhood of c and the part on c′ from z to p are shown in Figure 8. In the same picture,
if we continue the chain of rectangles containing c, we will end up with a region D′ which is either
a bigon or the punctured region Dz.

To get rid of the intersection point p, we stabilize the diagram as in Figure 9. More precisely,
we do a stabilization followed some handleslides of the beta curves and an isotopy of the new beta
curve. After these moves, the number of intersection points decreases by one and the diagram is
still nice.

If we iterate this process, in the end we get a nice Heegaard diagram in which c and c′ only
intersect at their endpoints. Furthermore, the bad region Dz is still a polygon.

Step 2. Adding twin gamma curves.
Our goal in Steps 2 and 3 is to describe a particular triple Heegaard diagram for the cobordism

W . Starting with the alpha and the beta curves we already have, for each beta curve βi we will add
a gamma curve γi (called its twin) which is isotopic to βi and intersects it in exactly two points.
(After this, we will add some more curves in the next step.)

For any beta curve βi, by Lemma 3.1 we can choose a region Di so that Di is adjacent to the
punctured region Dz with the common edge on βi. If Di = Dz, then we add γi close and parallel
to βi as in Figure 10 (a), and make a finger move as in Figure 10 (b).

Suppose now that Di is different from Dz . Then Di has to be a good region.
If Di is not a bigon, since the complement of the beta curves in Σ is connected, we can connect Di

with Dz without intersecting beta curves, via an arc traversing a chain of rectangles, as indicated
in the Figure 11. Then we do a finger move of the curve βi as indicated in Figure 12. Note that
the knot remains embedded in Σ.

Now we have a bigon region. We then add the gamma curve γi as shown in Figure 12.
Note that for each pair βi and γi, we either have one sub-diagram of the form in Figure 10 (b),

or one sub-diagram of the form in Figure 13. Observe also that during this process, no bad region
other than Dz is created.
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w

z

c

c′

c′c′c′

c′

D′
p

Dp

Figure 8. Projection of the knot to the Heegaard surface. As usual, the
thick lines are alpha curves, and the thin lines are betas. The point p is the first on
the dashed c′ curve (starting from z) where an intersection with c takes place. The
light shading in the upper three domains indicates that there might be more parallel
copies of alpha curves or parts of the c′ curve. Similarly, the light shading in the
lower domain indicates the presence of an arbitrary number of parallel beta segments
there. Note that some of the regions in the rightmost shaded domain on the top can
coincide with some of the regions in the bottom shaded domain; however, this fact
will not create any difficulties.

w

z

c

c′ c′ c′

c′

c′

D′

Figure 9. Stabilizing at the intersection. The two darkly shaded ovals are
the two feet of the handled we added. In the stabilized picture, we stretch the new
beta curve until it reaches the regions Dz and D′, so that the diagram is still nice.
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Dz

DzDz

Dz

(a) (b)

Figure 10. Adding twin gamma curves - Case 1.
Here and after, without further specification, we make the convention that the thick arcs are

alpha arcs, the thin ones are beta arcs, and the interrupted ones are gamma arcs.

Dz

Dz

Di

βi

Figure 11. An arc connecting Di to Dz. The shaded domain may contain
several parallel alpha edges, and the dashed arc is the connecting arc.

Dz

Dz

βi

γi

Figure 12. Adding twin gamma curves - Case 2. Before adding γi, we do
the finger move shown here. Again, the shaded domain may contain several parallel
alpha segments.

Step 3. Stabilization and two-handle addition.
After Step 2, the knot is still embedded in the Heegaard diagram. In other words, we can use

arcs to connect z to w by paths in the complement of alpha curves, and in the complement of beta
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Dz

Ds

Figure 13. Bigon between beta and gamma curves. The region Ds will be
dealt with in a special way in later steps.

curves so that the two arcs do not intersect except for the end points w and z, and do not pass
through any bigons. We will see two chains of squares, as indicated in Figure 14.

Dz,1

Dz,2

D∗

D∗

D′

αg+1

βg+1

γg+1

Dz

Figure 14. Stabilization - Case 1. The two small darkly shaded ovals are the
two feet of the handle. The upper large lightly shaded area may have several parallel
copies of alpha arcs, while the lower one may have several copies of beta and gamma
arcs. The upper left Dz denotes either Dz,1 or Dz,2; such a domain can occur at
various places on the boundaries of Dz,1 or Dz,2, and it corresponds to Case 1 in
Step 2.

We do a stabilization of the Heegaard diagram by adding a handle with one foot in each of Dz

and Dw. We add the additional beta circle βg+1 to be the meridian of the handle, which we push
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along c until it reaches Dz. We also push βg+1 through the opposite alpha edge of Dw, into the
adjacent region. Then, we connect the two feet in the complement of alpha curves along c′ and
get a new alpha circle αg+1. Finally, we add the surgery gamma circle γg+1 as in Figure 14. The
result is a triple Heegaard diagram (with 3(g + 1) curves) which represents surgery along the knot
K ⊂ Y , with a particular framing; the framing is the sum of the number of twists of γg+1 around
the handle and a constant depending only on the original Heegaard diagram.

Note that, depending on the framing, the local picture around the two feet of the handle may
also look like Figure 15, in which case instead of the octagon region D∗ from Figure 14 we have
two hexagon bad regions D∗,1 and D∗,2.

Dz,1 Dz,2

αg+1

γg+1

D∗,1
D∗,2

Figure 15. Stabilization - Case 2. If the γg+1 twists around the handle in the
opposite direction, we still have a picture similar to Figure 14. The only differences
are in the neighborhoods of the two feet of the handle, which are shown here.

After the stabilization, αg+1 and γg+1 separate Dz into several regions; among these, Dz,1 and
Dz,2 are (possibly) bad but all other regions are good. We end up with a diagram with four (or
five) bad regions: Dz,1, Dz,2, D∗ (or D∗,1 and D∗,2), and D′. (In some cases, Dz,1 or Dz,2 might be
good, or, if there is little winding of γg+1, some of D∗, Dz,1, and Dz,2 might coincide. The argument
in these cases is a simple adaptation of the one we give below.) We will kill the badness of D′,
Dz,2, and D∗ (or D∗,1 and D∗,2), while the region Dz,1 will be the one containing the basepoint z
for our final triple Heegaard diagram.

Step 4. Killing the bad region D′.
We push the finger in D′ across the opposite alpha edge until we reach a bigon, Dz,1,Dz,2, or a

region of type Ds as in Figure 13.

Case 1. A bigon is reached. In this case (Figure 16 (a)), our finger move will kill the badness of
D′, as indicated in Figure 16 (b), and does not create any new bad regions.

Case 2. Dz,1 or Dz,2 is reached. This is completely similar to Case 1. The finger move kills the
badness of D′, and does not create any new bad regions.

Case 3. A region of type Ds is reached. Let us suppose the topmost region in Figure 13 is Dz,1.
The case when the topmost region is Dz,2 is completely similar.

The regions involved look like Figure 17. If on the left Dz,1 is on top of Dz,2, we isotope the
diagram to look as in Figure 18. The case when on the left of Figure 13 Dz,2 is on top of Dz,1 is
similar, except that we do the double finger move on the other side of βg+1.

We have now killed the badness of D′.
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(a) (b)

D
′ D

′′
D

′′

Figure 16. Killing the badness of D′: bigon, Dz,1 or Dz,2 case. The thick
arcs are alpha curves, the thin arcs represent βg+1, and the dashed arcs can be either
betas or gammas. The shaded part has several parallel alpha arcs. The rightmost
region D′′ is a bigon, Dz,1, or Dz,2.

Dz,1

Dz,1

Dz,2

D′

Figure 17. Killing the badness of D′: Ds type region - before. The smaller
shaded region is the foot of the handle inside Dw, while the larger two shaded regions
may contain several parallel alpha arcs.

Dz,1Dz,1

Dz,2

Figure 18. Killing the badness of D′: Ds type region - after. Conventions
and shaded regions are the same as in Figure 17. This figure is obtained from Figure
17 via a double finger move.

Step 5. Killing the badness of Dz,2.
If there are any bigons between beta and gamma curves adjacent to Dz,2 as in Figure 13 or

Figure 10 (b), also shown in Figures 19 (a) resp. (c), we do a “handleslide” (more precisely, a
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handleslide followed by an isotopy) of γg+1 over each γi (i ≤ g) involved as indicated in Figures 19
(b) resp. (d).

(a) (b)

(c) (d)

Figure 19. Killing the badness of Dz,2: special handleslides. There might
be more alpha arcs in the shaded regions.

The intersection of γg+1 and αg+1 has the pattern as Figure 20 (a) or (b). In case (a), we do
nothing. In case (b), we do the finger move as in Figure 20 (c).

Dz,1Dz,1Dz,1 Dz,2Dz,2Dz,2

αg+1 αg+1

γg+1
γg+1γg+1

(a) (b) (c)

Figure 20. Killing the badness of Dz,2: two patterns. The curve γg+1 can
rotate around the shaded oval either as in (a) or as in (b). If (b) occurs, we replace
it with (c).
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Now among the possibly bad regions generated from Dz,2, we have a unique one whose boundary
has an intersection of a beta curve with a gamma curve, namely the one near βg+1 as in Figure 21
(a). (See also Figures 14 and 18.)

Dz,1

Dz,1

Dz,2

Dz,2

(a)

(b)

D

D

γg+1
βg+1

Figure 21. Killing the badness of Dz,2: special beta-gamma crossing. The
shaded area may contain several parallel alpha arcs. The dashed arcs can be beta
arcs or gamma arcs depending on different cases. The region D is a bigon, Dz,1, or
Dz,2. We isotope (a) into (b) in order to remove the beta-gamma intersection point
on the boundary of Dz,2.

We then do a finger move as in Figure 21 (b). Note that this finger move will not create any
badness other than that of Dz,1.

After these special handleslides and finger moves, the region Dz,2 is divided into several possibly
bad regions R1, . . . , Rm. These bad regions are all adjacent to Dz,1 via arcs on γg+1 and, further-
more, there are no intersection points of beta and gamma curves on their boundaries. We seek
to kill the badness of R1, . . . , Rm using the algorithm in [15]. The algorithm there consisted of
inductively decreasing a complexity function defined using the unpunctured bad regions. In our
situation, we apply a simple modification of the algorithm to the Heegaard diagram made of the
alpha and the gamma curves; the modification consists of the fact that we do not deal with the
bad region(s) D∗ (or D∗,1 and D∗,2), but rather only seek to eliminate the badness of R1, . . . , Rm;
thus, in the complexity function we do not include terms that involve the badness and distance of
D∗ (or D∗,1 and D∗,2).

Since all the Ri’s are adjacent to the preferred (punctured) region Dz,1 via arcs on γg+1, the
algorithm in [15] prescribes doing finger moves of γg+1 through alpha curves, and (possibly) han-
dleslides of γg+1 over other gamma curves. We do all these moves in such a way as not to tamper
with the arrangements of twin beta-gamma curves, i.e. as not to introduce any new intersection
points between γg+1 and βi, for any i ≤ g. (In other words, we can think of fattening γ1, . . . , γg

before applying the algorithm, so that they include their respective twin beta curves.) In particular,
regions of type Ds are treated as bigons.
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The fact that the algorithm in [15] can be applied in this fashion is based on the following two
observations:

• Our fingers or handleslides will not pass through the regions adjacent to βg+1, except
possibly Dz,1 itself. (This is one benefit of the modification performed in Figure 21.)

• We will not reach any squares between βi and γi (i ≤ g), nor the “narrow” squares created
in Figure 19.

In the end, all the badness of R1, . . . , Rm is killed. We arrive at a Heegaard diagram which might
still have some bad regions coming from regions of type Ds, as in Figure 22 (a). We kill these bad
regions using the finger moves indicated in Figure 22 (b).

Dz,1 Dz,1

(a) (b)

Figure 22. Killing the badness of special bad regions. We isotope the
gamma curves to kill the hexagon in (a).

After these moves, the only remaining bad regions are D∗ (or D∗,1 and D∗,2), and the preferred
bad region Dz,1.

Step 6. Killing the badness of D∗ (or D∗,i).
Our remaining task is to kill the badness of D∗ or D∗,i. Recall that depending on the pattern of

the intersection of αg+1 and γg+1 (cf. Figure 20), there are two cases: either we have an octagon
bad region D∗, or two hexagon bad regions D∗,1 and D∗,2.

In the first case, one possibility is that a neighborhood of αg+1 ∪ βg+1 ∪ γg+1 looks as in Figure
23. We then do the finger moves indicated in Figure 24. It is routine to check that the new diagram
is isotopic to the one in Figure 23.

Similarly, in the second case, one possibility is that a neighborhood of αg+1 ∪ βg+1 ∪ γg+1 looks
as in Figure 26. In this case, we do the finger moves indicated in Figure 27.

However, the actual picture on the Heegaard diagram may differ from Figure 23 or 26 in several
(non-essential) ways.

One possible difference is that at the bottom of the Figure 26, the extra gamma curve on top
of Dz,1 might be on the right rather than on the left; however, we can still push the two fingers
starting from Dz,1 on each side of αg+1.

Another possible difference is that at the very left of Figures 23 and 26, the curve γg+1 may have
an upward rather than a downward hook, i.e. look as in Figure 28(c) rather than (a). If so, instead
of the beta finger from the left in Figures 23 and 26 (cf. also Figure 28(b) ), we push a beta-gamma
finger as in Figure 28(d).

Finally, instead of the situations shown in Figures 23 and 26, we might have the same pictures
reflected in a horizontal axis. If so, we apply similar finger moves and arrive at the reflections of
Figures 24 and 27.

In all cases, the finger moves successfully kill the badness of all regions other than Dz,1, in which
we keep the basepoint z. The result is a nice triple Heegaard diagram for the cobordism W .
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Dz,1

Dz,1

Dz,1

βg+1

Figure 23. The bad region D∗. Conventions are as before. Lightly shaded
regions mean several parallel arcs.

Dz,1

Dz,1

Dz,1

βg+1

Figure 24. Killing the badness of D∗. We push two multiple fingers (contain-
ing several beta and gamma curves) from the bottom right of the diagram, and a
single finger from the left. We are using the train-track convention, cf. Figure 25
below.
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Figure 25. The train-track convention. We use the left diagram to denote a
multiple finger, i.e. the situation pictured on the right. The curves involved can be
of various kinds.

Dz,1

Dz,1
Dz,1

Dz,1

βg+1

Figure 26. The bad regions D∗,1 and D∗,2. Going from each of the two
hexagons down through beta and gamma curves, we eventually reach Dz,1. The
path from one of the two hexagons (in the picture, the one on the left) encounters
one additional beta curve before reaching Dz,1.

3.3. Several two-handle additions. We now explain how the arguments in this section can be
extended to a cobordism W which consists of the addition of several two-handles. We view W as
surgery along a link L ⊂ Y of l components.

We start with a multi-pointed Heegaard diagram (Σ,α,β, z), together with another set of base-
points w = {w1, . . . , wl} describing the pair L ⊂ Y, as in [12]. Each of the two sets of curves (α
and β) has g + l − 1 elements.

Applying the algorithm in [15] we can make this diagram nice, i.e. such that all regions not
containing one of the z’s are either bigons or rectangles. For i = 1, . . . , l, we denote by Dzi

the
region containing zi.

As in Step 1 of Section 3.2, we inductively remove intersection points between the various com-
ponents of the projection of L to Σ. This projection consists of arcs ci and c′i with endpoints at
zi and wi (i = 1, . . . , l), such that each ci is disjoint from the beta curves, and each c′i is disjoint
from the alpha curves. Instead of Figure 8 we have the situation in Figure 29. Again, we stabilize
and perform an isotopy to obtain a good diagram with one fewer intersection point, as in Figure 9.
Iterating this process (on all link components), we can assume that the projection of L is embedded
in the Heegaard surface.
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Dz,1

Dz,1
Dz,1

βg+1

Figure 27. Killing the badness of D∗,1 and D∗,2. In this case, we again push
two multiple fingers from the bottom, but starting from two different sides of αg+1.
As before, we also push a finger form the left.

(a) (b) (c) (d)

Figure 28. A variation. On the left of Figures 23 and 26, we might have the
picture (c) rather than (a). We then do the finger move in (d) instead of (b). The
region on the left is always Dz,1.
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z2
w2c2

c′1

c′1

D′
p

Dp

z1

Figure 29. Projection of the link to the Heegaard surface. The point p is
the point on the dashed c′1 curve closest to z1 where an intersection with any of the
ci curves (in our case c2) takes place.

We then add twin gamma curves as in Step 2 of Section 3.2. For this we need to do several
isotopies of the beta curves as in Figure 12. In that figure, if the region on the top left is Dzi

, the
one on the right might be Dzj

for j 6= i; however, the isotopy can be done as before.
Next, we stabilize the Heegaard diagram l times (once for each link component) to obtain a

triple diagram for the cobordism, as in Step 3 of Section 3.2. We then do the analogue of Step 4 by
pushing l fingers to kill the badness of the regions of type D′. Since the fingers only pass through
rectangles, they do not intersect each other. The only change is that in Figures 17 and 18, the
region on the very right may contain a different puncture zi than the one on the left. By contrast,
in Case 2 of Step 4, the region on the right in Figure 16 contains the same puncture as the region
on the left, since they lie in the same connected component of the complement of the beta circles.

At the end of Step 4, the beta curves split the Heegaard surface into l connected components
C1, . . . , Cl. We then do the analogue of Step 5 in Section 3.2. Note that this step (except for
the very last bit, Figure 22) only involves moving gamma curves through alpha curves. (Here,
we think of the move in Figure 19 as a single step, rather than as a handleslide followed by an
isotopy.) Therefore, we can perform the moves in this step once for each connected component of
L, independently of each other, because the moves take place in the corresponding component Ci.
In the situation considered in Figure 22, the gamma curves cross a beta curve; however, the special
region Ds is part of a unique Ci, so we can perform the isotopy of the gamma curves as before,
without interference from another Cj .

Finally, for Step 6, note that in all the previous steps we have not destroyed the property that the
projection of L to the Heegaard surface is embedded. More precisely, in the part of the stabilized
Heegaard diagram shown in Figure 14, we take a component of the link projection to be a loop
starting in D∗, near the upper foot of the handle, going down along αg+1 until it reaches Dz,1,
then going inside Dz,1 until it reaches the intersection of γg+1 and βg+1, and then going along a
sub-arc of γg+1 to its original departure. These paths remain embedded, and disjoint from each
other, throughout Steps 4 and 5. (Indeed, neither βg+1 nor this sub-arc of γg+1 is moved during
these steps.) It then suffices to note the finger moves in Step 6 take place in a neighborhood of
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the projection of the corresponding link component (the path considered above). Therefore, these
finger moves can be done without interfering with each other. The result is a nice multi-pointed
triple Heegaard diagram for W .
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4. Computing maps induced by cobordisms

Let W be a 4-dimensional cobordism from Y0 to Y3, and t a Spinc-structure on W . Choose a
self-indexing Morse function on W . This decomposes W as a collection of one-handle additions
which together form a cobordism W1, followed by some two-handle additions forming a cobordism
W2, and three-handle additions forming a cobordism W3, in this order. Let Y1 and Y2 be the
intermediate three-manifolds, so that

W = W1 ∪Y1
W2 ∪Y2

W3.

The map F̂W,t : ĤF (Y0, t|Y0
) → ĤF (Y3, t|Y3

) from [9] is defined as the composition F̂W3,t|W3

◦

F̂W2,t|W2

◦ F̂W1,t|W1

of maps associated to each of the pieces W1, W2 and W3. We will review the

definitions of these three maps in Sections 4.2 and 4.3. First we review a few facts about the
H1(Y ; Z)/torsion-action on the hat Heegaard Floer invariants.

4.1. H1(Y ; Z)/torsion-actions. In [7, Section 4.2.5], Ozsváth and Szabó constructed an action of

the group H1(Y ; Z)/torsion ∼= Hom(H1(Y ; Z), Z) on ĤF (Y ). In [9] (see also [10, Section 2]), they

also showed that the cobordism maps F̂W,t extend to maps Λ∗(H1(W ; Z)/torsion)⊗ĤF (Y0, t|Y0
) →

ĤF (Y3, t|Y3
). Moreover, if W is a cobordism from Y1 to Y2 (endowed with a Spinc structure t) and

we denote by ji : H1(Yi; Z)/torsion → H1(W ; Z)/torsion (i = 1, 2) the natural inclusions, then for
any ζ ∈ H1(W ; Z)/torsion of the form ζ = j1(ζ1)− j2(ζ2), ζi ∈ H1(Yi; Z)/torsion (i = 1, 2) one has

(ζ ⊗ F̂W,t)(x) = F̂W,t(ζ1 · x) − ζ2 · F̂W,t(x).

This equality has the following immediate corollaries:

Lemma 4.1. If ζ1 ∈ ker(j1), then ζ1 · x ∈ ker(F̂W,t) for any x ∈ ĤF (Y1, t|Y1
).

Lemma 4.2. If ζ2 ∈ ker(j2), then ζ2 · y = 0 for any y ∈ image(F̂W,t).

Consider now a 3-manifold of the form Y #
(
#nS1 × S2

)
, and let s0 denote the torsion Spinc-

structure on #nS1 × S2. Then for any Spinc-structure s on Y there is an isomorphism

(7) ĤF (Y, s) ⊗ H∗(T
n)

∼=
−→ ĤF

(
Y #

(
#nS1 × S2

)
, s#s0

)
,

as F
[
(H1(Y ; Z)/torsion) ⊕ H1(#

nS1 × S2; Z)
]
-modules, cf. [8, Theorem 1.5]. Here, the action of

H1(#
nS1×S2; Z) on ĤF (Y, s) is trivial, as is the action of H1(Y ; Z)/torsion on ĤF

(
#nS1 × S2, s0

)
.

Further, the action of H1(#
nS1 × S2; Z)/torsion ∼= H1(T n; Z) on ĤF (#nS1 × S2, s0) ∼= H∗(T

n; F)
is exactly the given by cap product ∩ : H1(T n; Z) ⊗ H∗(T

n; F) → H∗−1(T
n; F).

4.2. Maps associated to one- and three-handle additions. Next, we review the definition of
the Heegaard Floer maps induced by one- and three-handle additions, cf. [9, Section 4.3].

Suppose that W1 is a cobordism from Y0 to Y1 built entirely from 1-handles. Let t be a Spinc-

structure on W1. The map F̂W1,t : ĤF (Y0, t|Y0
) → ĤF (Y1, t|Y1

) is constructed as follows. If
h1, h2, . . . , hn are the 1-handles in the cobordism, for each i = 1, . . . , n pick a path ξi in Y0, joining
the two feet of the handle hi. This induces a connected sum decomposition Y1

∼= Y0#(#nS1 × S2),
where the first homology of each S1 ×S2 factor is generated by the union of ξi with the core of the
corresponding handle. Further, the restriction of t to the (S1 × S2)-summands in Y1 is torsion. It

follows that ĤF (Y1, t|Y1
) ∼= ĤF (Y0, t|Y0

) ⊗ H∗(T
n). Let θ be the generator of the top-graded part

of H∗(T
n). Then the Heegaard Floer map induced by W1 is given by

F̂W1,t(x) = x ⊗ θ.

It is proved in [9, Lemma 4.13] that, up to composition with canonical isomorphisms, F̂W1,t does
not depend on the choices made in its construction, such as the choice of the paths ξi.
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Dually, suppose that W3 is a cobordism from Y2 to Y3 built entirely from 3-handles. Let t be a

Spinc-structure on W3. The map F̂W3,t : ĤF (Y2, t|Y2
) → ĤF (Y3, t|Y3

) is constructed as follows. One
can reverse W3 and view it as attaching 1-handles on Y3 to get Y2. After choosing paths between
the feet of these 1-handles in Y3, we obtain a decomposition Y2

∼= Y3#(#mS1 × S2) (where m is
the number of 3-handles of W3). Further, the restriction of t to the (S1 × S2)-summands in Y2

is torsion. It follows that ĤF (Y2, t|Y2
) ∼= ĤF (Y3, t|Y3

) ⊗ H∗(T
m). Let η be the generator of the

lowest-graded part of H∗(T
m). Then the Heegaard Floer map induced by W3 is given by

F̂W3,t(x ⊗ η) = x

and

F̂W3,t(x ⊗ ω) = 0

for any homogeneous generator ω of H∗(T
m) not lying in the minimal degree. Again, the map is

independent of the choices made in its construction.

4.3. Maps associated to two-handle additions. Let W2 be a two-handle cobordism from Y1

to Y2, corresponding to surgery on a framed link L in Y1, and let t be a Spinc-structure on W2.
Let (Σ′,α′,β′,γ ′, z′) be a triple Heegaard diagram subordinate to a bouquet B(L) for L, as in
the beginning of Section 3. Then, in particular, (Σ′,α′,β′, z′) is a Heegaard diagram for Y1,
(Σ′,α′,γ ′, z′) is a Heegaard diagram for Y2, and (Σ′,β′,γ ′, z′) is a Heegaard diagram for #g−l(S1×
S2). (Here, g is the genus of Σ′ and l the number of components of L.) The Spinc-structure t induces
a Spinc-structure (still denoted t) on the four-manifold Wα′,β′,γ′ specified by (Σ′,α′,β′,γ ′, z′). (Note
that Wα′,β′,γ′ can be viewed as a subset of W2.) Consequently, there is an induced map

F̂Σ′,α′,β′,γ′,z′,t : ĤF (Y1, t|Y1
) ⊗ ĤF

(
#g−l(S1 × S2), t|#g−l(S1×S2)

)
→ ĤF (Y2, t|Y2

),

as discussed in Section 2.1.
The Spinc-structure t|#g−l(S1×S2) is necessarily torsion, so

ĤF
(
#g−l(S1 × S2), t|#g−l(S1×S2)

)
∼= H∗(T

g−l) = H∗(S
1)⊗(g−l).

Let θ denote the generator for the top-dimensional part of ĤF
(
#g−l(S1 × S2), t|#g−l(S1×S2)

)
.

Then we define (cf. [9, Section 4.1]) the map

F̂W2,t : ĤF (Y1, t|Y1
) → ĤF (Y2, t|Y2

)

by F̂W2,t(x) = F̂Σ′,α′,β′,γ′,z′,t(x ⊗ θ).
Now, consider instead the nice, l-pointed triple Heegaard diagram (Σ,α,β,γ, z) constructed in

Section 3. As discussed in the beginning of Section 3, (Σ,α,β,γ, z) is strongly equivalent to a
split triple Heegaard diagram whose reduction (Σ′,α′,β′,γ ′, z′) is subordinate to a bouquet B(L)

as above. Let Θ be the generator for the top-dimensional part of ĤF (Σ,β,γ, z) ∼= H∗(T
g+l−1).

Then, by Diagram (3), with k = l − 1, we have

rank
(
F̂W2,t

)
=

1

2l−1
rank

(
F̂Σ,α,β,γ,z,t(· ⊗ Θ)

)
.

In light of Corollary 3.2 and Proposition 2.5, the rank of the map F̂Σ,α,β,γ,z,t can be com-
puted combinatorially. Further, since the triple Heegaard diagram (Σ,α,β,γ, z) is nice, so are
each of the three (ordinary) Heegaard diagrams it specifies. Consequently, by [15], the element

Θ ∈ ĤF (Σ,β,γ, z) can be explicitly identified (as can a representative for Θ in ĈF (Σ,β,γ, z)).

Therefore, the rank of F̂W2,t can be computed combinatorially.
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4.4. Putting it all together. Recall that W is a 4-dimensional cobordism from Y0 to Y3, t a Spinc-
structure on W , and that W is decomposed as a collection of one-handle additions W1, followed by
some two-handle additions W2, and three-handle additions W3, with Y1 and Y2 the intermediate
three-manifolds, so that

W = W1 ∪Y1
W2 ∪Y2

W3.

As in Section 4.1, we consider the maps

(8) j1 : H1(Y0; Z)/torsion → H1(W ; Z)/torsion, j2 : H1(Y3; Z)/torsion → H1(W ; Z)/torsion.

Lemma 4.3. If j1 is surjective, then image(F̂W2,t|W2

◦ F̂W1,t|W1

) = image(F̂W2,t|W2

).

Proof. The cobordism W1 consists of the addition of some 1-handles h1, . . . , hn. As in Section 4.2,
we choose paths ξi in Y0 joining the two feet of the handle hi. The union of ξi with the core of
hi produces a curve in W1, which in turn gives an element ei ∈ H1(W1 ∪ W2; Z)/torsion. Since
W is obtained from W1 ∪ W2 by adding 3-handles, we have H1(W ; Z) ∼= H1(W1 ∪ W2; Z), so the
hypothesis implies that the map

j′1 : H1(Y0; Z)/torsion → H1(W1 ∪ W2; Z)/torsion,

is surjective. Hence there exist disjoint, embedded curves ci in Y0 (disjoint from all the ξj) such
that j′1([ci]) = −ei, i = 1, . . . , n. We can connect sum ξi and ci to get new paths ξ′i in Y0 between
the two feet of hi. Using the paths ξ′i we get a connected sum decomposition Y1

∼= Y0#(#nS1 ×S2)
as in Section 4.2, with the property that the inclusion of the summand H1(#

nS1 × S2; Z) ⊂
H1(Y1; Z) in H1(W1 ∪ W2; Z)/torsion is trivial. Since we can view W1 ∪ W2 as obtained from W2

by adding 3-handles (which do not affect H1), it follows that the inclusion of H1(#
nS1 × S2; Z) in

H1(W2; Z)/torsion is trivial. Lemma 4.1 then says that

F̂W2,t|W2

(ζ · x) = 0,

for any ζ ∈ H1(#
nS1 × S2; Z), x ∈ ĤF (Y1, t|Y1

) ∼= ĤF (Y0, t|Y0
) ⊗ H∗(T

n). Thus the kernel of

F̂W2,t|W2

contains all elements of the form y ⊗ ω, where y ∈ ĤF (Y0, t|Y0
) and ω ∈ H∗(T

n) is any

homogeneous element not lying in the top grading of H∗(T
n). On the other hand, from Section 4.2

we know that the image of F̂W1,t|W1

consists exactly of the elements y⊗ θ, where θ is the top degree

generator of H∗(T
n). Therefore,

image(F̂W1,t|W1

) + ker(F̂W2,t|W2

) = ĤF (Y1, t|Y1
).

This gives the desired result. �

Lemma 4.4. If j2 is surjective, then image(F̂W2,t|W2

) ∩ ker(F̂W3,t|W3

) = 0.

Proof. This is similar to the proof of Lemma 4.3. A suitable choice of paths enables us to view Y2

as Y3#(#mS1 × S2), such that the inclusion of the summand H1(#
mS1 × S2; Z) ⊂ H1(Y2; Z) in

H1(W2; Z)/torsion is trivial. Lemma 4.2 then says that ζ · y = 0 for any y ∈ image(F̂W2,t|W2

) and

ζ ∈ H1(#
mS1 × S2). In other words, every element in the image of F̂W2,t|W2

must be of the form

y = x ⊗ η, where x ∈ ĤF (Y3, t|Y3
) and η is the lowest degree generator of H∗(T

n). On the other

hand, from Section 4.2 we know that the kernel of the map F̂W3,t|W3

does not contain any nonzero

elements of the form x ⊗ η. �

Theorem 4.5. Let W be a cobordism from Y0 to Y3, and t a Spinc-structure on W . Assume that
the maps j1 and j2 from Formula (8) are surjective. Then in each (relative) grading i the rank of

F̂W,t : ĤF i(Y0, t|Y0
) → ĤF ∗(Y3, t|Y3

) can be computed combinatorially.
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Proof. The map F̂W,t is, by definition, the composition F̂W3,t|W3

◦ F̂W2,t|W2

◦ F̂W1,t|W1

. Lemmas 4.3

and 4.4 imply that
image(F̂W2,t|W2

◦ F̂W1,t|W1

) ∩ ker(F̂W3,t|W3

) = 0

or, equivalently,

rank(F̂W3,t|W3

◦ F̂W2,t|W2

◦ F̂W1,t|W1

) = rank(F̂W2,t|W2

◦ F̂W1,t|W1

).

Using Lemma 4.3 again, the expression on the right is the same as the rank of F̂W2,t|W2

. Thus,

the maps F̂W,t and F̂W2,t|W2

have the same rank. As explained in Section 4.3, the rank of F̂W2,t|W2

can be computed combinatorially. Note that the relative gradings on the generators of the chain
complexes are also combinatorial, using the formula for the Maslov index in [3, Corollary 4.3]. This
completes the proof. �

Remark 4.6. In fact, using Sarkar’s remarkable formula for the Maslov index of triangles [14, Theo-
rem 4.1], the absolute gradings on the Heegaard Floer complexes can be computed combinatorially,

and so the rank of F̂W,t in each absolute grading can be computed as well.
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5. An example

We give a nice triple Heegaard diagram for the cobordism from the three-sphere to the Poincaré
homology sphere, viewed as the +1 surgery on the right-handed trefoil. The right-handed trefoil
knot admits the nice Heegaard diagram shown in Figure 30, which is isotopic to [15, Figure 14].
Applying the algorithm described in Section 3, we obtain the nice triple Heegaard diagram shown
in Figure 31. We leave the actual computation of the cobordism map to the interested reader.

z w

Figure 30. A nice Heegaard diagram for the trefoil knot. The thick curves
are alpha curves and the thin ones are beta curves. The two shaded areas in the
diagram are glued together via a reflection and rotation, such that the two black
dots on the alpha curves are identified. The knot is given by the dashed curves. Its
projection is already embedded in the Heegaard surface.
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Figure 31. A nice triple Heegaard diagram for +1 surgery on the right-
handed trefoil. The thick curves are alpha curves, the thin curves are beta curves,
and the interrupted curves are gamma curves. The lightly shaded areas are identified
as in Figure 30, while the darkly shaded areas represent the new handle which has
been attached. Again, we are using the train-track convention as in Figure 25. The
basepoint is the point at infinity.
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