
ERRATA TO THE ARTICLE “A GLUING THEOREM FOR THE

RELATIVE BAUER-FURUTA INVARIANTS”

CIPRIAN MANOLESCU

The main results in the paper still hold, but there were several errors in the proofs. We
list these errors here, and explain how they can be corrected. The page numbers refer to
the arXiv version.

(1) Let us clarify the connectedness assumptions in the introduction. In Theorem 1, when
we write a closed four-manifold X as X1 ∪Y X2, we should assume that Y is connected (in
addition to having b1(Y ) = 0). If Y is disconnected, then in general b1(X) 6= b1(X1)+b1(X2)
and for example we may not have T(X) = T(X1) ∧ T(X2). Gluing along disconnected
boundaries leads to other difficulties and will not be discussed in this paper.

In Theorem 2, we can allow the initial manifold Y1 and the final manifold Y3 to be
disconnected, but we still need to assume that Y2 (the manifold along which we glue the
cobordisms X1 and X2) is connected.

(2) This paper relies on the previous work of the author [15]. There was an error in the
published version of [15]; this was corrected by Khandhawit in [4]. An errata to [15] is
available in the latest arxiv version [14].

Precisely, in order to define the relative Bauer-Furuta invariants in [15], it is more conve-
nient to choose a double Coulomb gauge slice instead of the Coulomb-Neumann slice. The
current paper needs to be adjusted accordingly. Thus, on page 4, the space Ω1

g(X1) should
be defined as the space of 1-forms a1 on X1 in double Coulomb gauge, that is, such that
a1 ∈ ker d∗ and also the restriction of a1 to the boundary Y is in the kernel of the three-
dimensional d∗ operator. Later on (on p.17), when we have to use Ω1

g on a four-manifold
with possibly disconnected boundary, in addition to the two Coulomb conditions we ask
that, on each boundary component Yi, the normal component a1|Y (ν) integrates to zero.
(This is automatic when the boundary is connected, by Stokes’ theorem.)

The rest of the proof of Theorem 1 (and also of Theorem 2) can be adapted to this new
setting. A complete proof, using the double Coulomb gauge, can be found in the work
of Khandhawit, Lin, and Sasahira [5]. In fact, they prove a more general gluing theorem,
where Y can be any three-manifold. In the case b1(Y ) = 0, Theorem 1.3 in [5] specializes
to give Theorem 2 in this paper.

(3) There were several other issues with the proof of Theorem 1, which were fixed in [5] in
their context:

(i) The definition of the duality map in Section 2.5 relies on the fact that the index pairs
are constructed from smooth manifolds. On the other hand, in the construction of the
relative Bauer-Furuta invariants in [15], we use index pairs that are not of manifold
type. We need to relate these different index pairs by certain homotopy equivalences.
In [5], the authors deal with this problem by introducing the concept of T -tameness;
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(ii) On p.10, in the definition of U ′′t , the linear part of Seiberg-Witten map, when re-
stricted to U ′′t , is not a Fredholm map. This is due to the presence of the term
(1 − t)d(γ(x1) + γ(x2)) + t(β(x1) − β(x2)), where the first part is order 1 and the
second part is order 0. In [5, p.66], the fix for this problem is to replace d by a special
degree-0 operator d̄, which is not a differential operator. The definition of d̄ involves
the spectral decomposition of the Laplacian d∗d;

(iii) After the final homotopy on p.16, the boundary condition is deformed to x1|Y2−x2|Y2 =
0. Moving this condition from the map to the domain, we get an extra compo-
nent (x1, x2) → x1|Y − x2|Y in the Seiberg-Witten map. Via the finite dimen-
sional approximation, this component gives the “approximated boundary condition”
x1|Y2 − x2|Y2 ∈ V

µn
λn
. However, in the definition of Ψ(X1) ∧Ψ(X2), we actually used a

different boundary condition x1|Y2 ∈ V µn , x2|Y2 ∈ Vλn . A homotopy connecting these
two different boundary conditions appears in Step 7 of [5].

(4) The first condition in the definition of a very compact map (Definition 4 on p.21) needs
to be strengthened. Suppose E is a bundle over a manifold M . Let I be a compact interval,

and consider the pullback π∗E of E under the projection π : I×M →M . Let V̂ be Γ(π∗E),

with Sobolev completions L2
k(V̂ ). The map c : Γ(E)→ Γ(E) induces a map

ĉ : V̂ → V̂ ,

given by slicewise application of c. In Definition 4, instead of only asking for c to extend to
a compact map

c : L2
k+1(V )→ L2

k+1(V )

we should ask for ĉ to extend to a continuous map

ĉ : L2
k(V̂ )→ L2

k(V̂ ).

Note that this implies that c extends to a map from L2
k(V ) to itself, and using Rellich’s

Lemma we get the original condition.
The strengthened hypothesis in Definition 4 is necessary for the proof of Proposition

5, which is modelled on Proposition 3 in [15]. Precisely, in [15], Step 3 in the proof of
Proposition 3 requires continuity of ĉ in order to do elliptic bootstrapping on M × I.

(5) One needs to slightly modify Proposition 5 so that it applies to the Seiberg-Witten map
l+ c. Indeed, in our setting V = (ker d∗)⊕ Γ(W ) is not the space of all sections of a vector
bundle E, because of the condition d∗a = 0. Thus, in the statement of Proposition 5, one
should allow V to be the kernel of a map l̃ : Γ(E) → Γ(F ), where F is another vector

bundle, and l ⊕ l̃ forms a linear, self-adjoint, elliptic differential operator of order one.

(6) In the second to last paragraph on p.21, one cannot define stable and unstable Hilbert
manifolds in infinite dimensional space, because in our setting the “flow” given by l+c is not
exactly a flow on a single Hilbert space; rather, the map l + c decreases Sobolev regularity
by one. Instead, the standard analogue of the Morse-Smale condition in Floer theory is to
ask for the moduli spaces of flow lines between two critical points to be regular, in terms
of surjectivity of a certain linear operator. See for example [6, Definition 14.5.6] for this
condition in the setting of monopole Floer homology.

More importantly, there is an error in the proof of Proposition 6. At the top of page
23, we need to find a small tubular neighborhood of the set S. However, S is a stratified
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space inside a Hilbert manifold, and more work would be needed to describe (and ensure)
the exact smoothness properties of such a neighborhood.

Proposition 6 is used in the calculations of Seiberg-Witten-Floer spectra for some Brieskorn
spheres in Section 7.2. Rather than trying to fix Proposition 6, let us explain how one can
do the same calculations by a different route, using some recent work of Lidman and the
author [13].

The main result in [13] is an equivalence between the equivariant homology of SWF and
the monopole Floer homology constructed by Kronheimer and Mrowka in [6]. This can
be combined with the equivalence between monopole Floer homology and Heegaard Floer
homology, which was established in [2, 3, 1, 8, 9, 10, 11, 12]. Thus, we obtain the following
result, which appears as Corollary 1.4 in [13]: If Y is a rational homology sphere and s is a
Spinc structure on Y , then there an isomorphism of relatively graded Z[U ]-modules:

(1) H̃S1

∗ (SWF(Y, s)) ∼= HF+
∗ (Y, s).

Here, HF+ denotes the plus version of Heegaard Floer homology, as defined by Ozsváth-
Szabó in [18].

Heegaard Floer homology was computed in [17] for a large class of plumbed three-
manifolds. In particular, this class includes all Brieskorn spheres −Σ(p, q, r) with p, q, r > 1
relatively prime. In view of (1), this tells us the equivariant homology of SWF(−Σ(p, q, r)).
(Alternatively, one can use the strategy in [17] to do the same calculation in monopole Floer

homology, using the exact triangles from [7]. We can then obtain H̃S1

∗ (SWF(−Σ(p, q, r)))
by applying the results from [13], but without relying on the monopole / Heegaard Floer
correspondence.)

Our goal is to recover the results of Section 7.2, that is, to compute the S1-equivariant
stable homotopy types SWF(−Σ(2, 3, 6n ± 1)). Apart from knowledge of the equivariant
homology, we need some additional input. This is the description of monopoles on Seifert
fibered spaces, given by Mrowka, Ozsváth and Yu in [16]. They show that for a particular
metric and connection, the Seiberg-Witten equations on −Σ(p, q, r) have one reducible
solution and several irreducibles, all non-degenerate. The techniques in [13] imply the
following:

Proposition A. Let Y = −Σ(p, q, r) with p, q, r > 0 relatively prime. Then SWF(Y ) is
the suspension spectrum associated to an S1-space with a cell decomposition, such that:

• The equivariant cells are in one-to-one correspondence with the monopoles on Y as
described in [16];
• The reducible monopole produces a cell with a trivial S1-action, whereas each irre-
ducible produces a cell with a free S1-action;
• The relative gradings of the monopoles give the dimensions of the cells;
• If a monopole x has lower energy (CSD functional) than another monopole y, then
the cell corresponding to x is attached before the cell corresponding to y.

Proof. Monopoles on Y are stationary points of the (perturbed) Seiberg-Witten flow on
Y , i.e. zeros of a map of the form l + c̃ : V → V , with l = (∗d, /∂) and c̃ a perturbation
of c. The arguments from [13, Section 7] show that, if those stationary points are non-
degenerate, then there exists R > 0 such that for all µ = −λ� 0, the zeros of l + c̃ are in
a one-to-one, grading-preserving correspondence with the zeros of l+ pµλc̃ that live inside a
ball B(R) ⊂ L2

k+1/2(V
µ
λ ); and moreover, the zeros of l+ pµλc̃ in B(R) are non-degenerate as

well. In turn, this implies that the Conley index for the flow of l+pµλc̃ inside B(R) has a cell
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decomposition with cells corresponding to the monopoles on Y . By the usual continuation
arguments, it follows that the Conley index for l + pµλc̃ is homotopy equivalent to that for
l + pµλc, which produces the spectrum SWF(Y ).

Let us mention a few differences between what is done in [13] and what is needed in
the proof above. In [13, Section 7], one uses continuity and compactness arguments as
µ = −λ→∞, as well as an application of the implicit function theorem, to establish a cor-
respondence between solutions of the Seiberg-Witten equations and approximate solutions
in finite dimensions. The perturbations of the Seiberg-Witten flow used in [13] are those
introduced by Kronheimer and Mrowka in [6]. In our setting, we need to use instead the
perturbed connection from [16], but the same arguments apply. Also, note that in [13] one
works with the Seiberg-Witten equations on the blow-up of the configuration space, again
following [6]. The blow-up differs from the configuration space only on the reducible locus,
so the one-to-one correspondence for irreducible stationary points follows directly from [13].
The correspondence for the reducible (i.e., the proof that l+pµλc̃ has a single reducible, and
that the reducible is non-degenerate) can be established using similar arguments to those
in [13].

The statement about the order of attaching cells follows from the fact that if a zero of
l+ c̃ has lower energy than another zero, then the corresponding zeros of l+pµλc̃ are ordered
the same way by energy. (This is because energy is continuous as µ = −λ → ∞.) When
constructing the Conley index from a Morse-Bott function using attractor-repeller pairs,
the critical sets with lower energy contribute cells first. �

Observe that Proposition A does not provide a full description of the attaching maps in
SWF(Y ). Nevertheless, when combined with (1), Proposition A gives enough information
to determine the stable homotopy type SWF(Y ) when Y is of the form −Σ(2, 3, 6n ± 1).
For example, let Z = SWF(−Σ(2, 3, 12j − 1)). The description in [16] gives one reducible
of index 0 and 2j irreducibles of index −2. From Proposition A it follows that Z is (stably
homotopy equivalent) to the cone of an attaching map

S−1 →
2j∨
i=1

Σ−2(T+),

where T denotes S1 with the free S1-action; compare p.25-26 in the paper. Each equivariant

stable homotopy group {S−1,Σ−2(T+)}S1
is isomorphic to Z, so the attaching map is given

by an element δ ∈ Z2j . One can do elementary operations on the free cells without changing
the stable equivalence class of Z. Thus, Z is determined (up to stable equivalence) by the
divisibility of δ. In other words, we can assume that δ = (d, 0, . . . , 0) with d ≥ 0. Given d,
the reduced equivariant homology of Z is

H̃S1

k (Z) =


Z if k = 2i ≥ 0,

Z/d⊕ Z2j−1 if k = −2,

0 otherwise.

We now appeal to (1) and the calculations of Heegaard Floer homology in [17], which
show that d = 1. This gives the desired description of Z. The Seiberg-Witten-Floer spectra
for −Σ(2, 3, 12j − 5),−Σ(2, 3, 12j + 1) and −Σ(2, 3, 12j + 5) can be computed similarly,
yielding the results in Section 7.2.
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