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Abstract. We review a few problems about triangulations of manifolds, and their con-
nection to homology cobordism. We explain how questions about homology cobordism
can be approached using Floer homology.

1. Triangulations of manifolds

Recall that a simplicial complex K is specified by a set of vertices V and a collection S of
finite nonempty subsets of V , such that if σ ∈ S and τ ⊂ σ then τ ∈ S. We then construct
K by attaching a d-dimensional simplex for each set in S of cardinality d+1. For example,
if

V = {1, 2, 3, 4}, S = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {3, 4}, {1, 3, 4}}
then the simplicial complex is
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A triangulation of a topological space X is a homeomorphism from X to a simplicial
complex. This gives a way of describing the space in terms of combinatorial data.

Example 1. Here is a triangulation of the torus:

Note that in the third picture, the torus is already split into triangles, but these are not
uniquely determined by their simplices. This problem is fixed in the last picture.

The most commonly studied spaces in topology are manifolds. There are different kinds
of manifolds, distinguished by the condition we impose on the transition functions between
charts. For example, we have

• Topological manifolds if there is no condition (the transition functions are C0);
• Smooth manifolds if the transition functions are C∞;
• PL (piecewise linear) manifolds if the transition functions are piecewise linear.

There is a particular kind of triangulations that appear naturally in the context of man-
ifolds. These triangulations are usually called combinatorial, but here we will use the term
PL as it is more accurate. To define them, we first introduce a few notions: in a simplicial
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complex, the closed star of a simplex σ is the union of all the (closed) simplices that contain
σ, and the open star is the union of the corresponding open simplices. The link of σ is the
set difference between the closed star and the open star:

v

S

→

Lk(v)

We say that a triangulation of a spaceX is PL if the link of every simplex (or, equivalently,
of every vertex) is piecewise-linearly homeomorphic to a sphere. If a PL triangulation exists,
then the space X looks locally like a cone on a sphere, i.e., it is a manifold; in fact, it is a PL
manifold. One can also prove the converse, that every PL manifold has a PL triangulation.

It is not immediately obvious that some manifolds can have non-PL triangulations, but
this can indeed happen in dimensions ≥ 5. One starts with a triangulation of a homology
sphere X where π1(X) ̸= 1. (For example, X could be the Poincaré sphere.) By taking two
cones on each simplex in X we get a triangulation of the suspension ΣX. This suspension
is not a manifold, but the double suspension Σ2X is a topological manifold homeomorphic
to a sphere, by the double suspension theorem of Edwards [Edw06] , [Edw80] and Cannon
[Can79]. The triangulation of Σ2X induced from that of X is not PL, because the link ΣX
of any cone point of Σ2X is not a sphere (in fact, it is not even a manifold).

It is natural to ask whether all manifolds can be triangulated. There are several versions
of this question.

Question 1 (Poincaré [Poi99]). Does every smooth manifold admit a triangulation?

The answer is yes, as was found by Cairns [Cai35] and Whitehead [Whi40]. Every smooth
manifold has a PL-structure, and therefore has a PL triangulation.

Question 2 (Kneser [Kne26]). Does every topological manifold admit a triangulation?

We can ask this about arbitrary triangulations, or about the more natural PL triangula-
tions. In the PL case, the answer depends on the dimension n of the manifold:

• for n = 0, 1: Yes, trivially.
• for n = 2 (Radó [Rad25]) Yes. Every two-dimensional surface has a piecewise linear
structure and therefore it is triangulable.

• for n = 3 (Moise [Moi52]) Yes. Every three dimensional manifold is smooth, hence
piecewise linear, and hence triangulable.

• for n = 4 (Freedman [Fre82]) No. Freedman constructed the four-manifold E8 which
has no piecewise linear structure.

• for n ≥ 5 (Kirby-Siebenmann [KS69]) No. For a topological manifold M , the Kirby-
Siebenmann class ∆(M) ∈ H4(M,Z/2) is an obstruction class to having a PL struc-
ture. In dimensions n ≥ 5 this is the only obstruction, and there exist manifolds
with ∆(M) ̸= 0; e.g. M = Tn−4 × E8. (In dimension 4, smooth and PL structures
are equivalent, and gauge theory provides additional obstructions to their existence.)

For arbitrary triangulations, the answers are as follows:

• for n ≤ 3: Yes, as above.
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• for n = 4 (Casson [AM90]) No. The Casson invariant can be used to show that
Freedman’s E8 manifold is not triangulable.

• for n ≥ 5 (Manolescu [?]) No. The ideas in the proof will be sketched below.

2. The homology cobordism group

To study triangulations of manifolds in dimensions ≥ 5, the key idea is to look at the
possible links of simplices of codimension n+1. They are n-dimensional homology spheres.
Triangulation questions can thus be reduced to questions about a group generated by n-
dimensional homology spheres, called the homology cobordism group Θn

Z. We will describe
here the PL version of this group; there is also a smooth version, which is related to the set
of exotic spheres. (In dimensions ≤ 6, the PL and smooth theories coincide, and the two
versions are the same)

The homology cobordism group is defined as

Θn
Z = {Y n oriented, PL, H∗(Y ) = H∗(S

n)} / ∼,

where the equivalence relation is given by Y0 ∼ Y1 ⇐⇒ there exist compact, oriented, PL
cobordism Wn+1 with ∂W = (−Y0) ∪ Y1 and H∗(W,Yi;Z) = 0, i = 0, 1.

W
Y0

Y1

Observe that [Y ] = 0 in Θn
Z if and only if Y bounds a PL homology ball.

The set Θn
Z is given an abelian group structure under the operation of connected sum,

with zero being the class [Sn] and the inverse given by orientation reversal: −[Y ] = [−Y ].
It turns out that Θn

Z = 0 for n ̸= 3 (cf. [Ker69]), but Θ3
Z ̸= 0. The latter fact is a

consequence of Rokhlin’s Theorem:

Theorem 2 (Rokhlin [Rok52]). Let W be a closed, smooth, spin 4-manifold. Then, the
intersection form

Q : H2(W ;Z)⊗H2(W ;Z) → Z
has signature σ(W ) divisible by 16.

If W is as above except with boundary ∂W a homology 3-sphere Y , we only know that
σ(W ) is divisible by 8. Rokhlin’s theorem implies that µ(Y ) = σ(W )/8 (mod 2) only
depends on Y (not on W ).

This produces the so-called Rokhlin homomorphism:

µ : Θ3
Z → Z/2, µ(Y ) = σ(W )/8 (mod 2).

For example, we have µ(S3) = 0, but there are also homology 3-spheres (such as the
Poincaré sphere) on which µ evaluates to 1. A consequence of that is that Θ3

Z ̸= 1.
In the 1970’s, Galewski-Stern [GS80] and Matumoto [Mat78] expressed the main ques-

tions about triangulations of manifolds in terms of questions about the structure of Θ3
Z (and

the Rokhlin homomorphism). The following are consequences of their work:

• There exist non-triangulable manifolds in dim ≥ 5 ⇐⇒ the exact sequence

0 −→ ker(µ) −→ Θ3
Z

µ−→ Z/2 −→ 0
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does not split; i.e. there is no [Y ] ∈ Θ3
Z, with 2[Y ] = 0 and µ(Y ) = 1. (In [?], the

author showed that the sequence does not split; see Section 3.)

• A manifold M of dimension ≥ 5 is triangulable ⇐⇒ a certain obstruction is zero in
H5(M ; ker(µ)). This could be replaced with an equivalent obstruction in H5(M ;Z),
if we knew that Θ3

Z had no torsion elements at all with µ = 1.

• Triangulations on M (if they exist) are classified by elements in H4(M ; ker(µ)).

3. Methods for studying Θ3
Z

The above triangulation problems provide the motivation for understanding Θ3
Z. While

the structure of this group is not fully understood, much progress has been made over the
years. We review here some of the main results, and refer to [Ş24] for a comprehensive
survey.

The definition of Θ3
Z involves four-dimensional PL (or, equivalently, smooth) cobordisms.

The tools for studying smooth four-dimensional topology involve gauge theory or symplectic
geometry. They can be grouped into three major theories:

(1) Yang-Mills theory;
(2) Seiberg-Witten theory;
(3) Heegaard Floer homology.

3.1. Yang-Mills theory. The Yang-Mills equation is a nonlinear PDE, which is elliptic
(modulo the action of the gauge group), and can be written on any 4-manifold. Counting
its solutions tells us something about the smooth structure on the 4-manifold.

Here are some of the results about Θ3
Z obtained from analyzing the Yang-Mills equation:

• Fintushel-Stern, Furuta): Θ3
Z has a Z∞ subgroup;

• Frøyshov [Frø02]: Θ3
Z has a Z summand;

• Frøyshov [Frø23]: There exist elements of Θ3
Z not representable by Brieskorn spheres;

• Nozaki-Sato-Taniguchi [NST24]: There exist elements of Θ3
Z not representable by

surgeries on knots;
• Daemi [Dae20]: If W is a homology cobordism between homology spheres with
µ = 1, then π1(W ) ̸= 1.

3.2. Seiberg-Witten theory. The Seiberg-Witten equations are a system of two nonlinear
PDEs, again elliptic (mod gauge), and sensitive to the smooth structure on the 4-manifold.
They have an S1 gauge symmetry. In the presence of a spin structure on the manifold, they
have an additional conjugation symmetry. Altogether, this amounts to a symmetry under
the Lie group

Pin(2) = S1 ∪ jS1 ⊂ C⊕ jC = H.

If Y is a 3-dimensional manifold, one can study the Seiberg-Witten equations on R× Y ,
and obtain an invariant called Seiberg-Witten Floer homology (or monopole Floer homol-
ogy). Different constructions of this have appeared in [KM07], [Frø10], [MW01], [Man03].

Let F be a field. The standard (S1-equivariant) version of Seiberg-Witten Floer homology
uses only the S1 symmetry, and is a a module over

H∗
S1(pt;F) = H∗(CP∞;F) = F[U ].

When Y is a homology 3-sphere, SWFH ∗
S1(Y ;F) is of the form F[U ]⊕ (F[U ]-torsion part).

By considering the grading of the free part F[U ], we obtain a single numerical invariant
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δ(Y ). This produces the Frøyshov homomorphism

δ : Θ3
Z → Z

For the Poincaré sphere one can compute δ(P ) = 1. It follows that δ is surjective, and
therefore Θ3

Z has a Z summand:

Θ3
Z = [P ]⊕ ker(δ).

One can also use the Pin(2) symmetry and obtain a Pin(2)-equivariant Seiberg-Witten
Floer homology. This is usually considered over the field F2, and denoted SWFH ∗

Pin(2)(Y ;F2).

Similarly to the Frøyshov invariant, one can extract from SWFH ∗
Pin(2)(Y ;F2) some maps

α, β, γ : Θ3
Z → Z.

These happen to not be homomorphisms, but satisfy the following properties:

α, β, γ(mod 2) = µ, α(−Y ) = −γ(Y ), β(−Y ) = −β(Y ).

Theorem 3 ([?]). There is no 2-torsion in Θ3
Z with µ = 1. (Hence, non-triangulable

manifolds exist in dim ≥ 5.)

Proof. A homology sphere Y with 2[Y ] = 0 would have Y homology cobordant to −Y , and
therefore β(Y ) = β(−Y ) = −β(Y ). This would imply β(Y ) = 0 and therefore µ(Y ) = 0. □

An alternate construction of the invariants α, β, γ was given by Lin in [Lin18].

3.3. Heegaard Floer homology. In [OS04], Ozsváth and Szabó associated to a 3-manifold

Y a collection of invariants ĤF (Y ),HF+(Y ),HF−(Y ), which are called Heegaard Floer ho-
mologies. Their construction uses symplectic geometry; more precisely, Lagrangian Floer
homology on the symmetric product of a Heegaard surface for Y .

Heegaard Floer homology was intended as an alternative approach to Seiberg-Witten
theory and, indeed, the theories were later shown to be equivalent. For example, HF+(Y )
is isomorphic to SWFH ∗

S1(Y ); see [KLT20], [CGH24], [LM18].
Its definition makes Heegaard Floer homology easier to compute than gauge-theoretic

invariants. In fact, Heegaard Floer homology was shown to be algorithmically computable;
see [SW10], [LOT14], [MOT09].

Furthermore, there is an analogue of the Frøyshov invariant δ in Heegaard Floer homol-
ogy, called the d-correction term [OS03]. Thus, one can re-prove some of the results about
Θ3

Z using this theory.

4. Involutive Heegaard Floer homology

While much about Θ3
Z remains unknown, more progress came out of an offshoot of Pin(2)-

equivariant Seiberg-Witten Floer homology, called involutive Heegaard Floer homology. This
theory is not sufficient to re-prove the triangulation result (Theorem 3), but is more com-
putable than SWFH ∗

Pin(2)(Y ;F2) and has other applications.

Involutive Heegaard Floer homology was constructed by Hendricks and the author in
[HM17], by making use of the conjugation symmetry on Heegaard Floer complexes. The

resulting homologies are denoted ĤFI (Y ),HFI+(Y ),HFI−(Y ).
Conjecturally, HFI+ is isomorphic to a Z/4-equivariant version of Seiberg-Witten Floer

homology, where Z/4 ⊂ Pin(2) is the subgroup generated by j. We do not yet know how
to recover the whole Pin(2) symmetry of the Seiberg-Witten equations in Heegaard Floer
theory.
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Nevertheless, HFI+ suffices to give invariants δ̄, δ : Θ3
Z → Z, similar to those from Z/4-

equivariant Seiberg-Witten Floer homology.
Involutive Heegaard Floer homology is computable for Seifert fibrations and surgeries

on many knots (torus knots, alternating knots, connected sums of those); see for example
[HMZ18], [Zem19], [DM19], [HHSZ20]. This gives more constraints on which 3-manifolds
are homology cobordant to each other, and new information about Θ3

Z.
Here are some of the most striking applications of involutive Heegaard Floer homology:

Theorem 4 (Dai-Hom-Stoffregen-Truong [DHST23]). Θ3
Z has a Z∞ summand.

This strengthens the previous results of Fintushel-Stern and Furuta, that Θ3
Z has a Z∞

subgroup; and that of Frøyshov, that it has a Z summand.

Theorem 5 (Hendricks-Hom-Stoffregen-Zemke [HHSZ20]). Θ3
Z is not generated by Seifert

fibrations.

This strengthens a previous result of Stoffregen [Sto20], that there exist elements of Θ3
Z

not representable by Seifert fibrations. (By contrast, Myers [Mye83] proved that every
element can be represented by a hyperbolic 3-manifold.)

There are also applications to knot theory, such as:

Theorem 6 (Dai-Kang-Mallick-Park-Stoffregen [DKM+22]). The (2, 1) cable of the figure
eight knot is not slice (i.e., it does not bound a disk in B4).

K

D2

K

B4

Finally, we discuss an application to stabilization numbers of 4-manifolds.
A pair of 4-manifolds (X,X ′) is called exotic if X and X ′ are homeomorphic but not

diffeomorphic.

Theorem 7 (Wall [Wal64]). Two simply connected, smooth, homeomorphic 4-manifolds
become diffeomorphic after taking connected sums with k(S2 × S2), for some k ≥ 0.

The same is true for 4-manifolds with boundary, by the work of Gompf [Gom84].
Given a pair of homeomorphic 4-manifoldsX andX ′, the minimum k such thatX#k(S2×

S2) and X ′#k(S2 × S2) are diffeomorphic is called the stabilization number.
In practice, for many exotic pairs, k = 1 suffices to make the manifolds diffeomorphic. A

recent result shows that this is not always the case:

Theorem 8 (Kang [Kan22]). There exist contractible, homeomorphic, smooth 4-manifolds
X, X ′ with boundary ∂X = ∂X ′ = Y , such that X#(S2 × S2) and X ′#(S2 × S2) are not
diffeomorphic. (In other words, their stabilization number is ≥ 2.)

The usual (Seiberg-Witten, Heegaard Floer) invariants of 4-manifolds with boundary
vanish after taking connect sum with S2×S2, but the involutive Heegaard Floer invariants
can be used to distinguish stabilizations; these are what Kang used in his proof.
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5. Open problems

The following questions remain open:

(1) Does Θ3
Z have torsion? Is it isomorphic to Z∞?

(2) Can we lift µ to a homomorphism µ̃ → Z, µ̃ ≡ µ (mod 2)? If so, this would imply
that there is no torsion in Θ3

Z with µ = 1. In turn, it would show that a manifold
of dimension ≥ 5 is triangulable ⇐⇒ an obstruction in H5(M ;Z) vanishes.

(3) Can the stabilization number of an exotic pair of 4-manifolds (possibly with bound-
ary) ever be ≥ 3?

(4) Can the stabilization number be ≥ 2 for closed 4-manifolds?
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