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Abstract. Ozsváth and Szabó defined an analog of the Frøyshov invariant in the form
of a correction term for the grading in Heegaard Floer homology. Applying this to the
double cover of the 3-sphere branched over a knot K, we obtain an invariant δ of knot
concordance. We show that δ is determined by the signature for alternating knots and
knots with up to nine crossings, and conjecture a similar relation for all H-thin knots. We
also use δ to prove that for all knots K with τ (K) > 0, the positive untwisted double of
K is not smoothly slice.

1. Introduction

In [22], Ozsváth and Szabó associated an invariant d(Y, t) ∈ Q to every rational homology
three-sphere Y endowed with a Spinc structure. In this paper we study the knot invariant

δ(K) = 2d(Σ(K), t0),

where Σ(K) is the double cover of S3 branched over the knot K, and t0 is the Spinc

structure induced by the unique Spin structure on Σ(K). In [22] it is shown that d induces
a group homomorphism from the three-dimensional Spinc homology bordism group to Q.
An immediate consequence of this fact and the basic properties of d is the following:

Theorem 1.1. The invariant δ(K) descends to give a surjective group homomorphism
δ : C → Z, where C is the smooth concordance group of knots in S3.

It is interesting to compare δ to three other homomorphisms from C to the integers. The
first is the classical knot signature σ, which we normalize to σ′ = −σ/2. The second is the
invariant τ defined using the knot Floer homology of Ozsváth-Szabó and Rasmussen [25],
[31]. The third is Rasmussen’s invariant s coming from Khovanov homology [32], which we
normalize to s′ = −s/2. For alternating knots it is known that τ = s′ = σ′. We show that
a similar result holds for δ :

Theorem 1.2. If the knot K is alternating, then δ(K) = σ′(K).

The similarities between the four invariants hold for a much larger class of knots. Indeed,
in [32] Rasmussen conjectured that s′ = τ for all knots. On the other hand, there are several
known examples where s′ = τ 6= σ′. Following [12], we call a knot H-thin (homologically
thin) if its Khovanov homology is supported on two adjacent diagonals, and H-thick oth-
erwise. Alternating knots are H-thin by the work of Lee [15], as are most knots up to ten
crossings [2], [12]. For all H-thin knots for which s′ was computed, it turned out to be equal
to σ′.

The invariant δ can be computed algorithmically for Montesinos and torus knots, using
the fact that their double branched covers are Seifert fibrations. We performed this com-
putation for all Montesinos knots in a certain range, and found that δ = σ′ for most of
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them. Interestingly, all the exceptions were H-thick. We also got δ = σ′ for many H-thick
examples, such as 819 and 942.

In another direction, we used the method of Ozsváth and Szabó from [28] to compute δ
for several H-thin knots of a special form. Together with the calculations for alternating,
Montesinos and torus knots, this is enough to cover all the knots with up to nine crossings.
We find:

Theorem 1.3. If the knot K admits a diagram with nine or fewer crossings, then δ(K) =
σ′(K).

We also managed to calculate δ for all but eight of the ten-crossing knots. Among these
we only found two examples with δ different from σ′, the H-thick knots 10139 and 10145.
Based on Theorem 1.2 and all our computations, we make the following:

Conjecture 1.4. For any H-thin knot K, δ(K) = σ′(K).

On the other hand, an important difference between δ and the other three invariants σ′, τ,
and s′ is that the absolute value of δ does not provide a lower bound for the slice genus of
a knot. For example, the slice genus of the knot 10145 is two, but δ(10145) = −3. However,
since δ is a concordance invariant, it can still be used as an obstruction to sliceness.

We can also say something about δ for Whitehead doubles. We denote by Wh(K) the
untwisted double of K with a positive clasp. We show:

Theorem 1.5. For any knot K we have δ(Wh(K)) ≤ 0, and the inequality is strict if
τ(K) > 0. If K is alternating, then δ(Wh(K)) = −4max{τ(K), 0}.

It is well-known that the Alexander polynomial of Wh(K) is always 1, and consequently
Wh(K) is topologically slice [7]. Our interest lies in the following conjecture, which appears
as Problem 1.38 in Kirby’s list [13].

Conjecture 1.6. Wh(K) is (smoothly) slice if and only if K is slice.

A quick corollary of Theorem 1.5 is a result in the direction of this conjecture:

Corollary 1.7. If the knot K has τ(K) > 0, then Wh(K) is not slice.

Previously, Rudolph proved in [35] that Wh(K) is not slice whenever the Thurston-
Bennequin invariant TB(K) of the knot K is nonnegative. (See also [1], [16] for different
proofs.) Since TB(K) ≤ 2τ(K) − 1 by the work of Plamenevskaya [30], Rudolph’s result
is a consequence of ours. Furthermore, Corollary 1.7 can also be applied to knots such as
62, 76, 811 and the mirrors of 84, 810, 816, which according to the knot table in [5] have τ > 0
but TB < 0.

As suggested to us by Jacob Rasmussen, Theorem 1.5 can be used to produce examples
of knots for which δ is a nontrivial obstruction to sliceness, while the other three invariants
are not. Indeed, we have:

Corollary 1.8. Let K1 = T (2, 2m + 1) and K2 = T (2, 2n + 1) be two positive torus knots
with m,n ≥ 1, m 6= n. Then the connected sum Wh(K1)#(−Wh(K2)) has σ′ = τ = s′ = 0
but δ 6= 0.

Let us denote by Cts the smooth concordance group of topologically slice knots. Endo
[4] proved that Cts has a Z∞ subgroup. However, it is not known whether it has a Z∞

summand. It was shown by Livingston [16] that τ : Cts → Z is a surjective homomorphism,
and therefore Cts has a Z summand. Using the pair (δ, τ), we show:

Corollary 1.9. The group Cts has a Z⊕ Z summand.
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2. General facts

In this section we prove Theorem 1.1. First, we claim that δ(K) is an integer for any knot
K. Note that the double branched cover Y = Σ(K) is a rational homology three-sphere
with |H1(Y )| = det(K) an odd integer. Any Y with |H1(Y )| odd admits a unique Spin
structure t0. This can be distinguished in the set of all Spinc structures by the requirement
that c1(t0) = 0 ∈ H2(Y ; Z). Let X be a four-manifold equipped with a Spinc structure s

such that ∂X = Y and s|Y = t0. Then k = c1(s) is an element in the kernel of the map
H2(X; Z)→ H2(Y ; Z). According to [22], we have

δ(K) = 2d(Y, t0) ≡
k2 − sgn(X)

2
(mod 4).

Here sgn(X) denotes the signature of X, and k is a characteristic element for the intersection
form on X.

We choose X to be the double cover of B4 branched along the pushoff of a Seifert surface
for K. It is shown in [10] that X is a spin manifold (so that k = 0 is characteristic) with
sgn(X) = σ(K). It follows that δ(K) is an integer and, furthermore,

(1) δ(K) ≡ σ′(K) (mod 4).

Next, assume that K is a slice knot, i.e. it sits on the boundary S3 of B4 and bounds
a smooth disk D ⊂ B4. Let X be the double cover of B4 branched over D. Then X is
a rational homology four-ball with boundary Y = Σ(K). Since d is an invariant of Spinc

rational homology bordism [22], it follows that d(Y, t0) = 0 and therefore δ(K) = 0.
The additivity property for connected sums δ(K1#K2) = δ(K1) + δ(K2) is a conse-

quence of the additivity of d (Theorem 4.3 in [22]). Also, Proposition 4.2 in [22] implies
that δ(−K) = −δ(K), where by −K we denote the mirror of K. If K1 and K2 are two
cobordant knots, then K1#(−K2) is slice, hence δ(K1) = δ(K2). This shows that δ is a
well-defined group homomorphism from the concordance group C to Z. Surjectivity is an
easy consequence of Theorem 1.2 below. For example, δ(T (3, 2)) = 1 for the right-handed
trefoil.

3. Alternating knots

This section contains the proof of Theorem 1.2. The main input comes from the paper
[27], where Ozsváth and Szabó calculated the Heegaard Floer homology for the double
branched covers of alternating knots.

Let K be a knot with a regular, alternating projection. The projection splits the two-
sphere into several regions, which we color black and white in chessboard fashion. Our
coloring convention is that at each crossing, the white regions should be to the left of
the overpass (see Figure 1). We form a graph Γ as follows. We form the set of vertices
V (Γ) by assigning a vertex to each white region. We index the vertices by setting V (Γ) =
{v0, v1, . . . , vm}, so that the number of white regions is m + 1. Let us denote by Ri the
white region corresponding to vi. We draw an edge between the vertices i, j ∈ V (Γ) for
every crossing at which the regions Ri and Rj come together. We denote by eij the number
of edges joining the vertices vi and vj .We can assume that the diagram contains no reducible
crossings, and therefore eii = 0 for all i.
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Figure 1. Coloring convention for alternating knot diagrams.

Choose an orientation on K, and consider the oriented resolution of the knot projection.
Note that at every positive crossing the two white regions get joined, while at every negative
crossing they are separated. Now form a new graph Γ̃ by taking its set of vertices V (Γ̃)
to be the set of white regions in the resolved diagram, and by assigning exactly one edge
whenever two white domains are adjacent at some negative crossing in the original knot
projection. In other words, we look at the natural projection map π : V (Γ)→ V (Γ̃). Given

x 6= y ∈ V (Γ̃), there is at most one edge between x and y. Such an edge exists if and only
if there are vi ∈ π

−1(x), vj ∈ π
−1(y) such that vi and vj are joined by at least one edge in

G. This is shown in Figure 2 for the two-bridge knot 813.

• • • • •

•
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• • •
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Figure 2. The knot 813. The top row contains the knot diagram and the
white graph Γ, and the second row contains the oriented resolution and the
graph Γ̃.

Lemma 3.1. Each circuit in Γ̃ has an even number of edges.

Proof. Label the edges of Γ by + or − according to the sign of the corresponding crossing
in the knot diagram. Going from Γ to Γ̃ consists in collapsing all positive edges. Thus, a
circuit in Γ̃ can be lifted to one in Γ, possibly at the expense of introducing some positive
edges.
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The statement of the lemma is equivalent to saying that all circuits in Γ have an even
number of negative edges. It suffices to prove this for elementary circuits in Γ, those whose
vertices correspond to the white regions adjacent to a particular black region, in cyclic
order. In other words, we need to show that each black region R has an even number of
negative crossings among its vertices. Let E1, E2, . . . , En be the edges on the boundary of
R in cyclic order. Each of them is oriented; let us define the sign of an edge Ei to be + if
Ei is oriented counterclockwise around R and − if it is oriented clockwise. Since the knot
projection is alternating, a negative crossing at a vertex of R corresponds to a change of
sign between the respective edges Ei and Ei+1. As we go around the boundary, there must
be an even number of such changes. This completes the proof. �

Lemma 3.1 implies that Γ̃ can be made into a bipartite graph as follows. The distance
between two vertices on a graph is defined to be the minimal number of edges in a path from
one vertex to the other. We define a map η̃ : V (Γ̃)→ {0, 1} by setting η̃(x) = the parity of

the distance between π(0) and x. This produces a partition of V (Γ̃) into two classes such
that η̃(x) 6= η̃(y) whenever x and y are joined by an edge. We can pull back η̃ to a partition
of V (Γ) described by the map η = η̃ ◦ π : V (Γ)→ {0, 1}.

Lemma 3.2. An edge in Γ between vi and vj corresponds to a positive crossing if and only
if η(vi) = η(vj).

Proof. If two domains Ri and Rj meet at a positive crossing, then π(vi) = π(vj), which
implies η(vi) = η(vj).

If Ri and Rj meet at a negative crossing c, we claim that any other crossing c′ where Ri

and Rj meet is also negative. Indeed, let us draw a loop γ on the two-sphere by going from
c to c′ inside Ri and then going from c′ to c in Rj . Let D one of the two disks bounded by
γ. Since c is negative, the underpass and the overpass at c must be going either both into
D or both out of D. It follows that the same is true for the underpass and the overpass at
c′, which means that c′ is negative. This proves our claim.

Therefore, if Ri and Rj meet at a negative crossing, the corresponding vi and vj must

project to different vertices x = π(vi), y = π(vj) ∈ V (Γ̃), where x and y are joined by an

edge in Γ̃. We observed above that in this situation η̃(x) 6= η̃(y). �

The Goeritz matrix G = (gij) of the alternating projection is the m × m symmetric
matrix with entries:

gij =

{

−
∑m

k=0 eik if i = j;

eij if i 6= j.

The quadratic form associated to G is negative-definite. Indeed, if we have a vector
w = (wi), i = 1 . . .m, then

(2) wTGw =

m
∑

i=1

m
∑

j=1

gijwiwj = −

m
∑

i=1

e0iw
2
i −

∑

1≤i<j≤m

eij(wi − wj)
2.

Definition 3.3. Given an m × m symmetric matrix M = (mij) with integer entries, a
vector w = (wi), i = 1 . . . m, with wi ∈ Z is called characteristic for M if (Mw)i ≡ mii

(mod 2) for all i.

Lemma 3.4. If w = (wi) is a characteristic vector for the Goeritz matrix G of an alter-
nating projection, then wi ≡ η(vi) (mod 2).
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Proof. The determinant of G is the same as the determinant of K (c.f. [3, Corollary
13.29]), which is an odd number. This means that the system of equations

(3)

m
∑

j=1

gijwj = gii (i = 1, . . . ,m)

has a unique solution over the field Z/2. Therefore, it suffices to show that wi = η(vi) satisfy
(3). Using the fact that η(v0) = 0, we can rewrite this condition as:

m
∑

j=0

eij(η(vj)− η(vi) + 1) ≡ 0 (mod 2) for i = 1, . . . ,m.

The left hand side of this congruence is the number of positive crossings around the white
region Ri. The boundary of Ri is a polygon with an orientation on each edge. A corner
of Ri corresponds to a positive crossing if and only if the orientations of the two incident
edges do not match up at that corner. The number of those corners has to be even. �

Gordon and Litherland [8, Theorem 6] proved a formula for the signature of a knot in
terms of the Goeritz matrix. In the case of an alternating projection (with our coloring
convention), their formula reads:

(4) σ(K) = −m+ µ,

where µ is the number of negative crossings.
On the other hand, Ozsváth and Szabó show in [27, 28] that the correction terms of Σ(K)

may be computed using the Goeritz matrix G. In [28, Proposition 3.2] they show that there
is an affine identification

φ : Zm/G · Zm −→ Spinc(Σ(K)),

taking zero to the spin structure and with

4d(Σ(K), φ(ξ)) = m+ max
v
{(Gw0 + 2v)TG−1(Gw0 + 2v)},

where w0 is any characteristic vector for G and the maximum is taken over v ∈ Zm with
[v] = ξ ∈ Zm/G · Zm. Applying this with ξ = 0 we find

(5) 2δ(K) = m+ max
w
{wTGw},

where the maximum is taken over characteristic elements w. From equation (2) we see that
the maximum can be attained by choosing all the wi to be either 0 or 1. Using the description
of the characteristic vectors in Lemma 3.4, it follows that we should take wi = η(vi) for all i.
Equation (2) shows that the maximum appearing in (5) is minus the total number of edges
between vertices vi and vj with η(vi) 6= η(vj). By Lemma 3.2, this is exactly −µ. Comparing
(4) with (5), we get that δ(K) = −σ(K)/2. This completes the proof of Theorem 1.2.

4. Montesinos and torus knots

4.1. Montesinos knots. For a detailed exposition of the properties of Montesinos knots
and links we refer to [3]. In the following definition, assume that e is any integer and (αi, βi)
are coprime pairs of integers with αi > βi ≥ 1.
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Definition 4.1. A Montesinos link M(e; (α1, β1), (α2, β2), . . . , (αr, βr)) is a link which has

a projection as shown in Figure 3(a). There are e half-twists on the left side. A box α, β

represents a rational tangle of slope α/β: given a continued fraction expansion

α

β
= [a1, a2, . . . , am] := a1 −

1

a2 − . . .
− 1
am

,

the rational tangle of slope α/β consists of the four string braid σa1

2 σ
a2

1 σ
a3

2 σa4

1 . . . σam
i , which

is then closed on the right as in Figure 3(b) if m is odd or (c) if m is even.

(a)

α1, β1

α2, β2

...

αr, βr

(b)

a1

a2

a3

(c)

a1

a2

Figure 3. Montesinos links and rational tangles. Note that e = 3 in
(a). Also (b) and (c) are both representations of the rational tangle of slope
10/3:

10/3 = [3,−2, 1] = [3,−3]

(and one can switch between (b) and (c) by simply moving the last crossing).

Let K be the link M(e; (α1, β1), (α2, β2), . . . , (αr, βr)). Note that K is alternating if
e /∈ {1, 2, . . . , r − 1}: for an alternating projection in the case e ≤ 0, take a continued
fraction expansion

αi

βi
= [ai

1, a
i
2, . . . , a

i
mi

]

with ai
1, a

i
3, . . . positive and ai

2, a
i
4, . . . negative, for each i (as in [3, 12.13]). Then note that

the reflection −K of K is obtained by replacing e with r − e and βi with αi − βi.
Also, K is a knot if and only if either exactly one of α1, . . . , αr is even, or if all of

α1, . . . , αr, e +
∑r

i=1 βi are odd. We will restrict our attention to knots. Since δ(K) is
determined for alternating knots by Theorem 1.2, and since δ(−K) = −δ(K), we also
restrict to 1 ≤ e ≤ ⌊r/2⌋.

The double cover of S3 branched along K is a Seifert fibred space which is given as the
boundary of a plumbing of disk bundles over S2 (see for example [20]). This plumbing is
determined (nonuniquely) by the Montesinos invariants which specify K. After possibly
reflecting K we may choose the plumbing so that its intersection pairing is represented by
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Montesinos knot Knotscape notation δ σ′

M(1; (3, 1), (3, 1), (4, 1)) 10n27 = 10139 −1 3
M(1; (3, 1), (3, 1), (5, 2)) 10n14 = 10145 3 −1
M(1; (2, 1), (3, 1), (7, 1)) 12n242 0 4
M(1; (5, 2), (5, 2), (5, 2)) 12n276 2 −2
M(1; (3, 1), (4, 1), (5, 1)) 12n472 0 4
M(1; (3, 1), (3, 1), (6, 1)) 12n574 0 4
M(1; (2, 1), (5, 1), (5, 1)) 12n725 0 4
M(1; (3, 2), (5, 1), (5, 1)) 13n3596 4 0
M(1; (5, 2), (5, 2), (6, 1)) 14n6349 −2 2
M(1; (3, 1), (4, 1), (7, 1)) 14n12201 1 5
M(1; (3, 1), (5, 1), (6, 1)) 14n15856 1 5
M(1; (4, 1), (5, 1), (5, 1)) 14n24551 1 5
M(1; (5, 1), (5, 3), (6, 1)) 15n74378 0 4
M(1; (5, 1), (5, 1), (6, 1)) 16n931575 2 6

Table 1. Montesinos knots for which δ 6= σ′.

a negative-definite matrix Q. It then follows from [23, Corollary 1.5] that

δ(K) = max

{

wTQw + rank(Q)

2

}

,

where the maximum is taken over all w ∈ Zrank(Q) which are characteristic for Q in the
sense of Definition 3.3.

This permits an algorithmic computation of δ(K). We ran a Maple program (partly
written by Sašo Strle) to find δ for all Montesinos knots M(1; (α1, β1), (α2, β2), (α3, β3))
with αi ≤ 7. According to the table in [11], these include all nonalternating Montesinos
knots with up to 10 crossings.

The result is that δ = σ′ for all but the knots listed in Table 1.
We used the program Knotscape [6] to identify these knots. For the convenience of the

reader, the two ten crossing knots are also shown in Rolfsen’s notation [34].
Shumakovitch’s KhoHo package [36] showed that all these knots are not H-thin, in agree-

ment with Conjecture 1.4.

4.2. Torus knots. The double branched cover of the torus knot T (p, q) is the Brieskorn
sphere Σ(2, p, q). This is a Seifert fibration, so we can use the same formula as in the
Montesinos case. Therefore, for every p and q, we have an algorithmic way of computing δ.
For example, the double cover of T (3, 4) is Σ(2, 3, 4), which gives δ(T (3, 4)) = σ′(T (3, 4)) =
−3.

Two infinite classes of knots for which δ 6= σ′ are provided by the torus knots T (3, 6n+1)
for n ≥ 0, and T (3, 6n − 1) for n ≥ 1. Indeed, using the recurrence formulae for the
signatures of torus knots in [9] we can easily compute σ(T (3, 6n ± 1)) = 8n. Therefore,
σ′(T (3, 6n ± 1)) = −4n. On the other hand, the double branched covers are the Brieskorn
spheres Σ(2, 3, 6n + 1), whose Heegaard Floer homologies were computed by Ozsváth and
Szabó in [22]. Their calculations show that δ(T (3, 6n + 1)) = 0 and δ(T (3, 6n − 1)) = −4
for all n.
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5. The Ozsváth-Szabó technique

In [28], Ozsváth and Szabó managed to compute the correction terms d for Σ(K) for four
knots of ten crossings that are neither alternating nor Montesinos. Their method was to
find explicit sharp four-manifolds with boundary Σ(K). If we focus on the spin structure,
we see that the results

δ(10148) = 1, δ(10151) = −1, δ(10158) = 0, δ(10162) = 1

coincide with σ′ in all four examples.
A rational homology sphere Y is called an L-space if its reduced Heegaard Floer homology

HFred(Y ) vanishes, so that its Heegaard Floer invariants resemble those of a lens space. A
negative-definite four-manifold X is called sharp if its boundary ∂X = Y is an L-space, and
if

d(Y, t) = max

{

c1(s)
2 + b2(X)

4

∣

∣

∣

∣

s ∈ Spinc(X), s|Y = t

}

for all t ∈ Spinc(Y ). This means that the correction terms of Y can be computed from
the intersection pairing of X. We say a negative-definite form Q is sharp for Y if Q is the
intersection pairing of a sharp four-manifold bounded by Y .

The following proposition summarizes the above-mentioned technique. The proof of this
proposition is due to Ozsváth and Szabó and may be found in [28, §7.2].

Proposition 5.1. Let k ≥ 2. Suppose that a knot K has a nonalternating projection which
contains a subdiagram which is a −k/2 twist (a 2-strand braid with k crossings, as shown
below)

. . .

and that the complement of this subdiagram is alternating. Let K ′,K ′′ respectively be the
links obtained by replacing the −k/2 twist by

, .

Note that the resulting projection of K ′′ is alternating. Let G be the negative-definite m×m
Goeritz matrix associated to K ′′ as in Section 3, where we take v0 and vm to be the vertices
in the white graph associated to the regions at each end of the subdiagram shown above. Let
Gr be the matrix









G
1

1 r









.

Then G−1 is the intersection pairing of a four-manifold bounded by Σ(K ′), and G−k is the
intersection pairing of a manifold bounded by Σ(K). If G−1 is negative-definite and sharp
for Σ(K ′) then G−k is sharp for Σ(K).

For each knot K in Figure 4 we find that Σ(K ′) is a lens space whose correction terms
may be computed using the formula from [22], so that the condition on G−1 may be checked.
Then the matrix G−k may be used to compute the correction terms of Σ(K). In particular
we find that δ = σ′ for all of these knots.

Putting this together with the calculations for alternating, Montesinos, and torus knots,
this covers all but eight of the knots up to ten crossings, and establishes the result in
Theorem 1.3.
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10149

10157

10164
10165

10156

947
949

10163

Figure 4. The relevant −1 or −3/2 twist is indicated on each knot.
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In Table 2 we exhibit all the knots of up to ten crossings for which either some of the four
invariants δ, σ′, τ and s′ are different, or some of their values are unknown. In other words,
for all the knots up to ten crossings that are not shown, we know that δ = σ′ = τ = s′.

The notation for knots is the one in [5], the same as Rolfsen’s but with the last five knots
translated to account for the Perko pair. The values for σ′, τ and s′ are also taken from [5].

Knot Type δ σ′ τ s′

942 H-thick −1 −1 0 0
10132 H-thick 0 0 −1 −1
10136 H-thick −1 −1 0 0
10139 H-thick −1 3 4 4
10141 H-thick 0 0 ? 0
10145 H-thick 3 −1 −2 −2
10150 H-thin ? 2 2 2
10152 H-thick ? 3 4 4
10153 H-thick ? 0 0 0
10154 H-thick ? 2 3 3
10155 H-thin ? 0 0 0
10159 H-thin ? 1 1 1
10160 H-thin ? 2 2 2
10161 H-thick ? 2 3 3

Table 2. Knots with 10 crossings or less for which either δ, σ′, τ ,
s′ are not all equal, or some of their values are not known.

6. Whitehead doubles

The double branched coverings of doubles of knots were studied extensively in [18]. In
particular, it is interesting to note that the double branched cover of a twisted double of a
prime knot K determines K among all prime knots.

In this section we focus on the untwisted Whitehead double Wh(K) = Wh+(K) of a
knot K with a positive clasp. The untwisted double of the right handed trefoil is shown in
Figure 5. (The three negative twists shown in the diagram are a consequence of the fact
that the chosen diagram of the trefoil has writhe three.) Note that the untwisted double
Wh−(K) with a negative clasp is simply −Wh+(−K), so our discussion can also be phrased
in terms of Wh−.

Denote by Kr the knot K with its string orientation reversed. The following surgery
description of Σ(Wh(K)) is useful:

Proposition 6.1. Σ(Wh(K)) is the manifold obtained by Dehn surgery on the knot K#Kr

in S3 with framing 1/2.

Proof. The knot Wh(K) may be unknotted by changing one crossing, so as to undo the
clasp. A theorem originally due to Montesinos tells us that Σ(Wh(K)) is given by Dehn
surgery on a knot with half-integral framing. An algorithm is described in [19, Lemma 3.1]
to obtain a Dehn surgery diagram for the double branched cover of any knot C by first
obtaining a Kirby calculus diagram of a disk bounded by C in a blown-up four-ball. The
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Figure 5. The untwisted Whitehead double of the right handed

trefoil, with a positive clasp.

description of Σ(Wh(K)) follows from the application of this algorithm to Wh(K). (This
is illustrated in Figure 6.) �

In [31], Rasmussen introduced a set of invariants hi for a knot K ⊂ S3, where i ∈ Z.
They are nonnegative integers that encode the information in the maps in the surgery exact
triangles for K. According to [31, Section 7.2] and [33, Section 2.2], the correction terms d
for manifolds obtained by integral surgery on a knot K ⊂ S3 can be computed in terms of
the hi’s. In particular, the d invariant of the −1 surgery on K is equal to 2h0.

Proposition 6.2. Let K−1/2 be the manifold obtained from S3 by surgery on the knot
K with framing −1/2. Then d(K−1/2) = 2h0(K). (Note that K−1/2 has a unique Spinc

structure, which we drop from the notation.)

Proof. Let K0 and K−1 be the results of 0 and −1 surgery on K ⊂ S3, respectively.
Consider the exact triangle with twisted coefficients [21]:

(6) HF+(K0)→ HF+(S3)[T, T−1]
FW−−−−→ HF+(K−1)[T, T

−1]
FW0−−−−→ HF+(K0)

We tensor everything with Q for simplicity, so that (6) is a long exact sequence of modules
over the ring Q[U, T, T−1]. The map FW is induced by the cobordism W corresponding to
the −1 surgery on K. We let y ∈ H2(W ) be a generator and denote by ti the Spinc structure
on W with c1(ti) = 2i − 1. There are maps FW,ti : HF+(S3) → HF+(K−1) associated to
each Spinc structure, and

FW (x) =
∑

T i · FW,ti(x).

Since S3 and K−1 are integral homology spheres, FW,ti are graded maps. More precisely,
they shift the absolute grading on HF+ by (c1(ti)

2 + 1)/4 = i − i2. In particular, the
maximal degree shift is zero.
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K
blow up
−→ 1

U

K ≃
U

1

K

≃ K

1

U
2:1
←− K

1

1

K ≃ K K

1/2

Figure 6. Proof that the double branched cover of Wh(K) is

(K#Kr)1/2. Note that in the last diagramK is traversed twice with different
orientations, so that the knot shown is K#Kr rather than K#K.

For every integral homology sphere Y , the Heegaard Floer homology HF+(Y ; Q) is a
Q[U ]-module that decomposes as T +

d(Y )⊕HFred(Y ). Here HFred is finite dimensional as a Q-

vector space, and T +
d(Y )
∼= Q[U,U−1]/Q[U ] with U reducing the degree by 2 and the bottom-

most element in T +
d(Y ) being in absolute degree d(Y ). The piece T +

d(Y ) can be described as

the image of HF∞(Y ) into HF+(Y ), or as the image of Uk in HF+(Y ) for k sufficiently
large.

The map FW induces an isomorphism on HF∞ in each Spinc structure, cf. [21, Section
10.1]. This fact, together with U -equivariance, implies that FW must takeHF+(S3)[T, T−1] =
T +

0 [T, T−1] onto T +
d(K−1) [T, T−1], with a finite dimensional kernel. The number h0 =

h0(K) is the rank of the kernel of FW as a Q[T, T−1] module, which is the span of
{1, U−1, . . . , U−h0+1}. Since the degree shift of FW,t0 is zero, we must have d(K−1) = 2h0.

Let x be a generator of the part of T +
d(K−1)

sitting in the bottom-most degree d(K−1). For

all k we have

FW (U−h0−k) = P (T )U−kx+ lower degree terms,

where P (T ) is a fixed polynomial in T. Since the cobordism W is negative definite, each of
the Spinc structures ti (in particular t0 and t1) induces an isomorphism on HF∞. It follows
that P (T ) = aT + b with a, b 6= 0.

The conclusion is that for any element z in the image of FW (which is also the kernel of
FW0

), the part of z sitting in highest degree is always a multiple of P (T ). Note that P (T )
is not invertible in Q[T, T−1].
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Now let K ′ ⊂ K−1 be the core of the solid torus glued in for the −1 surgery. Then −1
surgery on K ′ ⊂ K−1 produces the manifold K−1/2, while zero surgery on K ′ ⊂ K−1 gives
K0 again.

We consider the exact triangle with twisted coefficients for the −1 surgery on K ′ ⊂ K−1 :

(7) · · · → HF+(K0)
FZ−−−−→ HF+(K−1)[T, T

−1]
FW ′

−−−−→ HF+(K−1/2)[T, T
−1]→ . . .

The map FZ is induced by a cobordism Z from K0 to K−1. Drawing inspiration from
the arguments in [26, Lemma 2.9] and [28, Lemma 4.5], we compose Z with the cobordism
W0 from K−1 to K0 that appeared in (6). Then W0 ◦ Z has an alternative factorization
as the two-handle addition from K0 to K0#(S2 × S1), followed by another cobordism in
which the generator of H1(S

2×S1) becomes null-homologous. This implies that FW0
◦FZ =

FW0∪Z = 0. (Alternatively, one could observe that W0 ∪Z contains a sphere of square zero
representing a nontrivial relative homology class. Arguments as in [14, Lemma 7.1] then
show that the corresponding cobordism map is zero.)

It follows from here that the image of FZ (which is also the kernel of FW ′) lies in the
kernel of FW0

. Hence every element in the kernel of FW ′ must have its highest degree part a
multiple of P (T ). In particular, since the bottom-most generator x of T +

d(K−1) is not of this

form, we must have FW ′(x) 6= 0.
Note that K−1 and K−1/2 are integral homology spheres, and FW ′ is a sum of graded

maps as before, with the maximal shift in absolute grading being zero. The map FW ′ must
take T +

d(K−1)
[T, T−1] to T +

d(K
−1/2)

[T, T−1]. Also, W ′ is a negative definite cobordism, which

means that FW ′(x) must have its highest degree part in grading 2h0 = degree(x). On the
other hand, we have U · FW ′(x) = FW ′(Ux) = 0, hence FW ′(x) lives in the bottom-most
degree d(K−1/2). We conclude that d(K−1/2) = 2h0. �

Applying this to the mirror image of K we get:

Corollary 6.3. Let K1/2 be the manifold obtained from S3 by surgery on the knot K with
framing 1/2. Then d(K1/2) = −2h0(−K).

Proof of Theorem 1.5. Proposition 6.1 and Corollary 6.3 imply that δ(Wh(K)) =
−4h0(−(K#Kr)). Since h0 is always nonnegative, we must have δ(Wh(K)) ≤ 0. Proposition
7.7 in [31] says that h0(K) > 0 whenever τ(K) < 0. Applying this to −(K#Kr) and using
the fact that τ(−(K#Kr)) = −2τ(K), we get that δ(Wh(K)) < 0 for τ(K) > 0.

According to [24], alternating knots are perfect in the sense of [31, Definition 6.1], i.e.
their knot Floer homology is supported on one diagonal. For a perfect knot K, h0(K) =
max{⌈−τ(K)/2⌉, 0} by [31, Corollary 7.2]. The property of being perfect is preserved under
taking connected sums by [31, Corollary 6.2]. Also, knot Floer homology is insensitive to
orientation reversal of the knot. Therefore, if K is alternating (or, more generally, perfect)
then −(K#Kr) is perfect and δ(Wh(K)) = −4max{τ(K), 0}. �

Proof of Corollary 1.8. The knot K1 = T (2, 2m + 1) is alternating and has τ(K1) =
m > 0. By Theorem 1.5 we have δ(Wh(K1)) = −4m. On the other hand, by writing down a
Seifert matrix it is easy to see that the signature of the Whitehead double of any knot is zero,
so σ′(Wh(K1)) = 0. The results of Livingston and Naik from [17], together with the fact
that the Thurston-Bennequin number TB(K1) = 2m− 1 is positive (see for example [29]),
imply that τ(Wh(K1)) = s′(Wh(K1)) = 1. The same results hold for K2 = T (2, 2n + 1),
and the corollary follows from the additivity properties of the four invariants. �

The fact that δ(Wh(T (2, 2m+ 1)) = −4m shows that δ(Wh(K)) can be any nonpositive
multiple of four. In contrast to this, σ′(Wh(K)) = 0 for all K and s′(Wh(K)), τ(Wh(K)) ∈
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{0,±1} because their absolute values are bounded above by the unknotting number of
Wh(K).

Proof of Corollary 1.9. Note that every topologically slice knot has σ = 0, and therefore
δ ≡ 0 (mod 4) by (1). We claim that the homomorphism ψ = (τ, δ/4) : Cts → Z ⊕ Z is
surjective. Indeed, we have ψ(Wh(T (2, 3)) = (1,−1) and ψ(Wh(T (2, 5)) = (1,−2), and
these values span Z⊕ Z. �
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