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Chapter 1

Introduction to Heegaard Floer
homology

1.1 Admin (lecture 1)

Topics in the course will include:

1. The definition of Heegaard Floer homology for 3-manifolds using pseudo-holomorphic
curves.

2. Heegaard Floer invariants for 4-manifolds.

3. Knot Floer homology and applications to concordance.

4. Methods for computing Heegaard Floer invariants.

5. Involutive Heegaard Floer homology and applications to homology cobordism.

There is no official textbook for the course; material is taken from several research articles
primarily by Ozsvath and Szabo:

e P. Ozsvath and Z. Szabd, Holomorphic disks and topological invariants for closed
three-manifolds, Annals of Math. (2) 159 (2004), no. 3, 1027-1158.

e P. Ozsvath and Z. Szabd6, Holomorphic disks and three-manifold invariants: proper-
ties and applications, Annals of Math. (2) 159 (2004), no. 3 1159-1245.

e P. Ozsvath and Z. Szabd, Holomorphic triangles and invariants for smooth four-
manifolds, Adv. Math. 202 (2006), no. 2, 326-400.

e P. Ozsvath and Z. Szabd, Holomorphic disks and knot invariants, Adv. Math. 186
(2004), no. 1, 58-116.



P. Ozsvéath and Z. Szab6, Knot Floer homology and integer surgeries, Alg. Geo. Top.
8 (2008) no. 1, 101-153.

S. Sarkar and J. Wang, An algorithm for computing some Heegaard Floer homologies,
Annals of Math. (2) 171 (2010), no. 2 1213-1236.

e C. Manolescu, P. Ozsvath, and S. Sarkar, A combinatorial description of knot Floer
homology, Annals of Math. (2) 169 (2009), no. 2, 633-660.

C. Manolescu, P. Ozsvath, Z. Szab6, and D. Thurston, On combinatorial link Floer
homology, Geo. Top. 11 (2007), 2339-2412.

e K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J.
166 (2017), no. 7, 1211-1299.

The following survery articles may be helpful:

e Ozsvath-Szabd, An introduction to Heegaard Floer homology, in Floer homology,
gauge theory, and low dimensional topology, 3-27, AMS, 2006.

e Ozsvath-Szabd, Lectures on Heegaard Floer homology, in Floer homology, gauge the-
ory, and low dimensional topology, 29-70, AMS, 2006.

e Ozsvath-Szabd, Heegaard diagrams and holomorphic disks, in Different faces of ge-
ometry, 301-348, Kluwer/Plenum, New York, 2004.

e C. Manolescu, An introduction to knot Floer homology, in Physics and mathematics
of link homology, 99-135, Contemp. Math. 680, AMS, 2016.

e J. Hom, A survery on Heegaard Floer homology and concordance. J. Knot Theory
Ramifications 26 (2017), no. 2, 1740015, 24 pp.

Prerequisites: algebraic and differential topology (such as Math 215A, 215B), including
knowledge of characteristic classes and Morse theory. Symplectic geometry (Math 257A)
is recommended but not required.

1.2 Big aims of topology and Floer homology

The primary goal of topology is to classify topological objects. The most fundamental of
these are manifolds. What are all of the manifolds (of each dimension) up to homeomor-
phism? What are the smooth manifolds? What are the oriented, closed, connected smooth
manifolds?

e Dimension 0: any connected, oriented, closed smooth manifold is a point.



e Dimension 1: any such manifold is a circle.
e Dimension 2: any such manifold is a surface of genus g, for some g € N.

e Dimension 3: connected, oriented, closed smooth manifolds are classified by the ge-
ometrisation theorem (Thurston-Hamilton-Perelman). Essentially any such 3-manifold
Y3 can be cut along copies of S and T? into fundamental “geometric pieces” of 8
types. Of these, 7 are well understood, and the most interesting case corresponds
to hyperbolic geometry - 3 dimensional hyperbolic geometry is not yet completely
understood.

e Dimensions at least 5: these are understood by surgery theory for m; = 1, by the
work of Milnor, Smale, ... in the 60s.

This leaves dimension 4, in which there are still very many questions! (This was the primary
focus of the topics course from the previous quarter.) So how do we try to classify smooth
manifolds in four dimensions? One approach is gauge theory! For example, Yang-Mills and
Seiberg-Witten gauge theory. These give rise to invariants of 4-manifolds that can detect
exotic smooth structures.

For example, we can find 4-manifolds X and X’ which are homeomorphic, but such
that SW(X) # SW(X'), where SW(X) € Z is the Seiberg- Witten invariant of X. But
given a 4-manifold X, can we typically compute SW (X)? This invariant is a certain count
of solutions to differential equations on the manifold, and is difficult to compute in general.
One approach is to use gluing formulae.

X

Figure 1.1: Decomposition of 4-manifold X.

In figure we have decomposed a closed 4-manifold X as two simpler 4-manifolds
X1, X5 glued together along their boundary Y (which is a 3-manifold). The gluing formulae
state that

SW(X) ={(SW(Xy), SW(X2)),

where SW(X;) e HM(Y), SW(X2) e HM(Y)*. Here HM(Y) is something called the
monopole Floer homology or Seiberg- Witten Floer homology of the 3-manifold Y, and is



a vector space over Z/27 (with some grading). This is an example of a Floer homology
constructed from the Seiberg-Witten equations.

There are different versions of monopole Floer homology corresponding to different
equivariant homologies, such as HM,HM, and HM. In fact, these fit into an exact
triangle - . -

-—> HM,(Y) HW*(Y) —-> HM,(Y) > HM(Y) > ---

The Seiberg-Witten equations have a symmetry given by Pin(2) = S' U jS! =« C®jC = H.
Given any G < Pin(2), we can also consider G-equivariant Seiberg-Witten Floer homology.

This is enough about monopole Floer homology - what about Heegaard Floer homology?
This is a symplectic replacement for Seiberg-Witten theory introduced by Ozsvath and
Szabd in 2001. These are again Z/27Z-vector spaces defined for a closed oriented 3-manifold
Y3, denoted by

HF(Y),HF*(Y),HF~(Y),HF(Y),HF®(Y),. ...

(Again these are all various types of Heegaard Floer homology which we will encounter
later on.) We said that they are symplectic replacements for Seiberg-Witten theory - what
does this mean?

Theorem 1.2.1.

ﬁ(Y) >~ “non-equivariant Seiberg- Witten Floer homology”
(Kutluhan, Lee, Taubes, circa 2011),

HF™(Y) = “S'-equivariant Seiberg- Witten Floer homology”
(Colin, Ghiggini, Honda, circa 2011).

This shows that Heegaard Floer homology recovers the same information as Seiberg-
Witten Floer homology, so why do we care? What are advantages and disadvantages of
Heegaard Floer homology?

Advantages of Heegaard Floer homology. The key advantage is that it’s easier
to compute than Seiberg-Witten Floer homology! In fact, we can use it to recover many
results in 4-manifold theory (which were originally proven using Seiberg-Witten invariants),
following this vague outline. First, Heegaard Floer homology forms a functor from the
cobordism category of 3-manifolds to graded vector spaces. More concretely, given a 4-
manifold W with boundary 6W = Yy u (Y1), we obtain maps

Fw: HF(Y;) » HF (Y1), F&:HF*(Yy) - HFE (V).

Moreover, if W is a closed 4-manifold, we can remove two copies of S? as in figure to
study W in terms of the induced maps above. The cobordism W; from S to N induces a
map F| +1, and the cobordism Wy from N to S? induces a map Fy,. Mixing these together
in a certain way, we obtain Fi,ix(W) € Z, a “mixed invariant for 4-manifolds”.
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Figure 1.2: Using Heegaard Floer homology to study closed 4-manifolds.

Conjecture. Given a closed 4-manifold W, Fpix(W) = SW(W).

Even though the above is still only a conjecture, enough properties of F,jx are known
that we can, for example, recover a proof of the existence of exotic smooth structures.
While Seiberg-Witten invariants of 4-manifolds are typically difficult to compute, there are
combinatorial algorithms for computing Heegaard Floer homology.

Disadvantages of Heegaard Floer homology. Less relation to differential geom-
etry! For example, in Seiberg-Witten theory it is not too difficult to show that any 4-
manifold admitting a positive scalar curvature metric has trivial Seiberg-Witten invariant.
However, this type of result is difficult in the Heegaard picture.

1.3 Applications of Heegaard Floer homology: 4-manifolds

Above we mentioned applications to 4-manifold topology by comparison with Seiberg-
Witten theory. Another application is the following question:

Open question. Let W be a smooth 4-manifold with boundary a connected manifold
Y. Given Y, what are the possibilities for H,(W)? What are the possibilities for the
intersection form Qu : H?*(W;Z) ® H*(W;Z) — Z? More specifically, when is W a
homology 4-ball?

For W to be a homology ball, we certainly need (from the homology long exact sequence)
that Y is a homology 3-sphere; H,(Y) = H,(S?). This motivates the definition of the
homology cobordism group.

Definition 1.3.1. The homology cobordism group @% consists of integral homology 3-
spheres, up to homology cobordism. This means that ©5 = {Y3oriented, H.(Y;Z) =



H,(S3;,7)}/ ~, where Yy ~ Y; if and only if there is a cobordism W from Yy to Y; with
H,(W,Y;) = 0 for both ¢. This truly forms a group:

[S*1=0, [-Y]=-[V], [Yo#W]=[Yo]+ V1]

We care about the homology cobordism group because [Y] = 0 if and only if YV is
homology cobordant to S?, but this is exactly when Y bounds a homology 4-balll In
summary, to understand our original question, the real task is to understand the homology
cobordism group. Much work was gone into studying the homology cobordism group, and
this has been helped by Heegaard Floer homology.

Before Floer Homology came into play, the first steps in understanding the homology
cobordism group were carried out by Rokhlin. He defined a surjective homomorphism, now
called the Rokhlin invariant,

w03 — 7/27

which was the first proof that the homology cobordism group is non-trivial. In particular,
the 3-sphere has Rokhlin invariant 0, and the Poincaré homology sphere has Rokhlin in-
variant 1. In the 70s it was conjectured that the Rokhlin invariant was an isomorphism.
However, this can be disproven by Donaldson’s diagonalisation theorem - the homology
cobordism group is infinite. More precisely, the Casson invariant (which is discussed in
my notes on homology 3-spheres) is a surjective map @% — 7, so this gives another proof
of the infinitude of @%. It turns out that the Casson invariant is some sort of Euler char-
acteristic for Floer homology! perhaps we will touch on this eventually.

In fact, Ciprian showed (in 20137) using his version of Seiberg-Witten Floer homology
that the homology cobordism group has no elements of order 2! This is equivalent to
the falsity of the triangulation conjecture for manifolds of dimension at least 5! That is,
there exist topological manifolds of dimension at least five that do not admit compatible
triangulations. This is also discussed in my notes on homology 3-spheres.

Where does Heegaard Floer homology come into play?

e Using HF*, one can define a surjective homomorphism
d: @% — 7.

In particular, d(P) = 2, where P is the Poincaré homology sphere. This shows that
P does not bound a homology 4-ball (which we of course already knew from the
Rokhlin or Casson invariants). This is really telling us that the homology cobordism
group has a Z direct summand.

e In fact, using involutive Heegaard Floer homology (Hendricks-Manolescu, 2016), we
can extract even more information. involutive Heegaard Floer homology is an ana-
logue of Z/47Z-equivariant Seiberg-Witten Floer homology, where Z/4Z = {(j) sits
inside Pin(2) < H. Using involutive Heegaard Floer homology, it was later shown
that ©3 actually has a Z% direct summand! (Dai-Hom-Stoffregen-Truong, 2018).
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1.4 Interlude: Hungarian pronunciation

A prerequisite to studying Heegaard Floer homology is to learn some Hungarian pronun-
ciation! Much of the field was pioneered by two Hungarian mathematicians, Ozsvath and
Szabd. Here is a table of some key things to keep in mind:

Hungarian English
s sh (like shoe)
sz s (like spoon)
AS zh (like pleasure)
j y (like yeet)
c ts (like spots)
W v (like vinyl)

If we place consonants adjacently (e.g. “th”) in Hungarian, we would not read this as
thought, but as a “t” followed by an “h” (so in English this is just approximated by a
single t).

We can practice our pronunciation with some names that we might encounter:

Peter Ozsvath Zoltan Szabé Andrds Vasy Andras Stipsicz Andréds Juhész.

1.5 Applications of Heegaard Floer homology: 3-manifolds

Question. Let Y2 be closed and oriented, and h € Ho(Y;Z). Then h can be represented
by a closed oriented (possibly disconnected) surface. What is the simplest such surface?

Suppose X is a surface representing h. Then we can write ¥ = | J %; for each component,
so that its Euler characteristic is

X(Z) =Y x(Z) = D22 — 29(0)).

Given any Y, addition of handles will decrease x(X) by 2, while addition of contractible
spheres will increase x(X) by 2. One approach to interpreting the previous question is “what
is the minimum Euler characteristic of a surface representing a given second homology class,
when we account for the previous two modifications?” This is essentially the definition of
the Thurston norm.

Definition 1.5.1. Given a surface X, x+ () = >}, max{0, —x(Z:)} = — X5, 1ot a sphere X(Zi)-
We define the Thurston norm of a second homology class h to be the minimum y 4 (%), for

> representing h:
6(h) = min(x (%) : [] = h).
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Therefore our first question can be rephrased as “given a second homology class of a 3-
manifold, what is its Thurston norm?” This can be solved using Heegaard Floer homology!
One can show that - /\

HF(Y)= @ HE(Y;s)
s€H2(Y;Z)

where HF (Y;s) are abelian groups, non-zero only for finitely many s. This description of
Heegaard Floer homology answers the originl question by the following theorem:

Theorem 1.5.2 (Ozsvath-Szabd).
0(h) = max{(s,h): s € HX(Y;Z), HF(Y;s) # 0}.

Of course, one might say “hey, this doesn’t answer the question! We don’t necessarily
know what the Heegaard Floer homology of a three manifold is! Can we compute it?”
Fortunately this was solved in 2006 by Sarkar and Wang:

Theorem 1.5.3 (Sarkar-Wang, 2006). Given any 3-manifold Y, there is an algorithm to
compute HE(Y').

1.6 Applications of Heegaard Floer homology: knots

Finally we look at applications to knot theory! Heegaard Floer homology has a knot-
theory version, introduced independently by Ozsvath-Szabé and by Rasmussen, in 2003.
Suppose K < }”3& null-homologous, with K a knot. Then the knot Floer homology of K
is denoted by HF K (Y, K). In particular we care about knots in S, in which case we write
OFK (S3, K). Knot Floer homology decomposes as a direct sum of some smaller pieces, in
a way that was analogous to Heegaard Floer homology (when we were writing a formula
for the Thurston norm):

HFEK(Y,K) =@ HFEK(S* K, 5).
SEZL

This time we can use the above decomposition to describe the genus of a knot! This is
generally considered to be a very difficult problem.

Definition 1.6.1. Let K be a knot. A Seifert surface of K is an oriented connected
surface ¥ embedded in S? with boundary K. The genus of K is the minimum genus of
Seifert surfaces of K:

g(K) = min{g(X) : ¥ is a Seifert surface of K}.

The above definition makes it clear why the genus is generally difficult to compute:
knot invariants defined in terms of maximums or minimums are typically powerful but
intractible.
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Theorem 1.6.2. Let K be a knot. Then
g(K) = max{s : f{’F?((Sg,K, s) # 0}.

As was the case with the Thurston norm problem, to really conclude that the above
theorem solves the genus problem, we must ensure that HFK (S?, K, s) can actually be
computed. This can indeed be done!

Theorem 1.6.3 (Manolescu-Ozsvéath-Sarkar, 2006). There exists a combinatorial algo-
rithm for computing HF K .

One of the biggest goals in knot theory was to understand the unknotting problem.
Given a diagram of a knot, how do we decide whether or not the diagram represents the
unknot? More formally, is there an algorithm to determine whether or not a given knot
projection is the unknot?

e This was solved in the affirmative in 1961 by Haken, using normal surfaces.

e A new solution is given by the above results in terms of knot Floer homology: a knot
is the unknot if and only if it has genus 0. But the genus is expressed in terms of
knot Floer homology, and this can be computed algorithmically.

Of course this gives a new proof, but it would be nice to find a solution to a problem that
has yet to be solved using non-knot Floer homology methods. A possible direction for
this is the problem of classifying slice knots. Currently there is no known algorithm for
determining whether or not a knot is slice.

Definition 1.6.4. Let K be a knot in S?. Let B* be the 4-ball bound by S3, so that
K lies on the boundary of B*. K is said to be topologically slice if there is a locally flat
topological embedding of a disk D? «— B*, so that 0D? = K. K is said to be slice or
smoothly slice if there is a smooth embedding D? < B* with 0D? = K.

While the problem of classifying slice knots is unsolved, knot Floer homology provides
many obstructions! Examples include 7,¢,v,v", v, .... Of course, just listing their names
doesn’t really mean anything, but hey - there are lots of them! To understand what the
point of these obstructions are, we can recall the Rasmussen invariant s obtained from
Khovanov homology (which we constructed in the Spring 2020 topics course). Using the
s invariant, we showed for example that there are topologically slice knots which are not
slice! (Moreover, we used this to show the existence of exotic R%s!)

e Define the slice genus gs(K) of a knot K to be the minimum genus of a smoothly
embedded surface ¥ embedded in B* whose boundary is K — 0B* = S3.

e A knot is slice if and only if its slice genus is 0.
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e A key property of Rasmussen’s s invariant is that s(K) is a lower bound for 2¢,(K).
One can show that the Whitehead double of the torus knot 753 has Rasmussen
invariant 2, so it is not slice.

e On the other hand, the Alexander polynomial of a Whitehead double is trivial! And
a result by Freedman gives that knots with trivial Alexander polynomial are topo-
logically slice.

This derivation shows how we can use obstructions to sliceness such as the Rasmussen
invariant to begin classyfing slice knots. Later in the course we’ll encounter the knot Floer
theoretic obstructions to sliceness!

In our efforts to study 4-manifolds a few sections earlier, we naturally encountered the
homology cobordism group. The analogous object in knot theory is the concordance group,
which tells us about slice knots.

Definition 1.6.5. The knot concordance group or just concordance group is C = {knots}/ ~,
where Ko ~ K; if Ky and K7 are concordant. That is, if there exists a smooth embedded
annulus A < S? x [0, 1] such that 04 = (—Kp) u K;.

In particular, this means that K is concordant to the unknot if and only if K is slice.
In much the same way that the structure of the homology cobordism group @% eludes us,
so does the structure of C.

e (Classical result, using algebraic topology) C has a Z* direct summand.

e (Result using knot Floer homology) Crs < C, the subgroup generated by topologically
slice knots, also has a Z* direct summand.
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Chapter 2

Preliminaries for Heegaard and
Lagrangian Floer homology

This entire chapter is dedicated to the construction of Heegaard Floer homology. We intro-
duce all necessary background concepts, most notably some symplectic geometry results.

2.1 Outline of the construction of Heegaard Floer homology

All of the details of this brief section will be fleshed out in the next few lectures. Heegaard
Floer homology, as the name suggests, is constructed using Heegaard splittings.

e Let Y be a closed oriented 3-manifold. Then Y admits a Heegaard splitting, and
moreover a representation via a Heegaard diagram; H = (3g,0u1,...,04,01,...,04).
(Then Y is obtained by gluing disks to 3, along the curves «; and f3; on each side of
¥4, and finally filling the holes with a ball B3 for each side.)

e From X, we obtain a manifold called its symmetric product, which happens to canon-
ically be a symplectic manifold:

Sym?(E,) =X x X x -+ x ¥/S,.

This is a 2g-dimensional manifold containing two g-dimensional submanifolds (tori)
determined by the Heegaard diagram:

To=a1 x---xay,Tg=p1 %+ x g < Sym9(X,).
These tori happen to be Lagrangian submanifolds!

e (By transversality) the intersection T, n Tp is some finite number of points. Let
CF denote the free abelian group generated by T, n Tg. (CF probably stands for
Floer chain (complex).) CF admits a grading, and there are maps 0 : CF,, —» CF,_;
making this a chain complex. The boundary maps count pseudo-holomorphic disks.

14



e The homology H,(CF, ) of the Floer chain complex (C'F,, 0) is exactly the Heegaard
Floer homology;
HF(Y)= H.(CF,0).

2.2 Heegaard splittings and diagrams (lecture 2)

For the duration of this lecture, Y = Y3 denotes a closed oriented 3-manifold.

Definition 2.2.1. A Heegaard splitting of Y is a decomposition
Y=H,us H ;,

where Hy, H é are handlebodies of genus g, and f : 0Hy; — 0H ; = Y4 is a diffeomorphism
(defining how H, is glued to Hy).

Heegaard splittings are used to describe three manifolds using lower dimensional data,
and are useful because they always exist!

Theorem 2.2.2. FEvery closed oriented 3-manifold has a Heegaard splitting.

This is often proven using Morse theory, but here we give a proof using triangulations.
Recall that a triangulation is a decomposition of a manifold into simplices, and forms an
intermediate tier of structure between smooth manifolds and topological manifolds.

Definition 2.2.3. A triangulation of a topological space X is a simplicial complex K
together with a homeomorphism K — X.

Proof that 3-manifolds admit Heegaard splittings. Let M be a closed orientable 3-manifold,
and T a triangulation of M. Each vertex of T" has a neighbourhood homeomorphic to 0x D3,
each edge a neighbourhood homeomorphic to D x D?, each face, D? x D', and each cell,
D3 x 0. Taking appropriate intersections, M can be expressed as a union of these pieces
glued along their boundaries. Let the neighbourhoods of vertices and edges define H,, and
faces and cells define H, é. This is a Heegaard splitting of M. O

This reduces the description of any closed oriented 3-manifold to descriptions of handle-
bodies and how they are glued together. But it turns out that any handlebody H, can be
described in terms of curves on a surface X,! Specifically, any g linearly independent sim-
ple disjoint embedded closed curves a1, ..., a4 in X, determine a handlebody. By linearly
independent, we mean in Hy(2,) = Z?9. Then

Hy=%40UDg U U Dy, uB,

where the disks and ball are as indicated in figure The idea is that each closed curve
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Figure 2.1: Description of a handlebody by specifying curves on a surface.

uniquely determines a disk on one side of the surface (every orientable surface is 2-sided
in R?), and after filling in g disks we're left with a cavity that can be filled with a 3-ball.

Similarly, we can specify g curves f1,..., 3, to describe the other handlebody, H ;, of
the Heegaard splitting. This constitutes the data of a Heegaard diagram

(270517"'70597617”'759)’

The overall process for specifying a closed oriented 3-manifold in terms of a Heegaard
diagram (surface and embedded curves) is

Heegaard diagram v~ Heegaard splitting v~» 3-manifold.

Exercise. Let Y have Heegaard diagram (3, a1,..., a4, 51,...,B). Show that

Hl(Y) = Hl(Z)/<Oél, ey 019,61, . ,ﬁg>.
Hint: Mayer-Vietoris.

We now look at some examples of Heegaard diagrams. Firstly, it is a hassle to draw
an actual surface all the time! Instead, we draw a flat diagram akin to a “fundamental
polygon” of the surface. An example of an arbitrary Heegaard diagram in its final visual
form is given in figure The diagram on the bottom right is obtained by cutting along
the holes in 3. The boundary components 1 and 1 glue together with opposite orientations
to give the first hole, and similarly for 2 and 2. Finally to obtain the closed surface, the
bottom right diagram is compactified at a point at infinity.

The standard notation is to draw alpha curves in red, and beta curves in blue.

Example. The empty Heegaard diagram represents the 3-sphere. This is because it cor-
responds to a 2-sphere with no curves, and gluing 3-balls to each side of the 2-sphere gives
S3.
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Figure 2.2: Heegaard diagram in its Super Saiyan mode.

GR:

Figure 2.3: Heegaard diagram of S3.

Example. The diagram in figure [2.3] also represents a 3-sphere. This can be seen by
drawing the corresponding surface and filling in disks for the given curves and so on.

Example. The diagram in figure represents S' x S2. This can be seen by drawing two
tori side by side with the given curves on them. Gluing these tori together corresponds to
gluing the disks (from the curves) together along their boundary, so each meridian of the

torus gives a copy of S?. The torus is foliated by S! copies of meridians, so overall we have
St x §2.

Example. A general diagram of a genus 1 Heegaard splitting looks like We can use a
diffeomorphism of the surface to place the a curve in standard position, and then any [ is
of the form pm+ ga (in homology), where ged(p, ¢) = 1. This follows from the classification
of simple closed curves on a torus.
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Figure 2.4: Heegaard diagram of S! x S2.

O

m

Figure 2.5: Heegaard diagram of Lens space L(3,2).

For example, in this particular figure, we can count intersections and find that o-8 = 3,
while m - 8 = 2. It follows that p = 3 and ¢ = 2. The corresponding 3-manifold is the Lens
space L(p,q) = L(3,2). A more geometric approach to Lens spaces is L(p, q) = S/(Z/pZ),
where the group action is given by u(z, w) = (uz,udw) for u € Z/pZ, and S? is parametrised
as the unit sphere in C?. More explicitly,

L(p,q) = {(z,w) € C*: |2]* + |w|]* = 1}/(z,w) ~ (uz,uw),u € Z/pZ.

One can verify in each example (without having to appeal to visual intuition and
simply using group presentations) that fundamental groups and homology groups are all
as expected.

2.3 Operations on Heegaard splittings and diagrams

Consider a Heegaard diagram (3, a1, ...,aq4,51,...,8) for a closed oriented 3-manifold
Y. What are the ways we can change the diagram and for it to still represent the same
Heegaard splitting? What are the ways we can change the diagram and for it to still
represent the same 3-manifold?

Firstly we can isotope any curves and obtain a new Heegaard diagram for the same
Heegaard splitting. A less trivial operation is that we can do handle slides without changing
the Heegaard splitting. That is, given any two « loops on a surface ¥ (or any two g loops),
we can slide one over the other to obtain a new Heegaard diagram. Formally, given loops
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aq and ag, sliding ag over agy corresponds to replacing o with of, which is the connected
sum of a; with a push-off of as.

On the algebraic side, let ¢ : ¥, — H be the inclusion map, where H, is the handlebody
determined by loops a1, ..., a4 on X4. The induced map iy : Hi(2X,) — Hi(H,) then kernel
{aq,...,aq). Then a handle slide corresponds to a change of basis of ker i,.

In fact, it turns out that isotopies and handleslides give all possible Heegaard diagrams
for a given Heegaard splitting! This is formalised in the following theorem.

Theorem 2.3.1. Any two collections of linearly independent simple closed curves on a
surface ¥ representing the same handlebody are related by a sequence of handleslides and
isotopies. In particular,

{Heegaard splittings} =~ { Heegaard diagrams}/handle slides and isotopies.

The next question is: how many Heegaard splittings does a given closed oriented 3-
manifold have? It turns out that all Heegaard splittings are related by stabilisation. The
cleanest definition of stabilisation uses Heegaard diagrams, so we first give a definition in
these terms. Afterwards we will give an alternative definition which uses only the structure
of the Heegaard splitting. (Spiritually, the former is a coordinate dependent definition, and
the latter coordinate free.)

Definition 2.3.2. Let (X, 1,...,04,51,...,0q), (X, 04,...,00,81,...,5;,) be Heegaard
diagrams. The connected sum of these two Heegaard diagrams is

(E#Z/7a17'"aagaalla"'70427517"'769761""76;1,)‘

Next, the stabilisation of (¥, 0,...,0q,01,...,By) is its connected sum with the genus 1
Heegaard diagram of a 3-sphere (seen in an earlier example).

This process really corresponds to adding a handle to each handlebody of the Heegaard
splitting, in such a way that the two handles interlock to give a 3-sphere. This perspective
(although messier to formalise) is more evident in the coordinate free definition.

Definition 2.3.3. Let Y = H, u H; be a Heegaard splitting. Stabilisation is the following
procedure:

1. Attach an additional unknotted 1-handle h to H,, to obtain Hyyi. Since Hy is a
submanifold of Y, “unkotted” is formalised by saying that the core of the 1-handle
bounds an embedded disk D? in Y.

2. Let &/ denote a “thickening” of the embedded disk. Then huh'u Hy is homeomorphic
to Hy (since h U I/ is just a boundary connected sum D? with H,). Therefore Y
decomposes as h u h' U Hy U H;.
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3. By studying the boundary of h U h' U Hy, we see that A’ intersects H, along two
disjoint disks. Therefore H é u k'’ is a handlebody of genus g + 1, which we denote by

/
g+1-

In summary we have Y = Hy 11 U ; +1, so from our genus g Heegaard splitting we can

canonically obtain a genus g + 1 Heegaard splitting. (This process is stabilisation.)

As remarked earlier, all Heegaard splittings of the same 3-manifold are in fact related
by stabilisation and destabilisation!

Theorem 2.3.4. (Reidemeister-Singer) Any two Heegaard splittings of the same 3-manifold
are related by a sequence of stabilisations to each splitting.

Combining this with the repvious result concering the freedom of Heegaard diagrams
for a given Heegaard splitting, we have

{Closed oriented 3-man’s} =~ {Heegaard splittings}/stab.
~ {Heegaard diagrams}/handle slides, isotopies, stab.

As a final remark before moving on to symmetric products, we introduce based Heegaard
diagrams, which are essentially Heegaard diagrams with a distinguished base point.

Definition 2.3.5. A based Heegaard diagram of a 3-manifold is the data (X, a1, ..., a4, 1, ..., By, 2)
where z is a point in ¥ that does not lie on any of the curves «;, 5;.

Exercise. Show that
{Based 3-manifolds} ~ {Based Heegaard diagrams}/ ~

where ~ is stabilisation away from z, handle slides away from z, and isotopies away from
z.

The non-trivial part of this exercise is avoiding the base point. The key is to re-write
arbitrary moves in terms of those avoiding z.

2.4 Symmetric products

Recall that our goal is to construct the Heegaard Floer homology of a closed oriented 3-
manifold. The first step was to understand Heegaard diagrams of 3-manifolds. Next, given
a Heegaard diagram, we want to associate to it a symplectic manifold with distinguished
Lagrangian submanifolds. The symplectic manifold will be obtained via a symmetric prod-
uct.
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Definition 2.4.1. Let M be a manifold of dimension d. Then

Sym* (M) .= [ [ M /Sy,
k

where Sy acts on [[, M be permuting (z1,...,2;) € [[, M. Thus Sym*(M) consists of
unordered k-tuples of points in M.

Remark. In general Sy does not act freely on [, M, so Sym*(M) is not manifold.
Example. e Sym’(M) = pt.
e Sym!'(M) = M.

e Sym?(M) has two local models: (mqi,ms) with m; # mg determines a “smooth
point”, with local model R? x RY. Points of the form (m,m) are fixed points of
Sy = 7,/27, so the local model is (R? x RY)/(Z/27) = Sym?(R%).

Now we wish to understand what Sym?(R%) looks like. This is explicitly the space
R? x RY/(z,y) ~ (y, ).
We can change our basis to u = z + y,v = x —y. Then
Sym?(R%) = RY x RY/(u,v) ~ (u,—v) = RY x (RY/(Z/27)).

The factor on the right can equivalently be written as C(S?1)/(Z/27Z), where C(X) denotes
the cone over X. But now S%!/(Z/2Z) is very familiar: it is the real projective space
RPY~!. In summary, we have

Sym?(RY) = RY x C(RP?1).

When is this a manifold? In general it’ll have a singularity. However, exactly when
d=0,d =2, we have RP?"! = S 1 50 that C(RP? 1) = C(S? 1) = R? In the instances
d =0 or d = 2, we have that Sym?(R?) is a manifold. This suggests that for any surface
¥, Sym?(X) should locally look like R?*, and in particular be a manifold. This is indeed
the case, and an even better result holds.

Proposition 2.4.2. Let ¥, be the oriented surface of genus g. Then Sym*(X) is a 2k-
manifold.

Proof. We must show that the local model of Sym*(X) is R%* ~ C¥. First, choose any
(21,...,2,) € Sym®(X). We group the matching coordinates, and write

(21, 2k) = (W1, ..., Wi, Wa, ..., W, . ..),
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where there are /1 instances of wy, 2 instances of wo, and so on, and w; = w; if and only
if i = j. Then the local model at (z1,...,2) is

Sym* (R?) x Sym*(R?) x --- .

It remains to show that Sym%(R?) = Sym‘(C) is a manifold. We achieve this by con-
structing a diffeomorphism

Sym(C) = [ [ /S, — C*
4

and its inverse map. In the forwards direction, we send the unordered tuple {z1,..., 2/} €
[1,(C) to the ordered tuple (si,...,s¢), where s; is the ith elementary symmetric poly-
nomial. By nature of these polynomials being symmetric, the map is well defined. The
inverse map is given by sending (si, ..., s;) to the unordered list of roots of the polynomial
th— stell=1 4 (=1)sy. O

This establishes that Sym*(¥) is a manifold, where in our context ¥ is the closed
oriented surface obtained from a Heegaard splitting. We will show further that Sym* ()
is a symplectic manifold with a view to constructing Heegaard Floer homology. But first,
we must talk about some sympletic geometry /topology!

2.5 Symplectic topology crash course

Some useful references:
e McDuff-Salamon Introduction to Symplectic Topology.
o Weinstein Lectures on Symplectic Manifolds.
e Ana Cannas da Silva Lectures on Symplectic Geometry.

Every 2-tensor T can be decomposed as T' = S+ A with S symmetric, and A antisymmetric.
Explicitly, this is achieved by S(a,b) = (T'(a,b) + T'(b,a))/2, and A(a,b) = (T'(a,b) —
T'(b,a))/2. Since 2-tensors capture relations between two vectors on a manifold, they are
the canonical structure we’d like to equip on a manifold in order to do geometry. On one
hand, symmetric 2-tensors correspond to Riemannian geometry. The above calculation
shows that all other 2-tensor structure is captured by antisymmetric 2-tensors (i.e. 2-
forms) - and this is what corresponds to symplectic geometry.

Definition 2.5.1. Let M?" be a 2n-manifold. A symplectic form on M is a 2-tensor w on
M satisfying the following properties:

e It is antisymmetric, i.e. w is a 2-form: w € Q?(M).

e It is closed, i.e. dw = 0.
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e It is non-degenerate, i.e. A"w € Q?*(M) is nowhere vanishing.

Perhaps a better motivation for symplectic structures than the one given above is to
go to the original motivation: physics. The relationship between physics and sympletic
geometry is described in detail in my course notes for Maths 257A (from Fall 2019).

We now look at some examples.

Example. If n = 1, the underlying manifold is a surface ¥, and w is a closed 2-form
with A"w = w nowhere vanishing. This is exactly the statement that (X,w) is a surface
equipped with a volume form.

Example. Consider R?>" with coordinates z1,...,Zn,Y1,...,Yn. The canonical form on
R?" is S dxi ady;. In fact, by Darbouz’s theorem, this is the local model of all symplectic
manifolds!

Example. Let M be any n-manifold. Then the cotangent bundle T* M is a 2n-manifold,
and can be given coordinates x1,...,%n,&1,...,&,. This is also canonically a symplectic
manifold, with canonical form Y | dxz; A d&. This is the most important symplectic
manifold in physics - consider a physical space M with position coordinates (for example
R3). Then T*M consists of pairs (g,p) where ¢ is position, and p is momentum! A
function H : T* M — R can then be interpreted as measuring the energy of every position-
momentum pair, i.e. H is a Hamiltonian! This gives a formalism which can describe all of
classical mechanics.

What are some important submanifolds of a symplectic manifold? When restricting
a Riemannian metric (a symmetric positive-definite bilinear form) to a submanifold, it is
guaranteed to restrict as a Riemannian metric. Thus every submanifold of a Riemannian
manifold is canonically a Riemannian manifold as well. However, this does not hold for
symplectic manifolds! On one hand, some submanifolds are symplectic (upon restriction
of the symplectic form), but on the other extreme, there are submanifolds on which the
restriction of the symplectic form vanishes!

Definition 2.5.2. Let N c (M?",w) be a submanifold.

e N is said to be symplectic if the restriction w|y is itself a symplectic form (equiva-
lently, w|x is non-degenerate).

e N is isotropic if w|y = 0.
e N is Lagrangian if it is isotropic and n-dimensional.
Lagrangian submanifolds are maximal-dimensional isotropic submanifolds.

Example. Any curve on a surface (X, w). This is because any one dimensional submanifold
of a symplectic manifold can be shown to be isotropic, and a curve on a surface is also
middle-dimensional.
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Example. Let s be a section of T*M. If s is closed, then im s is a Lagrangian subman-
ifold of T*M (with the canonical form). In particular, the image of the zero-section is
Lagrangian.

Example. A non-example: consider V" < (R?", Weanonical), with V' defined to be the tuples
(T1,. s Tn,yY1,---,Yn) satisfying x1 = yo, but all other y; vanishing.

2.6 Riemannian-symplectic-complex 2-out-of-3

Loosely speaking, any two of three compatible Riemannian, almost-complex, and symplec-
tic structures determines the third. We must explain what is meant by an almost-complex
structure, but also what it means for these structures to be compatible.

Definition 2.6.1. Let M be a 2n-manifold.
o A symplectic structure is a closed nondegenerate 2-form.
e A Riemannian structure is a symmetric positive-definite bilinear form.

e An almost complex structure is a bundle map J : TM — TM covering the identity
map on M, such that J? = id.

Of course, we think of J as being a generalisation of multiplication by i. We call J
an almost complex structure, since a complex structure should morally be the requirement
that transition maps of the manifold are holomorphic, which is a stronger condition.

Definition 2.6.2. Let M be a 2n-manifold, equipped with a metric g, symplectic form w,
and complex structure J.

o We say that g and J are compatible if g = J*g.

e We say that w and J are almost-compatible if w = J*w. J is tame if w(v, Jv) > 0 for
all v. Finally w and J are said to be compatible if they are almost-compatible and J
is tame.

Tameness is required to ensure that gj(v,w) = w(v, Jw) is positive definite, and in
particular a metric. This shows that any symplectic form and almost complex form deter-
mines a canonical metric which is also compatible with the almost-complex form. Similarly,
a metric and compatible almost-complex form determines a compatible symplectic form.
Finally, ¢ and w induce isomorphisms §,& : TM — T*M, and §o® : TM — TM is a
complex structure compatible with both ¢ and w.

Theorem 2.6.3. Let (M, g,w,J) be a manifold equipped with a metric, symplectic form,
and almost-complez structure, such that g = w(—, JJ—). Then any two of g,w, J determine
the third.
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More generally, suppose (M,w) is symplectic. Then there is a canonical map © admit-
ting a canonical section s, giving rise to the following correspondence:

{ Inner products g on V.}

e { Complex structures on V, }

s compatible with w.

Moreover, given any g, ©(g) is compatible with g. As a corollary, the space of complex
structures compatible with w is contractible.

Conversely, suppose (M, J) is almost-complex. Then there is a canonical map ® ad-
mitting a canonical section s, giving rise to the following correspondence:

{ Inner products g on V.} compatible with J.

P Symplectic structures on V,
S
The space of sympletic structures compatible with J is again contractible.

Theorem 2.6.4. Let (M,w,J),(M',w',J") be symplectic manifolds equipped with compat-
ible complex structures. Then M and M’ are isomorphic as symplectic manifolds if and
only if they are isomorphic as almost-complex manifolds.

This completes our crash course on symplectic topology! Proofs for everything in the
symplectic sections of these notes can be found in my 257A Fall 2019 course notes.

2.7 Almost complex structures (lecture 3)

We begin by recalling some symplectic geometry definitions from the previous class.
Definition 2.7.1. Let M?" be a manifold.
o (M,w) is symplectic if w is a closed non-degenerate 2-form on M.

e An almost complex structure is a section J of the endomorphism bundle of TM (i.e.
a bundle map J : TM — TM) such that J? = id.

e J and w are compatible if
1. w=J*w,ie w(—,—) =w(J—,J-).
2. w(v,Tv) > 0 for all non-zero v.

In this instance, w(—, J—) defines a metric.

At the end of the previous class, we mentioned that given a compatible triple (M, g, w, J),
any two of g,w, J determine the third. However, we didn’t really touch on a more funda-
mental result: the existence of compatible complex structures given a symplectic structure,
and the topology of the space of compatible complex structures.
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Definition 2.7.2. We write J(M,w) to denote the space of almost complex structures on
M compatible with w.

Proposition 2.7.3. Given any symplectic manifold (M,w), J(M,w) is non-empty and
contractible.

A proof of this result was given in class. However, a more detailed proof has been
written up in my Maths 257A notes from Fall 2019, so we do not repeat the argument
here.
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Chapter 3

J-holomorphic curves and
Lagrangian Floer homology

3.1 J-holomorphic curves

The J-holomorphic curves by Gromov revolutionised symplectic geometry. They are prob-
ably best known for leading to the Gromov-Witten invariants, but they also a key ingredi-
ent in Floer homology! They are essentially just (complex) 1-dimensional curves in almost
complex manifolds.

Definition 3.1.1. A function f : C — C is complex differentiable (holomorphic) if it
satisfies the Cauchy-Riemann equations;

du/dx = dv/dy, du/dy = —dv/dx,
where f(l', y) = (U(.%', y)? U<$7 y))

We can re-write this as f : (R?,j) — (R?,J) from the “almost complex manifold” C to
itself. Then j and J both have matrix representation

. 0 —1
j—J—(l 0>.

On the other hand, given that f(z,y) = (u(x,y),v(x,y)), we have

_ (du/dx  dv/dx
df = <du/dy dv/dy) '

This gives
N (du/dx dv/dx 0 —1\ [(du/dx dv/dx\ (0 —1
(df + Jodf oj) = (du/dy dv/dy) * (1 0 ) (du/dy dv/dy) \1 0
_ (du/dx — dv/dy dv/dz + du/dy
- \du/dy + dv/dx dv/dy — du/dx )"
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Therefore the Cauchy-Riemann equations are satisfied if and only if
df + Jodf oj=0.
Multiplying by J (or by j), this is equivalently the condition that
df oj = Jodf.

We observe that this is coordinate independent, and makes sense for any almost complex
manifolds!

Definition 3.1.2. Let (M, j), (N, J) be almost complex manifolds. The Cauchy-Riemann
equation for amap f: M — N is

df oj = Jodf.
If f satisfies the Cauchy-Riemann equation, it is said to be (3, J )-holomorphic.

Before moving on, we introduce a little bit of notation. There is a certain calculus
(Wirtinger calculus) for complex and almost complex manifolds, in which we work with
holomorphic and antiholomorphic derivatives, denoted 0 and 0 respectively. These give rise
to a complex analogue of de Rham cohomology, known as Dolbeault cohomology (which is
again explained in my Math 257A course notes from Fall 2019). What is relevant here is
that we can define

02f = Jd ~ Todfoj), sf = df +Todf )

Notice that 0y + 05 = d; the holomorphic and antiholomorphic differentials are projections
of d onto the space of holomorphic and antiholomorphic forms. This gives a final concise
way of writing the Cauchy-Riemann equations!

Proposition 3.1.3. A map f: (M,j) — (N, J) satisfies the Cauchy-Riemann equation if
and only if B
osf =0.

A J-holomorphic curve, which are now ready to define, is pretty much exactly what we
expect it to be!

Definition 3.1.4. Let (M,w) be a symplectic manifold, and J € J(M,w). Let (3,7) be
a Riemann surface. (This is equivalently an almost complex closed (real) two dimensional
manifold.) A map u: 3 — M is a J-holomorphic curve if 0 ju = 0.

Example. A particular case of interest is .J-holomorphic spheres: u : S> — (M, J), 0ju =
0. Notice that S? admits a canonical complex structure since S? = CP!.
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Definition 3.1.5. Let L < (M,w) be Lagrangian (i.e. 2dim L = dim M and w|; = 0). A
map u : (D?,0D?) — (M, L) is a J-holomorphic disk if 0 ju = 0.

Definition 3.1.6. Let Lg,L; < M be Lagrangian, and fix x,y € Lo n L1. Let u :
R x [0,1] — M satisfy

e u(—,0) € Ly, and u(—,1) € Ly.
o limg , ,u(s,t) =z, lims o0 u(s,t) =y.
o 0ju=0.
Then w is a J-holomorphic strip. (Sometimes these are also called J-holomorphic disks).

Remark. Why are these also called J-holomorphic disks? An alternative definition is to
instead consider a map u : (D,0D) — (M, Ly, L1) with two marked points 1,—1 € D < C
mapping to marked points x,y € Ly n L1, with the top half of the boundary of D mapping
into Lo and the bottom half into Lq.

Remark. 1. The points x and y can coincide! 2. Many J-holomorphic strips can be shown
to exist by the Riemann mapping theorem.

Definition 3.1.7. Finally we define time-dependent J-holomorphic strips as follows. Spec-
ify Jy € J(M,w),t € [0,1]. A map u: R x [0,1] — M is a time-dependent J-holomorphic
strip if it satisfies the same boundary conditions as above, but the Cauchy-Riemann con-
dition is replaced with

ou/0s + Ji(u(s,t))ou/ot = 0.

Remark. In the earlier derivation of the coordinate free Cauchy-Riemann equation from
the classical Cauchy-Riemann equations, an intermediate step (which was not made ex-
plicit) is that the equations are equivalent to

ou/ds + Jou/ot = 0.

To study the space of J-holomorphic curves we desire some invariants. One such in-
variant is the energy of a curve.

Definition 3.1.8. Let u : ¥ — M be a J-holomorphic curve. The energy of u is

E(u) = L duf?.

Lemma 3.1.9. E(u) = {;u*w. Moreover, if ¥ is a 2-sphere, then E(u) = [w][u()].
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Proof. The second claim follows from the first. The first claim follows from this calculation:

|du|? = g;(du(0/ds), du(d/ds))
= 97 (du(0/0s), —du(jo/ot))
= gj(du(0/ds), —Jdu(d/ot))

= w(du(d/0s),du(d/dt)).

The first line is the definition of |du|?, the second expresses the complex structure on ¥, the
third is the Cauchy-Riemann equation, and the last comes from the definition of g;. [

Example. If ¥ = S2, then E(u) = [w][u(X)]. What if ¥ is a J-holomorphic disk? Then
[w] € H*(M, L) since w|;, = 0, and the same description as above holds using relative
homology.

3.2 Gromov compactness theorem

Heegaard Floer homology (and more generally Lagrangian Floer homology) are defined by
counting J-holomorphic strips (similarly to how Morse theory counts trajectories). Given
any space X (e.g. a space of J-holomorphic strips), for counting to make sense we require
two basic properties:

e The space must be compact.
e The space must be 0-dimensional (i.e. discrete).

We will now investigate compactness of the space of J-holomorphic curves. First, an
example shows that without additional premises, compactness will not be achieved:

Example. Let M = S? = C U {0}, equipped with the area form for its symplectic form,
and ¢ for its complex structure. For each n, define

Uy 0 S = §% up(2) = 2"

This has no limit as n — oo! More formally, if we compare energies, we find that
E(uy) = [w][un] = 47n,

and this has no convergent subsequences.

Here we used the energy to formally show that the space of J-holomorphic curves is not
compact. Conversely, we might hope that energy is the only obstruction to compactness:
maybe by enforcing an energy bound, we can force compactness. This is indeed the case!
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Theorem 3.2.1 (Gromov compactness theorem: spheres). Let (M,w,J) be a symplectic
manifold with a compatible almost complex structure. Let u, : S* — M be J-holomorphic
spheres, and suppose there is some K such that E(u,) < K for each n. Then there exists
a subsequence (uy,) such that u,, Gromov converges to u, where u is a finite tree of J-
holomorphic spheres.

u;, (0
N S

Figure 3.1: Gromov convergence of a J-holomorphic sphere.
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This theorem also applies to disks and strips, with each generalisation giving slightly
more possibilities for the “thing the sequence converges to”. I.e. the boundary of the space
of J-holomorphic things gets a bit more interesting each time.

Theorem 3.2.2 (Gromov compactness: disks). Fiz K > 0, and let u, : (D,0D) — (M, L)
be J-holomorphic disks. Suppose E(u,) < K. Then there is a subsequence of wu, that
Gromov converges to some u, where u is a finite tree of disks and spheres.

Theorem 3.2.3 (Gromov compactness: strips). Fiz K > 0, and let u, : R x [0,1] —
(M, Loy, L1) be J-holomorphic strips. Suppose E(u,) < K for each n. Then there is a
subsequence of u, that Gromov converges to some u, where u is a broken strip, possibly
with disks (in Lo or L1) and spheres forming a tree.

Rather than being in the world of the abtract, we should really be looking at examples.
The simplest case is to consider M = C, and Lo, L1 to be any paths in M.

Example. Figure depicts a J-holomorphic strip ug — M = C. By the Riemann
mapping theorem, for each R greater than 0 (but less than the distance from z to z) there
is a holomorphic map ugr sending the strip to the image shown in the figure. As R gets
smaller, the sequence converges to the broken strip shown in the bottom right of the figure.
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Figure 3.3: Gromov convergence of a J-holomorphic strip.

3.3 Moduli space of J-holomorphic curves

We’ve sorted out the issue of compactness via Gromov’s compactness theorem. However,
to count J-holomorphic curves, we need the space of such curves to be discrete. One
characterisation of discreteness is to be a 0-dimensional manifold, so as a stepping stone
we first investigate the manifold-ness of the space of J-holomorphic curves. We keep talking
about the space of J-holomorphic curves, but we have yet to explicitly state what we mean
by this. We now give a definition.

Definition 3.3.1. Let (M,w) be a symplectic manifold, with Lagrangians Lo, L;. Fix
x,y € Lo n Li. We write ma(z,y) to denote the relative homotopy classes of strips with
the corresponding boundary conditions. Let J; be a path of compatible almost complex
structures. The moduli space of Ji-holomorphic strips (in the class ¢ € ma(x,y)) is defined
by

M, (p) = {J-holomorphic strips u : R x [0,1] — (M, Lo, L1, x,y) : [u] = p}/ ~ .
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Figure 3.4: Example of a Gromov convergent sequence of J-holomorphic strips.
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Here ~ is equivalence of Ji-holomorphic strips, i.e. u ~ v’ if they are biholomorphic.
It turns out that this moduli space is indeed a manifold, given mild premises!

Theorem 3.3.2. For generic Ji, M j,(¢) is a smooth manifold of dimension u(p), where
w(p) is the Maslov index of ¢ (which has yet to be defined).

What do we mean by generic? This means there is a Baire subset \Y[roegl] (M,w) c
Jo,11(M,w) = {[0,1] — J(M,w)} for which the property holds.

Remark. If M is a single point, and we consider J-holomorphic curves of a given genus
g and some number of marked points m, the corresponding moduli space