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Unusual properties of modern datasets
Novel statistical and mathematical foundations

Streamline machine learning

- Two stories today:
- Multilabeled dataset
- Infinite dimensional regression
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- The learning algorithms: all labels vs. majority vote
- Margin-based loss ¢;(y | ) = —o(—y{z, 0))
- e.g. Logistic regression
lo(y | ) =log(1 4 ¥'™%)

1
t) =
o(t) 1+et
- Two estimators
Full label information Majority vote aggregation
Yi = maj(Yi1, s Yim)
A . 1 L A 1 n
Oy, = argmin o 2;59(%3' | X5) 0., 1= argmin " ng(yi | X;)
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- Majority vote is mis-calibrated and overconfident, less efficient but more
robust when mis-specified.
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- Conclusion

- Majority vote is mis-calibrated and overconfident, less efficient but more
robust when mis-specified.
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- Conclusion
- Majority vote is mis-calibrated and overconfident, less efficient but more
robust when mis-specified.
- Soft labels can be more beneficial (experiments for generative model-based
crowdsourcing approaches).

- Semiparametric approaches.

Theorem (Cheng, Asi, Duchi, 22) Within an appropriate link function class & € Fi#k , the two stage
semiparametric estimator achieves optimal rate for classification

) . 1 n m ) ‘ )
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1 T m
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The classical “overfitting” phenomenon The modern “benign overfitting” phenomenon
Variance-bias trade-off [Nakkiran et al. 21]
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interporlators” that don’t overfit. (implicit bias)
- Ridge regression [Hastie et al. 18, Tsigler and Bartlett 20]
- Max-margin classifiers [Montanari et al. 19]
- Kernel ridge regression [Liang and Rakhlin 20]

- Necessity of “weak” benign overfitting: algorithms that don’t overfit
will perform worse.

- Linear model [Cheng, Duchi and Kuditipudi 22]

- “Sharp” benign overfitting: overparameterization gives “sharp
interpolators” with vanishing generalization error.

- Ridge regression [Tsigler and Bartlett 20]
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data!

- Question: How do we
develop “dimensional free”
tools to understand this
learning procedure?

- However...

- Previous results rely crucially on (by
far) classical proportional
asymptotics (such as classical
random matrix theory)

- In reality, the statisticians don’t
decide d < n,d=xn or d>n

- Nature doesn’t have a finite
inherent dimension nor a well-
conditioned covariance

- d = oo ! (my cat is not
finite dimensional)
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- A unified theoretical framework: ridge(less) regression
- Data

{(X’Lvyz)}?zlez S Rd,yi cR

- We allow d — « , consider i.i.d. noise and features from a
trace class Tr(X) := Tr(E[X; X, ]) = E[|| X;[|?] < o0

- Featurization of RKHS f(z:) = (X;,0), feH
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- The ridge estimator

X = eR™?  f, =(X"X+AN)"'XTy

- Generalization error
RX()\) H|< new > ( New >||]
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w? = 1% + R(\,)

- More precisely n — A Tr(S(X + Ad) ™)

Ax
y = XQ _|_ € E[Fg] _ T2 Deterministic equivalence ’l}' _ 21/29 + \’;f_ w > qu N N(O, I)
n
N R . 2 2 R ‘
9)\ = argmm{”’y XB” + )\“BH } Qi* _ argmin{”ys i 21/25”2 + )\*”6”2}
Random design Fixed design

Theorem (Cheng and Montanari, 22) (Informal) Under appropriate assumptions, for A, = A, ()
(suppressing the dependence on n and covariance),
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w? = 1% + R(\,)

. A
- More precisely n—1- = Tr(X(2 + A\d)™H)

w

N
93, = argmin{[|y® — X28]1% + A 8]1*}

Y = XQ + ¢ E[Fg] _ T2 Deterministic equivalence ’l}' _ 21/29 +
Ox = arg min{]ly — X 5||* + A[| 5]}

w > 0,9 ~ N(0,7)

Random design Typically nontrivial behavior and vanishing multiplicative error term Fixed design
when the effective rank parameter is comparable to A/o,,
E o, <ds(n)og, k=1,2,- dg/n/\)\/O'n
=k

Theorem (Cheng and Montanari, 22) (Informal) Under appropriate assumptions, for A, = A, ()
(suppressing the dependence on n and covariance),

Rx(A) = Ex,eunP[[{(Xnews 03) = (Xnew, O)|°] = (1 +err)- RO\ = Eq103, — 0[3(1 + erryy)
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- Experiments

- Zipf’s law (“weak”
benign overfitting)
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Story two: infinite dimensional regression

Simulated bias

- Experiments
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Story two: infinite dimensional regression

- A very high level proof
1 1 —1
R(Q) = Tr (2@ (T + iz + XTX:) )

Leave one out and appropriately interpolate from 2. to .
through an martingale argument

- Conclusion
- Dimension free deterministic equivalent risk for ridge(less) regression
- Shed light to understanding real world data



Other work

- High dimensional data
- Memorization [Cheng, Duchi, Kuditipudi, 22]
- High dimensional gradient flow [Celentano, Cheng, Montanari, 21]
- Low-rank matrix recovery [Cheng, Wei, Chen, 21]

- Robustness quantification and fundamental limits
- Geometry and computational optimality [Cheng, Duchi, Levy, 24]
- Weighted conformal inference [Areces, Cheng, Kuditipudi, 24]
- Collaborative learning [Cheng, Cheng, Duchi, 23]

- Reinforcement learning
- Entropy regularization [Cen, Cheng, Chen, Wei, Chi, 20]



Thank You!



	Slide 1: Towards Modern Datasets: laying mathematical foundations to streamline machine learning
	Slide 2: Evolution of datasets
	Slide 3: Evolution of datasets
	Slide 4: Evolution of datasets
	Slide 5: Evolution of datasets
	Slide 6: Evolution of datasets
	Slide 7: Evolution of datasets
	Slide 8: Evolution of datasets
	Slide 9: Evolution of datasets
	Slide 10: Evolution of datasets
	Slide 11: Evolution of datasets
	Slide 12: Therefore the task
	Slide 13: Therefore the task
	Slide 14: Story one: multilabeled dataset
	Slide 15: Story one: multilabeled dataset
	Slide 16: Story one: multilabeled dataset
	Slide 17: Story one: multilabeled dataset
	Slide 18: Story one: multilabeled dataset
	Slide 19: Story one: multilabeled dataset
	Slide 20: Story one: multilabeled dataset
	Slide 21: Story one: multilabeled dataset
	Slide 22: Story one: multilabeled dataset
	Slide 23: Story one: multilabeled dataset
	Slide 24: Story one: multilabeled dataset
	Slide 25: Story one: multilabeled dataset
	Slide 26: Story one: multilabeled dataset
	Slide 27: Story one: multilabeled dataset
	Slide 28: Story one: multilabeled dataset
	Slide 29: Story one: multilabeled dataset
	Slide 30: Story one: multilabeled dataset
	Slide 31: Story one: multilabeled dataset
	Slide 32: Story one: multilabeled dataset
	Slide 33: Story one: multilabeled dataset
	Slide 34: Story one: multilabeled dataset
	Slide 35: Story one: multilabeled dataset
	Slide 36: Story one: multilabeled dataset
	Slide 37: Story one: multilabeled dataset
	Slide 38: Story one: multilabeled dataset
	Slide 39: Story one: multilabeled dataset
	Slide 40: Story two: infinite dimensional regression
	Slide 41: Story two: infinite dimensional regression
	Slide 42: Story two: infinite dimensional regression
	Slide 43: Story two: infinite dimensional regression
	Slide 44: Story two: infinite dimensional regression
	Slide 45: Story two: infinite dimensional regression
	Slide 46: Story two: infinite dimensional regression
	Slide 47: Story two: infinite dimensional regression
	Slide 48: Story two: infinite dimensional regression
	Slide 49: Story two: infinite dimensional regression
	Slide 50: Story two: infinite dimensional regression
	Slide 51: Story two: infinite dimensional regression
	Slide 52: Story two: infinite dimensional regression
	Slide 53: Story two: infinite dimensional regression
	Slide 54: Story two: infinite dimensional regression
	Slide 55: Story two: infinite dimensional regression
	Slide 56: Story two: infinite dimensional regression
	Slide 57: Story two: infinite dimensional regression
	Slide 58: Story two: infinite dimensional regression
	Slide 59: Story two: infinite dimensional regression
	Slide 60: Story two: infinite dimensional regression
	Slide 61: Story two: infinite dimensional regression
	Slide 62: Story two: infinite dimensional regression
	Slide 63: Story two: infinite dimensional regression
	Slide 64: Story two: infinite dimensional regression
	Slide 65: Story two: infinite dimensional regression
	Slide 66: Story two: infinite dimensional regression
	Slide 67: Story two: infinite dimensional regression
	Slide 68: Story two: infinite dimensional regression
	Slide 69: Story two: infinite dimensional regression
	Slide 70: Story two: infinite dimensional regression
	Slide 71: Story two: infinite dimensional regression
	Slide 72: Story two: infinite dimensional regression
	Slide 73: Story two: infinite dimensional regression
	Slide 74: Story two: infinite dimensional regression
	Slide 75: Story two: infinite dimensional regression
	Slide 76: Other work
	Slide 77

