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- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

ImageNet [Deng et al. 09]
N~10^8, d~10^7

LAION-5B [Schuhmann et al. 22]
N~10^10, d~10^7*(text)

MNIST [LeCun et al. 94]
N~10^5, d~10^3

Neural network Deep learning Generative AI



Evolution of datasets

- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

- Breakdown of standard statistical assumptions



Evolution of datasets

- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

- Breakdown of standard statistical assumptions

(Classical) textbook fairyland 



Evolution of datasets

- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

- Breakdown of standard statistical assumptions

(Classical) textbook fairyland 

Husky

Complexity of modern datasets

High dimensionality?



Evolution of datasets

- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

- Breakdown of standard statistical assumptions

(Classical) textbook fairyland 

Husky

Husky

Complexity of modern datasets

High dimensionality?

Missing data?



Evolution of datasets

- Datasets are central to the success of statistical machine learning

- Vast growth of modern datasets leads to the success of modern ML

- Breakdown of standard statistical assumptions

(Classical) textbook fairyland 

Husky

Husky

 Husky
 Samoyed
 Snow

Complexity of modern datasets

High dimensionality?

Missing data?

Multilabeling?



Unusual properties of modern datasets

call for

Novel statistical and mathematical foundations

that we can leverage to

Streamline machine learning

Therefore the task



Unusual properties of modern datasets

call for

Novel statistical and mathematical foundations

that we can leverage to

Streamline machine learning

- Two stories today: 
- Multilabeled dataset

- Infinite dimensional regression

Therefore the task
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- ImageNet construction [Deng et al. 09]

- Question: Is this the right thing to do? (Calibration? Efficiency? etc.)

 

Data cleaning and label aggregation

                    
Statisticians & Engineers

OUTSIDE
THE

BOX!
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Story one: multilabeled dataset

- The model for 
- Binary classification

- Single index model with symmetric link

- Isotropic covariate

- Low dimension (fixed d) 
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Story one: multilabeled dataset

- The learning algorithms: all labels vs. majority vote
- Margin-based loss

- e.g. Logistic regression

- Two estimators

Full label information Majority vote aggregation
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- Quantifiers of interest: calibration and classification

Theorem (Cheng, Asi, Duchi, 22) Under regularity assumptions, label aggregation yields
- (Mis-calibration and slower rate) For well-specified models (loss link is the true link)

- (Robustness) For mis-specified models (the loss link is not the true link)

- (Lower bound) For logistic models, the Fisher information matrix for the majority vote

Mis-calibration term + Slower rate term
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Story one: multilabeled dataset

- Conclusion
- Majority vote is mis-calibrated and overconfident, less efficient but more 

robust when mis-specified.

- Soft labels can be more beneficial (experiments for generative model-based 
crowdsourcing approaches).

- Semiparametric approaches.

Theorem (Cheng, Asi, Duchi, 22) Within an appropriate link function class        , the two stage 
semiparametric estimator achieves optimal rate for classification
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Story two: infinite dimensional regression

- Paradoxical behavior of “overfitting” vs. “benign overfitting”

The classical “overfitting” phenomenon
Variance-bias trade-off

The modern “benign overfitting” phenomenon
[Nakkiran et al. 21]

Double descent, implicit regularization etc.
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- “Weak” benign overfitting: overparameterization gives “good 
interporlators” that don’t overfit. (implicit bias)

- Ridge regression [Hastie et al. 18, Tsigler and Bartlett 20]

- Max-margin classifiers [Montanari et al. 19]

- Kernel ridge regression [Liang and Rakhlin 20]

- Necessity of “weak” benign overfitting: algorithms that don’t overfit 
will perform worse.

- Linear model [Cheng, Duchi and Kuditipudi 22]

- “Sharp” benign overfitting: overparameterization gives “sharp 
interpolators” with vanishing generalization error.

- Ridge regression [Tsigler and Bartlett 20]
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- Nature doesn’t have a finite 
inherent dimension nor a well-
conditioned covariance

The celebrated Marchenko-Pastur law

Real world data showing Zipf’s law (                 ) decay [Feldman 19]



Story two: infinite dimensional regression

- However…
- Previous results rely crucially on (by 

far) classical proportional 
asymptotics (such as classical 
random matrix theory)

- In reality, the statisticians don’t 
decide                        or  

- Nature doesn’t have a finite 
inherent dimension nor a well-
conditioned covariance



Story two: infinite dimensional regression

- However…
- Previous results rely crucially on (by 

far) classical proportional 
asymptotics (such as classical 
random matrix theory)

- In reality, the statisticians don’t 
decide                        or  

- Nature doesn’t have a finite 
inherent dimension nor a well-
conditioned covariance

- The ambient manifold 
doesn’t change but we 
recover better with more 
data!



Story two: infinite dimensional regression

- However…
- Previous results rely crucially on (by 

far) classical proportional 
asymptotics (such as classical 
random matrix theory)

- In reality, the statisticians don’t 
decide                        or  

- Nature doesn’t have a finite 
inherent dimension nor a well-
conditioned covariance

- The ambient manifold 
doesn’t change but we 
recover better with more 
data!

- Question: How do we 
develop “dimensional free” 
tools to understand this 
learning procedure?



Story two: infinite dimensional regression

- However…
- Previous results rely crucially on (by 

far) classical proportional 
asymptotics (such as classical 
random matrix theory)

- In reality, the statisticians don’t 
decide                        or  

- Nature doesn’t have a finite 
inherent dimension nor a well-
conditioned covariance

- The ambient manifold 
doesn’t change but we 
recover better with more 
data!

- Question: How do we 
develop “dimensional free” 
tools to understand this 
learning procedure?

-               ! (my cat is not 
finite dimensional)
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- A unified theoretical framework: ridge(less) regression

- Data

- We allow            , consider i.i.d. noise and features from a 
trace class 

- Featurization of RKHS
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Theorem (Cheng and Montanari, 22) (Informal) Under appropriate assumptions, for                      
(suppressing the dependence on n and covariance), 

- More precisely

Random design Fixed design

Deterministic equivalence

Typically nontrivial behavior and vanishing multiplicative error term 
when the effective rank parameter is comparable to 
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- Experiments
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benign” overfitting)
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- A very high level proof

Leave one out and appropriately interpolate from         to     

through an martingale argument      

- Conclusion
- Dimension free deterministic equivalent risk for ridge(less) regression

- Shed light to understanding real world data



Other work

- High dimensional data
- Memorization [Cheng, Duchi, Kuditipudi, 22]

- High dimensional gradient flow [Celentano, Cheng, Montanari, 21]

- Low-rank matrix recovery [Cheng, Wei, Chen, 21]

- Robustness quantification and fundamental limits
- Geometry and computational optimality [Cheng, Duchi, Levy, 24]

- Weighted conformal inference [Areces, Cheng, Kuditipudi, 24]

- Collaborative learning [Cheng, Cheng, Duchi, 23]

- Reinforcement learning
- Entropy regularization [Cen, Cheng, Chen, Wei, Chi, 20]



Thank You!
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