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A general formulation
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and a hypothesis class H
containing 6.

@ The cost of not-fitting

miér]ienqlize Pred (5)

subject to Train (5) > €2

A simpler model

@ Linear model for X € R™*¢

y=X0+w

@ d > n so we can interpolate

@ “memorization”: if we have to fit
substantially below the inherent
noise floor
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@ Bayesian setup, with unknown signal 6 ~ N(0, I;/d)

e noise w ~ N (0,0°1,)

{2 error
PN ~ 2
Trainx (9) ~1g,, [er - yH ]
n 2

Predx (5) =Ezuw,0 {HxTQ - xTaHj
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~

where H = {G(X, y) square integrable}. Let H(e) = {Trainx (4/9\) > 52} and

Costx (€) :== min Predx (5) — min Predx (é\) .
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using strong duality. Bayes optimal estimator is linear without
constraint—with constraint? Still linear!

o Derive asymptotics using RMT. With the exact form of the
(approximate) minimizer, we derive asymptotic limits of threshold value
€, cost of not-fitting Costx (€) by random matrix theory.

o Upgrade by functional strong duality. Finally, we upgrade to any square

integrable estimator (X, y) by showing a functional strong duality result.
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Ridge estimator when p = 0, optimal with €2 training error.
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Marchenko-Pastur law
tn = w1, Hy(s) — H(s).
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dH(s) = o . Tsepn_ayds,
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Histogram and density
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P(Ap) ~ PAO) = 20T ((I - oxTx) X (X ) )

d d d d
T(A(p)) = %Tr ((I - §XTX) - (X;X + 021) 1)
Prediction and training errors in ESD
PLAG) —PAO) = 28 [ T ()

T(A(P)):/(l_ps)iwdh’n(s)

Limit of Lagrange multiplier
Since T(A(pn)) = €2, would expect p, — pe
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Taking p. = 0 gives
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dH(s) =
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Limit of cost of not-fitting

Theorem 1 (Cheng, Duchi, Kuditipudi '22)

Under proportional asymptotics d/n — v > 1,
o (no-cost phase) lim,_, o Costx (€) > 0 iff €2 > €2 := —-7—— + o(c?)

o (linear-growth phase) lim,,_, o, Costx (¢) > C.€* for € > c,o.
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where p 2 N(0, 5XXT + oI). Strong duality in Hilbert space?
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0— (XTX+d021) XTy—pX " (X0—y)/d=0
We exactly have

6= AX)y
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0(X,y;)€R4, 1<i<m 2

~ 2
subject to /HXﬁ—yH dptm > é
2

where p,, are empirical distributions for i.i.d. samples of y | X.
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Upgrade to general hypothesis class

Functional strong duality

—~ -1
minimize /HH — (XTX + daQI) XTy

2
N dpm
0(X,y;)€R4, 1<i<m 2

~ 2
subject to /HXG—yH dptm > é
2

where (., are empirical distributions for i.i.d. samples of y | X. Strong duality
applies to finite dimensional problems! Take m — oo and conclude by SLLN.
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Cost of not-interpolating

Cost of not-fitting

Costx (€) := 5?21(15) Pred x (@) — géi;; Predx (5) .

Cost of not-interpolating
Costx(€) :== min Predx (5) — min Predx (5) .
GeH(e) GeHo

The optimal interpolant is the OLS estimator Oois = XT(XXT)y.

Theorem 2 (Cheng, Duchi, Kuditipudi '22)

Under proportional asymptotics d/n — v > 1,
o (no-cost phase) lim,, o Costx (€) > 0 iff € > €2 .
o (linear-growth phase) lim,,_, », Costx (¢) > C,€* for € > ¢, 0.

o (threshold value) €; < €505 < FiyEo.
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Relax assumptions

General covariance
@ The empirical spectral distribution of X converges.

@ The condition number of X is bounded.

General prior and noise distributions

o Gaussianity ensures model complexity. A counterexample when
memorization does not happen is 6 = ej/\/a with equal probability.

e For 6 ~ (0,1;/d) and w ~ (0,0°1,), we restrict to linear estimators

H = {é(x, y): 0= A(X)y} .

Theorem 3 (Cheng, Duchi, Kuditipudi '22)

(Informal) Under above conditions, we have to train till below O(c*) error to
generalize well.
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Conclusions

Necessity of memorization in linear regression

Costx (e), v ‘

— | must fit with accuracy >>
"z inherent noise level..

SO T

%S,
U

John Duchi
on an average day

Similar results for other problems?

Implications for data cleaning and security. Can we have both?

Motivation to construct datasets with multiple labels

@ Theory of dataset with multiple labels. Hilal Asi, Chen Cheng, John Duchi.
@ Surrogate consistency with data aggregation. Chen Cheng, John Duchi.

For more details: arXiv:2202.09889

24/24



