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Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom
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interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



4/24

Interpolation in modern machine learning

Classical statistical wisdom

bigger models tend to
overfit

need to limit model capacity

Modern empirical wisdom

overparameterized model

interpolate data



5/24

Sufficiency of interpolation

When is it sufficient to overfit?

Benign overfitting Literatures

Surprises in high-dimensional ridgeless least squares interpolation
Hastie et al., 2018.

The generalization error of max-margin linear classifiers: High-dimensional
asymptotics in the overparametrized regime
Montanari et al., 2019.

Just interpolate: Kernel “ridgeless” regression can generalize
Liang and Rakhlin, 2020.

Two models of double descent for weak features
Belkin et al., 2020.
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Necessity of interpolation

When is it necessary to overfit?

Competing considerations

Privacy and security.

Figure from Carlini et al., 2021

Can we generalize well without
memorization?

Inspiring line of works

Does Learning Require Memorization? A Short Tale about a
Long Tail
Feldman, 2019.

When Is Memorization of Irrelevant Training Data Necessary
for High-Accuracy Learning?
Brown, Bun, Feldman, Smith, Talwar, 2021.

Takeaways

Heavy-tailed distributions.

Need to memorize each class.

Combinatorial setup.
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Necessity of interpolation

A general formulation

Data pairs (xi, yi) from

yi = f(xi; θ, wi)

and a hypothesis class H
containing θ.

The cost of not-fitting

minimize
θ̂∈H

Pred
(
θ̂
)

subject to Train
(
θ̂
)
≥ ϵ2

A simpler model

Linear model for X ∈ Rn×d

y = Xθ + w

d ≥ n so we can interpolate

“memorization”: if we have to fit
substantially below the inherent
noise floor
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Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



11/24

Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



11/24

Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



11/24

Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



11/24

Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



11/24

Linear regression

Let’s start from the isotropic Gaussian case

Problem setup

Consider the standard overparameterized linear model y = Xθ + w, with

random isotropic i.i.d. design matrix X = Rn×d (d ≥ n)

Bayesian setup, with unknown signal θ ∼ N (0, Id/d)

noise w ∼ N (0, σ2In)

ℓ2 error

TrainX
(
θ̂
)
=

1

n
Ew,θ

[∥∥∥Xθ̂ − y
∥∥∥2
2

]
PredX

(
θ̂
)
= Ex,w,θ

[∥∥∥x⊤θ − x⊤θ̂
∥∥∥2
2

]



12/24

Cost of not-fitting for linear regression



12/24

Cost of not-fitting for linear regression

We want to solve

min
θ̂∈H

. PredX
(
θ̂
)

s.t. TrainX
(
θ̂
)
≥ ϵ2 ,

where H =
{
θ̂(X, y) square integrable

}
.
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Cost of not-fitting for linear regression

Theorem 1 (Cheng, Duchi, Kuditipudi ’22)

Under proportional asymptotics, namely d/n → γ as n → ∞ for some γ > 1,

(no-cost phase) limn→∞ CostX(ϵ) > 0 iff ϵ2 > ϵ2σ := σ4

σ2+1−1/γ
+ o(σ4)

(linear-growth phase) limn→∞ CostX(ϵ) ≥ Cγϵ
2 for ϵ2 ≥ cγσ

4.
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Proof outline

The proof consists of three parts.

Strong duality for linear estimators. Starting from linear hypothesis class
θ̂ = Ay, we solve the nonconvex minimization problem

min
θ̂∈H

. PredX
(
θ̂
)

s.t. TrainX
(
θ̂
)
≥ ϵ2 ,

using strong duality. Bayes optimal estimator is linear without
constraint—with constraint? Still linear!

Derive asymptotics using RMT. With the exact form of the
(approximate) minimizer, we derive asymptotic limits of threshold value
ϵσ, cost of not-fitting CostX(ϵ) by random matrix theory.

Upgrade by functional strong duality. Finally, we upgrade to any square
integrable estimator θ̂(X, y) by showing a functional strong duality result.
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Strong duality for linear hypothesis class

For linear estimator θ̂ = Ay, let P(A) := PredX
(
θ̂
)
and T (A) := TrainX

(
θ̂
)
.

Reduction to QCQP

minimize
A∈Rd×n

P(A) =
1

d
∥AX − I∥2F + σ2 ∥A∥2F

subject to T (A) =
1

nd
∥XAX −X∥2F +

σ2

n
∥XA− I∥2F ≥ ϵ2 .

Strong duality

The problem—while nonconvex—has quadratic objective and a single
quadratic constraint. Strong duality holds!

Optimality condition with ρn := ρn(ϵ)

A(ρn) =

(
I − ρnσ

2
(
I − ρn

d
X⊤X

)−1
)
(X⊤X + dσ2I)−1X⊤

Ridge estimator when ρ = 0, optimal with ϵ2σ training error.
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Asymptotics by RMT

Let X have singular values λ1 ≥ λ2 ≥ · · · ≥ λn. The empirical spectral
distribution of 1

d
XX⊤ is µn with its c.d.f. Hn(s) :=

1
n

∑n
i=1 1λ2

i /d≤s.

Marchenko-Pastur law

µn ⇒ µ, Hn(s) → H(s).

dH(s) =
γ

2π

√
(λ+ − s)(s− λ−)

s
1s∈[λ−,λ+]ds,

with λ± :=
(
1± 1/

√
γ
)2
.
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Asymptotics by RMT

Prediction and training errors

P(A(ρ))− P(A(0)) =
ρ2σ4

d
Tr

((
I − ρ

d
X⊤X

)−2 X⊤X

d

(
X⊤X

d
+ σ2I

)−1
)

T (A(ρ)) =
σ4

n
Tr

((
I − ρ

d
X⊤X

)−2
(
X⊤X

d
+ σ2I

)−1
)

Prediction and training errors in ESD

P(A(ρ))− P(A(0)) =
ρ2n

d

∫
σ4s

(1− ρs)2(s+ σ2)
dHn(s)

T (A(ρ)) =

∫
σ4

(1− ρs)2 (s+ σ2)
dHn(s)

Limit of Lagrange multiplier
Since T (A(ρn)) = ϵ2, would expect ρn → ρϵ∫

σ4

(1− ρϵs)2 (s+ σ2)
dH(s) = ϵ2
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Asymptotics by RMT

Limit of threshold

Taking ρϵ = 0 gives

ϵ2σ = T (A(0)) →
∫

σ4

s+ σ2
dH(s) =

σ4

σ2 + 1− 1/γ
+ o(σ4)

Limit of cost of not-fitting

CostX(ϵ) = P(A(ρn))− P(A(0)) = P(A(ρϵ))− P(A(0)) + on(1)

→ ρ2ϵ
γ

∫
σ4s

(1− ρϵs)2(s+ σ2)
dH(s)

Theorem 1 (Cheng, Duchi, Kuditipudi ’22)

Under proportional asymptotics d/n → γ > 1,

(no-cost phase) limn→∞ CostX(ϵ) > 0 iff ϵ2 > ϵ2σ := σ4

σ2+1−1/γ
+ o(σ4)

(linear-growth phase) limn→∞ CostX(ϵ) ≥ Cγϵ
2 for ϵ2 ≥ cγσ

4.
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Upgrade to general hypothesis class

It only remains to show the same conclusion holds for θ̂(X, y) square integrable
given Gaussianity.

minimize
θ̂(X,y)∈L2

∫ ∥∥∥∥θ̂ − (X⊤X + dσ2I
)−1

X⊤y

∥∥∥∥2
2

dµ

subject to

∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµ ≥ ϵ2

where µ
d
= N(0, 1

d
XX⊤ + σ2I). Strong duality in Hilbert space?

θ̂ −
(
X⊤X + dσ2I

)−1

X⊤y − ρX⊤(Xθ̂ − y)/d = 0

We exactly have

θ̂ = A(X)y
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Upgrade to general hypothesis class

Functional strong duality

minimize
θ̂(X,yi)∈Rd,1≤i≤m

∫ ∥∥∥∥θ̂ − (X⊤X + dσ2I
)−1

X⊤y

∥∥∥∥2
2

dµm

subject to

∫ ∥∥∥Xθ̂ − y
∥∥∥2
2
dµm ≥ ϵ2

where µm are empirical distributions for i.i.d. samples of y | X. Strong duality
applies to finite dimensional problems! Take m → ∞ and conclude by SLLN.
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Cost of not-interpolating

Cost of not-fitting

CostX(ϵ) := min
θ̂∈H(ϵ)

PredX
(
θ̂
)
−min

θ̂∈H
PredX

(
θ̂
)
.

Cost of not-interpolating

CostX(ϵ) := min
θ̂∈H(ϵ)

PredX
(
θ̂
)
− min

θ̂∈H0

PredX
(
θ̂
)
.

The optimal interpolant is the OLS estimator θ̂ols = X⊤(XX⊤)−1y.

Theorem 2 (Cheng, Duchi, Kuditipudi ’22)

Under proportional asymptotics d/n → γ > 1,

(no-cost phase) limn→∞ CostX(ϵ) > 0 iff ϵ2 > ϵ2σ,ols.

(linear-growth phase) limn→∞ CostX(ϵ) ≥ Cγϵ
2 for ϵ2 ≥ cγσ

4.

(threshold value) ϵσ < ϵσ,ols ≤ κγϵσ.
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Relax assumptions

General covariance

The empirical spectral distribution of Σ converges.

The condition number of Σ is bounded.

General prior and noise distributions

Gaussianity ensures model complexity. A counterexample when
memorization does not happen is θ = ej/

√
d with equal probability.

For θ ∼ (0, Id/d) and w ∼ (0, σ2In), we restrict to linear estimators

H =
{
θ̂(X, y) : θ̂ = A(X)y

}
.

Theorem 3 (Cheng, Duchi, Kuditipudi ’22)

(Informal) Under above conditions, we have to train till below O(σ4) error to
generalize well.
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