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Datasets are central to the development of statistical learning theory, and the evolution of models. The
burgeoning success of modern machine learning in sophisticated tasks crucially relies on the vast growth of
massive datasets (cf. Donoho [12]), such as ImageNet [11], SuperGLUE [16] and Laion-5b [15]. However, such
evolution breaks standard statistical learning assumptions and tools. My research revolves around under-
standing the complexity of modern datasets by developing new theoretical tools and studying unconventional
models.

The study of traditional datasets consisting of {(Xi, Yi)}ni=1 produced the rich and mature theory of text
book statistical learning theory such as empirical risk minimization, witnessed the development of renowned
models (e.g. EM algorithms and random forests), and they keep playing vital roles in casual inference and
conformal prediction.

The truly phenomenal, in recent years, is the explosive emergence of modern datasets. They drive the
development of statistical machine learning models and make unimaginably accurate predictions in com-
plex tasks such as computer vision and artificial intelligence, harnessing the power of revolutionary models
including deep neural networks, reinforcement learning from human feedbacks (RLHF) and large language
models (LLM). The modern datasets despite their great powers, often break the textbook assumptions for
classical theory and models—the data may not have single labels such as {(Xi, Yi)}ni=1, features Xi may be
high-dimensional or missing elements, and the underlying distribution PX may shift from interaction with
learning, etc.—such complexities challenge traditional tools of statistical machine learning. How should we
think about fitting those models beyond conventional wisdom? What mathematical foundations we can lay
that we can leverage to do more?

Therefore, my research goal is to study the success of modern ML and ground-breaking models by unrav-
eling the mystery of the complexity of modern datasets—more precisely, I aim to develop statistical theory
to explain unusual behavior of modern ML, make and test hypotheses in both datasets and methodologies,
and predict model behaviors that we can leverage to streamline learning methods. I underwent a PhD
journey of understanding modern datasets by addressing a few outstanding aspects unfamiliar to traditional
models and theory—I gained both unique intuition and developed novel theoretical tools that contribute to
unraveling the power of modern datasets. It also comes to my realization that those angles merely scratch
the surface of modern datasets, and there are other problems that substantially interest me such as online
learning and diffusion models. I aim to delve deeper into my current areas of focus and expand into these
fields in my future career. My current research encompasses the following topics, highlighted by selected
representative works.

Figure 1: Cost of not fitting vs. training error.

High dimensional data and overparametrized models. In classi-
cal statistics, the feature dimension or the number of model parameters
d is much smaller than the number of data points n, i.e. d/n → 0. As
modern datasets grow increasingly high dimensional and models become
overly parameterized, it is crucial to understand the behavior of statisti-
cal machine learning under such settings, i.e. d/n → γ ∈ (0,∞) or even
d/n → ∞. We approach various aspects of this problem in a series of
work [4, 2, 7, 5, 9]. Notably, those works tackle the property of datasets
with the design matrix X = (X1, · · · , Xn)

⊤ ∈ Rn×d from a parametric
model y = f(x; θ, ϵ), y, ϵ ∈ R, θ ∈ Rd×k, where the dimension d is comparable or much larger than the
sample size n.
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◦ Memorize to generalize: on the necessity of interpolation in high dimensional linear regression [9].
Recent work has sought to develop an understanding of “implicit regularization” in overparameterized
interpolating models: whereas most minimizers of the empirical risk may generalize poorly, standard
learning algorithms used in practice such as (stochastic) gradient descent tend to converge to solutions
that do generalize well in many “benign-overfitting” scenarios (cf. [13, 14]). In those cases, it is sufficient
to generalize well by interpolation.
There nonetheless remains at least some reason to be skeptical of the notion that interpolation is
necessarily “benign”. In this work, we examine the necessity of interpolation in overparameterized
models, that is, when achieving optimal predictive risk in machine learning problems requires (nearly)
interpolating the training data. In particular, we consider simple overparameterized linear regression
y = Xθ+w with random design X ∈ Rn×d under the proportional asymptotics d/n → γ ∈ (1,∞). We
precisely characterize how prediction (test) error necessarily scales with training error in this setting.
Intriguingly, it implies as the label noise variance σ2 → 0, any estimator that incurs at least cσ4

training error for some constant c is necessarily suboptimal and will suffer growth in excess prediction
error at least linear in the training error (see Fig. 1). Thus, optimal performance requires fitting
training data to substantially higher accuracy than the inherent noise floor of the problem.

◦ The high-dimensional asymptotics of first order methods with random data [2]. First order methods
are key to modern machine learning framework, which requires understanding the behavior of gradient
descent dynamics in high-dimensional and non-convex landscapes. The main challenge is the data reuse
at each step and the correlation it induces, as we cannot use new batch of data when n is comparable
to d. In this work, we study a class of deterministic flows {θt}Tt=0 ∈ C(Rd×k, [0, T ]), parametrized by a
random design matrix X ∈ Rn×d with i.i.d. centered entries. We characterize the asymptotic behavior
of these flows over bounded time horizons, in the high-dimensional limit in which n, d → ∞ with k
fixed and converging aspect ratios d/n → γ ∈ (0,∞). The asymptotic characterization we prove is in
terms of a system of a nonlinear stochastic process in k dimensions, whose parameters are determined
by a fixed point condition.
This type of characterization is known in physics as dynamical mean field theory (DMFT). Our proof
is based on time discretization and a reduction to certain iterative schemes known as approximate
message passing (AMP) algorithms, as opposed to earlier work that was based on large deviations
theory and stochastic processes theory. As the asymptotic characterizations by DMFT are processes
in low dimension, we can cheaply make predictions to first order methods behaviors in high-dimensional
and non-convex landscapes, which may greatly reduce the cost of hyper-parameter tuning via retraining
in practice.

◦ Dimension free ridge regression [5]. In previous two highlighted works, random matrix theory plays
crucial roles in our theoretical analysis. However, random matrix theory is largely focused on the
proportional asymptotics in which the number of columns grows proportionally to the number of rows
of the data matrix. This is not always the most natural setting in statistics where columns correspond
to covariates and rows to samples. With the objective to move beyond the proportional asymptotics,
we revisit ridge regression (ℓ2-penalized least squares) on i.i.d. data X ∈ Rn×d, y ∈ Rn. We allow the
feature vector to be infinite-dimensional (d = ∞), in which case it belongs to a separable Hilbert space.
Within this setting, we establish non-asymptotic bounds that approximate the bias and variance of
ridge regression in terms of the bias and variance of an ‘equivalent’ sequence model (a regression model
with diagonal design matrix). The approximation is up to multiplicative factors bounded by (1±∆) for
some explicitly small ∆. Previously, such an approximation result was known only in the proportional
regime and only up to additive errors: in particular, it did not allow to characterize the behavior of
the excess risk when this converges to 0.
Our general theory recovers earlier results in the proportional regime (with better error rates). As
a new application, we obtain a completely explicit and sharp characterization of ridge regression for
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Hilbert covariates with regularly varying spectrum. Finally, we analyze the overparametrized near-
interpolation setting and obtain sharp ‘benign overfitting’ guarantees.
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Figure 2: Experiments on CIFAR-10H dataset.

Multiple labels and data aggregation. Multilabeling is another cu-
rious aspect of modern human-labeled datasets that is often missing in
statistical machine learning literature. This could arise from aggregat-
ing non-expert labels, or combining different models trained on their own
data. We address this problem in [8, 10].

◦ How many labelers do you have? A closer look at gold-standard
labels [8]. In earlier years, experts could provide reliable labels for
reasonably sized datasets, the cost and size of modern datasets often
precludes this expert annotation, motivating a growing literature on
crowdsourcing and other sophisticated dataset generation strategies
that aggregate expert and non-expert feedback or collect internet-
based loosely supervised and multilabeled data. By aggregating
multiple labels, one typically hopes to obtain clean, true, “gold-standard” data. Yet most statisti-
cal machine learning development—theoretical or methodological—does not investigate this full data
generating process, assuming only that data comes in the form of (X,Y ) pairs of covariates X and
targets (labels) Y . To that end, we develop a stylized theoretical model to capture uncertainties in the
labeling process, allowing us to understand the contrasts, limitations and possible improvements of
using aggregated or non-aggregated data in a statistical learning pipeline. We model each example as
a pair (Xi, (Yi1, . . . , Yim)) where Xi is a data point and Yij are noisy labels. In these stylized models,
we show how access to non-aggregated label information can make training well-calibrated models
more feasible than it is with gold-standard labels. The theory makes several predictions for real-world
datasets, including when non-aggregate labels should improve learning performance, which we test to
corroborate the validity of our predictions (cf. Fig. 2).
Concretely, the contrasts between aggregated and fuller label information depend on the particulars
of the problem, where estimators that use aggregated information exhibit robust but slower rates of
convergence, while estimators that can effectively leverage all labels converge more quickly if they have
fidelity to (or can learn) the true labeling process.

Robustness quantification and fundamental limits for structured datasets. Apart from high-
dimensionality and multilabeling, we also study datasets with specific structures inspired from modern ma-
chine learning, distributionally and geometrically. In particular, we develop theory that quantifies robustness
of the problem and provides information-theoretic limits under these structural assumptions in [10, 1, 6].

◦ Geometry, computation, and optimality in stochastic optimization [6]. In stochastic convex optimiza-
tion, linear updates are desirable as they are computationally cheap and easy to scale, which also
motivates the study for general first order methods [2] in the last section. However, it generally
remains unclear whether cheap computation is sufficient for optimality.
We ask the question of what geometric constraints are required for linear methods to be minimax
optimal, drawing the parallel between stochastic optimization and the classical Gaussian sequence
models. By focusing on constraint set and gradient geometry, we characterize the problem families
for which stochastic- and adaptive-gradient methods are (minimax) optimal and, conversely, when
nonlinear updates—such as those mirror descent employs—are necessary for optimal convergence.
Specifically, when the constraint set is quadratically convex, diagonally pre-conditioned stochastic
gradient methods are minimax optimal. We provide quantitative converses showing that the “distance”
of the underlying constraints from quadratic convexity determines the sub-optimality of subgradient
methods.
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◦ Collaboratively learning linear models with structured missing data [10]. As models keep evolving in real
world, it is nature to ask how do we leverage data from different models and jointly combine them to
make better predictions—for example, photo qualities improve as satellites’ sensors upgrade. Instead
of just throwing away previous models and data, we wish to leverage shared structure to achieve better
accuracy. This work also aligns with my previous topic of data aggregation, and we study the problem
of collaboratively learning least squares estimates for m agents. Each agent observes a different subset
of the features—e.g., containing data collected from sensors of varying resolution.
Our goal is to determine how to coordinate the agents in order to produce the best estimator for
each agent. We propose a distributed, semi-supervised algorithm, consisting of three steps: local
training, aggregation, and distribution. Our procedure does not require communicating the labeled
data, making it communication efficient and useful in settings where the labeled data is inaccessible.
Despite this handicap, our procedure is nearly asymptotically, local-minimax optimal—even among
estimators allowed to communicate the labeled data such as imputation methods.

Other adventures. Besides the above main topics, I enjoy a few side-quests during my PhD career.
My industrial research intern experience at LinkedIn involved studying backwards martingale and differ-
ential privacy. I also worked on natural policy gradient methods in reinforcement learning with entropy
regularization [3].

Conclusion and research plan. My research, spanning across fields of statistical machine learning, focus
on demystifying the complex aspects of modern datasets that are central to the success of modern machine
learning.

Moving forward, I plan to further my current research focus, harnessing my expertise in random matrix
theory, high dimensional statistics and information theory. I also plan to explore broader areas around the
theme of understanding modern datasets, such as high dimensional inverse problems and diffusion models,
as well as establishing the connection between backwards martingales and differential privacy thoroughly.
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