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Abstract

Random matrix theory has become a widely useful tool in high-dimensional statistics and
theoretical machine learning. However, random matrix theory is largely focused on the pro-
portional asymptotics in which the number of columns grows proportionally to the number of
rows of the data matrix. This is not always the most natural setting in statistics where columns
correspond to covariates and rows to samples.

With the objective to move beyond the proportional asymptotics, we revisit ridge regression
(ℓ2-penalized least squares) on i.i.d. data (xi, yi), i ≤ n, where xi is a feature vector and
yi = ⟨β,xi⟩+ εi ∈ R is a response. We allow the feature vector to be high-dimensional, or even
infinite-dimensional, in which case it belongs to a separable Hilbert space, and assume either
zi := Σ−1/2xi to have i.i.d. entries, or to satisfy a certain convex concentration property.

Within this setting, we establish non-asymptotic bounds that approximate the bias and
variance of ridge regression in terms of the bias and variance of an ‘equivalent’ sequence model
(a regression model with diagonal design matrix). The approximation is up to multiplicative
factors bounded by (1±∆) for some explicitly small ∆.

Previously, such an approximation result was known only in the proportional regime and only
up to additive errors: in particular, it did not allow to characterize the behavior of the excess
risk when this converges to 0. Our general theory recovers earlier results in the proportional
regime (with better error rates). As a new application, we obtain a completely explicit and
sharp characterization of ridge regression for Hilbert covariates with regularly varying spectrum.
Finally, we analyze the overparametrized near-interpolation setting and obtain sharp ‘benign
overfitting’ guarantees.
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1 Introduction

In regression modeling, we typically assume to be given data (xi, yi), i ≤ n that are i.i.d. samples
from a common distribution P, with xi a feature vector, and yi ∈ R a scalar response. We would like
to estimate a model f : x 7→ f(x) to predict ynew from xnew, where (xnew, ynew) ∼ P is a new sample
from the same distribution. In this paper, we will focus on linear models whereby f(x) = ⟨β̂,x⟩,
and use ridge regression for the estimator β̂. Denoting by X the matrix with rows x1, . . . ,xn, we
have

β̂λ := argmin
b

{
∥y −Xb∥2 + λ∥b∥2

}
(1)

= (XTX + λI)−1XTy . (2)
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We will also be interested in the λ→ 0+ limit of this estimator which (in the overparametrized case)
corresponds to the minimum norm interpolator of the data, and refer to it as ‘ridgeless regression.’
We will denote by β := argminb E{(y − bTx)2} the population regressor.

Statistical theory studies this and similar estimators in three different regimes:

1. The classical low-dimensional setting in which xi,β ∈ Rd with d fixed and n → ∞. In
this regime, the empirical covariance XTX/n converges to the population covariance Σ :=
E{x1x

T
1 } (provided the latter exists) and β̂λ is asymptotically normal [VdV00].

2. The (by now) classical high-dimensional regime in which xi,β ∈ Rd with d ≫ n but: (i) the
population covariance Σ is well conditioned, and (ii) the population regressor β is sparse. In
this case it is advised to replace the ℓ2 penalty ∥b∥2 by a sparsity promoting penalty, e.g. ∥b∥1
[Tib96, DET05]. In many ways, this regime is similar to the previous one, provided n≫ s log d.
While XTX/n does not concentrate, its restrictions to subsets of O(s) coordinates do [CT05].

3. The proportional regime in which n ≍ d. In this case XTX/n does not concentrate, and β̂λ
is not consistent, and indeed consistent estimation is generally impossible. However, accurate
characterizations of the ridge estimator and its risk can be derived using random matrix
theory [Dic16, DW18, HMRT22]. Such characterizations answers the question of ε-consistency:
for what sample size, and what data distributions does the ridge estimator achieves error
E{∥β̂λ − β∥2} ≤ ε? Similar characterizations hold for other estimators such as the Lasso
[BM11, MM21, CMW20], robust M-estimators [BBEKY13, EKBB+13, EK18, DM16], and so
on [BKM+19, TAH18, TPT21, CM22].

Despite the wealth of fascinating technical results in this area, this state of affairs leaves open many
important questions.
First, it would be important have a unified theoretical framework that does not require the statis-
tician to decide which asymptotics to use. For instance, in order to apply sharp asymptotics in the
classical or proportional regimes, it is often assumed that a given pair (n, d) is in fact an element
of a sequence (n, d(n)) with, respectively, either d(n) ≍ 1, or d(n) ≍ n.

In practice we are given a single pair, say (n, d) = (1000, 50): should we interpret this as d ≍ 1,
d ≍ n, or yet another regime that is not covered by current theory (e.g., d ≍ n2/3)?

In fact, the distinction between three types of asymptotics outlined above is rather the conse-
quence of the technical tools used to derive them, rather than a fundamental statistical phenomenon.
Second, the restriction d = O(n) (or s = O(n) in sparse regression) which is implied both by the
proportional and by the classical asymptotics is artificial. While this condition might seem necessary
for consistency at fist sight (it might seem that at least d observations are required to estimate d
parameters), as shown in [BLLT20, TB20] this is in fact not the case. Further, it is not even clear
how to check in practice d = O(n) for a given pair n, d.
Third, it would be important to remove the assumption of a well conditioned Σ, and derive precise
asymptotics for general covariances. We would argue that the ill-conditioned case is most important
in practice, since high-dimensional data have often low-dimensional structures.
Fourth, the proportional asymptotics is somewhat un-natural from a statistical viewpoint. Most
statisticians are used to think of the data distribution is fixed (in particular, d is fixed), while we
sample size n increases. In a standard proportional setting, one instead assumes n, d→ ∞ together
with n/d→ δ: the data distribution changes with the sample size.

Recent progress on several of these issues was achieved in the context of ridge regression. Among
others, [HMRT22] derived a characterization for bias and variance in the proportional regime that
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is non-asymptotic, i.e. holds up to an approximation error that is explicit and vanishes for large n,
d. Using a different approach, [BLLT20, TB20] obtained bounds on bias and variance that hold for
arbitrary (possibly infinite) dimension d, in terms of of the decay of eigenvalue of Σ. These bounds
allow to demonstrate ‘benign overfitting,’ i.e. choices of Σ,β (i.e. data distributions) such that
minimum norm interpolator is consistent.

The results [HMRT22, BLLT20, TB20] have limitations. The characterization of the risk proved
in [HMRT22] has sharp leading constants, but only holds for C−1 ≤ n/d ≤ C with C a constant,
and holds up to an additive error. However, this error terms can be larger than the actual excess risk
when the latter vanishes. The bounds of [BLLT20, TB20], on the other hand, hold up to unspecified
multiplicative constants. The proof techniques in these two sets of results are furthermore very
different.

In this paper we attempt to provide a unified picture that covers these gaps, by extending the
sharp characterization of ridge regression of [HMRT22] beyond the proportional regime. This will
allows to recover the benign overfitting results of [BLLT20, TB20] (in several cases) with sharp
constants. In doing so, we will extend random matrix theory analysis to cases with d ≫ n or
d = ∞, without restrictions on the condition number of Σ. In the case d = ∞, the feature vectors
xi are random elements in a separable Hilbert space, whose distribution is fixed (does not change
with n), and whose covariance Σ is a trace class self-adjoint operator.

The rest of the paper is organized as follows. The next section describes the setting for our
analysis, the main assumptions and the resulting asymptotic characterization. It also provides
some intuition and connects our results to earlier work. Section 3 contains the formal statement of
our general results, while Section 4 specializes our theorem to regimes of interest and develops tools
to check its assumptions. Section 5 evaluates our characterization for certain choices of Σ,β, and
compare the predictions with simulations. Finally, proof are presented in Sections 6 and 7, with
most technical steps deferred to the appendices.

2 Setting and characterization

Ridge regression in Hilbert space. We consider the simple linear model

yi = xT
i β + εi , (3)

where β ∈ Rd is the ground truth signal. The random features xi ∈ Rd and noise εi are independent,
and the (xi, εi) are i.i.d. samples with 1 ≤ i ≤ n. We assume xi, εi are mean zero with covariances
Cov(xi) = Σ and Var(εi) = τ2. Defining the data matrix

X =


xT
1

xT
2
...
xT
n

 ∈ Rn×d ,

the response vector y = (y1, · · · , yn)T and the noise vector ε = (ε1, · · · , εn)T, we can write in matrix
form

y = Xβ + ε .

In this paper, we assume the dimension d ∈ Z≥0 ∪ {∞}. When d < ∞, we are in the usual
setup of linear model with finite dimensional features. In the case d = ∞, we assume that the
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xi’s’ are i.i.d. random vectors from a real, separable Hilbert space H. We will use ∥x∥ to denote
the norm and ⟨x1,x2⟩ or xT

1x2 to denote the scalar product in this space. Given a linear operator
A : H → H, we denote by ∥A∥ the associated operator norm.

We will assume the covariance operator Σ = E[xxT] to be trace-class, namely

Tr(Σ) = E{∥xi∥2} <∞ ,

and, without loss of generality, we also assume ∥Σ∥ = 1. Recall that, without loss of generality, one
can always assume H to be ℓ2 := {x = (x1, x2, · · · , ) :

∑∞
i=1 x

2
i <∞} [Bré11].

For an estimator β̂ = β̂(X,y) we define the excess risk as

RX(β̂;β) = Exnew,y

[
(xT

newβ̂ − xT
newβ)

2 | X
]
= Ey

[
∥β̂ − β∥2Σ | X

]
,

where xnew is an independent copy of x1, · · · ,xn and ∥x∥2Σ := xTΣx. We will also refer to this as
the ‘test error’ or the ‘generalization error’ (although the latter is actually given by the difference
between RX and ts empirical version.) Let us emphasize that in this definition, RX(β̂;β) is a
random quantity because it depends on the data X: however, as we will prove, it concentrates
around a non-random value.

The generalization error admits a variance-bias decomposition RX(β̂;β) = VX(β̂;β)+BX(β̂;β),
with

VX(β̂;β) = Tr
(
ΣCov(β̂ | X)

)
, BX(β̂;β) =

∥∥∥Ey[β̂ | X]− β
∥∥∥2
Σ
.

For ridge regression, we can write explicit forms of variance and bias:

VX(λ) = τ2Tr
(
ΣXTX(XTX + λI)−2

)
, (4a)

BX(λ) = λ2⟨β, (XTX + λI)−1Σ(XTX + λI)−1β⟩ . (4b)

Assumptions on the covariates distribution. We impose the following assumptions on the
covariates xi throughout the paper.

Assumption 1. We assume E[xi] = 0, Σ := E[xixT
i ] is a trace class operator: Tr(Σ) < ∞

and (without loss of generality) ∥Σ∥ = 1. We denote its eigenvalues by 1 = σ1 ≥ σ2 ≥ · · · in
non-increasing order. We assume ∥β∥Σ−1 := ∥Σ−1/2β∥ <∞.

We further assume xi = Σ1/2zi where the following hold.
I. There exist dΣ := dΣ(n) ≥ n such that, for all 1 ≤ k ≤ min{n, d}

d∑
l=k

σl ≤ dΣσk .

II. There exist Cx > 0, such that one of the following condition holds:

(a) Independent sub-Gaussian coordinates: zi has independent but not necessarily identically
distributed coordinates with uniformly bounded sub-Gaussian norm. Namely: each coordinate
zij of zi satifies E[zij ] = 0, Var(zij) = 1 and ∥zij∥ψ2

:= supp≥1 p
− 1

2 (E [|zij |p])
1
p ≤ Cx.

(b) Convex concentration: allowing zi to have dependent coordinates, the following holds for
any 1−Lipschitz convex function φ : Rd → R, and for every t > 0

P (|φ(zi)− Eφ(zi)| ≥ t) ≤ 2 exp
(
−t2/C2

x

)
.
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The technical motivation for assumption II is to establish concentration of quadratic forms of zi,
via Hanson-Wright inequality. We notice that the convex concentration property is implied by any
of the following. (i) By Talagrand inequality, convex concentration holds for random vectors zi with
independent bounded entries [BLM13, Theorem 7.12]. (ii) By Herbst’s argument, concentration of
Lipschitz functions (and hence in particular convex concentration) holds for random vectors zi that
satisfy a log-Sobolev inequality [BGL+14, Proposition 5.4.1]. (iii) Finally, as a special case of the
last point, vectors zi with strongly log-concave probability density function satisfy this condition
[BGL+14, Corollary 5.7.2].

The form of Hanson-Wright inequality that we will use is given below.

Lemma 2.1 (Hanson-Wright inequality [Ada15, RV13]). Suppose x ∈ Rd is a random copy of the
features vector xi satisfying Assumption 1. Then there exists a universal constant c0 > 0 such that,
for any matrix M ∈ Rd×d with ∥Σ

1
2MΣ

1
2 ∥ <∞, we have

P
(∣∣∣xTMx− Tr (ΣM)

∣∣∣ ≥ t
)
≤ 2 exp

{
− c0 min

( t2

C4
x∥Σ

1
2MΣ

1
2 ∥2F

,
t

C2
x∥Σ

1
2MΣ

1
2 ∥

)}
.

Remark 2.1. The results of [Ada15, RV13] are stated for finite d. However, the inequality also
holds for d = ∞ on the Hilbert space ℓ2 by a standard approximation argument. Namely, one can
project the vector x on the span of the top k-eigenvectors of Σ, establish concentration, and take
k → ∞ at the end.

Effective variance and bias. An important observation of [HMRT22] is that variance VX and
bias BX concentrate around some non-random quantities, that can be interpreted in terms of an
‘effective’ regression problem. While [HMRT22] proves such characterization in the proportional
regime n ≍ d, here we will extend its validity and prove stronger guarantees.

Define the effective regularization λ⋆ as the unique non-negative solution of

n− λ

λ⋆
= Tr

(
Σ(Σ+ λ⋆I)

−1
)
, (5)

we that define the effective variance and bias as

Vn(λ) :=
τ2Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)
, (6)

Bn(λ) :=
λ2⋆⟨β, (Σ+ λ⋆I)

−2Σβ⟩
1− n−1Tr (Σ2(Σ+ λ⋆I)−2)

, (7)

Rn(λ) := Bn(λ) + Vn(λ) . (8)

Our main result —stated in the next section— will establish dimension-free guarantees of the form

VX = (1 + on(1))Vn BX = (1 + on(1)))Bn (9)

where the term These improve over earlier work in two important directions. First, they are dimen-
sion free, and in particular do not assume n ≍ d. Second, they provide multiplicative approximations,
and hence retain their utility when the risk is small.
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Bounds, interpretation, benign overfitting. Before stating our formal results relating VX to
Vn and BX to Bn, it is useful to develop some intuition about the expressions (6), (7) and their
immediate consequences. Note that, by Eq. (5), we necessarily have

Tr
(
Σ2(Σ+ λ⋆I)

−2
)
< Tr

(
Σ(Σ+ λ⋆I)

−1
)
≤ n . (10)

If we assume that inequality between the first and last term holds with a constant multiplicative
factor, i.e. Tr

(
Σ2(Σ+ λ⋆I)

−2
)
≤ n(1− c−1

⋆ ) for some constant c⋆ ∈ (0,∞), then we get

Vn(λ) ≤
c⋆τ

2

n
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
, (11)

Bn(λ) ≤ c⋆λ
2
⋆⟨β, (Σ+ λ⋆I)

−2Σβ⟩ . (12)

Comparing these bounds with the bias and variance of general ridge regression in Eqs. (4a), (4a),
we observe that the right hand sides are (modulo the factor c⋆) the bias and variance of a modified
ridge regression in which:

• The design matrix is non-random and given by Σ1/2 instead of X.

• The regularization parameter is λ⋆ instead of λ.

• The noise level is τ/
√
n instead of τ .

Even more explicit expressions can be obtained by writing the right-hand side of Eqs. (11), (12) in
the basis that diagonalizes Σ as in the next proposition. A proof of this statement is in Appendix A.

Proposition 2.2. Assume Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≤ n(1−c−1

⋆ ), for c⋆ ∈ (1,∞). Let Σ :=
∑

i≥1 σiviv
T
i

be the eigendecomposition of of Σ, and denote by β≤k :=
∑

i≤k⟨β,vi⟩vi the orthogonal projec-
tion of β onto the span of v1, . . . ,vk, and by β>k := β − β≤k its complement. Finally, let
k⋆ := max{k : σk ≥ λ⋆}, and define the tail effective rank parameters by

rq(k) :=
∑
ℓ>k

( σℓ
σk+1

)q
, r(k) :=

r1(k)
2

r2(k)
. (13)

Then, defining bk := σk/σk+1, we have 2n ≥ k⋆ + r1(k⋆)/bk⋆ and

Vn(λ) ≤ c⋆τ
2
(k⋆
n

+
r2(k⋆)

n

)
≤ c⋆τ

2
(k⋆
n

+
4b2k⋆n

r(k⋆)

)
, (14)

Bn(λ) ≤ c⋆

(
σ2k⋆∥β≤k⋆∥2Σ−1 + ∥β>k⋆∥2Σ

)
. (15)

(We notice that if the singular values σk do not decay faster than exponentially, then bk is of
order one.) While these are only bounds on the theoretical characterization Bn(λ), Vn(λ) for bias
and variance, our main resuls (Theorem 1and Theorem 3) will allow to transfer them to the actual
bias and variance BX(λ), VX(λ) (modulo additional error terms).

Remark 2.2. These bounds (more precisely, the bounds on BX(λ), VX(λ) that follow from these
and Theorem 1) are closely related to the ones in [BLLT20, TB20], see in particular [TB20, Theorem
1]. It is worth pointing out two important differences. First, the bounds in Eqs. (14), (15) are
somewhat more precise/explicit: there is no unspecified constant factor1, no dependence on the
condition number of σ1/σk⋆ , and no multiplicative factor depending on the probability. Second,
Eqs. (14), (15) are only proved for the specific value of k⋆ defined there.

1The factor c⋆ is explicit and, if useful, can be replaced by the original expression.
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Remark 2.3. The bounds of Eqs. (14), (15) allow to characterize settings in which the excess test
error (as predicted by our theory) vanishes. Indeed, for Vn(λ) to vanish, it is sufficient that k⋆/n→ 0
and r(k⋆)/n → ∞. A simple sufficient condition for Bn(λ) → 0 is that β ∈ span(v1, . . . ,vk) with
σk/σk⋆ → ∞.

We will discuss special examples in Section 4, and show how our general results allow to derive
more precise estimates of the risk in those cases.

Equivalent sequence model. The discussion above relies on the assumption Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≤

n(1 − c−1
⋆ ), which implies the simple bounds (11), (12). However the interpretation in terms of a

modified ridge regression problem holds for the exact formulas of Eqs. (6), (7). This interpretation
was developed in the context of earlier work on the proportional asymptotics [DJM13], but it is
useful to spell it out here for the present context.

In the modified model, we observe ys that is related to β according to

ys = Σ1/2β +
ω√
n
g , g ∼ N(0, Id) , (16)

Without loss of generality, we can work in the basis in which Σ is diagonal, and therefore rewrite
the above as ysi = σ

1/2
i βi + (ω/

√
n)gi, which coincides with the definition of the classical sequence

model [Tsy09].
We use ridge regression at regularization level λ⋆ as defined in Eq. (5):

β̂sλ := argminb
{
∥ys −Σ1/2b∥2 + λ⋆∥b∥2

}
. (17)

Finally, choose the noise level ω to be the unique positive solution of

ω2 = τ2 + Eg

{
∥β̂sλ − β∥2Σ

}
. (18)

Then our theoretical prediction for the excess test error Rn(λ) coincides with the excess test error
of the sequence model:

Rn(λ) = Eg

{
∥β̂sλ − β∥2Σ

}
. (19)

Summarizing, the predicted test error for the original model is equal to the test error in the sequence
model, albeit at a different value of the ridge regularization parameter and of the noise level. Needless
to say, studying the sequence model is significantly simpler than the original model (3).

3 Statement of main results

Big-Oh notation. For two functions f(x) and g(x) (where x can be a scalar or a vector), we
write f(x) = Oα(g(x)) if there exists a constant Cα depending only on the value of α (also α can
be either a scalar or a vector) such that |f(x)| ≤ Cα|g(x)| for all x. In particular, if the constant is
universal we write f(x) = O(g(x)). Similarly, we write f(x) = Ωα(g(x)) if |f(x)| ≥ Cα|g(x)| for all
x and some constant Cα > 0. Finally, we write f(x) = Θα(g(x)) if we have both f(x) = Oα(g(x))
and f(x) = Ωα(g(x)).

We wil state three theorems: the first one for ridge regression with positive regularization λ > 0
(Theorem 1), and the other two for the ridgeless case λ = 0+ (Theorem 2 for the overparametrized
regime, and Theorem 3 for the underparametrized one). Our approximation guarantees will depend
on the pair Σ, β through the following three quantities (in the case λ = 0+, these quantities will
be modified as described below):
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1. The ratio between effective dimension and regularization parameter:

χn(λ) := 1 +
σ⌊ηn⌋dΣ log2(dΣ)

λ
. (20)

Here η is a constant that only depends on Cx, and hence we will leave it implicit.

2. The ratio between regularization and effective regularization

κ := min
( λ

nλ⋆
; 1− λ

nλ⋆

)
> 0 . (21)

3. For a positive semi-definite operator Q, define the modified population resolvent:

R0(µ0, µ;Q) := Tr
(
Σ

1
2QΣ

1
2 (µ0I + µΣ)−1

)
. (22)

Letting β = Σ1/2θ, ∥θ∥ <∞, we consider the ratio

ρ(λ) :=
R0(λ⋆, 1;θθ

T/ ∥θ∥2)
R0(λ⋆, 1; I)

∈ (0, 1] . (23)

We next present our master theorem for ridge regression: its proof is postponed to Section 6.

Theorem 1 (Ridge regression). Under Assumption 1, for any positive integers k and D, there
exist constants η = η(Cx) ∈ (0, 1/2) and C = C(Cx, D) > 0 such that the following hold. Define
χn(λ), κ, ρ(λ) as above (with η = η(Cx) in Eq. (20)).

If it holds that

χn(λ)
3 log2 n ≤ Cnκ4.5 , n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 ,

then for all n = Ωk,D(1), with probability 1−Ok(n
−D+1) we have:

1. Variance approximation.

|VX(λ)− Vn(λ)| = Ok,Cx,D

(
χn(λ)

3 log2 n

n1−
1
kκ9.5

)
· Vn(λ) .

2. Bias approximation. If we additionally have χn(λ)3 log2 n ≤ Cnκ4.5
√
ρ(λ) and λkn−

1
k ≤

nκ/2, for all n = Ωk,D(1), we have

|BX(λ)− Bn(λ)| = Ok,Cx,D

(
λ⋆(λ)

k+1

nκ3
+

χn(λ)
3 log2 n√

ρ(λ)n1−
1
kκ8.5

)
· Bn(λ) .

Remark 3.1. The condition ∥β∥Σ−1 < ∞ in Assumption 1 amounts to requiring that the coef-
ficients of β in the basis of eigenvectors vi of Σ decay fast enough. Namely, it is equivalent to∑

i⟨vi,β⟩2/σi < ∞. This condition appears to be a proof artifact and it would be interesting to
relax it.

As mentioned above, the conditions on the isotropic random vectors zi in Assumption 1 are
mainly imposed to be able to apply Hanson-Wright inequality (Lemma 2.1). It is an interesting
research question to analyze ridge regression for covariates which do not satisfy this inequality.
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We next consider the ridgeless limit for in the overparametrized case: recall that β̂λ coincides
in this case with the minimum norm interpolator. In this case we need to modify the quantities
defined above to measure the quality of our approximation. We begin by noting that Eq. (5) makes
perfect sense in the case λ = 0 and we have limλ↓0 λ⋆(λ) = λ⋆(0) > 0. We then use the following
definitions.

1. We replace χn(λ) of Eq. (20) by:

χ′
n(κ) := 1 +

σ⌊ηn⌋dΣ log2(dΣ)

κnλ⋆(0)
, (24)

where κ will be introduced in the theorem statement.

2. The quantity ρ(λ) defined in Eq. (23) has a well defined limit as λ ↓ 0, given by

ρ(0) :=
R0(λ⋆(0), 1;θθ

T/ ∥θ∥2)
R0(λ⋆(0), 1; I)

∈ (0, 1] .

3. Finally we define

CΣ := 1− 1

n
Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
∈ (0, 1) .

Before giving the statement, we introduce a piece of terminology. We say that A happens
on the event E with probability at least 1 − ∆ if P(Ac and E) ≤ ∆ (and, as a consequence,
P(A) ≥ 1−∆− P(Ec)).

Theorem 2 (Ridgeless regression in the overparameterized regime). Suppose Assumption 1 holds
with n < d. Further assume σn > 0, and let smin be the minimum nonzero eigenvalue of the sample
covariance XTX/n. For any positive integers k and D, there exist constants η = η(Cx) ∈ (0, 1/2)
and C1 = C1(Cx, D) > 0, Ci = Ci(k,Cx, D) > 0, i ∈ {2, 3}, such that the following hold. Define
χ′
n(κ), ρ(0), CΣ as above.

Let κ > 0 be such that the following hold

κ ≤ C2
Σ/8 , χ′

n(κ)
3 log2 n ≤ C1nκ

4.5 , n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 .

Then, on the event {smin ≥ 8λ⋆(0)κ}, the following hold with probability 1−Ok(n
−D+1):

1. Variance approximation. If in addition χ′
n(κ)

3 log2 n ≤ C2n
1− 1

kκ9.5, then

|VX(0)− Vn(0)| = Ok,Cx,D

(
κ ·
(
λ⋆(0)

smin
+

1

C2
Σ

)
+
χ′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
· Vn(0) .

2. Bias approximation. If in addition χ′
n(κ)

3 log2 n ≤ C1nκ
4.5
√
ρ(0), λ⋆(0)kn−

1
k ≤ 1/4 and

λ⋆(0)
k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

≤ C3 ,

then, for n = Ωk,D(1),

|BX(0)− Bn(0)|
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= Ok,Cx,D

(
κ

C2
Σ

+
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
· Bn(0)

+ min

{
O

(
κλ⋆(0) ∥β∥2

smin

)
,OCx,D(κ

2λ⋆(0)
2χ′

n(κ)
2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ

′
n(κ)) ∥β>n∥

2

}
.

The proof of this theorem is presented in Appendix D.

Remark 3.2. Our approach to proving Theorem 2 consists in reducing the ridgeless case λ = 0+
to the case λ > 0, and appealing to Theorem 1. For instance, when controlling the variance, we will
use triangular inequality

|VX(0)− Vn(0)| ≤ |VX(λ)− Vn(λ)|+ |VX(0)− VX(λ)|+ |Vn(0)− Vn(λ)| .

We then use Theorem 1 to bound the first term by a quantity that diverges as λ ↓ 0, and the main
technical challenge is in bounding the other two terms by a quantity that vanishes faster than any
polynomial as λ ↓ 0.

Remark 3.3. In Theorem 2 we use the (random) minimum nonzero eigenvalue smin of the sample
covariance XTX/n. To apply the theorem, we need to choose κ such that {smin ≥ 8λ⋆(0)κ}
holds with high probability, and therefore we need a lower bound on smin that holds with high
probability. In this paper, we will provide such lower bonds in two cases: (i) proportional regime
and (ii) bounded varying spectrum, cf. Section 4. In proportional regime, smin = Ω|d/n−1|−1(1) by
Bai-Yin law; and for for bounded varying spectrum, smin = Ω(σn) (cf. Lemma G.1).

Beyond the two cases in the paper, it would be interesting to apply Theorem 2 with results
lower bounding smin for other examples (e.g. for the kernel random matrices [HLCH19]).

In the underparameterized regime d < n, we have limλ↓0 λ⋆(λ) = 0 and therefore the previous
bounds do not apply. In this case, we trivially have BX(0) = Bn(0) = 0. The proof for the variance
approximation requires a different proof, which is presented in Appendix E.

Theorem 3 (Ridgeless regression in the underparameterized regime). Suppose Assumption 1 holds
with n > d, and further assume

CΣ = min
(d
n
, 1− d

n

)
∈ (0, 1) .

For any positive integers k and D, there exist constants η = η(Cx) > 0 C1 = C1(Cx, D) > 0,
C2 = C2(k,Cx, D) > 0, such that the following hold.

If X has rank d and smin is the minimum eigenvalue of the sample covariance XTX/n, then
the following hold:

1. Variance approximation. Let ε be such that

ε ≤ C2
Σσd/4 , n−2D+1 = O

√ C3
Σ log2 n

max {n, λ}

 ,

χn(εn)
3 log2 n ≤ C1nC

4.5
Σ , χn(εn)

3 log2 n ≤ C2n
1− 1

kC9.5
Σ .

Then, on the event {smin ≥ 2ε}, with probability 1−Ok(n
−D+1):

|VX(0)− Vn(0)| = Ok,Cx,D

(
ε ·
(

1

smin
+

1

C2
Σσd

)
+
χn(εn)

3 log2 n

n1−
1
kC9.5

Σ

)
· Vn(0) .

2. Bias approximation. BX(0) = Bn(0) = 0 (this holds deterministically on the event
rank(X) = d).
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4 Applications

4.1 Proportional regime

As a first application, we revisit the proportional regime that is defined by the following condition.

Assumption 2. There exists a constant M > 1 such that M−1 ≤ d/n ≤M and σd ≥M−1.

This case is well studied and is not the main motivation of the present paper, but it is nevertheless
important to compare our results to earlier work. We refer the reader to [Dic16, ASS20, DW18,
WX20, RMR21] for background.

Among others, the results of [HMRT22] are more directly comparable to ours because they
establish nonasymptotic bounds comparing variance and bias to the effective variance and bias of
Eqs. (6) and (7), for both ridge and ridgeless regression. The proofs of [HMRT22] build on recent
advances in random matrix theory, and in particular the anisotropic local law of [KY17].

Here we apply Theorems 1, 2 and 3 to the proportional regime. We note that, under assumption
2, the minimum eigenvalue of XTX is, with high probability, of order n. In order for the ridge
regularization to have a non-trivial effect, we need to choose λ ≍ n as well, cf. (4a) and (4b). We
will therefore assume λ/n bounded above and below (there is no loss of generality in using the same
constant as in Eq. (2)). We will address the case λ = 0+ in a separate statement below.

Proposition 4.1. Let Assumptions 1 and 2 hold, and further assume λ/n ∈ [1/M,M ]. Then for
any positive integers k and D, if n = Ωk,M,Cx,D(1), with probability 1−Ok(n

−D+1) we have

|VX(λ)− Vn(λ)| = Ok,M,Cx,D

(
log8 n

n1−
1
k

)
· Vn(λ) ,

|BX(λ)− Bn(λ)| = Ok,M,Cx,D

(
log8 n

n
1
2
− 1

k

)
· Bn(λ) .

The proof of this result is presented in Appendix F.
We note that the rates O(n−1) and O(n−1/2) are optimal for variance and bias approximation—

corresponding to fluctuations of the average law and local law for the resolvent [AEK+14, KY17].
The most direct comparison is with [HMRT22, Theorem 5]: let us point out two ways in which the
present result improves over the earlier [HMRT22].

• In [HMRT22], the rate for variance approximation of ridge regression is O(n−1/2), while here
we obtain the faster rate O(n−1).

• Error terms in [HMRT22] are additive, while Proposition 4.1 provides multiplicative error
terms: the quality of approximation does not deteriorate in the interesting case in which bias
and variance become small.

Note that [HMRT22] informally claimed that n−1/2 is the optimal rate in the above estimates.
While this is correct for the bias, for the variance Proposition 4.1 yields a faster rate. As related
phenomenon arises for linear eigenvalue statistics of random matrices (i.e. statistics of the form
n−1

∑n
i=1 φ(λi)). While naively such statistics would have normal deviations of order n−1/2, the

actual deviations are of order n−1 because of eigenvalues correlations [LP09].
We finally consider the ridgeless case.

Proposition 4.2. Let Assumptions 1 and 2 hold for xi = Σ1/2zi, where zi has i.i.d. sub-Gaussian
coordinates.

12



1. Overparameterized regime. If additionally d/n ≥ 1 +M−1, then for all n = ΩM,Cx,D(1),
with probability 1−O(n−D+1) we have

|VX(0)− Vn(0)| = OM,Cx,D

(
n−1/14

)
· Vn(0) ,

|BX(0)− Bn(0)| = OM,Cx,D

(
n−1/28

)
· Bn(0) .

2. Underparameterized regime. If additionally d/n ≤ 1−M−1, then for all n = ΩM,Cx,D(1),
with probability 1−O(n−D+1) we have

|VX(0)− Vn(0)| = OM,Cx,D

(
n−1/5

)
· Vn(0) ,

BX(0) = Bn(0) = 0 .

We do not expect the exponent 1/14, 1/28, 1/5 in this statement to be tight. However, as in
the positive λ case, also in this case the error is multiplicative.

4.2 Bounded varying spectrum

We next consider the highly overparametrized case d ≫ n. Overparametrized ridge (or minimum
norm) regression attracted significant attention recently because of the realization that many deep
learning models are overparametrized and overfit the training data. This connection is reviewed in
[BMR21, Bel21].

Here we consider covariate vectors xi taking values in a general Hilbert space with d = ∞, under
Assumption 1 on the covariates distribution. This is most closely related to [BLLT20, TB20], and
[KZSS21]. The last paper derives refined upper bounds using Gaussian width techniques, but is
limited to the case of Gaussian covariates and, as for earlier results, is only accurate up to constant
factors.

We will show that our general theory yields excess risk estimates that are accurate up to 1+on(1)
multiplicative errors. We impose the following condition on the spectrum of Σ.

Assumption 3 (Bounded varying spectrum). There exists a monotone decreasing function ψ :
(0, 1] → [1,∞) with limδ↓0 ψ(δ) = ∞, such that σ⌊δi⌋/σi ≤ ψ(δ) for all δ ∈ (0, 1], i ∈ N and δi ≥ 1.

Recall that, by definition, for any j ≤ i, σj/σi ≥ 1. The bounded varying condition requires
that, if i, j diverge proportionally, then the eigenvalue ratio σj/σi stays bounded. Note that this
assumption is equivalent to supi≥1 σ⌊δi⌋/σi <∞ for every δ ∈ (0, 1], which is in turn equivalent to

lim sup
i→∞

σ⌊δi⌋

σi
<∞ . (25)

As special case, Assumption 3 holds if the sorted eigenvalues (σ1, σ2, · · · ) forms a so-called
regularly varying sequence, namely for any δ ∈ (0,∞),

lim
i→∞

σ⌊δi⌋

σi
= ψ(δ) ,

where ψ(δ) is positive and finite for any δ. In other words, in the regularly varying case, the ratio
σj/σi converges when i, j diverge proportionally.

A special case of regularly varying spectrum is given by Zipf’s law whereby σi = i−α for some
α > 1 (in this case ψ(δ) = δ−α). Regularly varying functions were characterized by Karamata
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[Kar33] (for functions on the positive real line), and by Galambos and Seneta [GS73] (for the
sequences, i.e. functions defined on the naturals). Namely all such sequences take the form

σi = i−αai exp
{ i∑
j=1

bj/j
}
,

where ai are arbitrary and converge to a positive limit as i→ ∞ and bi → 0.
It is easy to see that Assumption 3 holds beyond the case of regularly varying sequences. Consider

for instance σi = 3−s for all 2s ≤ i < 2s+1, s = 0, 1, · · · .
Applying Theorems 1 and 2 to Σ with bounded varying spectrum, we obtain the following result,

whose proofs are detailed in Appendix G.

Proposition 4.3. Let Assumptions 1 and 3 hold. For any constants M > 0, γ ∈ (0, 1/3), and
positive integers k, D the following holds. If dΣ ≤ Mn1+γ and λ ∈ [nλ⋆(0)/M, nλ⋆(0)M ], then for
n = Ωk,M,ψ,γ,Cx,D(1), with probability 1−Ok(n

−D+1)

|VX(λ)− Vn(λ)| = Ok,M,ψ,Cx,D

(
(dΣ/n)

3 log8 n

n1−
1
k

)
· Vn(λ) .

If additionally dΣ = OM,ψ,Cx(n
1+γ (ρ(λ))1/6) λ ∈ [nλ⋆(0)/M, nλ⋆(0)M ] and λ⋆(0) = O(1) (cf. The-

orem 1 for the function ρ), with the same probability we have

|BX(λ)− Bn(λ)| = Ok,M,ψ,Cx,D

(
(dΣ/n)

3 log8 n√
ρ(λ)n1−

1
k

)
· Bn(λ) .

Applying Theorem 2, we have the following conclusion for ridgeless regression.

Proposition 4.4. Let Assumptions 1 and 3 hold. Suppose β = Σ1/2θ with ∥θ∥ < ∞. If we
have λ⋆(0)/σn = O(logO(1) n) and dΣ(n) = O(n logO(1) n)), for any n = Ωψ,Cx,D(1), it holds with
probability 1−O(n−D+1) that

|VX(0)− Vn(0)| = Oψ,Cx,D

(
n−1/15

)
· Vn(0) .

Remark 4.1. The assumptions λ⋆(0)/σn = O(logO(1) n) and dΣ = O(n logO(1) n) are primar-
ily introduced to simplify the form of the statement. These two conditions can be relaxed to
lambdaefct(0)/σn = O(nγ̄) and dΣ = O(n1+γ̄) for a sufficiently small γ̄, but we do not pursue this
generalization here.

Remark 4.2. It is possible to apply the upper/lower bounds on the bias of Theorem 2 to prove
bounds on the bias in the setting of Proposition 4.4. However the resulting error term is larger than
(σ2n ∥θ≤n∥

2 + σn ∥β>n∥2), which is the size of the upper bound on Bn(0) in Proposition 2.2.

In order to illustrate the accuracy of our general framework, we apply Proposition 4.3 to derive
sharp asymptotics for bias and variance in a number cases. In each of the case below, we scale
the regularization parameter λ as λ = λ0(n) · ν for a certain explicit function λ0(n). The scaling
λ0(n) is chosen so that the bias and variance retain a non-trivial dependence on ν for large n. We
expect that the excess risk achieved by optimal regularization is also covered by this scaling (up to
negligible corrections), but do not prove it formally here.

Theorem 4. Let Assumption 1 hold. Then, for a fixed constant ν > 0 and any positive integer D,
the following events hold with probability 1−O(n−D) (the on(1) errors may depend on D):
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1. Regularly varying spectrum with α > 1. Assume (σi)i≥1 is a regularly varying sequence
with exponent α > 1. As a consequence, σi = i−αai exp

{∑i
j=1 bj/j

}
with ai converging to a

positive limit and bi → 0. Define c⋆ = c⋆(ν) > 0 as the unique positive solution of

1 = νc−1
⋆ +

π/α

sin(π/α)
c
−1/α
⋆ .

Then we have

λ⋆(νn
1−α) = c⋆σn(1 + on(1)) , (26)

VX(νn1−α) =
τ2(1− νc−1

⋆ )(α− 1)

1 + νc−1
⋆ (α− 1)

(1 + on(1)) . (27)

Let Fβ(x) =
∑⌊nx⌋

k=1 ⟨β,vk⟩
2. If additionally β satisfies the following “polynomial-decay” prop-

erty: for some 0 < θ ≤ 1 that∫ ∞

0
xα dFβ(x) = O

(
n1−θ

∫ ∞

0
xα (1 + c⋆x

α)−1 dFβ(x)

)
,

we further have

BX(νn1−α) =
σnc

2
⋆α

1 + νc−1
⋆ (α− 1)

∫ ∞

0

xα

(1 + c⋆xα)2
dFβ(x)

(
1 + on(1)

)
. (28)

2. Regularly varying spectrum with α = 1. Next consider the case σi = i−1ai(1 + log i)−α
′

for some α′ > 1 with ai converging to a positive limit. Define c⋆ = c⋆(ν) > 0 as

c⋆ = ν +
1

α′ − 1
.

We have

λ⋆(ν log
1−α′

n) = c⋆σn log n(1 + on(1)) , (29)

VX(ν log1−α
′
n) =

τ2

c⋆ log n

(
1 + on(1)

)
. (30)

Let Fβ(x) =
∑⌊(n/ logn)x⌋

k=1 ⟨β,vk⟩2. If additionally β satisfies the following “rapid-decay” prop-
erty: for some 0 < θ ≤ 1 that∫ ∞

0
x dFβ(x) = O

(
n1−θ

∫ ∞

0
x (1 + c⋆x)

−1 dFβ(x)

)
.

then we further have

BX(ν log1−α
′
n) = c2⋆σn log n

∫ ∞

0

x

(1 + c⋆x)2
dFβ(x)

(
1 + on(1)

)
. (31)

3. A non-regularly varying spectrum. σi = p−s for all qs ≤ i < qs+1, with 1 < q < p and
s = 0, 1, . . . Define s⋆ such that qs⋆ ≤ n < qs⋆+1, and for positive integer r the following
decreasing function in t > 0,

Gp,q,r(t) =
∞∑

k=−∞

qk

(1 + tpk)r
.
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Let ρ⋆ = n/(qs⋆+1−qs⋆) ∈ [1/(q−1), q/(q−1)). Then there exists a unique solution c⋆ = c⋆(ν)
to the following equation

1 = νc−1
⋆ + ρ−1

⋆ ·Gp,q,1(c⋆) .

Then we have

λ⋆(νnp
−s⋆) = c⋆σn

(
1 + on(1)

)
, (32)

VX(νnp−s⋆) =
Gp,q,2(c⋆)τ

2

ρ⋆ −Gp,q,2(c⋆)

(
1 + on(1)

)
. (33)

Let Fβ(x) =
∑q⌈x⌉−1

k=1 ⟨β,vk⟩2. If additionally β satisfies the following “rapid-decay” property:
for some 0 < θ ≤ 1 that∫ ∞

0
px−s⋆ dFβ(x) = O

(
n1−θ

∫ ∞

0
px−s⋆(1 + c⋆p

x−s⋆)−1 dFβ(x)

)
,

we further have

BX(νnp−s⋆) =
c2⋆σn

1− ρ−1
⋆ Gp,q,2(c⋆)

∫ ∞

0

px−s⋆

(1 + c⋆px−s⋆)2
dFβ(x)

(
1 + on(1)

)
. (34)

The proof of this theorem is presented in Appendix H.

Remark 4.3. In the case of a regularly varying spectrum with α > 1, the bias vanishes with the
sample size as n−α+o(1) but the variance stays bounded away from zero as long as τ > 0, cf. Eq. (27).
In other words in this case overfitting is not benign and Theorem 4 quantifies precisely this claim.

On the other hand, in the case α = 1, both bias and variance vanish for large n, an therefore
we achieve benign overfitting. We must emphasize however that the variance decay is very slow,
namely VX(λ) ≍ (log n)−1, and hence the decay of the excess risk is at least as slow.

5 Numerical illustrations

In this section we evaluate numerically the theoretical prediction for variance and bias, cf. Eqs. (6),
(7) and compare them with the results of numerical simulations with synthetic data. We carry out
the simulations in the ridgeless limit λ = 0+ (corresponding to min-norm interpolation). This case
is interesting because it is not covered by some of our theorems. Our numerical experiments suggest
that the theoretical predictions of Eqs. (6), (7) hold in a broader domain of validity than the one
that we are able to control rigorously.

We use Gaussian covariates xi. By rotational invariance, we can limit ourselves to diagonal
covariance Σ. We will consider two eigenvalue structures:

(I) Regularly varying with α > 1. This is defined by σi = i−α for all i ≥ 1. This fits within the
first case of Theorem 4.

(II) Regularly varying with α = 1. This model is defined by σi = i−1(1+log i)−α
′ , with α′ > 1.

This fits within the second case of Theorem 4.
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In all numerical experiments, we generate data according to the model (3) with a true parameters
vector β concentrated on the top d0 = 100 eigenvectors of Σ. More precisely, we will use β =
(1, 1, . . . , 1, 0, 0, . . .) where ∥β∥0 = d0 = 100.

In Figure 1, we plot our theoretical predictions Vn, Bn, Rn for variance, bias and as a function
of the sample size n, for the two models (I) and (II) defined above. We use λ = 0+. In each case,
we consider several values of the exponents α, α′ that control the decay of eigenvalues of Σ.

In Figure 2, we plot the same quantities at fixed sample size n = 500 and vary the regularization
parameter λ. A few facts emerge from these figures:

• For both models, the bias of the minimum norm interpolator is a decreasing function of the
sample size n, and appears to vanish as n→ ∞, see second row of Figure 1.

• In contrast, the variance exhibits a strikingly different behavior in the two covariance models,
see first row of Figure 1. For model (I) (polynomial eigenvalue decay, with exponent α > 1),
the variance increases with n, and eventually stabilizes to a limit value. For model (II)
(exponent α = 1), the variance decreases with n, and appears to vanish, albeit very slowly, as
n→ ∞.

• As a consequence of these points, the excess test error of minimum norm interpolation vanishes
with sample size in model (II) but does not vanish in model (I). This behavior (and the one
at previous points) is precisely quantified by Theorem 4 for λ > 0.

• Finally the dependence of bias and variance on λ is the expected one. As λ increases, bias
increases but variance decreases. However, the balance between these two factors is non-trivial:

– For the slowest eigenvalue decay (large α in model (I) or large α′ in model (II)), the
optimal λ is strictly positive.

– On the other hand, for the fastest eigenvalue decay, the optimal λ vanishes. In these case
interpolation is superior to ridge regression: we need to overfit to achieve the best test
error.

The above discussion is based on evaluating the theoretical formulas for bias and variance, as
given in Eqs. (6), (7). While our main result, Theorems 1, 2 guarantee that these formulas are
accurate, it is important how accurate they are at small or moderate n, and whether random
deviations modify the picture.

In Figure 3 we plot numerical simulations corroborating that VX ,BX do concentrate around
Vn,Bn in models (I) and (II). As mentioned above, the predictions Vn,Bn appear to be accurate
beyond what is guaranteed by Theorem 2, and the error appears to be a (1 + on(1)) multiplicative
factor.

6 Proof of Theorem 1

Let Fk := σ(x1, · · · ,xk) be the σ-field generated by the first k data points for 1 ≤ k ≤ n, and F0

the trivial σ-field. We then have VX ,BX ∈ Fn and Vn,Bn ∈ F0. Extending the previous notation
of R0 in Eq. (22) to Rk, we let

Rk(µ0, µ;Q) = Tr
(
Σ

1
2QΣ

1
2 (µ0I + µΣ+XT

kXk)
−1
)
, Fk(µ0, µ;Q) = µ0Rk(µ0, µ;Q) , (35)

where µ0 > 0, µ ≥ 0, Q is a p.s.d. matrix with bounded spectral norm, and Xk = [x1, · · · ,xk]T ∈
Rk×d is the partial data matrix comprising the first k rows of X. By convention we set XT

0 X0 := 0
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Model (I): σi = i−α. Model (II): σi = i−1(1 + log i)−α
′ .

Figure 1: Effective variance, bias, and risk of minimum norm interpolation (a.k.a. ridgeless re-
gression) for two covariance structures defined as models (I) and (II) (power law decay of the
eigenvalues with exponents α > 1 and α = 1), as a function of the sample size n. In model (I) we
let the noise level to be τ = 0.5, and in (II) we take τ = 0.2.
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′ .

Figure 2: Effective variance, bias, and risk of minimum norm interpolation for two covariance struc-
tures defined as models (I) and (II). Here we fix n = 500 and vary the regularization parameter.
In model (I) we let the noise size to be τ = 0.5, and in (II) we take τ = 0.2.
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Figure 3: Simulation results for variance, bias, and risk of minimum norm interpolation for two
covariance structures defined as models (I) and (II). In model (I) we let the noise size to be
τ = 0.5, and in (II) we take τ = 0.2. For each n, we run 20 independent trials and take the median
for the dotted lines. We also show the shaded areas between 10% and 90% quantiles.
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when k = 0. An immediate consequence is that Rk,Fk ∈ Fk. Define µ⋆ := µ⋆(λ, µ) as the unique
solution on of the following equation on (µ,∞)

µ⋆ = µ+
n

1 + R0(λ, µ⋆; I)
. (36)

For µ = 0, this equation reduces to Eq. (5), via the change of variables µ⋆ = λ/λ⋆. For µ > 0
existence and uniqueness follows by a similar argument to the case µ = 0. Indeed, setting ξ :=
(µ⋆−µ)−1, the equation is equivalent to nξ = 1+Tr(Σ(A+ξΣ)), where A := λI+µΣ. Existence and
uniqueness follow since the left-hand side is monotone increasing and the right-hand side monotone
decreasing in ξ.

In order to quantify the approximation errors |VX − Vn| and |BX − Bn|, we will apply the
following lemma (Lemma 6.1), which expresses the bias and variance BX , VX in terms of derivatives
of Fn and F0 w.r.t. λ and µ.

Lemma 6.1. For any λ > 0, µ ≥ 0, the quantity µ⋆ > µ is uniquely determined and we have

VX(λ) = τ2 · ∂

∂λ
Fn(λ, µ; I)

∣∣∣∣
µ=0

, BX(λ) = −λ · ∂

∂µ
Fn(λ, µ;θθ

T)

∣∣∣∣
µ=0

;

Vn(λ) = τ2 · ∂

∂λ
F0(λ, µ⋆(λ, µ); I)

∣∣∣∣
µ=0

, Bn(λ) = −λ · ∂

∂µ
F0(λ, µ⋆(λ, µ);θθ

T)

∣∣∣∣
µ=0

,

and µ⋆(λ, 0) = λ/λ⋆.

Our proof strategy proceeds in four parts: (I) We show that —due to the regularity properties
of F0 and Fn— a bound on |F0 − Fn| implies a bound on the difference of their derivatives, and
hence (via Lemma 6.1) on the error in approximating bias and variance; (II) We prove a bound on
|F0 − Fn| interpolating between F0 and Fn by adding one row at the time to X; (III), (IV) We
apply these general bounds respectively to controlling variance and bias.

Recall that we defined θ := Σ−1/2β, and assumed ∥θ∥ < ∞. By homogeneity, we can and will
assume ∥θ∥ = 1 throughout the proof.

Part I: Reduction to function values approximation. The following lemma reduces control-
ling the difference of derivatives of F0 and Fn to the less arduous task of bounding the difference
in function values. Its proof is presented in Appendix B.2.

Lemma 6.2. For any fixed k ∈ N, δ ∈ R≥0 and a (k+1)-times continuously differentiable function
f(t) on [0, kδ], we have

∣∣f ′(0)∣∣ ≤ Ok

(
max0≤j≤k |f(jδ)|

δ
+ sup
t∈[0,kδ]

|f (k+1)(t)| · δk
)
.

With the help of Lemmas 6.1 and 6.2, for any δ ∈ R≥0, we can upper bound the variance and
bias approximations by

|VX(λ)− Vn(λ)| = Ok

(
τ2 · max

0≤j≤k

|Fn(λ+ jδ, 0; I)− F0(λ+ jδ, µ⋆(λ+ jδ, 0); I)|
δ

+ τ2δk · sup
λ′∈[λ,λ+kδ]

∣∣∣∣ ∂k+1

∂λ′k+1
Fn(λ

′, 0; I)− ∂k+1

∂λ′k+1
F0(λ

′, µ⋆(λ
′, 0); I)

∣∣∣∣
)
, (37)
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and

|BX(λ)− Bn(λ)| = Ok

(
λ · max

0≤j≤k

∣∣Fn(λ, jδ;θθ
T)− F0(λ, µ⋆(λ, jδ);θθ

T)
∣∣

δ

+ λδk · sup
µ′∈[0,kδ]

∣∣∣∣ ∂k+1

∂µ′k+1
Fn(λ, µ

′;θθT)− ∂k+1

∂µ′k+1
F0(λ, µ⋆(λ, µ

′);θθT)

∣∣∣∣
)
.

(38)

Before passing to bounding errors in function values, we provide upper bounds for higher order
derivatives in Eqs. (37) and (38). Bounding the derivatives of Fn is easier as we can easily write
an explicit formula for the k-th derivative for any k. (The proof of this lemma is presented in
Appendix B.3).

Lemma 6.3. For any fixed k ∈ N, we have for all λ > 0 and µ ≥ 0,∣∣∣∣ ∂k∂λkFn(λ, 0; I)

∣∣∣∣ = Ok

(
Fn(λ, 0; I)

λk

)
,

∣∣∣∣ ∂k∂µkFn(λ, µ;θθ
T)

∣∣∣∣ = Ok

(
Fn(λ, µ;θθ

T)

λk

)
.

Computing higher order derivatives of F0 is less straightforward because F0 depends on µ⋆ which
itself depends implicitly depending on (λ, µ). We postpone this proof to Appendix B.4.

Lemma 6.4. Let Eq. (21) hold. Then, for any fixed k ∈ N, we have for all λ > 0,∣∣∣∣ ∂k∂λkF0(λ, µ⋆(λ, 0); I)

∣∣∣∣ = Ok

(
F0(λ, µ⋆(λ, 0); I)

λkκ2k

)
,

and for all µ such that 0 ≤ µ ≤ µ⋆(λ, µ)/2,∣∣∣∣ ∂k∂µkF0(λ, µ⋆(λ, µ);θθ
T)

∣∣∣∣ = Ok

(
F0(λ, µ⋆(λ, µ);θθ

T)

µ⋆(λ, µ)kκ2k

)
.

Part II: Bounding errors in function values. We next proceed to bounding |Fn(λ, µ;Q) −
F0(λ, µ⋆(λ, µ);Q)| for a p.s.d. matrix Q, which appears in Eqs. (37) and (38). Recall that Fi(λ, µ;Q) =
λRi(λ, µ;Q).

The next theorem bounds |Rn(λ, µ;Q)−R0(λ, µ⋆(λ, µ);Q)| and is the most importan technical
step in the proof of our main theorems. Its proof is outlined in Section 7, with several technical
lemmas deferred to the appendices

Theorem 5. Introduce the shorthand R0(Q) := R0(λ, µ⋆(λ, µ);Q). Under Assumption 1, for any
λ > 0, µ ≥ 0, p.s.d. matrix Q with ∥Q∥ = 1 and positive integer D, there exists constants η =
η(Cx) ∈ (0, 1/2), Cα = Cα(Cx, D) > 0, Cβ = Cβ(Cx, D) > 0 and Cγ = Cγ(Cx, D) such that for

γ := min

{
2

n

(
1 +

CγdΣσ⌊ηn⌋ · log n log(dΣn)
λ

)
+

2

µ⋆(λ, µ)
,
1

λ

}
,

α1 := Cα log n ·
√
γR0(I) ,

α2 := Cα log n ·
√
γ3R0(Q) ,

β1 := Cβ

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2
+ n ·

{
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

}
+

γR0(Q)

1 + R0(I)

)
,
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β2 :=
Cβnβ1

1 + R0(I)2
,

if α1 ≤ R0(I)/8, β1 ≤ R0(Q)/64, γβ2(1 + R0(I)) ≤ 1/64 and n−D = O(α1/(1 + R0(I))), for all
n = ΩD(1) with probability 1−O(n−D+1) we have

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = O (γβ2 (1 + R0(λ, µ⋆(λ, µ); I))R0(λ, µ⋆(λ, µ);Q) + β1) .

Let us emphasize that this theorem holds under weaker assumptions than Theorem 1, but the
error bounds it provides are quite implicit. We can obtain more explicit bounds by imposing the
assumptions of Theorem 1. We first define the generalized version of ρ(λ) in Eq. (23) for any p.s.d.
matrix Q as

ρ(λ) :=
R0(λ⋆, 1;Q/ ∥Q∥)

R0(λ⋆, 1; I)
∈ (0, 1] . (39)

The proof of this corollary is given in Appendix C.6.

Corollary 6.5. Under Assumption 1, for any positive integers k, D and p.s.d. matrix Q with
∥Q∥ = 1, there exist constants η = η(Cx) ∈ (0, 1/2) and C = C(Cx, D) > 0, such that the following
hold. Define χn(λ), κ, ρ(λ) as per Eqs. (20), (21), (39) (those quantities are defined for µ = 0). If
it holds that µ⋆(λ, µ) ≤ (1− κ/2)−1µ⋆(λ, 0), and

χn(λ)
3 log2 n ≤ Cnκ4.5

√
ρ(λ) , n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 ,

we then have for all n = ΩD(1) with probability 1−O(n−D+1) that

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| ≤ En · R0(λ, µ⋆(λ, µ);Q),

where

En = OCx,D

(
χn(λ)

3 log2 n

nκ6.5
·

√
R0(I)

R0(Q)

)
. (40)

To further simplify the assumption µ⋆(λ, µ) ≤ (1 − κ/2)−1µ⋆(λ, 0) in Corollary 6.5, the next
lemma will be helpful. We defer its proof to Appendix B.5.

Lemma 6.6. For any fixed λ > 0, the function µ⋆(λ, µ) is increasing in µ for all µ ≥ 0. Assuming
Eq. (21), if 0 ≤ µ ≤ nκ3/2, then

µ⋆(λ, µ) ≤ (1− κ/2)−1µ⋆(λ, 0).

Part III: Approximation error for variance. We are now ready to combine our results in
Part I and Part II to obtain approximation errors |VX − Vn| and |BX − Bn|. For the variance, we
want to take δ in Eq. (37) such that kδ ≤ λ. In this case, [λ, λ + kδ] ⊂ [λ, 2λ]. Note that λ⋆(λ) is
an increasing function of λ. Further, by

n− λ

λ⋆
= Tr

(
Σ(Σ+ λ⋆I)

−1
)
,
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we know λ 7→ µ⋆(λ, 0) = λ/λ⋆ is an increasing function. Therefore λ/λ⋆(λ) ≤ 2λ/λ⋆(2λ), which
implies λ⋆(λ) ≤ λ⋆(2λ) ≤ 2λ⋆(λ). For λ that satisfies Eq. (21), this guarantees that for any
λ′ ∈ [λ, 2λ],

λ′

nλ⋆(λ′)
≥ λ

nλ⋆(λ)
≥ κ ,

and

1− λ′

nλ⋆(λ′)
=

1

n
Tr
(
Σ(Σ+ λ⋆(λ

′)I)−1
)
≥ 1

n
Tr
(
Σ(Σ+ 2λ⋆(λ)I)

−1
)
≥ 1

2
· 1
n
Tr
(
Σ(Σ+ λ⋆(λ)I)

−1
)

=
1

2

(
1− λ

nλ⋆(λ)

)
≥ κ/2 .

Hence, for any λ′ ∈ [λ, 2λ], Eq. (21) still holds but with constant κ′ ≥ κ/2. Therefore, we can apply
Corollary 6.5 for any λ′ ∈ [λ, 2λ] for Q = I and µ = 0, provided the following conditions hold

χn(λ
′)3 log2 n ≤ Cn(κ/2)4.5

√
ρ(λ′) = Cn(κ/2)4.5 ,

where the last equality used the fact that ρ(λ′) = 1 when Q = I. Finally, setting C′ := 2−4.5C and
using the fact that χn(λ′) is decreasing in λ, it suffices to require

χn(λ)
3 log2 n ≤ C′nκ4.5 ,

which holds by the theorem’s assumptions.
Hence, we can now apply Corollary 6.5 with Q = I, and it follows that with probability 1 −

Ok(n
−D+1),

max
0≤j≤k

|Fn(λ+ jδ, 0; I)− F0(λ+ jδ, µ⋆(λ+ jδ, 0); I)|
δ

≤ 2λEn
δ

· max
0≤j≤k

R0(λ+ jδ, µ⋆(λ+ jδ, 0); I)

≤ 2En
δ

F0(λ, µ⋆(λ, 0); I) ,

where in the last inequality we use that R0(λ, µ⋆(λ, 0); I) = n/µ⋆(λ, 0)− 1 is a decreasing function
in λ as µ⋆(λ, 0) is increasing in λ. Next by Lemmas 6.3 and 6.4 we obtain

sup
λ′∈[λ,λ+kδ]

∣∣∣∣ ∂k+1

∂λ′k+1
Fn(λ

′, 0; I)− ∂k+1

∂λ′k+1
F0(λ

′, µ⋆(λ
′, 0); I)

∣∣∣∣
= Ok

(
sup

λ′∈[λ,2λ]

Fn(λ
′, 0; I) + F0(λ

′, µ⋆(λ
′, 0); I)

λ′k+1κ2k+2

)

= Ok

(
sup

λ′∈[λ,2λ]

λ′Rn(λ
′, 0; I) + λ′R0(λ

′, µ⋆(λ
′, 0); I)

λk+1κ2k+2

)
(i)
= Ok

(
λRn(λ, 0; I) + λR0(λ, µ⋆(λ, 0); I)

λk+1κ2k+2

)
(ii)
= Ok

(
(1 + En)F0(λ, µ⋆(λ, 0); I)

λk+1κ2k+2

)
,

where in (i) we use again that Rn(λ, µ; I) and R0(λ, µ⋆(λ, 0); I) are decreasing in λ and in (ii) we
apply Corollary 6.5. Substituting the above displays into Eq. (37), we have

|VX(λ)− Vn(λ)| = Ok

((
En
δ

+
(1 + En)δk

λk+1κ2k+2

)
· τ2F0(λ, µ⋆(λ, 0); I)

)
. (41)
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Finally, we use the fact that

F0(λ, µ⋆(λ, 0); I) = λTr

(
Σ

(
λ

λ⋆
Σ+ λI

)−1
)

= λ⋆Tr
(
Σ(Σ+ λ⋆I)

−1
)

= λ ·
Tr
(
Σ(Σ+ λ⋆I)

−1
)

n− Tr (Σ(Σ+ λ⋆I)−1)
≤ λ ·

Tr
(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)

≤ λ ·
n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
·

Tr
(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)

= λ ·
n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
· ∂

∂λ
F0(λ, µ⋆(λ, µ); I)

∣∣∣∣
µ=0

,

and by Eq. (21),

n− Tr
(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
≤ n

n− Tr (Σ(Σ+ λ⋆I)−1)
=
nλ⋆
λ

≤ κ−1 .

We therefore have, by Lemma 6.1, τ2F0(λ, µ⋆(λ, 0); I) ≤ λκ−1Vn(λ). Substituting in Eq. (41), we
obtain

|VX(λ)− Vn(λ)| = Ok

(
λEn
δκ

·+(1 + En)δk

λkκ2k+3

)
· Vn(λ) .

By setting δ = λκ2n−1/k, the condition δk ≤ λ is satisfied for all n = Ωk(1), which completes the
proof for variance approximation with

|VX(λ)− Vn(λ)| = Ok

(
En · n−

1
kκ−3 + n−1κ−3

)
· Vn(λ) = Ok,Cx,D

(
χn(λ)

3 log2 n

n1−
1
kκ9.5

)
· Vn(λ) ,

where we use χn(λ) ≥ 1 in the final bound.

Part IV: Approximation error for bias. Note that all the terms on the right-hand side of
Eq. (38) are evaluated at the same value of λ. Hence, Eq. (21) applies to each of these terms.
We claim that the assumptions of Corollary 6.5 apply to all of these terms, provided the following
conditions hold

µ⋆(λ, kδ) ≤ (1− κ/2)−1µ⋆(λ, 0) , (42)

χn(λ)
3 log2 n ≤ Cnκ4.5

√
ρ(λ) . (43)

Indeed, condition (42) implies µ⋆(λ, µ) ≤ (1 − κ/2)−1µ⋆(λ, 0) for all µ ∈ [0, kδ] since µ 7→ µ⋆(λ, µ)
is monotone decreasing; finally, condition (43) is independent of µ.

then we can apply Lemmas 6.3 and 6.4 and invoke Corollary 6.5 with Q = θθT. To be specific,
by Corollary 6.5, we have with probability 1−Ok(n

−D+1),

max
0≤j≤k

∣∣Fn(λ, jδ;θθ
T)− F0(λ, µ⋆(λ, jδ);θθ

T)
∣∣

δ
≤ En

δ
max

j∈{0,...,k}
F0(λ, µ⋆(λ, jδ);θθ

T)

≤ En
δ

F0(λ, µ⋆(λ, 0);θθ
T) ,
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as F0(λ, µ⋆(λ, µ);θθ
T) decreases with µ. By Lemmas 6.3 and 6.4 we obtain

sup
µ′∈[0,kδ]

∣∣∣∣ ∂k+1

∂µ′k+1
Fn(λ, µ

′;θθT)− ∂k+1

∂µ′k+1
F0(λ, µ⋆(λ, µ

′);θθT)

∣∣∣∣
= Ok

(
sup

µ′∈[0,kδ]

Fn(λ, µ
′;θθT)

λk+1
+ sup
µ′∈[0,kδ]

F0(λ, µ⋆(λ, µ
′);θθT)

µ⋆(λ, µ′)
k+1κ2k+2

)
(i)
= Ok

(
Fn(λ, 0;θθ

T)

λk+1
+

F0(λ, µ⋆(λ, 0);θθ
T)

µ⋆(λ, 0)
k+1κ2k+2

)
(ii)
= Ok

(
(1 + En + λk+1

⋆ κ−2k−2)F0(λ, µ⋆(λ, 0);θθ
T)

λk+1

)
,

where in the bound (i) we use the fact that µ⋆(λ, µ) is increasing in µ (cf. Lemma 6.6) and
Fk(λ, µ;Q) is decreasing in µ when µ ≥ 0; in (ii) we use that µ⋆(λ, 0) = λ/λ⋆. Combining
the calculations above, we have from Eq. (38)

|BX(λ)− Bn(λ)| = Ok

((
λEn
δ

+
δk
(
1 + En + λk+1

⋆ κ−2k−2
)

λk

)
· F0(λ, µ⋆(λ, 0);θθ

T)

)
.

Then we make use of the following bound

F0(λ, µ⋆(λ, 0);θθ
T) = λTr

(
Σ

1
2θθTΣ

1
2

(
λ

λ⋆
Σ+ λI

)−1
)

= λ⋆Tr
(
Σ

1
2θθTΣ

1
2 (Σ+ λ⋆I)

−1
)

= λ · θT (Σ+ λ⋆I)
−1Σθ

n− Tr (Σ(Σ+ λ⋆I)−1)
≤ λ

nλ⋆
· λ2⋆θ

T (Σ+ λ⋆I)
−2Σ2θ

1− n−1Tr (Σ(Σ+ λ⋆I)−1)

=
λ

nλ⋆
·
n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
· λ2⋆θ

T (Σ+ λ⋆I)
−2Σ2θ

1− n−1Tr (Σ2(Σ+ λ⋆I)−2)

=
λ

nλ⋆
·
n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
· Bn(λ) ,

where in the last line we used the definition of Bn(λ) in Eq. (7). By Eq. (21), we have

λ

nλ⋆
·
n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ(Σ+ λ⋆I)−1)
= 1− 1

n
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≤ 1 ,

which reduces the approximation bound for bias to

|BX(λ)− Bn(λ)| = Ok

(
λEn
δ

+
δk
(
1 + En + λk+1

⋆ κ−2k−2
)

λk

)
· Bn(λ) .

We again take δ = λκ2n−
1
k and the bound becomes

|BX(λ)− Bn(λ)| = Ok,Cx,D

(
λk+1
⋆

nκ2
+
χn(λ)

3 log2 n

n1−
1
kκ8.5

·

√
R0(I)

R0(θθT)

)
· Bn(λ) .

This bounds hold under the conditions (42) to (43), which are implied by the following:

µ⋆(λ, kλκ
2n−

1
k ) ≤ (1− κ/2)−1µ⋆(λ, 0) .
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χn(λ)
3 log2 n ≤ Cnκ4.5

√
ρ(λ) .

For the first condition, we invoke Lemma 6.6 to obtain a sufficient requirement λkn−
1
k ≤ nκ/2. For

the last condition, it suffices to have χn(λ)3 log2 n ≤ C′nκ4.5
√
ρ(λ) for the same C′ defined in Part

III.

7 Proof of Theorem 5

Part I: The iterative sequence. The proof is based on the following interpolating construction.
We will construct a sequence of random variables µi ∈ Fi−1 for i = 0, 1, · · · , n + 1 (where, by
convention, F−1 = F0 is the trivial σ-algebra) such that, defining

Ri(Q) := Tr

(
Σ

1
2QΣ

1
2

(
λI + µiΣ+XT

i Xi

)−1
)

= Ri(λ, µi;Q) , (44)

we obtain that Ri(Q) is approximately a martingale and, as a consequence, R0(Q) ≈ Rn(Q).
We will further have µ0 = µ⋆(λ, µ) and µn ≈ µ, asd therefore we obtain the desired claim
R0(λ, µ⋆(λ, µ);Q) ≈ Rn(λ, µ;Q).

Before formally defining the sequence {µ0, · · · , µn+1}, we introduce some helpful notations. We
first define the matrices Ai,Bi ∈ Fi for 0 ≤ i ≤ n as

Ai := Σ
1
2

(
λI + µiΣ+XT

i Xi

)−1
Σ

1
2 , (45a)

Bi := Σ
1
2

(
λI + µi+1Σ+XT

i Xi

)−1
Σ

1
2 . (45b)

Then we can write Ri(Q) = Tr (QAi). Similarly we define another sequence of functions by Si(Q) :=
Tr (QBi).

Now we are ready to define the sequence µi ∈ Fi−1. We set the initial value µ0 = µ⋆(λ, µ) ∈ F−1

and thus R0(Q) = R0(λ, µ⋆(λ, µ);Q). The sequence (µj)j≥1 is iteratively determined through the
following equation

µi+1 = µi −
1

1 + Si(I)
= µi −

1

1 + Tr
(
Σ

1
2

(
λI + µi+1Σ+XT

i Xi

)−1
Σ

1
2

) s.t. Bi ≻ 0 . (46)

It is evident that if the solution µi+1 exists and is unique (almost surely with respect to the random
choice of µi), since µi ∈ Fi−1 and Xi ∈ Fi, it follows that µi+1 ∈ Fi. The next lemma shows that
the iteration via (46) is indeed well-defined. Its proof is in Appendix C.1.

Lemma 7.1. There exists a unique strictly decreasing sequence µ0 > µ1 > µ2 > · · · > µn > µn+1

satisfying the update rule (46).

Part II: Approximation to a martingale. We next explain what is the rationale for the
iterative definition of Eq. (46), and how it will help us prove the theorem claim.

Since we want to upper bound |Rn(Q) − R0(Q)|, it makes sense to compute the difference
Ri(Q)− Ri−1(Q),

Ri(Q)− Ri−1(Q) = (Ri(Q)− Si−1(Q)) + (Si−1(Q)− Ri−1(Q))

= Tr (Q (Ai −Bi−1))︸ ︷︷ ︸
(I)

+Tr (Q (Bi−1 −Ai−1))︸ ︷︷ ︸
(II)

. (47)
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Using rgw definitions in Eqs. (45a) and (45b), we can further expand (I) by Sherman-Morrison
formula

Ai −Bi−1 = Σ
1
2

{(
λI + µiΣ+XT

i−1Xi−1 + xix
T
i

)−1
−
(
λI + µiΣ+XT

i−1Xi−1

)−1
}
Σ

1
2

= −
Σ

1
2

(
λI + µiΣ+XT

i−1Xi−1

)−1
xix

T
i

(
λI + µiΣ+XT

i−1Xi−1

)−1
Σ

1
2

1 + xT
i

(
λI + µiΣ+XT

i−1Xi−1

)−1
xi

= −
Σ

1
2

(
λI + µiΣ+XT

i−1Xi−1

)−1
Σ

1
2ziz

T
i Σ

1
2

(
λI + µiΣ+XT

i−1Xi−1

)−1
Σ

1
2

1 + zT
i Σ

1
2

(
λI + µiΣ+XT

i−1Xi−1

)−1
Σ

1
2zi

= −Bi−1ziz
T
i Bi−1

1 + zT
i Bi−1zi

,

and thus write

(I) = −
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
.

We can also compute (II) by noting that

Bi−1 −Ai−1 = Σ
1
2

{(
λI + µiΣ+XT

i−1Xi−1

)−1
−
(
λI + µi−1Σ+XT

i−1Xi−1

)−1
}
Σ

1
2

= Σ
1
2

{(
λI + µiΣ+XT

i−1Xi−1

)−1
· (µi−1 − µi)Σ ·

(
λI + µi−1Σ+XT

i−1Xi−1

)−1
}
Σ

1
2 ,

and therefore

(II) = (µi−1 − µi) · Tr (QBi−1Ai−1) .

It is now clear what is the motivation for defining µi+1 as per Eq. (46). We hope to have
(I)+(II) ≈ 0. Under the approximation Tr

(
QBi−1ziz

T
i Bi−1

)
≈ E

[
Tr
(
QBi−1ziz

T
i Bi−1

)
| Fi−1

]
=

Tr
(
QB2

i−1

)
≈ Tr (QBi−1Ai−1), this is achieved when

µi − µi−1 = − 1

1 + E
[
zT
i Bi−1zi | Fi−1

] = − 1

1 + Si−1(I)
,

which recovers the iteration in Eq. (46).

Part III: Proof via stopping times. We next make the previous argument rigorous. For any
scalars α1, α2, β1, β2, γ > 0 (in what follows, we’ll use the notation ∆ := (α1, α2, β1, β2, γ)) we
consider the events

Ei(Q) :=
{∣∣∣zT

i Bi−1zi − Si−1(I)
∣∣∣ ≤ α1,

∣∣∣zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)∣∣∣ ≤ α2, ∥Ai∥ ≤ γ
}
,

(48a)

Fi(Q) :=
{
max{|Ri(Q)− R0(Q)| , |Si(Q)− R0(Q)|} ≤ β1,

∣∣µi+1 − µi+1

∣∣ ≤ β2, ∥Bi∥ ≤ γ
}
, (48b)

where µi+1 = µ · (i+1)/n+µ⋆(λ, µ) · (1− (i+1)/n) is nonrandom. In particular we set E0(Q) = Ω
so that Ei(Q) and Fi(Q) are well-defined for 0 ≤ i ≤ n. It follows then Ei(Q), Fi(Q) ∈ Fi. Next
we can proceed to define two stopping times via

{TE(Q) ≥ k + 1} :=

(
k⋂
i=0

Ei(Q)

)
∩

(
k−1⋂
i=0

Fi(Q)

)
, (49a)
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{TF (Q) ≥ k + 1} :=

(
k⋂
i=0

Ei(Q)

)
∩

(
k⋂
i=0

Fi(Q)

)
, (49b)

for k = 0, 1, · · · , n, with TE(Q), TF (Q) ∈ {0, 1, · · · , n + 1}. One can easily check that TE(Q)
and TF (Q) are indeed stopping times since the sets in the above displays are in Fk, and another
immediate consequence is that TE(Q) ≥ TF (Q). These stopping times are helpful since the event
{TF (Q) = n+ 1} implies

max
0≤i≤n

{|Ri(Q)− R0(Q)| , |Si(Q)− R0(Q)|} ≤ β1 ,

and thus if β1 is much smaller than R0(Q), we can show Rn(Q) ≈ R0(Q) as desired. Therefore,
we want to lower bound the probability for the event {TF (Q) = n + 1}. We use the shorthand
pi,j(T1, T2,Q) := P(T1(Q) ≥ i, T2(I) ≥ j) for T1, T2 ∈ {TE , TF }. By telescoping sum, we have

P(TF (Q) ≥ 0, TF (I) ≥ 0)− P(TF (Q) = n+ 1, TF (I) = n+ 1)

= p0,0(TF , TF ,Q)− pn+1,n+1(TF , TF ,Q)

=
n∑
k=0

(pk,k(TF , TF ,Q)− pk+1,k+1(TE , TE ,Q)) +

n+1∑
k=1

(pk,k(TE , TE ,Q)− pk,k(TF , TF ,Q))

≤
n∑
k=0

(pk,k(TF , TF ,Q)− pk+1,k(TE , TF ,Q) + pk,k(TF , TF ,Q)− pk,k+1(TF , TE ,Q))

+
n+1∑
k=1

(pk,k(TE , TE ,Q)− pk,k(TF , TE ,Q) + pk,k(TE , TE ,Q)− pk,k(TE , TF ,Q))

≤
n∑
k=0

(pk,k(TF , TF ,Q)− pk+1,k(TE , TF ,Q) + pk,k(TF , TF , I)− pk+1,k(TE , TF , I))

+

n+1∑
k=1

(pk,k(TE , TE ,Q)− pk,k(TF , TE ,Q) + pk,k(TE , TE , I)− pk,k(TF , TE , I)) , (50)

where in the last inequality we use P(A ∩B)− P(A ∩B′) ≤ P(B)− P(B′) for B′ ⊂ B.
We are left with the task of bounding the two terms pk,k(TF , TF ,Q) − pk+1,k(TE , TF ,Q) and

pk,k(TE , TE ,Q) − pk,k(TF , TE ,Q) for any p.s.d. Q, and showing that they are small. Before doing
this, we show that, by appropriately choosing γ, we have ∥Ai∥ ≤ γ and ∥Bi∥ ≤ γ with high
probability. The proof of the next lemma is in Appendix C.2.

Lemma 7.2. Under Assumption 1, for any positive integer D, there exists a fixed η = η(Cx) ∈
(0, 1/2), such that for all n = ΩD(1), it holds with probability 1−O(n−D) that∥∥∥∥Σ 1

2

(
λI +XTX

)−1
Σ

1
2

∥∥∥∥ ≤ 2

n

(
1 +

OCx,D

(
dΣσ⌊ηn⌋ · log n log(dΣn)

)
λ

)
, for all λ > 0 ;

additionally, under the same notations of Proposition 2.2, letting θ≤k :=
∑

i≤k⟨θ,vi⟩vi and θ>k :=
θ − θ≤k, we have for all λ > 0,

θTΣ
1
2

(
λI +XTX

)−1
Σ

1
2θ ≤ 2

n

(
1 +

OCx,D

(
dΣσ⌊ηn⌋ · log n log(dΣn)

)
λ

)
∥θ≤n∥2 +

2 ∥β>n∥2

λ
.
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The next lemma—upper bounding the first term (I)—uses Hanson-Wright inequality to show
concentration for events Ei(Q) in (48a). A proof is in Appendix C.3.

Lemma 7.3. Under Assumption 1, choose β1, β2 in Eq. (48b) so that β1 ≤ R0(Q)/4 and β2 ≤ µ/2.
Then for any positive integer D, there exists constants η = η(Cx) ∈ (0, 1/2), Cα = Cα(Cx, D) and
Cγ = Cγ(Cx, D) such that if we take

γ = min

{
2

n

(
1 +

CγdΣσ⌊ηn⌋ · log n log(dΣn)
λ

)
+

2

µ⋆(λ, µ)
,
1

λ

}
,

α1 = Cα log n ·
√
γR0(I) ,

α2 = Cα log n ·
√
γ3R0(Q) ,

it holds for all n = ΩD(1) that

pk,k(TF , TF ,Q)− pk+1,k(TE , TF ,Q) = O(n−D) .

In addition, on the event {TF (Q) ≥ k, TF (I) ≥ k} ∈ Fk−1 we have (using the shorthand Ek−1{ · } :=
E{ · |Fk−1})

Ek−1

[∣∣∣zT
kBk−1zk − Sk−1(I)

∣∣∣ I{∣∣∣zT
kBk−1zk − Sk−1(I)

∣∣∣ ≥ α1

}]
= OCx

(
n−D ·

√
γR0(I)

)
= OCx,D

(
n−D · α1

)
,

Ek−1

[∣∣∣zT
kBk−1QBk−1zk − Tr

(
QB2

k−1

)∣∣∣ I{∣∣∣zT
kBk−1QBk−1zk − Tr

(
QB2

k−1

)∣∣∣ ≥ α2

}]
= OCx

(
n−D ·

√
γ3R0(Q)

)
= OCx,D

(
n−D · α2

)
.

We then proceed to bound the term pk,k(TE , TE ,Q) − pk,k(TF , TE ,Q). The proof of the next
lemma is in Appendix C.4.

Lemma 7.4. Under Assumption 1, for any positive integer D, there exists a constant Cβ =
Cβ(Cx, D) > 0 such that the following holds. Consider α1, α2, γ as defined in Lemma 7.3, and
set β1, β2 by

β1 = Cβ

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2
+ n ·

{
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

}
+

γR0(Q)

1 + R0(I)

)
,

β2 =
Cβnβ1

1 + R0(I)2
.

If α1 ≤ R0(I)/4, β1 ≤ R0(Q)/4, β2 ≤ µ/2 and n−D = O (α1/ (1 + R0(I))), then for all 1 ≤ k ≤ n+1
and n = ΩD(1),

pk,k(TE , TE ,Q)− pk,k(TF , TE ,Q) = O(n−D) .

Applying Lemmas 7.3 and 7.4 to Eq. (50) (note that we can take Q = I), we have shown that

1− P(TF (Q) = n+ 1, TF (I) = n+ 1) = P(TF (Q) ≥ 0, TF (I) ≥ 0)− P(TF (Q) = n+ 1, TF (I) = n+ 1)

= O(n−D+1) ,

which implies by choosing the parameter ∆ given by the above lemmas, with probability 1 −
O(n−D+1)

|Rn(Q)− R0(Q)| ≤ β1 , |µn − µn| ≤ β2 .
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Therefore, since µn = µ, µ0 = µ⋆(λ, µ), and recalling the definition of Rk(Q), cf. Eq. (44), we have

|Rn(λ, µ;Q)−R0(λ, µ⋆(λ, µ);Q)| ≤ |Rn(λ, µ;Q)− Rn(λ, µn;Q)|+ |Rn(λ, µn;Q)− R0(λ, µ⋆(λ, µ);Q)|

=
∣∣∣(µn − µ) · Tr

(
QΣ

1
2 (λI + µΣ+XTX)−1Σ

1
2An

)∣∣∣+ |Rn(Q)− R0(Q)|
(i)

≤ β2

∥∥∥Σ 1
2 (λI + µΣ+XTX)−1Σ

1
2

∥∥∥Rn(Q) + |Rn(Q)− R0(Q)|
(ii)

≤ γβ2Rn(Q) + |Rn(Q)− R0(Q)| ≤ γβ2R0(Q) + (1 + γβ2) |Rn(Q)− R0(Q)|

≤ γβ2R0(Q) + β1(1 + γβ2)
(ii)

≤ 5

4
γβ2R0(Q) + β1 ,

where in (ii) we used Lemma 7.2; in (iii) we used the fact that β1 ≤ R0(Q)/4 by assumption. We
explain the inequality in (i) more carefully as it is less evident. Denoting by B = Σ

1
2 (λI + µΣ +

XTX)−1Σ
1
2 , we first show B and An commute. Clearly commutativity holds if µ = µn, otherwise

we have

BAn = Σ
1
2 (λI + µΣ+XTX)−1Σ

1
2 ·Σ

1
2 (λI + µnΣ+XTX)−1Σ

1
2

= (µn − µ)−1Σ
1
2

{
(λI + µΣ+XTX)−1 − (λI + µnΣ+XTX)−1

}
Σ

1
2

= (µn − µ)−1 (B −An) = AnB .

Noting that B and An are both p.s.d. compact self-adjoint operators in Hilbert space, commutativity
implies they can be simultaneously orthogonally diagonalized and that B

1
2 and A

1
2
n also commute.

Consequently, combined with the fact that Tr(AnC) ≤ ∥An∥Tr(C) for any p.s.d. matrix C, we
have (i) from

Tr
(
QΣ

1
2 (λI + µΣ+XTX)−1Σ

1
2An

)
= Tr (QBAn) = Tr

(
B ·A

1
2
nQA

1
2
n

)
≤ ∥B∥Tr(QAn)

=
∥∥∥Σ 1

2 (λI + µΣ+XTX)−1Σ
1
2

∥∥∥Rn(Q) .

We therefore proved the following. If β1 ≤ R0(Q)/4 and n−D = O (α1/ (1 + R0(I))), then

β2 ≤ µ/2 ⇒ |Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = O (γβ2R0(Q) + β1) . (51)

To remove the condition β2 ≤ µ/2, we use the following estimate, proven in Appendix C.5.

Lemma 7.5. Under Assumption 1, consider the parameter tuple ∆ = (α1, α2, β1, β2, γ) defined
in Lemmas 7.3 and 7.4. If α1 ≤ R0(I)/8, β1 ≤ R0(Q)/64, γβ2(1 + R0(I)) ≤ 1/64, n−D =
O(α1/(1 + R0(I))) and β2 > µ/2, then we have

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = O (γβ2 (1 + R0(I))R0(Q) + β1) (52)

Combining Eqs. (51) and (52), the proof is complete.
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A Proof of Proposition 2.2

Since σk⋆ ≥ λ⋆ ≥ σk⋆+1, we have

k⋆ +
r1(k⋆)

bk⋆
=

k⋆∑
l=1

σl
σl

+

d∑
l=k⋆+1

σl
σk⋆

≤
k⋆∑
l=1

σl + λ⋆
σl + λ⋆

+

d∑
l=k⋆+1

σl
λ⋆

≤
k⋆∑
l=1

2σl
σl + λ⋆

+

d∑
l=k⋆+1

2σl
σl + λ⋆

= 2Tr
(
Σ(Σ+ λ⋆I)

−1
)
≤ 2n .

Next we bound Vn(λ). Recalling that Tr
(
Σ2(Σ+ λ⋆I)

−2
)
≤ n(1− c−1

⋆ ), it then follows

Vn(λ) =
τ2Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)
≤ c⋆τ

2

n
·

 k⋆∑
l=1

σ2l
(σl + λ⋆)2

+
d∑

l=k⋆+1

σ2l
(σl + λ⋆)2


≤ c⋆τ

2

n
·

k⋆ + d∑
l=k⋆+1

σ2l
λ2⋆

 ≤ c⋆τ
2
(k⋆
n

+
r2(k⋆)

n

) (i)

≤ c⋆τ
2
(k⋆
n

+
4b2k⋆n

r(k⋆)

)
,

where in (i) we use the previous bound r1(k⋆) ≤ 2bk⋆n. Finally, for the bias term, we have

Bn(λ) =
λ2⋆⟨β, (Σ+ λ⋆I)

−2Σβ⟩
1− n−1Tr (Σ2(Σ+ λ⋆I)−2)

≤ c⋆

d∑
l=1

λ2⋆σl
(σl + λ⋆)2

⟨β,vl⟩2

≤ c⋆

 k⋆∑
l=1

λ2⋆σ
−1
l ⟨β,vl⟩2 +

d∑
l=k⋆+1

σl⟨β,vl⟩2
 ≤ c⋆

(
σ2k⋆∥β≤k⋆∥2Σ−1 + ∥β>k⋆∥2Σ

)
.

B Auxiliary lemmas

B.1 Proof of Lemma 6.1

The lemma follows by pure calculations.

Identities for VX(λ) and BX(λ). Substitute in Eq. (35), we have

τ2 · ∂
∂λ

Fn(λ, 0; I) = τ2 · ∂
∂λ

(
λTr

(
Σ(λI +XTX)−1

))
= τ2

{
Tr
(
Σ(λI +XTX)−1

)
− λTr

(
Σ(λI +XTX)−2

)}
= τ2Tr

(
ΣXTX(λI +XTX)−2

)
= VX(λ) ,

and similarly for the bias term

−λ · ∂
∂µ

Fn(λ, 0;θθ
T) = −λ · ∂

∂µ

(
λTr

(
Σ

1
2θθTΣ

1
2 (λI + µΣ+XTX)−1

))∣∣∣
µ=0

= λ2 Tr
(
Σ

1
2θθTΣ

1
2 (λI + µΣ+XTX)−1Σ(λI + µΣ+XTX)−1

)∣∣∣
µ=0

= λ2Tr
(
ββT(λI +XTX)−1Σ(λI +XTX)−1

)
= BX(λ) .
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Identities for Vn(λ) and Bn(λ). First we verify that µ⋆(λ, 0) = λ/λ⋆. Set µ = 0 in Eq. (36), we
obtain

µ⋆ =
n

1 + R0(λ, µ⋆; I)
=

n

1 + Tr (Σ(µ⋆Σ+ λI)−1)
=

n

1 + µ−1
⋆ Tr

(
Σ(Σ+ λ

µ⋆
I)−1

) ,
and thus

n− µ⋆ = Tr

(
Σ

(
Σ+

λ

µ⋆
I

)−1
)
,

which proves the claim comparing to Eq. (5). Further by (36), we can compute the derivatives

∂

∂λ
µ⋆(λ, 0) =

Tr
(
Σ(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)
, (53a)

∂

∂µ
µ⋆(λ, 0) =

n

n− Tr (Σ2(Σ+ λ⋆I)−2)
. (53b)

We can then proceed to write

τ2 · ∂
∂λ

F0(λ, µ⋆(λ, 0); I)

= τ2 · ∂
∂λ

(
λTr

(
Σ(λI + µ⋆Σ)−1

))
= τ2

{
Tr
(
Σ(λI + µ⋆Σ)−1

)
− λTr

(
Σ(λI + µ⋆Σ)−2

)
− λTr

(
Σ2(λI + µ⋆Σ)−2

)
· ∂
∂λ
µ⋆(λ, 0)

}
=
τ2

µ⋆
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
·

(
1−

λ⋆Tr
(
Σ(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)

)

=
τ2

µ⋆
Tr
(
Σ2(Σ+ λ⋆I)

−2
)
·
n− Tr

(
Σ(Σ+ λ⋆I)

−1
)

n− Tr (Σ2(Σ+ λ⋆I)−2)

(i)
=

τ2Tr
(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)
= Vn(λ) ,

where in (i) we use Eq. (5) which implies µ⋆ = n−Tr
(
Σ(Σ+ λ⋆I)

−1
)
. For the bias we can compute

− λ · ∂
∂µ

F0(λ, µ⋆(λ, 0);θθ
T)

= λ2Tr
(
Σ

1
2θθTΣ

1
2 (λI + µ⋆Σ)−1Σ(λI + µ⋆Σ)−1

)
· n

n− Tr (Σ2(Σ+ λ⋆I)−2)

=
λ2⋆β

T (Σ+ λ⋆I)
−2Σβ

1− n−1Tr (Σ2(Σ+ λ⋆I)−2)
= Bn(λ) .

The proof is complete.

B.2 Proof of Lemma 6.2

The lemma is an analogue of [HMRT22, Lemma. 5], which requires two-sided differentiability around
0 and makes use of higher order central difference operators from numerical analysis. Here we apply
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a more straightforward argument. For any 0 ≤ j ≤ k, by Taylor expansion with Lagrange remainder,
we can write

f(jδ) =

k∑
l=0

jl · δ
l

j!
f (l)(0) + jk+1 · δk+1

(k + 1)!
f (k+1)(tj) ,

for some tj ∈ [0, jδ]. We can write the k + 1 equations in matrix form,
1 0 0 · · · 0
1 1 1 · · · 1
1 2 4 · · · 2k

...
...

...
. . .

...
1 k k2 · · · kk


︸ ︷︷ ︸

:=Vk


f(0)
f ′(0)δ

f ′′(0)δ2/2
...

f (k)(0)δk/k!

+
δk+1

(k + 1)!


0

f (k+1)(t1)

2k+1f (k+1)(t2)
...

kk+1f (k+1)(tk)

 =


f(0)
f(δ)
f(2δ)

...
f(kδ)

 .

The Vandermonde matrix Vk is invertible, and therefore we can write
f(0)
f ′(0)δ

f ′′(0)δ2/2
...

f (k)(0)δk/k!

 = V −1
k


f(0)
f(δ)
f(2δ)

...
f(kδ)

− δk+1

(k + 1)!
V −1
k


0

f (k+1)(t1)

2k+1f (k+1)(t2)
...

kk+1f (k+1)(tk)

 .
Denote by ∥M∥∞ the ℓ∞-induced operator norm, we thus have

|f ′(0)δ| ≤

∥∥∥∥∥∥∥∥∥∥∥


f(0)
f ′(0)δ

f ′′(0)δ2/2
...

f (k)(0)δk/k!



∥∥∥∥∥∥∥∥∥∥∥
∞

≤
∥∥V −1

k

∥∥
∞ ·



∥∥∥∥∥∥∥∥∥∥∥


f(0)
f(δ)
f(2δ)

...
f(kδ)



∥∥∥∥∥∥∥∥∥∥∥
∞

+
δk+1

(k + 1)!

∥∥∥∥∥∥∥∥∥∥∥


0

f (k+1)(t1)

2k+1f (k+1)(t2)
...

kk+1f (k+1)(tk)



∥∥∥∥∥∥∥∥∥∥∥
∞


= Ok

(
max
0≤j≤k

|f(jδ)|+ sup
t∈[0,kδ]

|f (k+1)(t)| · δk+1

)
.

Dividing δ from both sides completes the proof.

B.3 Proof of Lemma 6.3

Part I: Derivative w.r.t. λ. By Lemma 6.1,

∂

∂λ
Fn(λ, 0; I) = VX(λ)/τ2 = Tr

(
ΣXTX(XTX + λI)−2

)
,

we can easily write out derivatives with respect to λ up to any order k ≥ 1 as

∂k

∂λk
Fn(λ, 0; I) = Ok

(
Tr
(
ΣXTX(XTX + λI)−1−k

))
,

and therefore∣∣∣∣ ∂k∂λkFn(λ, 0; I)

∣∣∣∣ ≤ Ok

(
1

λk−1
Tr
(
ΣXTX(XTX + λI)−2

))
≤ Ok

(
1

λk−1
Tr
(
Σ(XTX + λI)−1

))
= Ok

(
Fn(λ, 0; I)

λk

)
.
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Part II: Derivative w.r.t. µ. We can directly compute that∣∣∣∣ ∂k∂µkFn(λ, µ;θθ
T)

∣∣∣∣ = ∣∣∣∣ ∂k∂µk · λTr
(
Σ

1
2θθTΣ

1
2 (λI + µΣ+XTX)−1

)∣∣∣∣
= Ok

(
λTr

(
Σ

1
2θθTΣ

1
2

(
(λI + µΣ+XTX)−1Σ

)k
(λI + µΣ+XTX)−1

))
= Ok

(
λTr

(
θθT

(
Σ

1
2 (λI + µΣ+XTX)−1Σ

1
2

)k+1
))

(i)
= Ok

(
λ1−kTr

(
θθTΣ

1
2 (λI + µΣ+XTX)−1Σ

1
2

))
= Ok

(
Fn(λ, µ;θθ

T)

λk

)
,

where in (i) we use ∥Σ∥ = 1.

B.4 Proof of Lemma 6.4

Part I: Derivative w.r.t. λ. Note that

F0(λ, µ⋆(λ, 0); I) = λTr
(
Σ(λI + µ⋆(λ, 0)Σ)−1

)
= λ⋆Tr

(
Σ(Σ+ λ⋆I)

−1
)
.

Combining with the fixed-point equation (5) that determines λ⋆, we further get

F0(λ, µ⋆(λ, 0); I) = nλ⋆ − λ .

Therefore, for all k ≥ 1.

∂

∂λk
F0(λ, µ⋆(λ, 0); I) = n · ∂

kλ⋆
∂λk

− I{k = 1} , (54)

and it boils down to controlling higher order derivatives of λ⋆ w.r.t. λ. Of course, we need to first
show that we can actually write λ⋆ = λ⋆(λ) locally by implicit function theorem. Since

λ = λ⋆ ·
(
n− Tr

(
Σ(Σ+ λ⋆I)

−1
))

which is clearly a increasing function of λ⋆ on the right hand side, and thus ∂λ/∂λ⋆ > 0 and the
implicit function theorem applies. To calculate the higher order derivative of the inverse function,
we apply the formula for higher order derivatives of inverse function [Apo00]

∂kλ⋆
∂λk

=

∣∣∣∣ ∂λ∂λ⋆
∣∣∣∣1−2k

·
∑

m1+m2+···+mp=k−1
m1+2m2+···+pmp=2k−2

Ok

(
p∏
l=1

(
∂lλ

∂λl⋆

)ml
)
. (55)

To further upper bound the above display, we need a lower bound for the derivative ∂λ/∂λ⋆ and
upper bounds for higher order derivatives ∂lλ/∂λl⋆. Using the Leibniz rule, we can compute that

∂lλ

∂λl⋆
=

l∑
r=0

(
l

r

)
∂rλ⋆
∂λr⋆

·
∂l−r

(
n− Tr

(
Σ(Σ+ λ⋆I)

−1
))

∂λl−r⋆

= λ⋆ ·
∂l
(
n− Tr

(
Σ(Σ+ λ⋆I)

−1
))

∂λl⋆
+ l ·

∂l−1
(
n− Tr

(
Σ(Σ+ λ⋆I)

−1
))

∂λl−1
⋆

.
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For l = 1, since

∂λ

∂λ⋆
= λ⋆ · Tr

(
Σ(Σ+ λ⋆I)

−2
)
+ n− Tr

(
Σ(Σ+ λ⋆I)

−1
)
= n− Tr

(
Σ2(Σ+ λ⋆I)

−2
)

≥ n− Tr
(
Σ(Σ+ λ⋆I)

−1
)
=

λ

λ⋆
≥ nκ ,

we have nκ ≤ ∂λ/∂λ⋆ ≤ n. When l ≥ 2, we get

∂lλ

∂λl⋆
= (−1)l−1l! · λ⋆Tr

(
Σ(Σ+ λ⋆I)

−l−1
)
+ (−1)l−2l! · Tr

(
Σ(Σ+ λ⋆I)

−l
)
= (−1)l−2l! · Tr

(
Σ2(Σ+ λ⋆I)

−l−1
)

= Ol

(∥∥∥(Σ+ λ⋆I)
−l+1

∥∥∥ · Tr (Σ2(Σ+ λ⋆I)
−2
))

= Ol

(
n

λl−1
⋆

)
.

Substituting the above displays into Eq. (55) yields

∂kλ⋆
∂λk

=

(
1

(nκ)2k−1

)
·

∑
m1+m2+···+mp=k−1

m1+2m2+···+pmp=2k−2

Ok

(
p∏
l=1

Ol

(
nml

λlml−ml
⋆

))
= Ok

(
1

nkλk−1
⋆ · κ2k−1

)

Taken collectively with Eq. (54) and F0(λ, µ⋆(λ, 0); I) = λ⋆Tr
(
Σ(Σ+ λ⋆I)

−1
)
≥ κnλ⋆, we obtain

for all k ≥ 2,∣∣∣∣ ∂k∂λkF0(λ, µ⋆(λ, 0); I)

∣∣∣∣ = n

∣∣∣∣∂kλ⋆∂λk

∣∣∣∣ = Ok

(
F0(λ, µ⋆(λ, 0); I)

nkλk⋆κ
2k

)
= Ok

(
F0(λ, µ⋆(λ, 0); I)

λkκ2k

)
,

where we use Assumption (21) again for the final bound. This is also valid for k = 1 as∣∣∣∣ ∂∂λF0(λ, µ⋆(λ, 0); I)

∣∣∣∣ = n

∣∣∣∣∂λ⋆∂λ

∣∣∣∣+ 1 = O
(

F0(λ, µ⋆(λ, 0); I)

λκ2

)
+ 1 = O

(
nλ⋆ − λ

λκ2

)
+ 1

= O
(
nλ⋆ − λ

λκ2

)
= O

(
F0(λ, µ⋆(λ, 0); I)

λκ2

)
,

where we use F0(λ, µ⋆(λ, 0); I)/λ = nλ⋆/λ− 1 and

nλ⋆ − λ

λκ2
≥
(
(1− κ)−1 − 1

)
κ−2 ≥ κ−1 ≥ 1 .

Part II: Derivative w.r.t. µ. Now we fix λ and allow µ be take nonzero values. We will also
use the shorthand µ⋆ = µ⋆(λ, µ). Similar to the previous part, we apply Faà di Bruno’s formula to
F0 and bound∣∣∣∣ ∂k∂µF0(λ, µ⋆;θθ

T)

∣∣∣∣ = ∑
m1+2m2+···+pmp=k

Ok

(
∂m1+···+mp

∂µ
m1+···+mp
⋆

F0(λ, µ⋆;θθ
T) ·

p∏
l=1

(
∂lµ⋆
∂µl

)ml
)
. (56)

For any 1 ≤ l ≤ k − 1, we have∣∣∣∣ ∂l∂µl⋆
F0(λ, µ⋆;θθ

T)

∣∣∣∣ = Ol

(
λTr

(
Σ

1
2θθTΣ

1
2 ·Σl(λI + µ⋆Σ)−1−l

))
= Ol

(
F0(λ, µ⋆;θθ

T)

µl⋆

)
.

To bound higher order derivatives ∂lµ⋆/∂µl, we apply again the formula for higher order derivatives
of inverse function. Of course, this would first require showing the existence of inverse function
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by implicit function theorem, which will be evident as we will provide a lower bound for |∂µ/∂µ⋆|
below. By [Apo00], we have for all 1 ≤ l ≤ k − 1,∣∣∣∣∂lµ⋆∂µl

∣∣∣∣ = ∣∣∣∣ ∂µ∂µ⋆
∣∣∣∣1−2l

·
∑

m1+m2+···+mp=l−1
m1+2m2+···+pmp=2l−2

Ol

(
p∏
r=1

(
∂rµ

∂µr⋆

)mr
)
. (57)

This is a more manageable formula as we can explicitly write µ as a function of µ⋆

µ = µ⋆ −
n

1 + R0(λ, µ⋆; I)
= µ⋆ −

n

1 + Tr(Σ(λI + µ⋆Σ)−1)
.

We can compute the first order derivative as

∂µ

∂µ⋆
= 1−

nTr
(
Σ2(λI + µ⋆Σ)−2

)
(1 + Tr (Σ(λI + µ⋆Σ)−1))2

= 1−
(µ⋆ − µ) · Tr

(
Σ2(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

,

which, together with 0 ≤ µ ≤ µ⋆/2, implies a lower bound

∂µ

∂µ⋆
≥ 1−

µ⋆Tr
(
Σ2(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

=
1 + λTr

(
Σ(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

≥ 1

1 + Tr (Σ(λI + µ⋆Σ)−1)
=
µ⋆ − µ

n
≥ µ⋆

2n
.

To further bound higher order derivatives, we again appeal to Faà di Bruno’s formula. Use the
shorthand R0 = R0(λ, µ⋆; I), we have for all r ≥ 1,∣∣∣∣∂rµ∂µr⋆

∣∣∣∣ = ∑
m1+2m2+···+pmp=r

Or

(
∂m1+···+mp

∂R
m1+···+mp

0

n

1 + R0
·
p∏
s=1

(
∂sR0

∂µs⋆

)ms
)
.

Making use of the following two bounds,

∂s

∂Rs
0

n

1 + R0
= Os

(
n

(1 + R0)s+1

)
= Os

(
µ⋆

(1 + R0)s

)
,

∂sR0

∂µs⋆
= Os

(
Tr
(
Σs+1(λI + µ⋆Σ)−s−1

))
= Os

(
R0

µs⋆

)
,

we can further obtain∣∣∣∣∂rµ∂µr⋆

∣∣∣∣ = ∑
m1+2m2+···+pmp=r

Or

(
µ⋆

(1 + R0)m1+···+mp
·
p∏
s=1

Rms
0

µsms
⋆

)
= Or

(
1

µr−1
⋆

)
.

Taking the above displays into Eq. (57) and use the condition µ⋆/n ≥ κ, we have∣∣∣∣∂lµ⋆∂µl

∣∣∣∣ = Ol

(
1

κ2l−1

)
·

∑
m1+m2+···+mp=l−1

m1+2m2+···+pmp=2l−2

Ol

(
p∏
r=1

Or

(
1

µrmr−mr
⋆

))
= Ol

(
1

µl−1
⋆ κ2l−1

)
.

Finally, taking the above display back into Eq. (56) yields∣∣∣∣ ∂k∂µkF0(λ, µ⋆;θθ
T)

∣∣∣∣ = ∑
m1+2m2+···+pmp=k

Ok

(
F0(λ, µ⋆;θθ

T)

µ
m1+···+mp
⋆

·
p∏
l=1

Ol

(
1

µlml−ml
⋆ κ2lml−ml

))

= Ok

(
F0(λ, µ⋆;θθ

T)

µk⋆κ
2k

)
.
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B.5 Proof of Lemma 6.6

First we show µ⋆(λ, µ) is increasing in µ when µ ≥ 0. To this end, we consider the function

f(t) = t− n

1 + R0(λ, t; I)
.

By Eq. (36), we have f(µ⋆(λ, µ)) = µ for all µ ≥ 0. Further, we prove f(t) is increasing in
[µ⋆(λ, 0),∞). We write

f ′(t) = 1−
nTr

(
Σ2(λI + tΣ)−2

)
(1 + Tr (Σ(λI + tΣ)−1))2

(i)
= 1−

(t− f(t)) · Tr
(
Σ2(λI + tΣ)−2

)
1 + Tr (Σ(λI + tΣ)−1)

,

where in (i) we use that t− f(t) = n/(1 + R0(λ, t; I)). Define

g(t) :=
Tr
(
Σ2(λI + tΣ)−2

)
1 + Tr (Σ(λI + tΣ)−1)

,

we have

f ′(t)− f(t)g(t) = 1−
tTr
(
Σ2(λI + tΣ)−2

)
1 + Tr (Σ(λI + tΣ)−1)

=
1 + λTr

(
Σ(λI + tΣ)−2

)
1 + Tr (Σ(λI + tΣ)−1)

> 0 ,

and therefore e−g(t)f(t) is increasing. As f(µ⋆(λ, 0)) = 0 (cf. Eq. (36)), we must have f(t) ≥ 0 for
all t ≥ µ⋆(λ, 0). Substituting back into the above display with g(t) ≥ 0 yields

f ′(t) ≥ f ′(t)− f(t)g(t) > 0 .

We then proceed to show a sufficient condition for µ⋆(λ, µ) ≤ (1 − κ/2)−1µ⋆(λ, 0) is 0 ≤ µ ≤
nκ3/2 under Assumption (21). Provided with monotonicity of f(t), the desired condition µ⋆(λ, µ) ≤
(1− κ/2)−1µ⋆(λ, 0) is essentially equivalent to µ = f(µ⋆(λ, µ)) ≤ f((1− κ/2)−1µ⋆(λ, 0)). Together
with µ⋆(λ, 0) = n/(1 + R0(λ, µ⋆(λ, 0); I)), we obtain a lower bound for the right hand side

f((1− κ/2)−1µ⋆(λ, 0))

= (1− κ/2)−1µ⋆(λ, 0)−
n

1 + Tr (Σ(λI + (1− κ/2)−1µ⋆(λ, 0)Σ)−1)

=
n(1− κ/2)−1

1 + Tr (Σ(λI + µ⋆(λ, 0)Σ)−1)
− n(1− κ/2)−1

(1− κ/2)−1 +Tr (Σ((1− κ/2)λI + µ⋆(λ, 0)Σ)−1)

(i)

≥ n(1− κ/2)−1

1 + Tr (Σ(λI + µ⋆(λ, 0)Σ)−1)
− n(1− κ/2)−1

(1− κ/2)−1 +Tr (Σ(λI + µ⋆(λ, 0)Σ)−1)

=
n
(
(1− κ/2)−1 − 1

)
(1 + Tr (Σ(λI + µ⋆(λ, 0)Σ)−1)) · (1 + (1− κ/2)Tr (Σ(λI + µ⋆(λ, 0)Σ)−1))

(ii)

≥
n
(
(1− κ/2)−1 − 1

)
(1 + Tr (Σ(λI + µ⋆(λ, 0)Σ)−1))2

=

(
(1− κ/2)−1 − 1

)
µ⋆(λ, 0)

2

n
,

where in (i) and (ii) we use two times the trivial bound 1− κ/2 ≤ 1. By Assumption (21),

µ⋆(λ, 0)

n
=

λ

nλ⋆
≥ κ,

we know

f((1− κ/2)−1µ⋆(λ, 0)) ≥ n · κ2
(
(1− κ/2)−1 − 1

)
≥ n · κ3/2 ,

and thus a sufficient condition for µ⋆(λ, µ) ≤ (1− κ/2)−1µ⋆(λ, 0) is µ ≤ nκ3/2.
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C Proofs for Theorem 5

C.1 Proof of Lemma 7.1

We define µi := inf
{
µ | Σ

1
2

(
λI + µΣ+XT

i Xi

)−1
Σ

1
2 ≻ 0

}
. Note that, by construction µi+1 ≤ µi.

Let φ ∈ Rd be the leading normalized eigenvector of Σ. If µ ≤ −(λ+∥Xiφ∥2)/ ∥Σ∥, it follows that

φT
(
λI + µΣ+XT

i Xi

)
φ = λ+ µ ∥Σ∥+ ∥Xiφ∥2 ≤ 0 ,

which implies µi ≥ −(λ + ∥Xiφ∥2)/ ∥Σ∥ > −∞. The update rule is equivalent to solving the
equation

µi+1 +
1

1 + Tr
(
Σ
(
λI + µi+1Σ+XT

i Xi

)−1
) = µi , µi+1 ∈ (µi,∞) .

For all t ∈ (µi,∞), let

f(t) = t+
1

1 + Tr
(
Σ
(
λI + tΣ+XT

i Xi

)−1
) .

In this given domain, Σ
1
2

(
λI + tΣ+XT

i Xi

)−1
Σ

1
2 ≻ 0 and thus Tr

(
Σ
(
λI + tΣ+XT

i Xi

)−1
)

is
decreasing in t (this can be seen by computing its derivative with respect to t), which further implies
f(t) is strictly increasing in t. Since

lim
t↓µi

Tr

(
Σ
(
λI + tΣ+XT

i Xi

)−1
)

= ∞ ,

and we have

lim
t↓µi

f(t) = µi < µi , f(µi) > µi .

(The first inequality follows since µi ∈ (µi−1,∞) and µi ≤ µi−1.) Thus, there must be a unique
µi+1 ∈ (µi, µi) that solves f(µi+1) = µi, proving the lemma.

C.2 Proof of Lemma 7.2

Without loss of generality, we can always assume d ≥ n or simply d = ∞ by embedding Rd into the
Hilbert space ℓ2 since we always have

d∑
l=k

σl ≤ dΣσk ,

when σk = 0. We write the spectral decomposition of Σ as

Σ =

d∑
i=1

σiviv
T
i ,
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with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ · · · where {vi} form an orthogonal basis of eigenvectors. For any k ≤ n,
define the projection operators

Pk :=
k∑
i=1

viv
T
i , P⊥

k := I − Pk =
d∑

i=k+1

viv
T
i ,

and we write

X = XPk +XP⊥
k := Uk +Wk .

Part I: Decomposing into the top and lower eigenspaces. By writing X = Uk +Wk, we
can have the following inequality:

Lemma C.1. For any 1 ≤ k ≤ n− 1,

λI +XTX ⪰ λ

2
I +

(
1 +

2
∥∥W T

k Wk

∥∥
λ

)−1

UT
k Uk .

Proof. Note that

λI +XTX = λI +UT
k Uk +UT

k Wk +W T
k Uk +W T

k Wk

⪰ λ

2
I +UT

k Uk +UT
k Wk +W T

k Uk +

(
1 +

λ

2
∥∥W T

k Wk

∥∥
)
W T

k Wk

=
λ

2
I +

(
1 +

2
∥∥W T

k Wk

∥∥
λ

)−1

UT
k Uk +Ck ,

where

Ck =

(
1 +

λ

2
∥∥W T

k Wk

∥∥
)−1

UT
k Uk +UT

k Wk +W T
k Uk +

(
1 +

λ

2
∥∥W T

k Wk

∥∥
)
W T

k Wk = DT
kDk ⪰ 0 ,

with

Dk =

(
1 +

λ

2
∥∥W T

k Wk

∥∥
)− 1

2

Uk +

(
1 +

λ

2
∥∥W T

k Wk

∥∥
) 1

2

Wk .

To apply the above lemma, we need to further provide an upper bound on ∥W T
k Wk∥, which we

summarize as the following result.

Lemma C.2. Let Assumption 1 holds, we have for any 1 ≤ k ≤ n− 1 with probability 1−O(n−D)
that,

∥WkW
T
k ∥ = OCx,D (dΣσk · log n log(dΣn)) .
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Proof. Let ζi = P⊥
k xix

T
i P

⊥
k ∈ Rd×d, we can write

Sk := W T
k Wk =

n∑
i=1

P⊥
k xix

T
i P

⊥
k =

n∑
i=1

ζi .

Since ∥ζi∥ =
∥∥P⊥

k xi
∥∥2, we can apply Hanson-Wright inequality (cf. Lemma 2.1) and conclude that

P
(∣∣∣∥ζi∥ − Tr

(
P⊥
k Σ

)∣∣∣ ≥ t
)
= P

(∣∣∣xT
i P

⊥
k xi − Tr

(
P⊥
k Σ

)∣∣∣ ≥ t
)

≤ 2 exp

−Ω

min

 t2

C4
x

∥∥∥Σ 1
2P⊥

k Σ
1
2

∥∥∥2
F

,
t

C2
x

∥∥∥Σ 1
2P⊥

k Σ
1
2

∥∥∥


 .

For t = ΘCx,D(∥Σ
1
2P⊥

k Σ
1
2 ∥F log n) we have with probability 1−O(n−D) that for all i = 1, 2, · · · , n

∥ζi∥ ≤ Tr
(
P⊥
k Σ

)
+ΘCx,D

(∥∥∥Σ 1
2P⊥

k Σ
1
2

∥∥∥
F
log n

)
= OCx,D

(
Tr
(
P⊥
k Σ
)
log n

)
,

where the last inequality follows from ∥Σ∥ = 1 and∥∥∥Σ 1
2P⊥

k Σ
1
2

∥∥∥
F
=
√
Tr
(
P⊥
k ΣP⊥

k Σ
)
≤ Tr

(
P⊥
k Σ

)
.

In the next step, we will adopt a standard truncation argument and apply a matrix concentration
inequality. By setting Lk := ΘCx,D(Tr

(
P⊥
k Σ

)
log n), ζ̃i := ζiI{∥ζi∥ ≤ Lk} and considering

S̃k :=
k∑
i=1

ζ̃i =
k∑
i=1

ζiI {∥ζi∥ ≤ Lk} ,

we have S̃k = Sk with probability 1 − O(n−D). It order to bound ∥S̃k∥, we will use matrix
Bernstein inequality. Since we know ∥ζ̃i∥ ≤ Lk by construction, we only need to upper bound the
matrix variance. The ζ̃i’s’ are independent symmetric random matrices and therefore we have

Var(S̃k) ⪯
n∑
i=1

E[ζ̃2i ]
(i)

⪯
n∑
i=1

LkE[ζ̃i]
(ii)

⪯
n∑
i=1

LkE [ζi]
(iii)

⪯ nLk · P⊥
k ΣP⊥

k =: Vk ,

where in (i) we use ∥ζ̃i∥ ≤ Lk, in (ii) we apply ζ̃i ⪯ ζi and lastly in (iii) we use E[ζi] =
E[P⊥

k xix
T
i P

⊥
k ] = P⊥

k ΣP⊥
k . It then follows that ∥Vk∥ ≤ nLk∥P⊥

k ΣP⊥
k ∥ = nσk+1Lk ≤ nσkLk =:

vk. Combine with the bound on the intrinsic dimension under Assumption 1,

intdim (Vk) =
Tr (Vk)

∥Vk∥
=

∑∞
l=k+1 σl

σk+1
≤ dΣ ,

we can thus deduce from the Bernstein inequality with intrinsic dimension [T+15, Theorem 7.3.1]
that for t ≥ √

vk + Lk/3

P(∥S̃k − E[S̃k]∥ ≥ t) ≤ 4dΣ · exp
(

−t2/2
vk + Lkt/3

)
.

Finally, by further bounding the mean

∥E[S̃k]∥ ≤ ∥nE[ζ̃i]∥ ≤ n · ∥E [ζi]∥ = n ·
∥∥∥P⊥

k ΣP⊥
k

∥∥∥ ≤ nσk ,
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we can obtain with probability 1−O(n−D),

∥S̃k∥ = OD ((
√
vk + Lk) log(dΣn)) + ∥E[S̃k]∥

(i)
= OCx,D

({√
nσk · Tr

(
P⊥
k Σ

)
log n+Tr

(
P⊥
k Σ

)
log n

}
· log(dΣn) + nσk

)
(ii)
= OCx,D

({√
nσk · dΣσk log n+ dΣσk log n

}
· log(dΣn) + nσk

)
where in (i) we make use of vk = nσkLk, and apply Assumption 1 for the spectrum in (ii). Next by
the fact that dΣ ≥ n, we can further write

∥S̃k∥ = OCx,D (dΣσk · log n log(dΣn)) .

The proof is complete as WkW
T
k = Sk = S̃k = holds with probability 1−O(n−D).

To bound the norm of Σ
1
2

(
λI +XTX

)−1
Σ

1
2 , we apply Lemmas C.1 and C.2 and obtain

λI +XTX ⪰ λ

2
I +

(
1 +

2
∥∥W T

k Wk

∥∥
λ

)−1

UT
k Uk

⪰ λ

2
I +

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)−1

UT
k Uk .

Therefore by block matrix inverse, we can further get

Σ
1
2

(
λI +XTX

)−1
Σ

1
2

⪯ Σ
1
2

(
λ

2
I +

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)−1

UT
k Uk

)−1

Σ
1
2

= Σ
1
2

(
λ

2
I +

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)−1

PkΣ
1
2ZTZΣ

1
2Pk

)−1

Σ
1
2

⪯
(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)(
PkZ

TZPk

)†
+

2P⊥
k ΣP⊥

k

λ
, (58)

where X = ZΣ
1
2 . Define the matrix Vk =

[
v1 · · · vk

]
∈ Rd×k, we can then write Pk = VkV

T
k .

Thus by exploiting the block matrix structure, it follows that∥∥∥∥Σ 1
2

(
λI +XTX

)−1
Σ

1
2

∥∥∥∥ ≤
(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
λmin

(
V T
k ZTZVk

)−1
+

2σk
λ

.

(59)

Substituting θ = Σ−1/2β into Eq. (58), we also obtain

θTΣ
1
2

(
λI +XTX

)−1
Σ

1
2θ

≤
(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
λmin

(
V T
k ZTZVk

)−1
∥θ≤k∥2 +

2 ∥β>k∥2

λ
. (60)
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Part II: Lower bounding the smallest eigenvalue λmin

(
V T
k ZTZVk

)
. The last step is then

to provide a lower bound for the smallest eigenvalue of V T
k ZTZVk. Consider Z̃ =

[
z̃1 · · · z̃n

]T ∈
Rn×k with

z̃i = V T
k zi =

 ⟨z,v1⟩
...

⟨z,vk−1⟩

 .
We therefore need to lower bound λmin(Z̃

TZ̃) where Z̃ has i.i.d. rows z̃i in Rk. An immediate
consequence is that E[z̃i] = 0 and Var(z̃i) = Ik. Moreover, for any unit vector φ ∈ Rk, we can
apply Hanson-Wright (cf. Lemma 2.1) and deduce that for any t ≥ 0,

P
(∣∣⟨z̃i,φ⟩2 − 1

∣∣ ≥ t
)
= P

(∣∣∣zT
i Vkφφ

TV T
k zi − Tr

(
Vkφφ

TV T
k

)∣∣∣ ≥ t
)

≤ 2 exp

{
−Ω

(
min

{
t2

C4
x

∥∥VkφφTV T
k

∥∥2
F

,
t

C2
x

∥∥VkφφTV T
k

∥∥
})}

= 2 exp
(
−ΩCx

(
min

{
t2, t

}))
, (61)

where we use the fact that
∥∥VkφφTV T

k

∥∥
F

=
∥∥VkφφTV T

k

∥∥ ≤ 1. Thus we can bound the fourth
moment of ⟨z̃i,φ⟩ by

E
[
⟨z̃i,φ⟩4

]
=

∫ ∞

0
2tP

(
⟨z̃i,φ⟩2 ≥ t

)
dt

≤ 1 +

∫ ∞

0
2(t+ 1)P

(
⟨z̃i,φ⟩2 ≥ t+ 1

)
dt

≤ 1 + 4

∫ ∞

0
(t+ 1) exp

(
−ΩCx

(
min

{
t2, t

}))
dt = OCx(1) .

Clearly the above bound holds uniformly for all φ ∈ Sk−1 from the unit sphere in Rk. Since the
upper bound OCx(1) does not depend on k, we can appeal to [Yas14, Theorem 2.2] and obtain that
with probability 1−O(n−D)

λmin

(
n−1Z̃TZ̃

)
≥ 1−OCx

(√
k

n

)
−OD

(√
log n

n

)
.

Therefore, if we choose k = ⌊ηn⌋ for some fixed η such that OCx(
√
η) ≤ 1/4, it holds for n = ΩD(1)

that

λmin

(
n−1Z̃TZ̃

)
≥ 1− 1

4
− 1

4
=

1

2
,

and we therefore conclude the proof by taking k = ⌊ηn⌋ as above and substituting into Eq. (59)∥∥∥∥Σ 1
2

(
λI +XTX

)−1
Σ

1
2

∥∥∥∥ ≤ 2

n

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
+

2σk
λ

=
2

n

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
,

where in the last line we use the fact that dΣ ≥ n and therefore σk = O(dΣσk · log n log(dΣn)/n).
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Similarly for Eq. (60), we have

θTΣ
1
2

(
λI +XTX

)−1
Σ

1
2θ ≤ 2

n

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
∥θ≤k∥2 +

2 ∥β>k∥2

λ

≤ 2

n

(
1 +

OCx,D (dΣσk · log n log(dΣn))
λ

)
∥θ≤n∥2 +

2 ∥β>n∥2

λ
,

where in the last line we use the fact that for all k + 1 ≤ i ≤ n,

⟨β,vi⟩2 = σi⟨θ,vi⟩2 ≤ σk⟨θ,vi⟩2 = O(dΣσk · log n log(dΣn)/n)⟨θ,vi⟩2 .

The proof is complete.

C.3 Proof of Lemma 7.3

We apply Hanson-Wright inequality in Lemma 2.1 and get

P
(∣∣∣zT

kBk−1zk − Sk−1(I)
∣∣∣ ≥ t | Bk−1

)
≤ 2 exp

{
−Ω

(
min

{
t2

C4
x ∥Bk−1∥2F

,
t

C2
x ∥Bk−1∥

})}
and

P
(∣∣∣zT

kBk−1QBk−1zk − Tr
(
QB2

k−1

)∣∣∣ ≥ t | Bk−1

)
≤ 2 exp

{
−Ω

(
min

{
t2

C4
x ∥Bk−1QBk−1∥2F

,
t

C2
x ∥Bk−1QBk−1∥

})}
.

In particular, on the event {TF (Q) ≥ k, TF (I) ≥ k}, we have

|Sk−1(I)− R0(I)| ≤ β1 ≤
1

4
R0(I) , |Sk−1(Q)− R0(Q)| ≤ β1 ≤

1

4
R0(Q) , ∥Bk−1∥ ≤ γ ,

which further implies that

∥Bk−1∥ ≤ ∥Bk−1∥F =
√

Tr
(
B2
k−1

)
≤
√
∥Bk−1∥ · Sk−1(I) = O

(√
γR0(I)

)
,

and

∥Bk−1QBk−1∥ ≤ ∥Bk−1QBk−1∥F =
√

Tr
(
Bk−1QB2

k−1QBk−1

)
≤
√∥∥∥Q 1

2B2
k−1Q

1
2

∥∥∥ · Tr (Bk−1QBk−1)

≤
√

∥Bk−1∥2 · Tr
(
Q

1
2B2

k−1Q
1
2

)
(i)

≤
√

∥Bk−1∥3 · Sk−1(Q) = O
(√

γ3R0(Q)
)
,

Substituting the above bounds into the Hanson-Wright inequalities, we have conditioning on Hk :=
{TF (Q) ≥ k, TF (I) ≥ k} for some constant C = C(Cx, D) that

exp

{
−Ω

(
C log n ·

√
γR0(I)

C2
x ∥Bk−1∥

)}
= O(n−D) ,
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exp

{
−Ω

(
C log n ·

√
γ3R0(Q)

C2
x ∥Bk−1QBk−1∥

)}
= O(n−D) ,

and therefore it holds with probability 1−O(n−D) that∣∣∣zT
kBk−1zk − Sk−1(I)

∣∣∣ ≤ C log n ·
√
γR0(I) =: α1 ,∣∣∣zT

kBk−1QBk−1zk − Tr
(
QB2

k−1

)∣∣∣ ≤ C log n ·
√
γ3R0(Q) =: α2 .

The Hanson-Wright inequalities also give the following upper bounds on the expectations condi-
tioning on the tail event when ∥Bk−1∥ ≤ γ. In particular, we would have

Ek−1

[∣∣∣zT
kBk−1zk − Sk−1(I)

∣∣∣ I{∣∣∣zT
kBk−1zk − Sk−1(I)

∣∣∣ ≥ α1

}]
I(Hk)

=

∫ ∞

C logn·
√
γR0(I)

P
(∣∣∣zT

kBk−1zk − Sk−1(I)
∣∣∣ ≥ t | Bk−1

)
I(Hk)dt

≤
∫ ∞

C logn·
√
γR0(I)

2 exp

{
−Ω

(
min

{
t2

C4
x ∥Bk−1∥2F

,
t

C2
x ∥Bk−1∥

})}
I(Hk)dt

≤
∫ ∞

C logn·
√
γR0(I)

2 exp

{
−Ω

(
t

C2
x ∥Bk−1∥F

)}
I(Hk)dt

≤ O
(
C2
x ∥Bk−1∥F

)
· O(n−D) = OCx

(
n−D ·

√
γR0(I)

)
.

Similarly it also holds that

Ek−1

[∣∣∣zT
kBk−1QBk−1zk − Tr

(
QB2

k−1

)∣∣∣ I{∣∣∣zT
kBk−1QBk−1zk − Tr

(
QB2

k−1

)∣∣∣ ≥ α2

}]
I(Hk)

= OCx

(
n−D ·

√
γ3R0(Q)

)
.

To finish the proof, we now only need to show ∥Ak∥ ≤ γ holds with probability 1 − O(n−D).
We provide upper bounds for small k ≤ n/2 and large k > n/2 separately. Under the assumption
β2 ≤ µ/2, we make use of the fact that Hk ⊂ Fk−1(Q) which enables us to derive∣∣∣∣µk − µ⋆(λ, µ) +

k

1 + R0(I)

∣∣∣∣ ≤ β2 ≤
µ

2
, (62)

and thus for all k ≤ n/2,

µk ≥ µ⋆(λ, µ)−
k

1 + R0(I)
− µ

2
=
µ

2
+

n− k

1 + R0(I)
≥ µ⋆(λ, µ)

2
,

which in particular implies for k ≤ n/2 that

∥Ak∥ ≤
∥∥∥Σ 1

2 (λI + µkΣ)−1Σ
1
2

∥∥∥ ≤ 2

µ⋆(λ, µ)
.

On the other hand, if k > n/2, we can still deduce from Eq. (62) that µk ≥ µ/2 > 0 and thus

Ak = Σ
1
2

(
λI + µkΣ+XT

kXk

)−1
Σ

1
2 ⪯ Σ

1
2

(
λI +XT

kXk

)−1
Σ

1
2 .
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Applying Lemma 7.2, we obtain with probability 1−O(n−D) for all k > n/2,

∥Ak∥ ≤
∥∥∥∥Σ 1

2

(
λI +XT

⌈n/2⌉X⌈n/2⌉

)−1
Σ

1
2

∥∥∥∥ =
2

n

(
1 +

OCx,D

(
dΣσ⌊ηn⌋ · log n log(dΣn)

)
λ

)
,

for some η = η(Cx). Combine with the trivial bound ∥Ak∥ ≤ 1/λ, we conclude that ∥Ak∥ ≤ γ with
probability 1−O(n−D), provided we take

γ = min

{
2

n

(
1 +

OCx,D

(
dΣσ⌊ηn⌋ · log n log(dΣn)

)
λ

)
+

2

µ⋆(λ, µ)
,
1

λ

}
.

The proof is completed by noting that

pk,k(TF , TF ,Q)− pk+1,k(TE , TF ,Q) = P(Ek(Q)c;Hk) = O(n−D) .

C.4 Proof of Lemma 7.4

We begin by noticing that

pk,k(TE , TE ,Q)− pk,k(TF , TE ,Q) = P
(
TE(Q) ≥ k, TE(I) ≥ k;F ck−1(Q)

)
. (63)

We therefore need to control |Rk−1(Q) − R0(Q)| and |Sk−1(Q) − R0(Q)|, as well as |µk − µk| and
∥Bk−1∥.

Part I: Decomposing into martingale part and bias part. Recall the calculations for
Eq. (47), we have

Ri(Q)− Ri−1(Q) = −
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
+

Tr (QBi−1Ai−1)

1 + Si−1(I)

Define the stopping time

T = TE(Q) ∧ TE(I) ,

and on the event {TE(Q) ≥ k, TE(I) ≥ k} = {T ≥ k}, it holds

Rk−1(Q)− R0(Q) = (Rk−1(Q)−R0(Q)) I
{
T ≥ k

}
=

k−1∑
i=1

(Ri(Q)− Ri−1(Q)) I
{
T ≥ i+ 1

}
.

For each of the summand, we can decompose it into two parts—the martingale difference part
Di(Q, T ) and a bias part Bi(Q, T )—to be specific, we can write

(Ri(Q)− Ri−1(Q)) I
{
T ≥ i+ 1

}
= Di(Q, T ) +Bi(Q, T ) ,

where by setting Gi := Fi(Q)∩Fi(I) ∈ Fi and Si :=
{
T = i

}
∩Gi−1 ∈ Fi, the explicit forms of Di

and Bi are (recall that Ei( · ) := E( · |Fi)):

Di(Q, T ) := −
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
−

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

+ Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
+

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]
, (64)
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and

Bi(Q, T ) :=
Tr (QBi−1Ai−1)

1 + Si−1(I)
I
{
T ≥ i+ 1

}
+

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

− Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
+

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]
. (65)

Since T is a stopping time, one can easily have that Di(Q, T ) is a martingale difference sequence for
i = 0, 1, · · · , n. (We note in passing that the above decomposition is similar but does not coincide
with the standard Doob decomposition. In particular Bi(Q, T ) is not measurable on Fi−1. We find
the present decomposition more convenient.)

Part II: Controlling the martingale part. We will show Di(Q, T ) is bounded and thus by
concentration inequality for bounded martingale differences, we can obtain an upper bound for the
sum of the Di(Q, T )’s. To this end, we use the fact that if for some mi−1 ∈ Fi−1∣∣Di(Q, T )−mi−1

∣∣ ≤M ,

then
∣∣Di(Q, T )

∣∣ = ∣∣Di(Q, T )− E
[
Di(Q, T ) | Fi−1

]∣∣ ≤ 2M . Substitute the following mi−1 ∈ Fi−1

mi−1 = −
Tr
(
QB2

i−1

)
1 + Si−1(I)

I
{
T ≥ i

}
I (Gi−1) + Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
+

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]

into the previous display, we have∣∣Di(Q, T )−mi−1

∣∣
(i)
=

∣∣∣∣∣Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
−

Tr
(
QB2

i−1

)
1 + Si−1(I)

∣∣∣∣∣ I{T ≥ i+ 1
}

≤

∣∣∣∣∣zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)
1 + zT

i Bi−1zi

∣∣∣∣∣ I{T ≥ i+ 1
}
+

∣∣∣∣∣Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)(
1 + zT

i Bi−1zi
)
(1 + Si−1(I))

∣∣∣∣∣ I{T ≥ i+ 1
}
,

where in (i) we use {T ≥ i+ 1} ⊂ Fi−1(Q) ∩ Fi−1(I) = Gi−1, and therefore

I
{
T ≥ i

}
I (Gi−1) = I

{
T = i

}
I (Gi−1) + I

{
T ≥ i+ 1

}
I (Gi−1) = I (Si) + I

{
T ≥ i+ 1

}
.

Recalling our assumptions for α1, we observe that on the event {T ≥ i+ 1} ⊂ Ei(Q),∣∣∣zT
i Bi−1zi − Si−1(I)

∣∣∣ ≤ α1 ≤
1

4
R0(I) ,

∣∣∣zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)∣∣∣ ≤ α2 , (66)

and on the event {T ≥ i+ 1} ⊂ Fi−1(I) and {T ≥ i+ 1} ⊂ Fi−1(Q) by assumptions on β1,

|Si−1(I)− R0(I)| ≤ β1 ≤
1

4
R0(I) , |Si−1(Q)− R0(Q)| ≤ β1 ≤

1

4
R0(Q) , (67)

and finally on the event {T ≥ i+ 1} ⊂ Gi−1 it holds

Tr
(
QB2

i−1

)
≤ ∥Bi−1∥ · Tr (QBi−1) ≤ γSi−1(Q) = O (γR0(Q)) . (68)
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Putting together bounds in Eqs. (66), (67), (68) and making use of the fact that
{
T ≥ i+ 1

}
⊂

Ei(Q) ∩ Fi−1(I) ∩ Fi−1(Q) yield

∣∣Di(Q, T )−mi−1

∣∣ ≤ ∣∣∣∣∣ α2

1 + 1
2R0(I)

∣∣∣∣∣+
∣∣∣∣∣ O(γR0(Q)) · α1(
1 + 1

2R0(I)
) (

1 + 3
4R0(I)

)∣∣∣∣∣ = O
(
α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2

)
.

Then we can apply Azuma-Hoeffding inequality and obtain

max
k≤n

∣∣∣∣∣
k∑
i=1

Di(Q, T )

∣∣∣∣∣ = OD

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2

)
,

with probability 1−O(n−D).

Part III: Controlling the bias part. Now we proceed to bound the bias part |Bi(Q, T )| in
Eq. (65). We can write an upper bound

∣∣Bi(Q, T )∣∣ ≤
∣∣∣∣∣Tr (QBi−1Ai−1)

1 + Si−1(I)
−

Tr
(
QB2

i−1

)
1 + Si−1(I)

∣∣∣∣∣ I{T ≥ i+ 1
}

︸ ︷︷ ︸
(I)

+

∣∣∣∣∣Tr
(
QB2

i−1

)
1 + Si−1(I)

I
{
T ≥ i

}
I (Gi−1)− Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
+

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]∣∣∣∣∣︸ ︷︷ ︸
(II)

.

Using the fact that

Bi−1 −Ai−1 = (µi−1 − µi)Bi−1Ai−1 =
Bi−1Ai−1

1 + Si(I)
,

we have

(I) ≤
∣∣∣∣Tr (QBi−1 (Ai−1 −Bi−1))

1 + Si−1(I)

∣∣∣∣ I{T ≥ i+ 1
}
=

∣∣∣∣∣Tr
(
QB2

i−1Ai−1

)
(1 + Si−1(I))

2

∣∣∣∣∣ I{T ≥ i+ 1
}
.

Upper bounding the term Tr(QB2
i−1Ai−1) requires more careful treatment. Note that Bi−1 and

Ai−1 commute, as follows from the observation that

Bi−1Ai−1

= (1 + Si(I)) ·Σ
1
2

{(
λI + µiΣ+XT

i−1Xi−1

)−1
· (µi−1 − µi)Σ ·

(
λI + µi−1Σ+XT

i−1Xi−1

)−1
}
Σ

1
2

= (1 + Si(I)) (Bi−1 −Ai−1)

= (1 + Si(I)) ·Σ
1
2

{(
λI + µi−1Σ+XT

i−1Xi−1

)−1
· (µi−1 − µi)Σ ·

(
λI + µiΣ+XT

i−1Xi−1

)−1
}
Σ

1
2

= Ai−1Bi−1 .

Since Ai−1 and Bi−1 are both p.s.d. compact self-adjoint operators in Hilbert space, commutativity

implies they can be simultaneously orthogonally diagonalized, which further implies that A
1
2
i−1 and

B
1
2
i−1 also commute. Therefore

Tr
(
QB2

i−1Ai−1

)
= Tr

(
Q

1
2A

1
2
i−1B

2
i−1A

1
2
i−1Q

1
2

)
≤ ∥Bi−1∥2 · Tr

(
Q

1
2Ai−1Q

1
2

)
= ∥Bi−1∥2 · Ri−1(Q) ,

52



and thus

(I) ≤ ∥Bi−1∥2 · Ri−1(Q)

(1 + Si−1(I))
2 I

{
T ≥ i+ 1

}
= O

(
γ2R0(Q)

1 + R0(I)2

)
, (69)

where in the last inequality we use Eq. (67) on the event {T ≥ i+1} ⊂ Fi−1(I), while {T ≥ i+1} ⊂
Fi−1(Q) also implies

|Ri−1(Q)− R0(Q)| ≤ β1 ≤
1

4
R0(Q) .

Next to bound (II), we make use of the fact that

Tr
(
QB2

i−1

)
1 + Si−1(I)

I
{
T ≥ i

}
I (Gi−1) = Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + Si−1(I)

I
{
T ≥ i

}
I (Gi−1)

]
,

and therefore

(II)

=

∣∣∣∣∣Ei−1

[
Tr
(
QBi−1ziz

T
i Bi−1

)
1 + Si−1(I)

I
{
T ≥ i

}
I (Gi−1)−

Tr
(
QBi−1ziz

T
i Bi−1

)
1 + zT

i Bi−1zi
I
{
T ≥ i+ 1

}
−

Tr
(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]∣∣∣∣∣
=

∣∣∣∣∣Ei−1

[
zT
i Bi−1QBi−1zi ·

(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

(
1 + zT

i Bi−1zi
) I

{
T ≥ i+ 1

}
+

zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)
1 + Si−1(I)

I (Si)

]∣∣∣∣∣
≤

∣∣∣∣∣Ei−1

[(
zT
i Bi−1QBi−1zi ·

(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

(
1 + zT

i Bi−1zi
) −

Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

2

)
I
{
T ≥ i+ 1

}]∣∣∣∣∣︸ ︷︷ ︸
(III)

+

∣∣∣∣∣Ei−1

[(
Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

2 +
zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)
1 + Si−1(I)

)
I (Si)

]∣∣∣∣∣︸ ︷︷ ︸
(IV)

,

(70)

where in the last inequality we use that

Ei−1

[
Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

2 I
{
T ≥ i

}
∩Gi−1

]

=
Tr
(
QB2

i−1

)
(1 + Si−1(I))

2 I
( {
T ≥ i

}
∩Gi−1

)
· Ei−1

[
zT
i Bi−1zi − Si−1(I)

]
= 0 .

To control (III), we note that

zT
i Bi−1QBi−1zi ·

(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

(
1 + zT

i Bi−1zi
) −

Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

2

=

{
zT
i Bi−1QBi−1zi · (1 + Si−1(I))− Tr

(
QB2

i−1

)
·
(
1 + zT

i Bi−1zi
)}

·
(
zT
i Bi−1zi − Si−1(I)

)
(1 + Si−1(I))

2 (1 + zT
i Bi−1zi

)
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=
1

(1 + Si−1(I))
2 (1 + zT

i Bi−1zi
) ·{(zT

i Bi−1QBi−1zi − Tr
(
QB2

i−1

))
· (1 + Si−1(I))

− Tr
(
QB2

i−1

)
·
(
zT
i Bi−1zi − Si−1(I)

)}
·
(
zT
i Bi−1zi − Si−1(I)

)
.

We again make use of the bounds in Eqs. (66), (67) and (68) on the event {T ≥ i+1}, which implies

(III) ≤

∣∣∣∣∣Ei−1

[(
α2 · (1 + Si−1(I)) + Tr

(
QB2

i−1

)
· α1

)
· α1

(1 + Si−1(I))
2 (1 + zT

i Bi−1zi
) I

{
T ≥ i+ 1

}]∣∣∣∣∣
= O

(
α1α2 (1 + R0(I)) + α2

1γR0(Q)

1 + R0(I)3

)
. (71)

Finally for term (IV) in Eq. (70), we can control it by

(IV) ≤ O (γR0(Q))

1 + R0(I)2
· Ei−1

[∣∣∣zT
i Bi−1zi − Si−1(I)

∣∣∣ I (Si)]
+

1

1 + R0(I)
· Ei−1

[∣∣∣zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)∣∣∣ I (Si)] .
Recall Si = {T = i} ∩ Fi−1(Q) ∩ Fi−1(I), which implies {TF (Q) ≥ i, TF (I) ≥ i} holds but at
least one of Ei(Q) and Ei(I) doesn’t hold. This allows us to invoke Lemma 7.3 and conclude that
P(Si|Fi−1) = O(n−D). Moreover, we can further deduce from Lemma 7.3 that

Ei−1

[∣∣∣zT
i Bi−1zi − Si−1(I)

∣∣∣ I (Si)]
≤ α1P(Si|Fi−1) + Ei−1

[∣∣∣zT
i Bi−1zi − Si−1(I)

∣∣∣ I{∣∣∣zT
i Bi−1zi − Si−1(I)

∣∣∣ ≥ α1

}]
I{TF (Q) ≥ i, TF (I) ≥ i}

= OCx,D

(
n−D · α1

)
.

Similarly, we also have

Ei−1

[∣∣∣zT
i Bi−1QBi−1zi − Tr

(
QB2

i−1

)∣∣∣ I (Si)] = OCx,D

(
n−D · α2

)
.

Combining the above displays, we obtain that

(IV) = OCx,D

(
n−Dα1γR0(Q)

1 + R0(I)2
+

n−Dα2

1 + R0(I)

)
Now applying the assumption that

n−D = O
(

α1

1 + R0(I)

)
,

we obtain

(IV) = OCx,D

(
α2
1γR0(Q)

1 + R0(I)3
+

α1α2

1 + R0(I)2

)
= OCx,D

(
α1α2 (1 + R0(I)) + α2

1γR0(Q)

1 + R0(I)3

)
. (72)

Substitute Eqs. (71) and (72) into Eq. (70) we have

(II) = OCx,D

(
α1α2 (1 + R0(I)) + α2

1γR0(Q)

1 + R0(I)3

)
,

and together with Eq. (69) we obtain∣∣Bi(Q, T )∣∣ = OCx,D

(
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

)
.
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Part IV: Combining the results. Hence, by combining results in part III and IV, we have with
probability 1−O(n−D) that

∣∣(Rk−1(Q)− R0(Q)) I
{
T ≥ k

}∣∣ ≤ ∣∣∣∣∣
k−1∑
i=1

Di(Q, T )

∣∣∣∣∣+
∣∣∣∣∣
k−1∑
i=1

Bi(Q, T )

∣∣∣∣∣
≤ OD

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2

)
+ n · OCx,D

(
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

)
= OCx,D

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2
+ n ·

{
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

})
.

We can first see ∥Bk−1∥ ≤ γ holds with probability 1−O(n−D), which follows via exactly the same
argument as in Appendix C.3 for ∥Ak∥ ≤ γ by invoking Lemma 7.2. Moreover, we have on {T ≥ k}
that

|Sk−1(Q)− Rk−1(Q)| = |Tr (Q (Bk−1 −Ak−1))| =
Tr (QBk−1Ak−1)

1 + Sk−1(I)

≤ ∥Bk−1∥Rk−1(Q)

1 + Sk−1(I)

(i)

≤ γRk−1(Q)

1 + Rk−1(I)
= O

(
γR0(Q)

1 + R0(I)

)
,

where in (i) we apply µk−1 ≥ µk which indicates Rk−1(I) ≤ Sk−1(I). Therefore, by setting a
constant Cβ := Cβ(Cx, D) large enough and take

β1 = Cβ

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2
+ n ·

{
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

}
+

γR0(Q)

1 + R0(I)

)
,

β2 =
Cβnβ1

1 + R0(I)2
,

if this satisfies the assumption β1 ≤ R0(I)/4, we can conclude that with probability 1−O(n−D),∣∣(Rk−1(Q)− R0(Q))I
{
T ≥ k

}∣∣ ≤ β1 ,
∣∣(Sk−1(Q)− R0(Q))I

{
T ≥ k

}∣∣ ≤ β1 .

Further, since

∣∣(µk − µk) I
{
T ≥ k

}∣∣ = ∣∣∣∣∣
k−1∑
i=0

(
1

1 + Si(I)
− 1

1 + R0(I)

)
I
{
T ≥ k

}∣∣∣∣∣
≤

k−1∑
i=0

|Si(I)− Ri(I)|
(1 + Si(I))(1 + Ri(I))

I
{
T ≥ k

}
= O

(
nβ1

1 + R0(I)2

)
,

taking Cβ large will guarantee
∣∣(µk − µk) I

{
T ≥ k

}∣∣ ≤ β2. Combining the above displays, we see
on the event {T ≥ k}, it holds with probability 1−O(n−D) that

max{|Rk−1(Q)− R0(Q)| , |Sk−1(Q)− R0(Q)|} ≤ β1 , |µk − µk| ≤ β2 , ∥Bk−1∥ ≤ γ ,

which is exactly the event Fk−1(Q) (cf. Eq. (48b)). Substituting into Eq. (63) completes the proof.
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C.5 Proof of Lemma 7.5

As β2 > µ/2, we cannot directly apply Lemmas 7.3 and 7.4. We will instead use a perturbation
argument, reducing ourselves to the case β2 ≤ µ/2. We will define a second sequence µ′i following
the recursion Eq. (46) but with a different initialization µ′0 = µ⋆(λ, µ

′) with µ′ := 64β2 > µ. We
use the notations

A′
i := Σ

1
2

(
λI + µ′iΣ+XT

i Xi

)−1
Σ

1
2 ,

B′
i := Σ

1
2

(
λI + µ′i+1Σ+XT

i Xi

)−1
Σ

1
2 ,

and also denote by R′
i(Q) = Ri(λ, µ

′
i;Q) := Tr(QA′

i). For this second iteration, we define a
parameter tuple ∆′ = (α′

1, α
′
2, β

′
1, β

′
2, γ) defined in Lemmas 7.3 and 7.4 as

γ′ = min

{
2

n

(
1 +

CγdΣσ⌊ηn⌋ · log n log(dΣn)
λ

)
+

2

µ⋆(λ, µ′)
,
1

λ

}
, (73a)

α′
1 = Cα log n ·

√
γ′R′

0(I) , (73b)

α′
2 = Cα log n ·

√
γ′3R′

0(Q) , (73c)

β′1 = Cβ

(√
n log n · α

′
1γ

′R′
0(Q) + α′

2(1 + R′
0(I))

1 + R′
0(I)

2
+ n ·

{
γ′2R′

0(Q) + α′
1α

′
2

1 + R′
0(I)

2
+
α′
1
2γ′R′

0(Q)

1 + R′
0(I)

3

}

+
γ′R′

0(Q)

1 + R′
0(I)

)
, (73d)

β′2 =
Cβnβ

′
1

1 + R′
0(I)

2
. (73e)

We want to show α′
1 ≤ R′

0(I)/4, β′1 ≤ R′
0(Q)/4, β′2 ≤ µ′/2 and n−D = O (α′

1/ (1 + R′
0(I))) so that

Lemmas 7.3 and 7.4 are valid for λ, µ′ and ∆′. To prove this claim, we need the following result
bounding the perturbation of µ⋆.

Lemma C.3. For any λ > 0 and µ ≥ 0,

0 ≤ ∂µ⋆(λ, µ)

∂µ
≤ 1 + R0(λ, µ⋆(λ, µ); I) .

Proof. Taking derivatives w.r.t. µ on both sides of

µ = µ⋆ −
n

1 + Tr(Σ(λI + µ⋆Σ)−1)
,

we have

1 =
∂µ⋆
∂µ

·

(
1−

(µ⋆ − µ)Tr
(
Σ2(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

)
.

Further

1−
(µ⋆ − µ)Tr

(
Σ2(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

≥ 1−
µ⋆Tr

(
Σ2(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

=
1 + λTr

(
Σ(λI + µ⋆Σ)−2

)
1 + Tr (Σ(λI + µ⋆Σ)−1)

≥ 1

1 + R0(λ, µ⋆(λ, µ); I)
,

which gives the desired bounds 0 ≤ ∂µ⋆/∂µ ≤ 1 + R0(λ, µ⋆(λ, µ); I).
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Recalling that µ⋆(λ, µ) is increasing in µ and therefore R0(λ, µ⋆(λ, µ); I) is decreasing in µ, as
a direct consequence of Lemma C.3 we have

0 ≤ µ⋆(λ, µ
′)− µ⋆(λ, µ) =

∫ µ′

µ

∂µ⋆
∂ν

(λ, ν) dν

≤
∫ µ′

µ
(1 + R0(λ, µ⋆(λ, ν); I))dν ≤ (µ′ − µ)(1 + R0(λ, µ⋆(λ, µ); I)) ≤ µ′(1 + R0(I)) , (74)

and further

0 ≤ R0(Q)− R′
0(Q) = (µ⋆(λ, µ

′)− µ⋆(λ, µ))Tr(QA0A
′
0) ≤ γµ′(1 + R0(I))R

′
0(Q) ,

where in the last inequality we used ∥A0∥ ≤ min{1/µ⋆(λ, µ), 1/λ} ≤ γ. Substituting µ′ = 64β2 and
using the condition γβ2(1 + R0(I)) ≤ 1/64, it then follows that

1

2
R0(Q) ≤ R′

0(Q) ≤ R0(Q) , ∀ p.s.d.Q .

Using the last inequalities in Eqs. (73a) to (73c), it follows immediately that

γ′ ≤ γ , α′
1 ≤ α1 , α′

2 ≤ α2 .

We then first see that α1 ≤ R0(I)/8 implies α′
1 ≤ α1 ≤ R′

0(I)/4. For β′1 and β′2, using 1+R′
0(I)

k ≥
2−k(1 + R0(I)) with k = 1, 2, 3, we can deduce from Eqs. (73d) and (73e) that

β′1 ≤ 8β1 , β′2 ≤
4Cβnβ

′
1

1 + R0(I)2
≤ 32β2 .

The last inequality verifies β′2 ≤ 32β2 = µ′/2. The condition β1 ≤ R0(Q)/64 implies β′1 ≤ 8β1 ≤
R0(Q)/8 ≤ R′

0(Q)/4.
Finally we need to show n−D = O (α′

1/ (1 + R′
0(I))). From Eq. (74), we can obtain that

µ⋆(λ, µ
′) ≤ µ⋆(λ, µ) + 64β2(1 + R0(I)) ≤ µ⋆(λ, µ) +

1

γ
.

Recalling that γ ≤ 2/µ⋆(λ, µ), we then know µ⋆(λ, µ
′) ≤ 3/γ and thus

γ′ ≥ min

{
2

µ⋆(λ, µ′)
,
1

λ

}
≥ 2

3
γ .

Together with R0(I) = Θ(R′
0(I)), we then show α1 = O(α′

1) and further that n−D = O (α1/ (1 + R0(I))) =
O (α′

1/ (1 + R′
0(I))). Hence, we can apply Lemmas 7.3 and 7.4, and by Eq. (51)∣∣Rn(λ, µ

′;Q)− R0(λ, µ⋆(λ, µ
′);Q)

∣∣ = O(γ′β′2R
′
0(Q) + β′1) = O(γβ2R0(Q) + β1) . (75)

In order to finish the perturbation argument, we bound∣∣Rn(λ, µ;Q)− Rn(λ, µ
′;Q)

∣∣ ≤ ∣∣∣(µ′ − µ) · Tr
(
QΣ

1
2 (λI + µΣ+XTX)−1Σ(λI + µ′Σ+XTX)−1

)∣∣∣
≤ µ′

∥∥∥Σ 1
2 (λI +XTX)−1Σ

∥∥∥Rn(λ, µ
′;Q)

(i)
= O

(
γβ2

(
R0(λ, µ⋆(λ, µ

′);Q) +
∣∣Rn(λ, µ

′;Q)− R0(λ, µ⋆(λ, µ
′);Q)

∣∣))
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= O (γβ2 (R0(Q) + γβ2R0(Q) + β1))

= O (γβ2R0(Q)) , (76)

where in (i) we apply Lemma 7.2 and in the last line we use β1 = O(R0(Q)) and γβ2 = O((1 +
R0(I))

−1) = O(1). Similarly, invoke Lemma C.3 and we have∣∣R0(λ, µ⋆(λ, µ
′);Q)− R0(λ, µ⋆(λ, µ);Q)

∣∣ ≤ (µ⋆(λ, µ)− µ⋆(λ, µ
′))γR0(λ, µ⋆(λ, µ);Q)

≤ µ′(1 + R0(I))γR0(Q)

= O (γβ2(1 + R0(I))R0(Q)) . (77)

By triangular inequality, we deduce from Eqs. (75), (76) and (77) that

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)|
= O (γβ2R0(Q) + β1) +O (γβ2R0(Q)) +O (γβ2(1 + R0(I))R0(Q))

= O (γβ2 (1 + R0(I))R0(Q) + β1) .

C.6 Proof of Corollary 6.5

We first derive upper bounds for the parameter ∆ = (α1, α2, β1, β2, γ) in Theorem 5. Since
µ⋆(λ, 0) ≤ µ⋆(λ, µ) ≤ (1− κ/2)−1µ⋆(λ, 0), we have

n

1 + R0(I)
≤ µ⋆(λ, µ) ≤

1

1− κ/2
µ⋆(λ, 0) =

1

1− κ/2
· n

1 + R0(λ, µ⋆(λ, 0); I)
≤ 1

1− κ/2
· n

1 + R0(I)
.

On the other hand, by Eq. (21) and the fact that µ⋆(λ, 0) = λ/λ⋆, we know

1

1 + κ−1
≤ κ ≤ λ

nλ⋆
≤ 1

1 + R0(I)
≤ 1

1− κ/2

λ

nλ⋆
=

1− κ

1− κ/2
≤ 1

1 + κ/2
,

which implies κ/2 ≤ R0(I) ≤ κ−1. Generalizing the definition of Eq. (23) to µ > 0 and arbitrary
Q, we let ρ := R0(Q)/R0(I) ∈ (0, 1].

Upper bound for γ. First we notice that dΣ ≥ n by Assumption 1 and therefore

log n log(dΣn) ≤ log(dΣ) · log(d2Σ) = O
(
log2(dΣ)

)
,

which yields

γ = O

(
2

n

{
1 +

OCx,D

(
σ⌊ηn⌋dΣ log2(dΣ)

)
λ

}
+

2

µ⋆(λ, µ)

)
.

Since µ⋆(λ, µ) ≥ µ⋆(λ, 0) ≥ nκ, we can write

γ =
1

nκ
· OCx,D

(
1 +

σ⌊ηn⌋dΣ log2(dΣ)

λ

)
= OCx,D

(
χn(λ)

nκ

)
. (78)

Upper bounds for α1 and α2. We know that R0(I) ≤ κ−1 and R0(Q) = ρR0(I). As a conse-
quence, we have

α1 = OCx,D

(
log n ·

√
γ

κ

)
, α2 = OCx,D

(
log n · γ

√
γρ

κ

)
. (79)
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Upper bounds for β1 and β2. Using the bounds in the previous displays, we can write

β1 = Cβ

(√
n log n · α1γR0(Q) + α2(1 + R0(I))

1 + R0(I)2
+ n ·

{
γ2R0(Q) + α1α2

1 + R0(I)2
+
α2
1γR0(Q)

1 + R0(I)3

}
+

γR0(Q)

1 + R0(I)

)
= OCx,D

(√
n log n · (α1γρ+ α2) + n ·

{(
γ2ρ+ α1α2

)
+ α2

1γρ
}
+ γρ

)
= OCx,D

(√
n log n · OCx,D

(
log n · γ

√
γρ

κ

)
+ n · OCx,D

(
log2 n · γ2

√
ρ

κ

)
+ γρ

)
= OCx,D

(√
n(log n)3γ3 + n(log n)2γ2 + γ

√
κ
)
·
√
ρ

κ
.

Substituting in Eq. (78), we can further bound

β1 = OCx,D

(√
ρχn(λ)

2 log2 n

nκ2.5

)
. (80)

As for β2, we simply bound it by

β2 = OCx,D (nβ1) = OCx,D

(√
ρχn(λ)

2 log2 n

κ2.5

)
. (81)

Upper bound for resolvent approximation. Recall the approximation bound we have in
Theorem 5,

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = O (γβ2 (1 + R0(λ, µ⋆(λ, µ); I))R0(λ, µ⋆(λ, µ);Q) + β1)

= O
(
γβ2κ

−1R0(λ, µ⋆(λ, µ);Q) + β1
)
,

because R0(λ, µ⋆(λ, µ); I) = R0(I) ≤ κ−1. And thus

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = O
(
γβ2κ

−1 · ρκ−1 + β1
)

= OCx,D

(√
ρ3χn(λ)

3 log2 n

nκ5.5

)
+OCx,D

(√
ρχn(λ)

2 log2 n

nκ2.5

)

= OCx,D

(√
ρχn(λ)

3 log2 n

nκ5.5

)
.

As R0(Q) = ρR0(I) ≥ ρκ/2, we can also write

|Rn(λ, µ;Q)− R0(λ, µ⋆(λ, µ);Q)| = OCx,D

(
χn(λ)

3 log2 n

n
√
ρ · κ6.5

)
R0(λ, µ⋆(λ, µ);Q) .

Simplifying the conditions. Finally we conclude the proof by simplifying the conditions α1 ≤
R0(I)/8, β1 ≤ R0(Q)/64, γβ2(1 + R0(I)) ≤ 1/64 and n−D = O(α1/(1 + R0(I))). As R0(I) ≥ κ/2,
by Eq. (79) it is sufficient to have the first condition once

χn(λ) log
2 n

κ4
≤ Cn ,
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for some sufficiently small constant C = C(Cx, D). Recall that R0(Q) ≥ ρκ/2. Therefore, by
Eq. (80), the second requirement can be deduced from

χn(λ)
2 log2 n

κ3.5
≤ C′n

√
ρ ,

for some sufficiently small constant C′ = C′(Cx, D). By Eqs. (78) and (81), we can derive γβ2(1 +
R0(I)) ≤ 1/64 from

χn(λ)
3 log2 n

κ4.5
≤ C′′n/

√
ρ ,

for some constant C′′ = C′′(Cx, D). For the last condition, we need a lower bound for α1 =
Cα log n ·

√
γR0(I). As µ⋆(λ, µ) ≤ (1− κ/2)−1µ⋆(λ, 0) ≤ (1− κ/2)−1n ≤ 2n, it follows that

γ = min

{
2

n

(
1 +

CγdΣσ⌊ηn⌋ · log n log(dΣn)
λ

)
+

2

µ⋆(λ, µ)
,
1

λ

}
= Ω

(
min

{
1

µ⋆(λ, µ)
,
1

λ

})
= Ω

(
min

{
1

n
,
1

λ

})
.

With κ/2 ≤ R0(I) ≤ κ−1, we obtain

α1

1 + R0(I)
= Ω

√ κ3 log2 n

max {n, λ}

 .

It is then sufficient to have

n−D = O

√ κ3 log2 n

max {n, λ}

 .

D Proof of Theorem 2

To apply triangle inequalities

|VX(0)− Vn(0)| ≤ |VX(λ)− Vn(λ)|+ |VX(0)− VX(λ)|+ |Vn(0)− Vn(λ)| ,
|BX(0)− Bn(0)| ≤ |BX(λ)− Bn(λ)|+ |BX(0)− BX(λ)|+ |Bn(0)− Bn(λ)| ,

(82)

we define λ = κnλ⋆ and bound each term separately. By homogeneity, we will assume ∥θ∥ = 1
throughout the proof.

Part I: Bounding |VX(0)− VX(λ)| and |BX(0)− BX(λ)|. Assume XTX has rank r with
eigendecomposition XTX = UDUT where U ∈ Rd×r has orthonormal columns and D is a diagonal
matrix with entries s1 ≥ · · · ≥ sr > 0. Note that sr = nsmin.

For the variance term, by the elementary inequality |1/x− x/(x+ λ)2| ≤ 2λ/x2 for all x, λ > 0,
we have by Eq. (4a)

|VX(0)− VX(λ)| =
∣∣∣τ2Tr(ΣU

(
D−1 −D(D + λI)−2

)
UT
)∣∣∣

≤ τ2Tr

(
2λ

sr
·ΣUD−1UT

)
=

2κλ⋆(λ)

smin
· VX(0) , (83)

where in the last equality we use λ = κnλ⋆(λ) and sr = nsmin. The next lemma bounds the
difference between λ⋆(0) and λ⋆(λ).
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Lemma D.1. Under the assumptions of Theorem 2, for λ such that λ = κnλ⋆(λ) it holds that

λ⋆(0) ≤ λ⋆(λ) ≤
(
1 +

2κ

CΣ

)
λ⋆(0) ≤ 2λ⋆(0) .

Proof. Since

λ = λ⋆ ·
(
n− Tr

(
Σ(Σ+ λ⋆I)

−1
))
,

we can compute that

∂λ

∂λ⋆
= λ⋆ · Tr

(
Σ(Σ+ λ⋆I)

−2
)
+ n− Tr

(
Σ(Σ+ λ⋆I)

−1
)
= n− Tr

(
Σ2(Σ+ λ⋆(λ)I)

−2
)

≥ n− Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
≥ CΣn ,

and thus

λ⋆(λ) = λ⋆(0) +

∫ λ

0

∂λ⋆(λ)

∂λ
dλ ≤ λ⋆(0) +

λ

CΣn
= λ⋆(0) +

λ

CΣnλ⋆(λ)
· λ⋆(λ) = λ⋆(0) +

κ

CΣ
· λ⋆(λ) .

Rearranging terms, using κ ≤ C2
Σ/8 ≤ CΣ/2 and the fact that (1− x)−1 ≤ 1 + 2x for 0 ≤ x ≤ 1/2

conclude the proof.

Returning to the bound of the variance term, we can thus further derive the upper bound

|VX(0)− VX(λ)| ≤ 4κλ⋆(0)

smin
· VX(0) .

Using the fact that κ ≤ smin/(8λ⋆(0)), we further have

|VX(0)− VX(λ)| ≤
(
1− 4κλ⋆(0)

smin

)−1

· 4κλ⋆(0)
smin

· VX(λ) ≤ 8κλ⋆(0)

smin
· VX(λ) . (84)

Now we look at the bias term. From Eq. (4b), we first have

BX(0) = lim
λ↓0

λ2Tr
(
ββT(XTX + λI)−1Σ(XTX + λI)−1

)
= lim

λ↓0

∥∥∥(XTX/λ+ I)−1β
∥∥∥2
Σ

= lim
λ↓0

∥∥∥(I +U
(
(D/λ+ I)−1 − I

)
UT
)
β
∥∥∥2
Σ
=
∥∥∥(I −UUT

)
β
∥∥∥2
Σ
.

By triangle inequality, it thus follows∣∣∣BX(0)
1
2 − BX(λ)

1
2

∣∣∣ ≤ ∥∥∥U(D/λ+ I)−1UTβ
∥∥∥
Σ
≤ λ

λ+ sr
∥β∥ =

κλ⋆(λ)

κλ⋆(λ) + smin
∥β∥

≤ 2κλ⋆(0)

2κλ⋆(0) + smin
∥β∥ ,

where in the last line we invoke Lemma D.1 and use λ⋆(λ) ≤ 2λ⋆(0).
Additionally with BX(0) ≤ ∥β∥2 and

BX(λ) = λ2Tr
(
ββT(XTX + λI)−1Σ(XTX + λI)−1

)
≤ Tr

(
ββT(XTX/λ+ I)−2

)
≤ Tr

(
ββT

)
= ∥β∥2 ,
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we conclude that

|BX(0)− BX(λ)| =
∣∣∣BX(0)

1
2 + BX(λ)

1
2

∣∣∣ · ∣∣∣BX(0)
1
2 − BX(λ)

1
2

∣∣∣ ≤ 4κλ⋆(0) ∥β∥2

2κλ⋆(0) + smin
≤ 4κλ⋆(0) ∥β∥2

smin
.

(85)

We obtain an alternative upper bound for |BX(0)− BX(λ)| in the following way. Note that∣∣∣BX(0)
1
2 − BX(λ)

1
2

∣∣∣ ≤ ∥∥∥U(D/λ+ I)−1UTβ
∥∥∥
Σ
= λ

∥∥∥Σ1/2(XTX + λI)−1XT(XXT)−1XΣ1/2θ
∥∥∥

= λ
√
θTΣ1/2XT(XXT)−1X(XTX + λI)−1Σ(XTX + λI)−1XT(XXT)−1XΣ1/2θ

≤ λ

√∥∥∥(XTX + λI)−
1
2Σ(XTX + λI)−

1
2

∥∥∥ ·√θTΣ1/2(XTX + λI)−1Σ1/2θ

= λ

√∥∥∥Σ 1
2 (XTX + λI)−1Σ

1
2

∥∥∥ ·√θTΣ1/2(XTX + λI)−1Σ1/2θ .

We next apply Lemma 7.2, which implies that with probability 1−O(n−D)∣∣∣BX(0)
1
2 − BX(λ)

1
2

∣∣∣ ≤√ 1

n
OCx,D(λχ

′
n(κ)) ·

√
1

n
OCx,D(λχ

′
n(κ)) ∥θ≤n∥

2 + 2 ∥β>n∥2

=

√
OCx,D(κ

2λ⋆(0)2χ′
n(κ)

2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ
′
n(κ)) ∥β>n∥

2 .

Using the same argument, we can also bound

BX(λ) = λ2Tr
(
ββT(XTX + λI)−1Σ(XTX + λI)−1

)
≤ λ2

∥∥∥Σ1/2(XTX + λI)−1Σ1/2
∥∥∥ · θTΣ1/2(XTX + λI)−1Σ1/2θ

= OCx,D(κ
2λ⋆(0)

2χ′
n(κ)

2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ
′
n(κ)) ∥β>n∥

2 ,

and we can therefore conclude that

|BX(0)− BX(λ)| =
∣∣∣BX(0)

1
2 + BX(λ)

1
2

∣∣∣ · ∣∣∣BX(0)
1
2 − BX(λ)

1
2

∣∣∣
≤
(∣∣∣BX(0)

1
2 − BX(λ)

1
2

∣∣∣+ 2BX(λ)
1
2

)
·
∣∣∣BX(0)

1
2 − BX(λ)

1
2

∣∣∣
= OCx,D(κ

2λ⋆(0)
2χ′

n(κ)
2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ

′
n(κ)) ∥β>n∥

2 . (86)

Combining Eqs. (85) and (86), we finally have

|BX(0)− BX(λ)|

= min

{
O

(
κλ⋆(0) ∥β∥2

smin

)
,OCx,D(κ

2λ⋆(0)
2χ′

n(κ)
2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ

′
n(κ)) ∥β>n∥

2

}
.

(87)

Part II: Bounding |Vn(0)− Vn(λ)| and |Bn(0)− Bn(λ)|. Note that

0 ≥
∂Tr

(
Σ2(Σ+ λ⋆I)

−2
)

∂λ⋆
= −2Tr

(
Σ2(Σ+ λ⋆I)

−3
)
≥ − 2

λ⋆(0)
Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
,
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we can apply Lemma D.1 and obtain

Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
≥ Tr

(
Σ2(Σ+ λ⋆(λ)I)

−2
)

≥ Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
− 2 (λ⋆(λ)− λ⋆(0))

λ⋆(0)
Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)

≥
(
1− 4κ

CΣ

)
· Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)
.

We then have

Vn(0) ≥ Vn(λ) =
n− Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
·
Tr
(
Σ2(Σ+ λ⋆(λ)I)

−2
)

Tr (Σ2(Σ+ λ⋆(0)I)−2)
· Vn(0)

(i)

≥ CΣn

CΣn+ 4κ
CΣ

· Tr (Σ2(Σ+ λ⋆(0)I)−2)
·
(
1− 4κ

CΣ

)
· Vn(0)

(ii)

≥
C2
Σ

C2
Σ + 4κ

·
(
1− 4κ

CΣ

)
· Vn(0) ,

where we use n− Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
≥ CΣn in (i) and n ≥ Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)

in (ii). By
the elementary inequality 1− (1− a)(1− b) ≤ a+ b for all 0 ≤ a, b ≤ 1, we can thus derive that

|Vn(0)− Vn(λ)| ≤
{
1−

(
1− 4κ

C2
Σ + 4κ

)
·
(
1− 4κ

CΣ

)}
· Vn(0)

≤
(

4κ

C2
Σ + 4κ

+
4κ

CΣ

)
· Vn(0) ≤

8κ

C2
Σ

· Vn(0) . (88)

For the bias term, we first similarly derive

βT (Σ+ λ⋆(0)I)
−2Σβ ≥ βT (Σ+ λ⋆(λ)I)

−2Σβ ≥
(
1− 4κ

CΣ

)
· βT (Σ+ λ⋆(0)I)

−2Σβ .

Note that∣∣∣∣Bn(λ)Bn(0)
− 1

∣∣∣∣ =
∣∣∣∣∣n− Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
· β

T (Σ+ λ⋆(λ)I)
−2Σβ

βT (Σ+ λ⋆(0)I)
−2Σβ

· λ⋆(λ)
2

λ⋆(0)2
− 1

∣∣∣∣∣
≤ max

{
1−

n− Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
· β

T (Σ+ λ⋆(λ)I)
−2Σβ

βT (Σ+ λ⋆(0)I)
−2Σβ

;
λ⋆(λ)

2

λ⋆(0)2
− 1

}
, ,

From the previous calculations for the variance term, we know

1−
n− Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
· β

T (Σ+ λ⋆(λ)I)
−2Σβ

βT (Σ+ λ⋆(0)I)
−2Σβ

≤ 8κ

C2
Σ

,

and by Lemma D.1 we have

λ⋆(λ)
2

λ⋆(0)2
− 1 ≤

(
1 +

2κ

CΣ

)2

− 1 ≤ 4κ

CΣ
+

2κ

CΣ
· 2κ
CΣ

≤ 6κ

CΣ
.

In the last inequality, recall κ ≤ C2
Σ/8 ≤ CΣ/2. Putting together, we have error of the bias term

bounded by

|Bn(0)− Bn(λ)| ≤
8κ

C2
Σ

· Bn(0) . (89)
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Part III: Variance approximation when λ = 0. Recalling that λ = κnλ⋆(λ), we want to
invoke Theorem 1 to bound |VX(λ)− Vn(λ)|. Note that by Lemma D.1 it holds λ⋆(λ) = Θ(λ⋆(0))
and thus

χn(λ) = 1 +
σ⌊ηn⌋dΣ log2(dΣ)

λ
= 1 +

σ⌊ηn⌋dΣ log2(dΣ)

κnλ⋆(λ)
= Θ

(
1 +

σ⌊ηn⌋dΣ log2(dΣ)

κnλ⋆(0)

)
= Θ(χ′

n(κ)) .

Hence the conditions hold for Theorem 1 by taking C1 = Θ(C), and we have for some constant
C′ := C′(k,Cx, D) > 0,

|VX(λ)− Vn(λ)| ≤ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

· Vn(λ) .

Substituting the above display and Eqs. (84), (88) into Eq. (82) yields

|VX(0)− Vn(0)| ≤ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

· Vn(λ) +
8κλ⋆(0)

smin
· VX(λ) +

8κ

C2
Σ

· Vn(0)

≤ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

· Vn(λ) +
8κλ⋆(0)

smin
·
(
1 + C′ · χ

′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
Vn(λ) +

8κ

C2
Σ

· Vn(0)

=

{(
1 +

8κλ⋆(0)

smin

)(
1 + C′ · χ

′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
− 1

}
· Vn(λ) +

8κ

C2
Σ

· Vn(0)

≤
{(

1 +
8κλ⋆(0)

smin

)(
1 + C′ · χ

′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
− 1

}
·
(
1 +

8κ

C2
Σ

)
Vn(0) +

8κ

C2
Σ

· Vn(0)

≤
{(

1 +
8κλ⋆(0)

smin

)(
1 + C′ · χ

′
n(κ)

3 log2 n

n1−
1
kκ9.5

)(
1 +

8κ

C2
Σ

)
− 1

}
· Vn(0)

≤
(
exp

(
8κλ⋆(0)

smin
+

8κ

C2
Σ

+ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
− 1

)
· Vn(0) .

Since κ ≤ smin/(8λ⋆(0)) and κ ≤ C2
Σ/8, if we additionally assume

χ′
n(κ)

3 log2 n

n1−
1
kκ9.5

≤ 1

C′ ,

we can then conclude that

exp

(
8κλ⋆(0)

smin
+

8κ

C2
Σ

+ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
− 1 = O

(
8κλ⋆(0)

smin
+

8κ

C2
Σ

+ C′ · χ
′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
,

and

|VX(0)− Vn(0)| = Ok,Cx,D

(
κ ·
(
λ⋆(0)

smin
+

1

C2
Σ

)
+
χ′
n(κ)

3 log2 n

n1−
1
kκ9.5

)
· Vn(0) .

We meet this assumption by setting C2 = 1/C′.
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Part IV: Bias approximation when λ = 0. To apply Theorem 1 when λ = κnλ⋆(λ), we first
note that the condition λkn−

1
k ≤ nκ/2 is equivalent to λ⋆(λ)kn−

1
k ≤ 1/2, and by Lemma D.1 it

suffices to have λ⋆(0)kn−
1
k ≤ 1/4, which holds by assumption. Since we know χ′

n(κ) = Θ(χn(λ))
from the previous part of the proof, we only need to additionally verify that λ⋆(0) = Θ(λ⋆(λ)) and
ρ(0) = Θ(ρ(λ)). The first relation is a direct consequence of Lemma D.1, and for the second claim
we observe that

ρ(λ) =
R0(λ⋆(λ), 1;θθ

T)

R0(λ⋆(λ), 1; I)
=

Tr
(
Σ

1
2θθTΣ

1
2 (Σ+ λ⋆(λ)I)

−1
)

Tr
(
Σ (Σ+ λ⋆(λ)I)

−1
) .

As for any p.s.d. Q,

0 ≥ ∂R0(λ⋆, 1;Q)

∂λ⋆
= −Tr

(
Σ

1
2QΣ

1
2 (Σ+ λ⋆I)

−2
)
≥ − 1

λ⋆(0)
Tr
(
Σ

1
2QΣ

1
2 (Σ+ λ⋆(0)I)

−1
)
,

we have

R0(λ⋆(0), 1;Q) ≥ R0(λ⋆(λ), 1;Q) ≥ R0(λ⋆(0), 1;Q)− λ⋆(λ)− λ⋆(0)

λ⋆(0)
· R0(λ⋆(0), 1;Q) .

Therefore by Lemma D.1 and κ ≤ C2
Σ/8, we can obtain∣∣∣∣R0(λ⋆(λ), 1;Q)

R0(λ⋆(0), 1;Q)
− 1

∣∣∣∣ ≤ ∣∣∣∣λ⋆(λ)λ⋆(0)
− 1

∣∣∣∣ ≤ 2κ

CΣ
≤ CΣ

4
≤ 1

4
,

which implies R0(λ⋆(λ), 1;Q)/R0(λ⋆(0), 1;Q) = Θ(1) and therefore ρ(0) = Θ(ρ(λ)). Now we are
able to invoke Theorem 2, yielding for some constant C′ := C′(k,Cx, D) > 0,

|BX(λ)− Bn(λ)| ≤ C′ ·

(
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
· Bn(λ) .

Now we can substitute the above bound and Eq. (89) into Eq. (82),

|BX(0)− Bn(0)|

≤ C′ ·

(
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
· Bn(λ) + |BX(0)− BX(λ)|+ 8κ

C2
Σ

· Bn(0)

≤

{(
1 + C′ ·

(
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

))(
1 +

8κ

C2
Σ

)
− 1

}
· Bn(0) + |BX(0)− BX(λ)|

≤

(
exp

(
C′ ·

(
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
+

8κ

C2
Σ

)
− 1

)
· Bn(0) + |BX(0)− BX(λ)| .

Similar to previous calculations for the variance approximation, setting C3 = 1/C′ and thus

λ⋆(0)
k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

≤ 1

C′ .

Substituting in Eq. (87), it then holds that

|BX(0)− Bn(0)|
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= Ok,Cx,D

(
κ

C2
Σ

+
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
· Bn(0) + |BX(0)− BX(λ)|

= Ok,Cx,D

(
κ

C2
Σ

+
λ⋆(0)

k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

)
· Bn(0)

+ min

{
O

(
κλ⋆(0) ∥β∥2

smin

)
,OCx,D(κ

2λ⋆(0)
2χ′

n(κ)
2) ∥θ≤n∥2 +OCx,D(κλ⋆(0)χ

′
n(κ)) ∥β>n∥

2

}
.

E Proof of Theorem 3

We follow the same proof strategy in Appendix D for the overparameterized regime, taking λ = εn.

Part I: Bounding |VX(0)− VX(λ)|. As we assume XTX has rank d, we can write its eigende-
composition XTX = UDUT with U ∈ Rd×d an orthogonal matrix and D is a diagonal matrix
with entries s1 ≥ · · · ≥ sd > 0. In this case, sd = nsmin. Substitute λ = εn into Eq. (83) instead of
λ = κnλ⋆(λ), we have

|VX(0)− VX(λ)| ≤ 2ε

smin
· VX(0) . (90)

Part II: Bounding |Vn(0)− Vn(λ)|. Similar to the overparameterized case, we can control the
growth of λ⋆(λ) by

Lemma E.1. Under the assumptions of Theorem 3, for λ such that λ = εn it holds that

0 = λ⋆(0) ≤ λ⋆(λ) ≤
ε

CΣ
.

Proof. By the proof of Lemma D.1, we have

∂λ

∂λ⋆
= n− Tr

(
Σ2(Σ+ λ⋆(λ)I)

−2
)
≥ n− d ≥ CΣn ,

and thus

0 ≤ λ⋆(0) ≤ λ⋆(λ) =

∫ λ

0

∂λ⋆(ν)

∂λ
dν ≤ λ

CΣn
=

ε

CΣ
.

In this case, note that

0 ≥
∂Tr

(
Σ2(Σ+ λ⋆I)

−2
)

∂λ⋆
= −2Tr

(
Σ2(Σ+ λ⋆I)

−3
)
≥ − 2

σd
Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
= −2d

σd
,

we can apply Lemma E.1 and obtain for λ⋆(0) = 0,

d = Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
≥ Tr

(
Σ2(Σ+ λ⋆(λ)I)

−2
)
≥
(
1− 2ε

CΣσd

)
· d .

We then have

Vn(0) ≥ Vn(λ) =
n− Tr

(
Σ2(Σ+ λ⋆(0)I)

−2
)

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
·
Tr
(
Σ2(Σ+ λ⋆(λ)I)

−2
)

Tr (Σ2(Σ+ λ⋆(0)I)−2)
· Vn(0)
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=
n− d

n− Tr (Σ2(Σ+ λ⋆(λ)I)−2)
·
Tr
(
Σ2(Σ+ λ⋆(λ)I)

−2
)

d
· Vn(0)

≥ CΣn

CΣn+ 2ε
CΣσd

· d
·
(
1− 2ε

CΣσd

)
· Vn(0)

≥
C2
Σσd

C2
Σσd + 2ε

·
(
1− 2ε

CΣσd

)
· Vn(0) ,

where in the last line we use n ≥ d. Again by the elementary inequality 1− (1− a)(1− b) ≤ a+ b
for all 0 ≤ a, b ≤ 1,

|Vn(0)− Vn(λ)| ≤
{
1−

(
1− 2ε

C2
Σσd + 2ε

)
·
(
1− 2ε

CΣσd

)}
· Vn(0)

≤
(

2ε

C2
Σσd + 2ε

+
2ε

CΣσd

)
· Vn(0) ≤

4ε

C2
Σσd

· Vn(0) . (91)

Part III: Variance approximation. Taking λ = εn, we want to invoke Theorem 1 to bound
|VX(λ)− Vn(λ)|. Using Lemma E.1, we know

CΣ ≤ 1− d

n
≤ 1− 1

n
Tr
(
Σ(Σ+ λ⋆(λ)I)

−1
)
≤ 1− d

n
· σd
σd + ε/CΣ

≤ 1−
C2
Σσd

CΣσd + ε
.

Since by assumption ε ≤ C2
Σσd/4 ≤ CΣσd, Eq. (21) holds with κ = CΣ/2, because

CΣ ≤ λ

nλ⋆(λ)
= 1− 1

n
Tr
(
Σ(Σ+ λ⋆(λ)I)

−1
)
≤ 1− CΣ

2
.

Thus by Theorem 1, we have for some constant C′ := C′(k,Cx, D) > 0,

|VX(λ)− Vn(λ)| ≤ C′ · χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

· Vn(λ) .

Combining the above display with Eqs. (90), (91) yields

|VX(0)− Vn(0)| ≤ C′ · χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

· Vn(λ) +
2ε

smin
· VX(λ) +

4ε

C2
Σσd

· Vn(0)

≤

{(
1 +

2ε

smin

)(
1 + C′ · χn(εn)

3 log2 n

n1−
1
kC9.5

Σ

)
− 1

}
· Vn(λ) +

4ε

C2
Σσd

· Vn(0)

≤

{(
1 +

2ε

smin

)(
1 + C′ · χn(εn)

3 log2 n

n1−
1
kC9.5

Σ

)(
1 +

4ε

C2
Σσd

)
− 1

}
· Vn(0)

≤

(
exp

(
2ε

smin
+

4ε

C2
Σσd

+ C′ · χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

)
− 1

)
· Vn(0) .

Since ε ≤ smin/2 and ε ≤ C2
Σσd/4, if we additionally assume

χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

≤ 1

C′ ,

we can then conclude that

exp

(
2ε

smin
+

4ε

C2
Σσd

+ C′ · χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

)
− 1 = O

(
ε

smin
+

ε

C2
Σσd

+ C′ · χn(εn)
3 log2 n

n1−
1
kC9.5

Σ

)
,

and the proof is complete with C2 = 1/C′.
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F Proofs for proportional regime

F.1 Proof of Proposition 4.1

To apply Theorem 1, we first provide upper bounds for dΣ(n) and κ implying that Assumptions 1
and Eq. (21) hold. Throughout we use the shorthand λp = λ/n ∈ [1/M,M ].

Lemma F.1. Under Assumption 2 and λ = nλp, Assumptions 1 and (21) hold for

dΣ(n) = OM (n) ,

κ = ΩM (1) .

For such dΣ and κ, χn(λ) = Oλp,M (log2 n).

Proof. By Assumption 2 we know d ≤Mn and therefore for any 1 ≤ k ≤ min {n, d},

d∑
l=k

σl ≤ dσk ≤Mnσk =: dΣσk .

Using λ = nλp into Eq. (5), we have

1− λp
λ⋆

=
1

n
Tr
(
Σ(Σ+ λ⋆I)

−1
)
.

which implies

1− λp
λ⋆

≤ d

n
· 1

1 + λ⋆
≤ M

λ⋆
.

This implies λ⋆ ≤ λp +M and therefore

1− λ

nλ⋆
= 1− λp

λ⋆
≤ 1− λp

λp +M
.

On the other hand,

1− λ

nλ⋆
= 1− λp

λ⋆
≥ d

n
· σd
σd + λ⋆

≥ 1

M +M2λ⋆
≥ 1

M +M2λp +M3
,

and therefore we have

κ := min

{
λp

λp +M
,

1

M +M2λp +M3

}
= ΩM (1) .

Finally, we can bound χn(λ) as dΣ = OM (n), and thus

χn(λ) = 1 +
σ⌊ηn⌋dΣ log2(dΣ)

nλp
= OM

(
1 +

log2 n

λp

)
= OM

(
log2 n

)
.
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For any unit vector u ∈ Rd, since

F0(λ, µ⋆(λ, 0);uu
T) = λTr

(
uuTΣ(λI + µ⋆(λ, 0)Σ)−1

)
≥ λ

λM + µ⋆(λ, 0)
Tr
(
uuT

)
=

λ

d(λM + µ⋆(λ, 0))
Tr(I)

≥ λ+ µ⋆(λ, 0)

d(λM + µ⋆(λ, 0))
· λTr

(
Σ(λI + µ⋆(λ, 0)Σ)−1

)
≥ 1

dM
F0(λ, µ⋆(λ, 0); I) ≥

1

nM2
F0(λ, µ⋆(λ, 0); I) , (92)

we have ρ(λ) = ΩM (n−1). Together with Lemma F.1, since n = ΩM,Cx,D(1), the following conditions
in Theorem 1 hold

χn(λ)
3 log2 n ≤ Cnκ4.5min

{
1,
√
ρ(λ)

}
, n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 .

Additionally, λkn−
1
k ≤ nκ/2 is equivalent to λpkn−

1
k ≤ κ/2, which holds for n = Ωk,M (1). Finally,

by using λ⋆(λ) ≤ λp + M = OM (1), as shown above, we can conclude from Theorem 1 and
Lemma F.1 that, for n = Ωk,M,Cx,D(1), with probability 1−Ok(n

−D+1),

|VX(λ)− Vn(λ)| = Ok,Cx,D

(
χn(λ)

3 log2 n

n1−
1
kκ9.5

)
· Vn(λ) = Ok,M,Cx,D

(
log8 n

n1−
1
k

)
· Vn(λ) ,

|BX(λ)− Bn(λ)| = Ok,Cx,D

(
λ⋆(λ)

k+1

nκ3
+

χn(λ)
3 log2 n√

ρ(λ)n1−
1
kκ8.5

)
· Bn(λ) = Ok,M,Cx,D

(
log8 n

n
1
2
− 1

k

)
· Bn(λ) .

The proof is complete.

F.2 Proof of Proposition 4.2

Overparameterized regime. When d/n ≥ 1 +M−1, by

n = Tr
(
Σ(Σ+ λ⋆(0)I)

−1
)
≥ d

1 +Mλ⋆(0)
,

we can deduce that λ⋆(0) ≥M−1 · (d/n− 1) ≥M−2. Hence,

n− Tr
(
Σ2(Σ+ λ⋆(0)I)

−2
)
≥ n− 1

1 + λ⋆(0)
· Tr

(
Σ(Σ+ λ⋆(0)I)

−1
)
≥ λ⋆(0)

1 + λ⋆(0)
· n ≥ 1

M2 + 1
· n ,

and therefore, in Theorem 2 we can take CΣ ≥ 1/(M2 + 1) = ΘM (1). By Eq. (92) we know
ρ(0) = ΩM (n−1). By [BY08, RV09], we know when n = ΩCx,M,D(1), with probability 1−O(n−D+1)
we have smin = ΩM,Cx,D(1). Substituting λ⋆(0) = ΩM (1) and dΣ(n) = OM (n) (c.f. Lemma F.1)
into χ′

n(κ), we get for κ = O(1),

χ′
n(κ) = OM

(
log2 n

κ

)
.

Thus, by taking κ = n−1/14, the conditions below hold for n = Ωk,M,Cx,D(1) given k ≥ 15,

κ ≤ min
{
smin/(8λ⋆(0)),C

2
Σ/8

}
, n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 ,
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χ′
n(κ)

3 log2 n ≤ C2n
1− 1

kκ9.5 ,

and by taking κ = n−1/28, the following additional conditions hold when n = Ωk,M,Cx,D(1) given
k ≥ 29,

χ′
n(κ)

3 log2 n ≤ C1nκ
4.5min

{
1,
√
ρ(0)

}
,

λ⋆(0)
k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

≤ C3 .

We can then invoke Theorem 2 by taking κ = n−1/14 for variance approximation and n−1/28 for
bias approximation. Therefore, we can conclude that for k ≥ 29,

|VX(0)− Vn(0)| = Ok,M,Cx,D

(
n−1/14 +

log8 n

n1.5/14−
1
k

)
· Vn(0) ,

|BX(0)− Bn(0)| = Ok,M,Cx,D

(
n−1/28 + n−25/28 +

log8 n

n2.5/28−
1
k

)
· Bn(0) +O

(
∥β∥2 n−1/28

)
.

Use again λ⋆(0) = ΩM (1) and CΣ = ΩM (1), we know

Bn(0) =
βT (Σ/λ⋆(0) + I)−2Σβ

1− n−1Tr (Σ2(Σ+ λ⋆(0)I)−2)
= ΩM (∥β∥2) .

We conclude the proof by fixing k ≥ 57, and thus

|VX(0)− Vn(0)| = OM,Cx,D

(
n−1/14

)
· Vn(0) ,

|BX(0)− Bn(0)| = OM,Cx,D

(
n−1/28

)
· Bn(0) .

Underparameterized regime. Suppose M−1 ≤ d/n ≤ 1−M−1, we can invoke Theorem 3 with
CΣ =M−1. By [BY08] we have smin = ΩM,Cx,D(1). Also as we can take dΣ(n) = n in this case, we
have

χn(εn) ≤ 1 +
n log2 n

εn
= O

(
log2 n

κ

)
,

and therefore the conditions below hold for n = Ωk,M,Cx,D(1) by taking ε = n−1/4 when k ≥ 5,

ε ≤ min
{
smin/2,C

2
Σσd/4

}
, χn(εn)

3 log2 n ≤ C1nC
4.5
Σ , n−2D+1 = O

√ C3
Σ log2 n

max {n, λ}

 ,

χn(εn)
3 log2 n ≤ C2n

1− 1
kC9.5

Σ .

We thus have

|VX(0)− Vn(0)| = Ok,Cx,D

(
n−1/4 ·

(
1

smin
+

1

C2
Σσd

)
+

log8 n

n
1
4
− 1

kC9.5
Σ

)
· Vn(0) .

By fixing k > 20, we know for all n = ΩM,Cx,D(1),

|VX(0)− Vn(0)| = OM,Cx,D

(
1

n
1
5

)
· Vn(0) .
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G Proofs for bounded varying spectrum regime

G.1 Proof of Proposition 4.3

Throughout this proof, we will use the shorthand λbv := λ/(nλ⋆(0)) ∈ [1/M,M ]. We begin by lower
bounding the constant κ of Eq. (21). Since

Tr
(
Σ(Σ+ λ⋆(0)I)

−1
)
= n ,

Tr
(
Σ(Σ+ σ2nI)

−1
)
≥

2n∑
i=1

σi
σi + σ2n

≥ n ,
(93)

we know that λ⋆(0) ≥ σ2n and therefore ψ(δ)λ⋆(0) ≥ ψ(δ)σ2n ≥ σ⌊2δn⌋ for any δ ∈ (0, 1]. We then
have

Tr
(
Σ(Σ+ ψ(δ)λ⋆(0)I)

−1
)
≤ 2δn+

∞∑
i=⌊2δn⌋+1

σi
σi + ψ(δ)λ⋆(0)

≤ 2δn+
σ⌊2δn⌋ + λ⋆(0)

σ⌊2δn⌋ + ψ(δ)λ⋆(0)
· Tr

(
Σ(Σ+ λ⋆(0)I)

−1
)

≤
(
1

2
+ 2δ +

1

ψ(δ)

)
· n ,

where in the last inequality we use ψ(δ)λ⋆(0) ≥ σ⌊2δn⌋. Further

n− λ

ψ(δ)λ⋆(0)
=

(
1− λbv

ψ(δ)

)
· n ,

and therefore, using the previous inequality, we conclude the following. If δ > 0 is such that

1− λbv
ψ(δ)

≥ 1

2
+ 2δ +

1

ψ(δ)
,

then λ⋆(λ) ≤ ψ(δ)λ⋆(0). Let δ0 = δ0(M,ψ) be defined follows

δ0 := sup
{
δ ∈ (0, 1/2) : 2δ +

1 +M

ψ(δ)
≤ 1

2

}
.

Them λ⋆(0) ≤ λ⋆(λ) ≤ ψ(δ0)λ⋆(0). Hence

λ

nλ⋆(λ)
=
λ⋆(0)λbv
λ⋆(λ)

≥ λbv
ψ(δ0)

,

and

1− λ

nλ⋆(λ)
=

1

n
Tr
(
Σ(Σ+ λ⋆(λ)I)

−1
)
≥ 1

n
Tr
(
Σ(Σ+ ψ(δ0)λ⋆(0)I)

−1
)
≥ 1

ψ(δ0)
.

Putting together the above displays, we conclude Eq (21) holds for κ ≥ min{λbv, 1}/ψ(δ0) =
ΩM,ψ(1) when n = ΩM,ψ(1) (recall that we need 2δ0n ≥ 1).

To verify the conditions of Theorem 1, we first assume dΣ = O(n1+γ) for γ ∈ [0, 1/3),

χn(nλ⋆(0)λbv) = 1 +
σ⌊ηn⌋dΣ log2(dΣ)

nλ⋆(0)λbv
≤ 1 +

σ⌊ηn⌋dΣ log2(dΣ)

nσ2nλbv
≤ 1 +

ψ(η/4)dΣ log2(dΣ)

nλbv
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= OM,ψ,Cx

(
dΣ log2 n

n

)
= OM,ψ,Cx

(
nγ log2 n

)
,

and with κ = ΩM,ψ(1), the conditions

χn(nλ⋆(0)λbv)
3 log2 n ≤ Cnκ4.5 , n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 ,

hold if n = ΩM,ψ,γ,Cx,D(1). We then can apply Theorem 1 to approximate the variance. Given any
positive integer k, if n = Ωk,M,ψ,γ,Cx,D(1), it holds with probability 1−Ok(n

−D+1) that

|VX(λ)− Vn(λ)| = Ok,M,ψ,Cx,D

(
(dΣ/n)

3 log8 n

n1−
1
k

)
· Vn(λ) .

If additionally dΣ = OM,ψ,Cx(n
1+γλ1/6), we have

χn(λ)
3 log2 n ≤ Cnκ4.5

√
ρ(λ) ,

when n = ΩM,ψ,γ,Cx,D(1). The condition λkn−
1
k ≤ nκ/2 is equivalent to λ⋆(0)λbvkn−1/k ≤ κ/2,

which holds when n = Ωk,M,ψ(1) since we have assumed λ⋆(0) = O(1). Therefore, we can appeal
to the bias approximation result in Theorem 1, yielding

|BX(λ)− Bn(λ)| = Ok,M,ψ,Cx,D

(
(dΣ/n)

3 log8 n√
ρ(λ)n1−

1
k

)
· Bn(λ) .

G.2 Proof of Proposition 4.4

We provide the following bounds for the quantities in Theorem 2.

Lemma G.1. Under the same Assumptions of Theorem 2, we can take

CΣ = Ωψ(1) ,

when n = Ω(1). For κ = O(1), we have

χ′
n(κ) = Oψ

(
log2+O(1) n

κ

)
.

In addition, smin = Ωψ,Cx(σn) with probability 1−O(n−D+1) .

Proof. Since

n− Tr
(
Σ2 (Σ+ λ⋆(0)I)

−2
)
≥ n−

⌊n/2⌋∑
i=1

σi
σi + λ⋆(0)

−
σ⌊n/2⌋

σ⌊n/2⌋ + λ⋆(0)

∞∑
i=⌊n/2⌋+1

σi
σi + λ⋆(0)

=
λ⋆(0)

σ⌊n/2⌋ + λ⋆(0)

∞∑
i=⌊n/2⌋+1

σi
σi + λ⋆(0)

,
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where in the last line we use Tr
(
Σ(Σ+ λ⋆(0)I)

−1
)
= n. Since

∞∑
i=⌊n/2⌋+1

σi
σi + λ⋆(0)

= n−
⌊n/2⌋∑
i=1

σi
σi + λ⋆(0)

≥ n− n

2
=
n

2
,

and λ⋆(0) ≥ σ2n from Eq. (93), we know

n− Tr
(
Σ2 (Σ+ λ⋆(0)I)

−2
)
≥ σ2n
σ⌊n/2⌋ + σ2n

· n
2
≥ 1

2ψ(1/4) + 2
· n .

We can hence take CΣ := (2ψ(1/4) + 2)−1 = Ωψ(1).
Substituting λ⋆(0) ≥ σ2n and dΣ = O(n1+γ) for some 1 ≤ γ < 1/2 into Eq. (24), we have for

κ = O(1),

χ′
n(κ) = O

(
σ⌊ηn⌋dΣ log2 n

κnσ2n

)
= Oψ

(
log2+O(1) n

κ

)
.

Finally, to get a lower bound for smin, we use Cauchy interlacing theorem which implies

smin ≥ λn

(
XTX

n

)
= λn

(
Σ

1
2ZTZΣ

1
2

n

)
≥ λn

(
PkΣ

1
2ZTZΣ

1
2Pk

n

)

= λn

(
ZPkΣPkZ

T

n

)
.

where Pk is the projection to the space spanned by the top k eigenvectors. Let k ≥ n, we further
have

smin ≥ σk · λn
(
ZVkV

T
k ZT

n

)
,

where Pk = VkV
T
k and Vk =

[
v1 · · · vk

]
∈ Rd×k with vi being the i-th eigenvector of Σ. Since

ZVk is a n× k random matrix with i.i.d. isotropic and sub-Gaussian rows. When k ≥ n, by [Ver12,
Thm. 5.58, generalized version in Sec. 5.7], we have

λn

(
ZVkV

T
k ZT

n

)
≥

(
(1− ζ)

√
k

n
−OCx(1)−OCx,D

(√
log n

n

))2

,

with probability at least 1−O(n−D+1), where ζ is the random variable

ζ := max
1≤i≤n

∣∣∣∣∣
∥∥V T

k zi
∥∥2

k
− 1

∣∣∣∣∣ .
By Hanson-Wright in Lemma 2.1 and similar to the argument in Eq. (61), we have

P

(∣∣∣∣∣
∥∥V T

k zi
∥∥2

k
− 1

∣∣∣∣∣ ≥ t

)
= 2 exp

(
−ΩCx

(
k ·min

{
t2, t

}))
.

Given the above sharp concentration of ζ, we can therefore conclude by taking k = ⌊C(Cx)n⌋ for
some C > 0, and n = ΩCx,D(1), we have with probability 1−O(n−D+1) that

λn

(
ZVkV

T
k ZT

n

)
≥ 1 ,

and therefore smin ≥ σk ≥ σn/ψ(C) by Assumption 3.
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By Lemma G.1 and the assumption λ⋆(0)/σn = O(logO(1) n), we know by taking κ = n−1/14,
the conditions below hold for n = Ωk,ψ,Cx,D(1) whenever k ≥ 15,

κ ≤ min
{
smin/(8λ⋆(0)),C

2
Σ/8

}
, χ′

n(κ)
3 log2 n ≤ C1nκ

4.5 , n−2D+1 = O

√ κ3 log2 n

max {n, λ}

 ,

χ′
n(κ)

3 log2 n ≤ C2n
1− 1

kκ9.5 .

Therefore by the variance approximation in Theorem 2, it holds

|VX(0)− Vn(0)| = Ok,ψ,Cx,D

(
n−1/14 logO(1)(n) +

log8+O(1) n

n1.5/14−
1
k

)
· Vn(0) .

Fixing k ≥ 29, we have with probability 1−O(n−D+1), we know as n = Ωψ,Cx,D(1),

|VX(0)− Vn(0)| = Oψ,Cx,D

(
n−1/15

)
· Vn(0) .

For the bias approximation with the assumption ρ(0) = Ω(n−2+γ), the following additional
conditions hold by taking κ = n−γ/28 when n = Ωk,ψ,Cx,D(1) given k ≥ 29/γ,

χ′
n(κ)

3 log2 n ≤ C1nκ
4.5min

{
1,
√
ρ(0)

}
,

λ⋆(0)
k+1

nκ3
+

χ′
n(κ)

3 log2 n√
ρ(0)n1−

1
kκ8.5

≤ C3 .

In verifying the second condition above, we use λ⋆(0) = O(σn log
O(1) n) = O(σn log

O(1) n). By
Lemma G.1, we also have

κλ⋆(0)χ
′
n(κ) = Oψ(σn log

2+O(1)) .

We can then write out the bias approximation result applying Theorem 2

|BX(0)− Bn(0)| = Ok,ψ,Cx,D

(
n−γ/28 + n−25γ/28 logO(k) n+

log8+O(1) n

n2.5γ/28−
1
k

)
· Bn(0)

+Oψ,Cx,D

(
σ2n log

4+O(1) ∥θ≤n∥2 + σn log
2+O(1) ∥β>n∥2

)
.

Fixing k ≥ 57/γ, we conclude the proof with

|BX(0)− Bn(0)| = Oψ,Cx,D

(
n−γ/29

)
· Bn(0) + logO(1) ·Oψ,Cx,D

(
σ2n ∥θ≤n∥

2 + σn ∥β>n∥2
)
.

H Proof of Theorem 4

Define the following increasing function in t,

fn(t;λ) = 1− λ

n · tσn
− 1

n
Tr
(
Σ(Σ+ tσnI)

−1
)
.
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Case I: regularly varying spectrum when α > 1. In the first case, we set λ = νnσn. For any
t > 0, we can compute that

fn(t;λ) = 1− ν

t
− 1

n
Tr
(
Σ(Σ+ tσnI)

−1
)
.

We will first show dΣ(n) = OΣ(n) and λ⋆ = Θν(λ/n), and then we can invoke Proposition 4.3
for variance approximation. For simplicity, we will suppress the dependence on sequences {ai} and
{bi} in the big-O and big-Ω notations. For instance, we will just write for all n = Ωα(1), |bn| ≤ α.

We first upper bound dΣ. Note that

d∑
l=k

σl =
∞∑
l=k

l−αal exp


l∑

j=1

bj/j

 = σk ·
∞∑
l=k

(
l

k

)−α
· al
ak

· exp


l∑

j=k+1

bj/j

 .

As al converges to a positive limit, we have al/ak = O(1). For k = Ωα(1) such that |bl| ≤ α/2 for
all l ≥ k, we can further derive that

d∑
l=k

σl ≤ σk · O(1) ·
∞∑
l=k

(
l

k

)−α
· exp

α2
l∑

j=k+1

j−1


≤ σk · O(1) ·

∞∑
l=k

(
l

k

)−α
· exp

{
α

2

∫ l

k

dt

t

}

= σk · O(1) ·
∞∑
l=k

(
l

k

)α/2−α
= kσk · O(1) ·

∞∑
l=k

1

k

(
l

k

)−α/2

≤ kσk · O(1) ·
(
1

k
+

∫ ∞

1
t−α/2dt

)
= Oα(kσk) .

This implies for all n = Ωα(1), we can take dΣ(n) = Oα(n). Next we show λ⋆ = Θν(λ/n). Note
that

lim
n→∞

1

n
Tr
(
Σ(Σ+ tσnI)

−1
)

= lim
n→∞

1

n

∞∑
l=1

σl
σl + tσn

= lim
M→∞

lim
n→∞

1

n

∑
M−1n≤l≤Mn

σl
σl + tσn

= lim
M→∞

lim
n→∞

1

n

∑
M−1n≤l≤Mn

1

1 + t(l/n)α
=

∫ ∞

0

1

1 + txα
dx = t−1/α · 1

α

∫ ∞

0

u1/α−1

1 + u
du

= t−1/α · Beta(1/α, 1− 1/α)

α
= t−1/α · Γ(1/α)Γ(1− 1/α)

αΓ(1)

(i)
= t−1/α π/α

sin(π/α)
, (94)

where in (i) we use the reflection formula for Γ function. Recall that we define c⋆ = c⋆(ν) as the
unique solution of

1 = νc−1
⋆ +

π/α

sin(π/α)
c
−1/α
⋆ ,
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it then follows from the above displays that

lim
n→∞

fn(c⋆;λ) = 1− νc−1
⋆ − lim

n→∞

1

n
Tr
(
Σ(Σ+ c⋆σnI)

−1
)

= 1− νc−1
⋆ − π/α

sin(π/α)
c
−1/α
⋆ = 0 .

By the definition of λ⋆ in (5), we can write fn(λ⋆/σn;λ) = 0. Combining with the above limit, we
can then conclude that

λ⋆ = c⋆σn(1 + on(1)) .

Substituting into Eq. (23), we further have

ρ(λ) =
θTΣ

1
2 (Σ+ λ⋆I)

−1Σ
1
2θ

∥θ∥2Tr (Σ(Σ+ λ⋆I)−1)
=

βT(Σ+ λ⋆I)
−1β

∥β∥2Σ−1 (n− λ/λ⋆)

=

∑∞
l=1 (σl + λ⋆)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σ

−1
l ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1 σn (σl + λ⋆)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σnσ

−1
l ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1(l/n)

α (1 + c⋆(l/n)
α)−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1(l/n)

α⟨β,vl⟩2
· (1 + on(1))

=

∫∞
0 xα (1 + c⋆x

α)−1 dFβ(x)

n(1− νc−1
⋆ )

∫∞
0 xα dFβ(x)

· (1 + on(1)) .

Therefore, under the additional condition for some 0 < θ ≤ 1 that∫ ∞

0
xα dFβ(x) = O

(
n1−θ

∫ ∞

0
xα (1 + c⋆x

α)−1 dFβ(x)

)
,

we have ρ(λ) = Ω(n−2+θ). By choosing γ = (1 − θ)/3, we can invoke Proposition 4.3. Choosing a
sufficiently large k yields VX(λ) = Vn(λ)(1 + on(1)) and BX(λ) = Bn(λ)(1 + on(1)).

In the next step, we derive explicit asymptotic formulas for Vn and Bn. Similar to the previous
calculations in Eq. (94), we can compute that

lim
n→∞

1

n
Tr
(
Σ2(Σ+ tσnI)

−2
)

=

∫ ∞

0

1

(1 + txα)2
dx = t−1/α · 1

α

∫ ∞

0

u1/α−1

(1 + u)2
du

= t−1/α · Beta(1/α, 2− 1/α)

α
= t−1/α · Γ(1/α)Γ(2− 1/α)

αΓ(2)
= t−1/α · Γ(1/α)Γ(1− 1/α)

α
·
(
1− 1

α

)
= t−1/α π/α

sin(π/α)
·
(
1− 1

α

)
.

and further n−1Tr(Σ2(Σ+ λ⋆I)
−2) → (1− νc−1

⋆ )(1− α−1). This then gives the variance

Vn(λ) =
τ2n−1Tr(Σ2(Σ+ λ⋆I)

−2)

1− n−1Tr(Σ2(Σ+ λ⋆I)−2)
=
τ2(1− νc−1

⋆ )(α− 1)

1 + νc−1
⋆ (α− 1)

(1 + on(1)) .
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For the bias term, we can similarly write

λ2⋆⟨β, (Σ+ λ⋆I)
−2Σβ⟩ = (1 + on(1)) · σnc2⋆

∞∑
l=1

σlσn
(σl + λ⋆)2

⟨β,vl⟩2

= (1 + on(1)) · σnc2⋆
∞∑
l=1

(l/n)α

(1 + c⋆(l/n)α)2
⟨β,vl⟩2

= σnc
2
⋆

∫ ∞

0

xα

(1 + c⋆xα)2
dFβ(x)

(
1 + on(1)

)
.

Together with Tr(Σ2(Σ + λ⋆I)
−2) = n(1 − νc−1

⋆ )(1 − α−1)(1 + on(1)), we conclude the proof for
this case.

Case II: regularly varying spectrum when α = 1. Setting λ = νnσn log n. For any t > 0, we
can compute that

fn(t;λ) = 1− ν log n

t
− 1

n
Tr
(
Σ(Σ+ tσnI)

−1
)
.

We first verify Assumption 1 holds. With ai = O(1) bounded and α′ > 1, we indeed have that
Tr(Σ) <∞ as

Tr(Σ) =
∞∑
l=1

al
l(1 + log l)α′ = O

(
1 +

∫ ∞

1

M

t(1 + log t)α′ dt

)
= O

(
− (1 + log t)1−α

′

α′ − 1

∣∣∣∣∣
∞

t=1

)
= O

(
1

α′ − 1

)
.

Since the sequence {ai} converge to a positive limit, we have for k = Ω(1)

d∑
l=k

σl = Θ

( ∞∑
l=k

1

l(1 + log l)α′

)
= Θ

(
σk +

∫ ∞

k

1

t(1 + log t)α′ dt

)
= Θ

(
σk +

(1 + log k)1−α
′

α′ − 1

)
= Θα′(k log kσk) ,

and therefore, we can take dΣ(n) = Θα′(n log n). We proceed to compute λ⋆. Taking any t > 0,

lim
n→∞

1

n
Tr
(
Σ(Σ+ tσn log nI)

−1
)

= lim
n→∞

1

n

∞∑
l=1

σl
σl + tσn log n

= lim
M→∞

lim
n→∞

1

n

∑
l≥M−1n

σl
σl + tσn log n

= lim
M→∞

lim
n→∞

1

n

∑
l≥M−1n

σl
tσn log n

= lim
M→∞

lim
n→∞

(1 + log n− logM)1−α
′

t(α′ − 1)(log n)1−α′

=
1

t(α′ − 1)
.

Recalling that c⋆ solves

1 = νc−1
⋆ + (α′ − 1)−1c−1

⋆ ,

we then have

lim
n→∞

fn(c⋆ log n;λ) = 1− νc−1
⋆ − lim

n→∞

1

n
Tr
(
Σ(Σ+ c⋆σn log nI)

−1
)
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= 1− νc−1
⋆ − (α′ − 1)−1c−1

⋆ = 0 ,

and consequently by Eq. (5),

λ⋆ = c⋆σn log n(1 + on(1)) .

Taking the above display into Eq. (23), we get

ρ(λ) =
θTΣ

1
2 (Σ+ λ⋆I)

−1Σ
1
2θ

∥θ∥2Tr (Σ(Σ+ λ⋆I)−1)
=

∑∞
l=1 (σl + λ⋆)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σ

−1
l ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1 σn (σl + c⋆σn log n)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σnσ

−1
l ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1 l/n · (1 + l · (c⋆ log n/n))−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 l/n · ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1 l · (log n/n) · (1 + l · (c⋆ log n/n))−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 l · (log n/n) · ⟨β,vl⟩2

· (1 + on(1))

=

∫∞
0 x (1 + c⋆x)

−1 dFβ(x)

n(1− νc−1
⋆ )

∫∞
0 x dFβ(x)

· (1 + on(1)) ,

where in the last line we use Fβ(x) =
∑⌊(n/ logn)x⌋

k=1 ⟨β,vk⟩2. Thus we can have ρ(λ) = Ω(n−2+θ)
provided the condition∫ ∞

0
x dFβ(x) = O

(
n1−θ

∫ ∞

0
x (1 + c⋆x)

−1 dFβ(x)

)
.

Setting γ = (1 − θ)/3, we can invoke Proposition 4.3 and obtain VX(λ) = Vn(λ)(1 + on(1)),
BX(λ) = Bn(λ)(1 + on(1)).

For the variance Vn(λ), we note

lim
n→∞

log n

n
Tr
(
Σ2(Σ+ tσn log nI)

−2
)

= lim
n→∞

log n

n

∞∑
l=1

σ2l
(σl + tσn log n)2

= lim
M→∞

lim
n→∞

log n

n

∑
M−1n/ logn≤l≤Mn/ logn

σ2l
(σl + tσn log n)2

= lim
M→∞

lim
n→∞

log n

n

∑
M−1n/ logn≤l≤Mn/ logn

1

(1 + tl log n/n)2
=

∫ ∞

0

1

(1 + tx)2
dx =

1

t
.

Substituting in λ⋆, we thus have n−1Tr
(
Σ2(Σ+ λ⋆I)

−2
)
= (1+on(1))/(c⋆ log n), which further

implies that

Vn(0) =
τ2n−1Tr(Σ2(Σ+ λ⋆(0)I)

−2)

1− n−1Tr(Σ2(Σ+ λ⋆(0)I)−2)
=

τ2

c⋆ log n

(
1 + on(1)

)
.

Finally for the bias, we have

λ2⋆⟨β, (Σ+ λ⋆I)
−2Σβ⟩ = (1 + on(1)) · c2⋆σn log n

∞∑
l=1

σlσn log n

(σl + λ⋆)2
⟨β,vl⟩2
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= (1 + on(1)) · c2⋆σn log n
∞∑
l=1

(l log n/n)

(1 + c⋆l log n/n)2
⟨β,vl⟩2

= c2⋆σn log n

∫ ∞

0

x

(1 + c⋆x)2
dFβ(x)

(
1 + on(1)

)
.

Combining with n−1Tr
(
Σ2(Σ+ λ⋆I)

−2
)
= (1 + on(1))/(c⋆ log n), it holds that

Bn(λ) = c2⋆σn log n

∫ ∞

0

x

(1 + c⋆x)2
dFβ(x)

(
1 + on(1)

)
.

Case III: a non-regularly varying spectrum. Take λ = νnσn. For any t > 0, we can compute
that

fn(t;λ) = 1− ν

t
− 1

n
Tr
(
Σ(Σ+ tσnI)

−1
)
.

If σk = p−s, we can easily have σl ≤ p−r−s if qrk ≤ l < qr+1k. This immediately yields

d∑
l=k

σl ≤
∞∑
r=0

(qr+1k − qrk) · p−r−s ≤ kσk

∞∑
r=0

qr+1

pr
= Op,q(kσk) ,

as q < p and the geometric sum converges. We can thus take dΣ(n) = Op,q(n). For λ⋆, using that

Tr
(
Σ(Σ+ tσnI)

−1
)
=

∞∑
l=0

(ql+1 − ql)p−l

p−l + tp−s⋆
=
(
qs⋆+1 − qs⋆

)
·

∞∑
l=0

ql−s⋆

1 + tpl−s⋆
.

Since s⋆ → ∞ as n tends to infinity, we have

Tr
(
Σ(Σ+ tσnI)

−1
)
= nρ−1

⋆ ·Gp,q,1(t)
(
1 + on(1)

)
.

Hence

lim
n→∞

fn(t;λ) = 1− νt−1 − ρ−1
⋆ ·Gp,q,1(t) .

While the right hand side is increasing in t ranging in (−∞, 1). There exists a unique c⋆ = c⋆(ν)
solving

lim
n→∞

fn(c⋆;λ) = 0 ,

and substituting into Eq. (5) yields

λ⋆ = c⋆σn(1 + on(1)) .

Next we compute ρ(λ) from Eq. (23),

ρ(λ) =
θTΣ

1
2 (Σ+ λ⋆I)

−1Σ
1
2θ

∥θ∥2Tr (Σ(Σ+ λ⋆I)−1)
=

∑∞
l=1 (σl + λ⋆)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σ

−1
l ⟨β,vl⟩2

· (1 + on(1))

=

∑∞
l=1 σn (σl + λ⋆)

−1 ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
l=1 σnσ

−1
l ⟨β,vl⟩2

· (1 + on(1))
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=

∑∞
s=0 p

s−s⋆/(1 + c⋆p
s−s⋆)

∑qs+1−1
l=qs ⟨β,vl⟩2

n(1− νc−1
⋆ )

∑∞
s=0 p

s−s⋆
∑qs+1−1

l=qs ⟨β,vl⟩2
· (1 + on(1))

=

∫∞
0 px−s⋆/(1 + c⋆p

x−s⋆) dFβ(x)

n(1− νc−1
⋆ )

∫∞
0 px−s⋆ dFβ(x)

· (1 + on(1)) .

Given the “rapid-decay” property∫ ∞

0
px−s⋆ dFβ(x) = O

(
n1−θ

∫ ∞

0
px−s⋆(1 + c⋆p

x−s⋆)−1 dFβ(x)

)
,

we have ρ(λ) = Ω(n−2+θ) and Proposition 4.3 holds with γ = (1 − θ)/3, implying that VX(λ) =
Vn(λ)(1 + on(1)) and BX(λ) = Bn(λ)(1 + on(1)).

To compute the effective variance Vn(λ), we first note that

Tr
(
Σ2(Σ+ tσnI)

−2
)
=
(
qs⋆+1 − qs⋆

)
·

∞∑
l=0

ql−s⋆

(1 + tpl−s⋆)2
= nρ−1

⋆ ·Gp,q,2(t)
(
1 + on(1)

)
.

Thus

Vn(λ) =
τ2Tr

(
Σ2(Σ+ λ⋆I)

−2
)

n− Tr (Σ2(Σ+ λ⋆I)−2)
=

Gp,q,2(c⋆)τ
2

ρ⋆ −Gp,q,2(c⋆)

(
1 + on(1)

)
.

For the bias term, we have

λ2⋆⟨β, (Σ+ λ⋆I)
−2Σβ⟩ = (1 + on(1))c

2
⋆σn

∞∑
l=0

σlσn
(σl + c⋆σn)2

⟨β,vl⟩2

= (1 + on(1))c
2
⋆σn

∞∑
s=0

 ps−s⋆

(1 + c⋆ps−s⋆)2
·
qs+1−1∑
l=qs

⟨β,vl⟩2


= c2⋆σn

∫ ∞

0

px−s⋆

(1 + c⋆px−s⋆)2
dFβ(x)

(
1 + on(1)

)
.

We conclude the proof for Bn(λ) by substituting in n−1Tr
(
Σ2(Σ+ λ⋆I)

−2
)
= (1+on(1))ρ

−1
⋆ Gp,q,2(c⋆).
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