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Abstract

The construction of most supervised learning datasets revolves around collecting multiple
labels for each instance, then aggregating the labels to form a type of “gold-standard.”. We
question the wisdom of this pipeline by developing a (stylized) theoretical model of this process
and analyzing its statistical consequences, showing how access to non-aggregated label information
can make training well-calibrated models easier or—in some cases—even feasible, whereas it is
impossible with only gold-standard labels. The entire story, however, is subtle, and the contrasts
between aggregated and fuller label information depend on the particulars of the problem, where
estimators that use aggregated information exhibit robust but slower rates of convergence, while
estimators that can effectively leverage all labels converge more quickly if they have fidelity to
(or can learn) the true labeling process. The theory we develop in the stylized model makes
several predictions for real-world datasets, including when non-aggregate labels should improve
learning performance, which we test to corroborate the validity of our predictions.

1 Introduction

The centrality of data collection to the development of machine learning is evident [11], with numerous
challenge datasets [22, 20, 1, 18, 10, 31] driving advances. Essential to each of these is the collection
of labeled data. While in the past, experts could provide reliable labels for reasonably sized datasets,
the cost and size of modern datasets often precludes this expert annotation, motivating a growing
literature on crowdsourcing and other sophisticated dataset generation strategies that aggregate
expert and non-expert feedback [16, 31, 28]. By aggregating multiple labels, one typically hopes
to obtain clean, true, “gold-standard” data. Yet most statistical machine learning development—
theoretical or methodological—does not investigate this full data generating process, assuming only
that data comes in the form of (X,Y ) pairs of covariates X and targets (labels) Y [38, 4, 2, 14].
Here, we argue for a more holistic perspective: broadly, that analysis and algorithmic development
should focus on the more complete machine learning pipeline, from dataset construction to model
output; and more narrowly, questioning such aggregation strategies and the extent to which such
cleaned data is essential or even useful.

To that end, we develop a stylized theoretical model to capture uncertainties in the labeling
process, allowing us to understand the contrasts, limitations and possible improvements of using
aggregated or non-aggregated data in a statistical learning pipeline. We model each example as
a pair (Xi, (Yi1, . . . , Yim)) where Xi is a data point and Yij are noisy labels. In the most basic

∗Department of Statistics, Stanford University; email: chencheng@stanford.edu.
†Department of Electrical Engineering, Stanford University; email: asi@stanford.edu.
‡Departments of Statistics and Electrical Engineering, Stanford University; email: jduchi@stanford.edu.

1



formulation of our results, we compare two methods: empirical risk minimization using all the
labels, and empirical risk minimization using cleaned labels Y based on majority vote. While
this grossly simplifies modern crowdsourcing and other label aggregation strategies [9, 31, 28], the
simplicity allows (i) us to understand fundamental limitations of algorithms based on majority-vote
aggregation, and (ii) circumventing these limits by using full, non-aggregated information. By
carefully analyzing these models, we show (among other results) that training a calibrated model is
essentially infeasible using majority-vote aggregation and that classification error of models fit using
non-aggregated label information outperforms that of “standard” estimators that use aggregated
(cleaned, majority-vote) labels. We develop several extensions to these basic results, including
misspecified models, semiparametric scenarios where one must learn link functions, and simple
models of learned annotator reliability. The message is consistent throughout: if it is possible to
model the labeling process with fidelity, using all the labels yields more efficient estimators, while
majority-vote estimators provide robust (but slower) convergence.

While our models are stylized, they also make several concrete and testable predictions for real
datasets; if our approach provides a useful abstraction, it must suggest improvements in learning even
for more complex and challenging to analyze scenarios. Indeed, our theory predicts that methods
that fit predictive models on non-aggregated data should both make better-calibrated predictions
and, in general, have lower classification error than models that use aggregated clean labels. To
that end, we consider two real datasets, and they corroborate the predictions and implications
of our theory even beyond logistic models. In particular, majority-vote based algorithms yield
uncalibrated models in all experiments, whereas the algorithms that use full-label information train
(more) calibrated models. Moreover, the former algorithms exhibit worse classification error in our
experiments, with the error gap depending on parameters—such as inherent label noise—that we
can also address in our theoretical models.

1.1 Problem formulation

To situate our results, we begin by providing the key ingredients in the paper.

The model with multiple labels. Consider a binary classification problem with data points

X1, · · · , Xn
iid∼ PX , Xi ∈ Rd, with m labelers. We assume each labeler annotates data points

independently through a generalized linear model, and the labelers use m possibly different link
functions σ⋆

1, · · · , σ⋆
m ∈ Flink, where

Flink := {σ : R → [0, 1] | σ(0) = 1/2, sign(σ(t)− 1/2) = sign(t)} .

Here sign(t) = −1 for t < 0, sign(t) = 1 for t > 0 and sign(0) = 0. If σ(t) + σ(−t) = 1 for all t ∈ R,
we say the link function is symmetric and denote the class of symmetric functions by F0

link ⊂ Flink.
The link functions generate labels via the distribution

Pσ,θ(Y = y | X = x) = σ(y⟨θ, x⟩), for y ∈ {±1} , x, θ ∈ Rd. (1)

Key to our stylized model, and what allows our analysis, is that we assume labelers use the same linear
classifier θ⋆ ∈ Rd—though each labeler j may have a distinct link σ⋆

j—so we obtain conditionally
independent labels Yij ∼ Pσ⋆

j ,θ
⋆(· | Xi). (For example, in the logistic model where labelers have

identical link, σ⋆
j (t) = 1/

(
1 + e−t

)
.) We seek to recover θ⋆ or the direction u⋆ := θ⋆/ ∥θ⋆∥2 from

the observations (Xi, Yij).
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Classification and calibration. For an estimator θ̂ and associated direction û := θ̂/∥θ̂∥2, we
measure performance through

(i) The classification error: ∥u⋆ − û∥2.

(ii) The calibration error: ∥θ⋆ − θ̂∥2.

We term these “classification error” and “calibration error” from the rationale that for classification,
we only need to control the difference between the directions û and u⋆, while calibration—that for
a new data point X, the value σ⋆

j (⟨θ̂, X⟩) is close to Pσ⋆
j ,θ

⋆(Y = 1 | X) = σ⋆
j (⟨θ⋆, X⟩)—requires

controlling the error in θ̂ as an estimate of θ⋆.

Estimators. We consider two types of estimators: one using aggregated labels and the other
using each label from different annotators. At the highest level, the aggregated estimator depends
on processed labels Y i for each example Xi, while the non-aggregated estimator uses all labels
Yi1, . . . , Yim. To center the discussion, we provide two concrete instantiations via logistic regression
(with generalizations in the sequel). For the logistic link σlr(t) = 1

1+e−t , define the logistic loss

ℓlrθ (y | x) = − logPσlr,θ(y | x) = log(1 + e−y⟨x,θ⟩).

In the non-aggregated model, we let let Pn,m be the empirical measure on {(Xi, (Yi1, . . . , Yim))} and
consider the logistic regression estimator

θ̂lrn,m = argmin
θ

Pn,mℓlrθ =
1

nm

n∑
i=1

m∑
j=1

ℓlrθ (Yij | Xi)

 , (2)

which is the maximum likelihood estimator (MLE) assuming the logistic model is true. We focus on
the simplest aggregation strategy, where example i has majority vote label

Y i = maj(Yi1, . . . , Yim).

Then letting Pn,m be the empirical measure on {(Xi, Y i)}, the majority-vote estimator solves

θ̂mv
n,m = argmin

θ

{
Pn,mℓlrθ =

1

n

n∑
i=1

ℓlrθ (Y i | Xi)

}
. (3)

Method (3) acts as our proxy for the “standard” data analysis pipeline, with cleaned labels, while
method (2) is our proxy for non-aggregated methods using all labels. A more general formulation
than the majority vote (3) could allow complex aggregation strategies, e.g., crowdsourcing, but we
abstract away details to capture what we view as the essentiae for statistical learning problems (e.g.
CIFAR [18] or ImageNet [31]) where only aggregated label information is available.

Our main technical approaches characterize the estimators θ̂mv
n,m and θ̂lrn,m via asymptotic calcu-

lations. Under appropriate assumptions on the data generating mechanisms (1), which will include
misspecification, we both (i) provide consistency results that elucidate the infinite sample limits for
θ̂mv
n,m, θ̂lrn,m, and a few more general estimators, and (ii) carefully evaluate their limit distributions
via asymptotic normality calculations. The latter allows direct comparisons between the different
estimators through their limiting covariances, which exhibit (to us) interestingly varying dependence
on m and the scaling of the true parameter θ⋆.

3



1.2 Summary of theoretical results and implications

We obtain several results clarifying the distinctions between estimators that use aggregate labels
from those that treat them individually.

Impossibility of calibration with majority vote We begin in Section 2 with the simple result
that any estimator based on majority vote aggregation cannot be calibrated: there exist distributions
with distinct numbers of labelers m and link functions σ that induce identical joint distributions on
(X,Y ). This contrasts with non-aggregated data, which allows calibrated estimators.

Improved performance using multiple labels for well-specified models As in our discussion
above, our main approach to highlighting the import of multiple labels is through asymptotic
characterization of the estimators (2)–(3) and similar estimators. We begin this in Section 3 by
focusing on the particular case that the labelers follow a logistic model. As specializations of our
major results to come, we show that the multi-label MLE (2) is calibrated and enjoys faster rates
of convergence (in m) than the majority-vote estimator (3). The improvements depend in subtle
ways on the particulars of the underlying distribution, and we connect them to Mammen-Tsybakov-
type noise conditions in Propositions 2 and 3. In “standard” cases (say, Gaussian features), the
improvement scales as

√
m; for problems with little classification noise, the majority vote estimator

becomes brittle (and relatively slower), while the convergence rate gap decreases for noisier problems.

Robustness of majority-vote estimators Nonetheless, our results also evidence support for
majority vote estimators of the form (3). Indeed, in Section 4 we provide master results and
consequences that hold for both well- and mis-specified losses, which highlight the robustness of
the majority vote estimator. While MLE-type estimators (2) enjoy faster rates of convergence
when the model is correct, these rates break down, in ways we make precise when the model is
mis-specified; in contrast, majority-vote-type estimators (3) maintain their (not quite optimal)
convergence guarantees, yielding

√
m-rate improvements.

Semi-parametric approaches The final theoretical component of the paper is to put the pieces
together: in Section 5 we show how to achieve the best of both worlds via semi-parametric approaches.
We highlight two applications. In the first, we use an initial estimator to fit a link function, then
produce a refined estimator minimizing the induced semiparametric loss and recovering efficient
estimation. In the second, we highlight how our results provide potential insights into existing
crowdsourcing techniques by leveraging a blackbox crowdsourcing algorithm providing measures of
labeler reliability to achieve (optimal) estimates.

1.3 Related work

We briefly overview related work, acknowledging that to make our theoretical model tractable,
we capture only a few of the complexities inherent in dataset construction. Label aggregation
strategies often attempt to evaluate labeler uncertainty, dating to Dawid and Skene [9], who study
labeler uncertainty estimation to overcome noise in clinical patient measurements. With the rise of
crowdsourcing, such reliability models have attracted substantial recent interest, with approaches
for optimal budget allocation [17], addressing untrustworthy or malicious labelers [7], and more
broadly an intensive line of work studying crowd labeling and aggregation [41, 40, 35, 28], with
substantial applications [10, 31].
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The focus in many of these, however, is to obtain a single clean and trustworthy label for each
example. Thus, while these aggregation techniques have been successful and important, our work
takes a different perspective. First, we target statistical analysis for the full learning pipeline—to
understand the theoretical landscape of the learning problem with multiple labels for each example—
as opposed to obtaining only clean labels. Moreover, we argue for an increased focus on calibration
of the resulting predictive model, which aggregated (clean) labels necessarily impede. We therefore
adopt a perspective similar to Peterson et al. and Platanios et al.’s applied work [24, 27], which
highlight ways that incorporating human uncertainty into learning pipelines can make classification
“more robust” [24]. Instead of splitting the learning procedure into two phases, where the first
aggregates labels and the second trains, we simply use non-aggregated labels throughout learning.
Platanios et al. [27] propose a richer model than our stylized scenarios, directly modeling labeler
reliability, but the simpler approaches we investigate allow us to be theoretically precise about the
limiting behavior and performance of the methods.

We mention in passing that our precise consistency results rely on distributional assumptions on
the covariates X, for example, that they are Gaussian. That such technical conditions appear may
be familiar from recent work, for example, in single-index or nonlinear measurement models [26, 25].
In such settings, one assumes E[Y | X] = f(⟨θ⋆, X⟩) for an unknown increasing f , and it is essential
that E[Y X] ∝ θ⋆ to allow estimation of θ⋆; we leverage similar techniques.

Notation We use ∥x∥p to denote the ℓp norm of a vector x. For a matrix M , ∥M∥ is its spectral

norm, and M † is its Moore-Penrose pseudo inverse. For a unit vector u ∈ Rd, the projection
operator to the orthogonal space of span{u} is P⊥

u = I − uu⊤. We use the notation f(n) ≍ g(n) for
n ∈ N and f(x) ≍ g(x) for x ∈ R+ if there exist numerical constants c1, c2 and n0, x0 ≥ 0 such that
c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| and c2|g(x)| ≤ |f(x)| ≤ c2|g(x)| for n ≥ n0 and x ≥ x0. We also use the
empirical process notation PZ =

∫
zdP(z). We let c = om(1) denote that c → 0 as m → ∞.

2 Motivation: the impossibility of calibration with majority vote

Our theoretical analysis begins with a few simple observations that at least suggest the importance
of using non-aggregated labels: calibration for labeler uncertainty is, in a sense, impossible with only
aggregated data, which is in strong contrast to algorithms that use non-aggregated data. Formalizing,
we consider a generalized linear model for binary classification, where we have a link function
σ⋆ ∈ F0

link. Given θ⋆ ∈ Rd, we define the model (1) with Pσ⋆,θ⋆(Y = y | X = x) = σ⋆(y⟨θ⋆, x⟩),
where x ∈ Rd and y ∈ {±1}. We generate n data points X1, X2, . . . , Xn

iid∼ N(0, Id), then for each

data point Xi we generate m labels Yij
iid∼ Pσ⋆,θ⋆(· | Xi), j = 1, . . . ,m. In this simplified model, no

algorithm using majority-vote aggregation can be calibrated without additional information on m
and σ⋆: if Y i = maj(Yi1, . . . , Yim) denotes the majority-vote (breaking ties randomly), there always
exists a calibration function σ and label size m such that Y i has identical distribution under both
the model (1) and also with σ,m replacing σ⋆ and m. Letting Pσ⋆,θ⋆,m

(X,Y )
denote the distribution of

(Xi, Y i) , we have the following result. We defer the proof to Appendix B.

Proposition 1. Suppose σ⋆ ∈ F0
link satisfying σ⋆(t) > 0 for all t > 0. For any θ ∈ Rd such that

θ/
∥∥θ∥∥

2
= θ⋆/ ∥θ⋆∥2 and any positive integer m, there is another calibration function σ such that

Pσ⋆,θ⋆,m

(X,Y )

dist
= Pσ,θ,m

(X,Y )
.
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3 The well-specified logistic model

With the simple impossibility result for majority vote in Proposition 1, we turn our attention to a
setting that allows more precise comparisons between a method using aggregated labels and one
without by considering the logistic model for the link (1),

σlr(t) =
1

1 + e−t
∈ F0

link.

We present initial results for the estimators (2) and (3) here, as the results highlight many of the
conclusions we draw and are relatively clean to present in this setting. In particular, we assume
identical links σ⋆

1 = · · · = σ⋆
m = σlr, have an i.i.d. sample X1, . . . , Xn, where for each i we draw

(Yi1, . . . , Yim)
iid∼ Pσlr,θ⋆(· | Xi) for a true vector θ⋆.

3.1 The isotropic Gaussian case

To better understand the performance of the full information (2) and majority vote (3) approaches
and to deliver the general taste of our results, we start by studying the simplest case when
X ∼ N(0, Id).

Performance with non-aggregated data. We begin with a relatively standard [36] analysis of
the non-aggregated MLE estimator θ̂lrn,m in Eq. (2), which we state as a corollary of a result where
X has more general distribution in Proposition 2 to come.

Corollary 1. Let X ∼ N(0, Id) and t⋆ = ∥θ⋆∥2. The maximum likelihood estimator θ̂lrn,m is consistent

θ̂lrn,m
p→ θ⋆. There exists a function C(t) such that limt→∞C(t)t exists and is finite and

√
n(ûlrn,m − u⋆)

d→ N
(
0,m−1C(t⋆)P⊥

u⋆

)
,

where P⊥
u⋆ = Id − u⋆u⋆⊤.

The first part of Corollary 1 demonstrates that the non-aggregated MLE classifier is calibrated:
it recovers both the direction and scale of θ⋆. Moreover, the second part shows that this classifier
enjoys convergence rates that roughly scale as O(1)/

√
nm, so that a linear increase in the label size

m roughly yields a linear increase in convergence rate.

Performance with majority-vote aggregation. The analysis of the majority vote estimator (3)
requires more care, though the assumption that X ∼ N(0, Id) allows us to calculate the limits
explicitly. In brief, we show that when X is Gaussian, the estimator is not calibrated and has slower
convergence rates in m for classification error than the non-aggregated classifier. The basic idea
is that a classifier fit using majority vote labels Y i should still point in the direction of θ⋆, but it
should be (roughly) “calibrated” to the probability of a majority of m labels being correct.

We follow this idea and sketch the derivation here, as it is central to all of our coming theorems,
and then state the companion corollary to Corollary 1. Each result depends on the probability

P(Y = sign(⟨x, θ⋆⟩) | x) = ρm(|⟨x, θ⋆⟩|)

of obtaining a correct label using majority vote, where ρm defines the binomial probability function

ρm(t) = P
(
Binomial

(
m,

1

1 + e−|t|

)
≥ m

2

)
=

m∑
i=⌈m/2⌉

(
m

i

)(
1

1 + e−|t|

)i
(

e−|t|

1 + e−|t|

)m−i

, (4)
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when m is odd. (When m is even the final sum has the additional additive term 1
2

(
m

m/2

)
e−m|t|/2

(1+e−|t|)m
.)

Key to the coming result is choosing a parameter to roughly equalize binomial (majority vote) and
logistic (Bernoulli) probabilities, and so for Z ∼ N(0, 1) we define the function

hm(t) = E [|Z|(1− ρm(t⋆|Z|))]− E
[

|Z|
1 + et|Z|

]
. (5)

We use h to find the minimizer of population loss Lmv
m (θ) = E[ℓlrθ (Y | X)] by considering the ansatz

that θ = tu⋆ for some t > 0. Using the definition (4) of ρm, we can write

Lmv
m (θ) = E [log(1 + exp(−S⟨X, θ⟩)) · ρm(t⋆|⟨X,u⋆⟩|)] + E [log(1 + exp(S⟨X, θ⟩)) · (1− ρm(t⋆|⟨X,u⋆⟩|))] ,

where S = sign(⟨X, θ⋆⟩), and compute the gradient

∇Lmv
m (θ) = −E

[
S

1 + exp(S⟨X, θ⟩)
ρm(t⋆|⟨X,u⋆⟩|)X

]
+ E

[
S exp(S⟨X, θ⟩)
1 + exp(S⟨X, θ⟩)

(1− ρm(t⋆|⟨X,u⋆⟩|))X
]
.

We set Z = ⟨X,u⋆⟩ and decompose X into the independent sum X = (X−u⋆Z)+u⋆Z. Substituting
in θ = tu⋆ yields

∇Lmv
m (tu⋆)

(i)
= −E

[
sign(Z)

1 + exp(t|Z|)
ρm(t⋆|Z|)X

]
+ E

[
sign(Z) exp(t|Z|)
1 + exp(t|Z|)

(1− ρm(t⋆|Z|))X
]

= −E
[

sign(Z)Z

1 + exp(t|Z|)
ρm(t⋆|Z|)

]
u⋆ + E

[
sign(Z)Z exp(t|Z|)

1 + exp(t|Z|)
(1− ρm(t⋆|Z|))

]
u⋆

=

(
E
[
|Z| exp(t|Z|)
1 + exp(t|Z|)

]
− E [|Z|ρm(t⋆|Z|)]

)
u⋆

=

(
E [|Z|(1− ρm(t⋆|Z|))]− E

[
|Z|

1 + et|Z|

])
u⋆ = hm(t)u⋆, (6)

where in (i) we substitute S = sign(Z). As we will present in Corollary 2, hm(t) = 0 has a unique
solution tm ≍

√
m, and the global minimizer of the population loss Lmv

m is thus exactly tmu⋆.
By completing the calculations for the precise value of tm above and a performing few asymptotic

normality calculations, we have the following result, a special case of Proposition 3 to come.

Corollary 2. Let X ∼ N(0, Id) and t⋆ = ∥θ⋆∥2. There are numerical constants a, b > 0 such that
the following hold: for the function h = hm in (5), there is a unique tm ≥ t1 = t⋆ solving h(tm) = 0
and

θ̂mv
n,m

p→ tmu⋆ and lim
m→∞

tm
t⋆
√
m

= a.

Moreover, there exists a function Cm(t) = b
t
√
m
(1+om(1)) as m → ∞ such that ûmv

n,m = θ̂mv
n,m/∥θ̂mv

n,m∥2
satisfies

√
n
(
ûmv
n,m − u⋆

) d→ N
(
0, Cm(t⋆)P⊥

u⋆

)
.

It is instructive to compare the rates of this estimator to the rates for the non-aggregated MLE
in Corollary 1. First, the non-aggregated estimator is calibrated in that θ̂lrn,m → θ⋆, in contrast to
the majority-vote estimator, which roughly “calibrates” to the probability majority vote is correct
(cf. (6)) via the convergence θ̂mv

n,m → c
√
mθ⋆ as n → ∞. The scaling of Cm in Corollary 2 is also

important: the majority-vote estimator exhibits worse convergence rates by a factor of
√
m than

the estimator θ̂lrn,m: for constants clr and cmv that depend only on t⋆ = ∥θ⋆∥2 and Σ = I − u⋆u⋆⊤,
we have asymptotic variances differing by

√
m:

√
n(ûlrn,m−u⋆)

d→ N
(
0,m−1clrΣ · (1 + om(1))

)
while

√
n(ûmv

n,m−u⋆)
d→ N

(
0,m−1/2cmvΣ · (1 + om(1))

)
.
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3.2 Comparisons for more general feature distributions

The key to the preceding results—and an indication that they are stylized—is that the covariates X
decompose into components aligned with θ⋆ and independent noise. Here, we abstract away the
Gaussianity assumptions to allow a more general treatment. This generality also allows a more
nuanced development carefully tracking label noise, as margin and noise conditions turn out to play
a strong role in the relative merits of maximum-likelihood-type (full label information) estimators
versus those using cleaned majority-vote labels. The results, as in Sec. 3.1, are consequences of the
masters theorem to come in the sequel.

We first make our independence assumption.

Assumption A1. The covariates X have non-singular covariance Σ and decompose as a sum of
independent random vectors in the span of u⋆ and its complement

X = W + Zu⋆, where W ⊥⊥ Z, ⟨W,u⋆⟩ = 0, E[W ] = 0, E[Z] = 0.

Under these assumptions, we develop a characterization of the limiting behavior of the majority
vote and non-aggregated models based on classification difficulty, adopting Mammen and Tsybakov’s
perspective [21] and measuring difficulty of classification through the proximity of the probability
P(Y = 1 | X = x) to 1/2. Thus, for a noise exponent β ∈ (0,∞), we consider the condition

P
(∣∣∣∣P(Y = 1 | X)− 1

2

∣∣∣∣ ≤ ϵ

)
= O(ϵβ). (Mβ)

We see that as β ↑ ∞ the problem becomes “easier” as it is less likely to have a small margin—in
particular, β = ∞ gives a hard margin that |P(Y = 1 | X) − 1

2 | ≥ ϵ for all small ϵ. Under
the independent decomposition Assumption A1, the noise condition (Mβ) solely depends on the
covariate’s projection onto the signal Z. We therefore consider the following assumption on Z.

Assumption A2. For a given β > 0, Z is (β, cZ)-regular, meaning that the absolute value |Z| has
density p(z) on (0,∞), no point mass at 0, and satisfies

sup
z∈(0,∞)

z1−βp(z) < ∞, lim
z→0

z1−βp(z) = cZ ∈ (0,∞).

As the logistic function σlr(t) = 1/(1 + e−t) satisfies σlr′(0) = 1/4, for t⋆ = ∥θ⋆∥2 in our logistic
model (1) we have P(Y = 1 | X = W + u⋆Z,Z = z) = σlr(t⋆z) = 1/(1 + e−t⋆z). More generally,
for any link function σ differentiable at 0 with σ′(0) > 0, we have Pσ(Y = 1 | Z = z) = σ(t⋆z) =
1
2 + σ′(0)t⋆z + o(t⋆z), so that the Mammen-Tsybakov noise condition (Mβ) is equivalent to

P (|t⋆Z| ≤ ϵ) = O(ϵβ).

Thus, under Assumption A2, condition (Mβ) holds, as by dominated convergence we have

P (|t⋆Z| ≤ ϵ) =

∫ ϵ/t⋆

0
p(z)dz =

∫ ϵ/t⋆

0
cZ(1 + oϵ(1))z

β−1dz =
cZ
β
ϵβ · (1 + oϵ(1)),

As a concrete case, when the features X are isotropic Gaussian and so Z ∼ N(0, 1), β = 1. We
provide extensions of Corollaries 1 and 2 in the more general cases the noise exponent β allows.

The maximum likelihood estimator retains its convergence guarantees in this setting, and we can
be more precise for the analogue of the final claim of Corollary 1 (see Appendix G.1 for a proof):
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Proposition 2. Let Assumptions A1 and A2 hold for some β > 0 t⋆ = ∥θ⋆∥2. Let Llr(θ) = E[ℓlrθ (Y |
X)] be the population logistic loss. Then the maximum likelihood estimator (2) satisfies

√
n
(
θ̂lrn,m − θ⋆

)
d→ N(0,m−1∇2Llr(θ⋆)−1).

Moreover,
√
n
(
ûlrn,m − u⋆

)
d→ N

(
0,m−1(t⋆)−2P⊥

u⋆∇2Llr(θ⋆)−1P⊥
u⋆

)
,

and there exists C(t) such that limt→∞C(t)t2−β exists and is finite such that

√
n
(
ûlrn,m − u⋆

)
d→ N

(
0,m−1C(t⋆)

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.

For majority-vote aggregation, we can in turn generalize Corollary 2. In this case we still have
tm ≍

√
m. However, the interesting factor here is that the convergence rate now depends on the

noise exponent β.

Proposition 3. Let Assumptions A1 and A2 hold for some β ∈ (0,∞), and t⋆ = ∥θ⋆∥2. Suppose
h = hm is the function (5) with Z defined in Assumption A1. There are constants a, b > 0, depending
only on β and cZ , such that the following hold: there is a unique tm ≥ t1 = t⋆ solving h(tm) = 0
and for this tm we have both

θ̂mv
n,m

p→ tmu⋆ and lim
m→∞

tm
t⋆
√
m

= a.

Moreover, there exists a function Cm(t) = b
(t
√
m)2−β (1 + om(1)) as m → ∞ such that

√
n
(
ûmv
n,m − u⋆

) d→ N
(
0, Cm(t⋆) (Pu⋆ΣPu⋆)†

)
.

We defer the proof to Appendix G.2.
Paralleling the discussion in Section 3.1, we may compare the performance of the MLE θ̂lrn,m,

which uses all labels, and the majority-vote estimator θ̂mv
n,m using only the cleaned labels. When the

classification problem is hard—meaning that β in Condition (Mβ) is near 0 so that that classifying
most examples is nearly random chance—we see that the aggregation in the majority vote estimator
still allows convergence (nearly) as quickly as the non-aggregated estimator; the problem is so noisy
that data “cleaning” by aggregation is helpful. Yet for easier problems, where β ≫ 0, the gap
between them grows substantially; this is sensible, as aggregation is likely to force a dataset to be
separable, thus making fitting methods unstable (and indeed, a minimizer may fail to exist).

4 Label aggregation and misspecified model

The logistic link provides clean interpretation and results, but it is interesting to move beyond it
to more realistic cases where labelers use distinct links, although, to allow precise statements, we
still assume the same linear term x 7→ ⟨θ⋆, x⟩ for each labeler’s generalized linear model. We study
generalizations of the maximum likelihood and majority vote estimators (2) and (3), highlighting
dependence on link fidelity. In this setting, there arem (unknown and possibly distinct) link functions
σ⋆
i , i = 1, 2, . . . ,m. We show that the majority-vote estimator θ̂mv

n,m enjoys better robustness to

9



model mis-specification than the non-aggregated estimator θ̂lrn,m, though both use identical losses.
In particular, our main result in this section implies

√
n(ûlrn,m−u⋆)

d→ N (0, cΣ · (1 + om(1))) while
√
n(ûmv

n,m−u⋆)
d→ N

(
0,m−1/2cmvΣ · (1 + om(1))

)
,

where c and cmv are constants that depend only on the links σ, t⋆ = ∥θ⋆∥2, and Σ = I − u⋆u⋆⊤

when X ∼ N(0, Id). In contrast to the previous section, the majority-vote estimator enjoys roughly√
m-faster rates than the non-aggregated estimator, maintaining its (slow) improvement with m,

which the MLE loses to misspecification.
To set the stage for our results, we define the general link-based loss

ℓσ,θ(y | x) := −
∫ y⟨θ,x⟩

0
σ(−v)dv.

We then consider the general multi-label estimator and the majority-vote estimator based on the
loss ℓσ,θ,

θ̂n,m(σ) := argmin
θ

Pn,mℓσ,θ, θ̂mv
n,m(σ) := argmin

θ
Pn,mℓσ,θ. (7)

When σ = σlr is the logistic link, we recover the logistic loss ℓσlr,θ(y | x) = ℓlrθ (y | x), and thus we
recover the results in Section 3. For both the estimators, we suppress the dependence on the link σ
to write θ̂n,m, θ̂mv

n,m when the context is clear.

4.1 Master results

To characterize the behavior of multiple label estimators versus majority vote, we provide master
results as a foundation for our convergence rate analyses throughout. By a bit of notational chicanery,
we consider both the cases that Y is a majority vote and that we use multiple (non-aggregated)
labels simultaneously. In the case that the estimator uses the majority vote Y , let

φm(t) = ρm(t)1{t ≥ 0}+ (1− ρm(t))1{t < 0}, where ρm(t) := P(Y = sign(⟨X, θ⋆⟩) | ⟨X, θ⋆⟩ = t),

and in the case that the estimator uses each label from the m labelers, let

φm(t) =
1

m

m∑
j=1

σ⋆
j (t) =

1

m

m∑
j=1

P(Yj = 1 | ⟨X, θ⋆⟩ = t).

In either case, we then see that the population loss with the link-based loss ℓσ,θ becomes

L(θ, σ) = E [ℓσ,θ(1 | X)φm(⟨X, θ⋆⟩) + ℓσ,θ(−1 | X)(1− φm(⟨X, θ⋆⟩))] , (8)

where we have taken a conditional expectation given X. We assume Assumption A1 holds, that
X decomposes into the independent sum X = Zu⋆ +W with W ⊥ u⋆, and the true link functions
σ⋆
j ∈ Flink. We further impose the following assumption for the model link.

Assumption A3. For each sign s ∈ {−1, 1}, the model link function σ satisfies limt→s·∞ σ(t) =
1/2 + sc for a constant 0 < c ≤ 1/2 and is a.e. differentiable.

10



Minimizer of the population loss. We begin by characterizing—at a somewhat abstract
level—the (unique) solutions to the problem of minimizing the population loss (8). To characterize
the minimizer θ⋆L := argminθ L(θ, σ), we hypothesize that it aligns with u⋆ = θ⋆/ ∥θ⋆∥2, using the
familiar ansatz that θ has the form θ = tu⋆. Using the formulation (8), we see that for t⋆ := ∥θ⋆∥2,

∇L(θ, σ) = −E[σ(−⟨θ,X⟩)Xφm(⟨X, θ⋆⟩)] + E[σ(⟨θ,X⟩)X(1− φm(⟨X, θ⋆⟩))]
= −E[σ(−tZ)Xφm(t⋆Z)] + E[σ(tZ)X(1− φm(t⋆Z))]

= (−E[σ(−tZ)Zφm(t⋆Z)] + E[σ(tZ)Z(1− φm(t⋆Z))])u⋆ = hm(t)u⋆, (9)

where the final line uses the decomposition X = Zu⋆+W for the random vector W ⊥ u⋆ independent
of Z, and we recall expression (5) to define the calibration function

ht⋆,m(t) := E[σ(tZ)Z(1− φm(t⋆Z))]− E[σ(−tZ)Zφm(t⋆Z)]. (10)

The function h measures the gap between the hypothesized link function σ and the label probabilities
φm, functioning the approximately “calibrate” σ to the observed probabilities. If we presume that a
solution to ht⋆,m(t) = 0 exists, then evidently tu⋆ is a minimizer of L(θ, σ). In fact, such a solution
exists and is unique (see Appendix C for a proof):

Lemma 4.1. Let Assumption A1 hold and h = ht⋆,m be the gap function (10). Then there is a
unique solution tm > 0 to h(t) = 0, and the generic loss (8) has unique minimizer θ⋆L = tmu⋆.
Define the matrix

HL(t) := E[(σ′(−tZ)φm(t⋆Z) + σ′(tZ)(1− φm(t⋆Z)))Z2]u⋆u⋆⊤

+ E[σ′(−tZ)φm(t⋆Z) + σ′(tZ)(1− φm(t⋆Z))]P⊥
u⋆ΣP⊥

u⋆ .
(11)

Then the Hessian is ∇2L(θ⋆L, σ) = HL(tm).

Asymptotic normality with multiple labels. With the existence of minimizers assured, we
turn to their asymptotics. For each of these, we require slightly different calculations, as the resulting
covariances are slightly different. To state the result when we have multiple labels, we define the
average link function σ⋆ = 1

m

∑m
j=1 σ

⋆
j and the three functions

le(Z) := σ(tmZ)(1− σ⋆(t⋆Z))− σ(−tmZ)σ⋆(t⋆Z),

he(Z) := σ′(−tmZ)φm(t⋆Z) + σ′(tmZ)(1− φm(t⋆Z)), (12)

vj(Z) := σ⋆
j (t

⋆Z)(1− σ⋆
j (t

⋆Z))(σ(tmZ) + σ(−tmZ))2.

The first, the link error le, measures the mis-specification of the link σ relative to the average link
σ⋆. The second function, he, is a Hessian term, as HL(tm) = E[he(Z)Z2]u⋆u⋆⊤ + E[he(Z)]P⊥

u⋆ΣP⊥
u⋆ ,

and the third is a variance term for each labeler j. We have the following theorem, which we prove
in Appendix D.

Theorem 1. Let Assumptions A1 and A3 hold, and let θ̂n,m be the multilabel estimator (7). Define

the shorthand v = 1
m

∑m
j=1 vj. Then θ̂n,m

a.s.→ θ⋆L, and

√
n(θ̂n−θ⋆L)

d→ N

(
0,

E[le(Z)2Z2] +m−1E[v(Z)Z2]

E[he(Z)Z2]2
u⋆u⋆⊤ +

E[le(Z)2] +m−1E[v(Z)]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.

Additionally, if ûn = θ̂n,m/∥θ̂n,m∥2 and tm is the unique zero of the gap function ht⋆,m(t) = 0, then

√
n(ûn − u⋆)

d→ N

(
0,

1

t2m

E[le(Z)2] +m−1E[v(Z)]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.
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Theorem 1 exhibits two dependencies: the first on the link error terms E[le(Z)2]—essentially, a
bias term—and the second on the rescaled average variance 1

mE[v(Z)]. So the multi-label estimator
recovers an optimal O(1/m) covariance if the link errors are negligible, but if they are not, then it
necessarily has O(1) asymptotic covariance. The next corollary highlights how things simplify. In
the well-specified case that σ is symmetric and σ = σ⋆, the zero of the gap function (10) is evidently
tm = t⋆ = ∥θ⋆∥2, the error term le(Z) = 0, and vj(Z) = σ⋆(t⋆Z)(1− σ⋆(t⋆Z)), and by symmetry,
σ′(t) = σ′(−t) so that he(Z) = σ′(t⋆Z):

Corollary 3 (The well-specified case). Let the conditions above hold. Then

√
n(ûn − u⋆)

d→ N

(
0,

1

m
· 1

∥θ⋆∥22

E[σ(t⋆Z)(1− σ(t⋆Z))]

E[σ′(t⋆Z)]2
P⊥
u⋆ΣP⊥

u⋆

)
.

Asymptotic normality with majority vote. When we use the majority vote estimators, the
asymptotics are a bit different: there is no immediate improvement as the number of labelers m
increases, because there is no averaging to reduce variance, even in a “well-specified” case. Though,
as we shall see, the asymptotic covariance does decrease as m grows, but the dependence is more
subtle.

Theorem 2. Let Assumptions A1 and A3 hold, and let θ̂n = θ̂mv
n,m be the general majority vote

estimator (7). Let tm be the zero of the gap function (10), solving ht⋆,m(t) = 0. Then θ̂n
a.s.→ θ⋆L =

tmu⋆, and for ûn = θ̂n/∥θ̂n∥2, we have

√
n (ûn − u⋆)

d→ N

(
0,

1

t2m

E[σ(−tm|Z|)2ρm(t⋆Z) + σ(tm|Z|)2(1− ρm(t⋆Z))]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.

We defer the proof to Appendix E. In most cases, we will take the link function σ to be symmetric,
so that σ(t) = 1 − σ(−t), and thus σ′(t) = σ′(−t), so that he(z) = σ′(tmz) ≥ 0. This simplifies
the denominator in Theorem 2 to E[σ′(tmZ)]2. Written differently, we may define a (scalar)
variance-characterizing function Cm implicitly as follows: let tm = tm(t) be a zero of ht,m(s) =
E[σ(sZ)Z(1 − φm(tZ))] − E[σ(−sZ)Zφm(tZ)] = 0 in s, that is, ht,m(tm(t)) = 0 so that tm is a
function of the size t (recall the gap (10)), and then define

Cm(t) :=
1

t2m

E[σ(−tm|Z|)2ρm(tZ) + σ(tm|Z|)2(1− ρm(tZ))]

E[σ′(tmZ)]2
(13)

where tm = tm(t) above is implicitly defined. Then

√
n (ûn − u⋆)

d→ N

(
0, Cm(t⋆)

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.

Each of our main results, including those on well-specified models previously, then follows by
characterizing the behavior of Cm(t) in the asymptotics as m → ∞ and the scaling of the solution
norm tm = ∥θ⋆L∥2, which the calibration gap (10) determines. The key is that the scaling with m
varies depending on the fidelity of the model, behavior of the links σ, and the noise exponent (Mβ),
and our coming consequences of the master theorems 1 and 2 help to reify this scaling.

4.2 Robustness to model mis-specification

Having established the general convergence results for the multi-label estimator θ̂n,m and the majority

vote estimator θ̂mv
n,m(σ), we further explicate their performance when we have a mis-specified model—

the link σ is incorrect—by leveraging Theorems 1 and 2 to precisely characterize their asymptotics
and show the majority-vote estimator can be more robust to model mis-specification.
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Multi-label estimator. As our focus here is descriptive, to make interpretable statements about
the multi-label estimator θ̂n,m in (7), we simplify by assuming that each link σ⋆

j ≡ σ⋆ ∈ Flink is
identical. Then an immediate corollary of Theorem 1 follows:

Corollary 4. Let Assumptions A1 and A2 hold for some β ∈ (0,∞), and t⋆ = ∥θ⋆∥2. Then the
calibration gap function (10) has unique positive zero ht⋆,m(tσ⋆) = 0, and the multilabel estimator (7)
satisfies

θ̂n,m
p→ tσ⋆u⋆.

Additionally, the normalized estimate ûn,m = θ̂n,m/∥θ̂n,m∥2 satisfies

√
n (ûn,m − u⋆)

d→ N

(
0,

E[le(Z)2] +m−1E[v(Z)]

t2σ⋆E[he(Z)]2
(Pu⋆ΣPu⋆)†

)
.

So in this simplified case, the asymptotic covariance remains of constant order in m unless
E[le(Z)2] = 0. In contrast, as we now show, the majority vote estimator exhibits more robustness;
this is perhaps expected, as Corollary 2 shows that in the logistic link case, which is a fortiori
misspecified for majority vote labels, has covariance scaling as 1/

√
m, though the generality of the

behavior and its distinction from Corollary 4 is interesting.

Majority vote estimator. For the majority-vote estimator, we relax our assumptions and allow
σ⋆
j to be different, showing how the broad conclusions Corollary 4 suggests continue to hold in

some generality: majority vote estimators achieve slower convergence than well-specified (maximum
likelihood) estimators using each label, but exhibit more robustness. To characterize the large m
behavior, we require the following regularity conditions on the average link σ⋆

m = 1
m

∑m
j=1 σ

⋆
j , which

we require has a limiting derivative at 0.

Assumption A4. For a sequence of link functions {σj | j ∈ N} ⊂ Flink, let σ
⋆
m = 1

m

∑m
j=1 σ

⋆
j , there

exists σ⋆′(0) > 0 such that

(i) lim
m→∞

√
m

(
σ⋆
m

(
t√
m

)
− 1

2

)
= σ⋆′(0)t, for each t ∈ R; (14a)

(ii) lim inf
m→∞

inf
t̸=0

∣∣σ⋆
m(t)− 1

2

∣∣
min {|t|, 1}

> 0; (14b)

(iii) lim
t→0

sup
j∈N

∣∣∣∣σ⋆
j (t)−

1

2

∣∣∣∣ = 0. (14c)

These assumptions simplify if the links are identical: if σ⋆
j ≡ σ⋆, we only require σ⋆ is differentiable

around 0 with σ⋆′(0) > 0 and |σ⋆(t)− 1
2 | ≳ min{|t|, 1}.

We can apply Theorem 2 to obtain asymptotic normality for the majority vote estimator (7).
We recall the probability

ρm(t) := P(Y = sign(⟨X, θ⋆⟩) | ⟨X, θ⋆⟩ = t) (15)

of the majority vote being correct given the margin ⟨X, θ⋆⟩ = t and the calibration gap function (10),
which by a calculation case resolves to the more convenient form

h(t) = ht⋆,m(t) = E[σ(t|Z|)|Z|(1− ρm(t⋆Z))]− E[σ(−t|Z|)|Z|ρm(t⋆Z)].

The main technical challenge is to characterize the large m behavior for the asymptotic covariance
function Cm(t) defined implicitly in the quantity (13). We postpone the details to Appendix G.3
and state the result below, which is a consequence of Theorem 2 and a careful asymptotic expansion
of the covariance function (13).
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Proposition 4. Let Assumptions A1 and A2 hold for some β ∈ (0,∞) with
∫∞
0 zβ−1σ′(z)dz < ∞

and t⋆ = ∥θ⋆∥2, and in addition that Assumption A4 holds and σ is symmetric. Then there are
constants a, b > 0, depending only on β, cZ , σ, and σ⋆′(0), such that there is a unique tm ≥ t1 = t⋆

solving h(tm) = 0, and for this tm we have both

θ̂mv
n,m

p→ tmu⋆ and lim
m→∞

tm
t⋆
√
m

= a.

Moreover, the covariance (13) has the form Cm(t) = b
(t
√
m)2−β (1 + om(1)), and

√
n
(
ûmv
n,m − u⋆

) d→ N
(
0, Cm(t⋆) (Pu⋆ΣPu⋆)†

)
.

Proposition 4 highlights the robustness of the majority vote estimator: even when the link σ
is (more or less) arbitrarily incorrect, the asymptotic covariance still exhibits reasonable scaling.
The noise parameter β in Assumption A2, roughly equivalent to the Mammen-Tsybakov noise
exponent (Mβ), also plays an important role. In typical cases with β = 1 (e.g., when X ∼ N(0, Id)),
we see Cm(t) ≍ 1

t
√
m
. In noisier cases, corresponding to β ↓ 0, majority vote provides substantial

benefit approaching a well-specified model; conversely, in “easy” cases where β > 2, majority vote
estimators become more unstable, as they make the data (very nearly) separable, which causes
logistic-regression and other margin-type estimators to be unstable [5].

5 Semi-parametric approaches

The preceding analysis highlights distinctions between a fuller likelihood-based approach—which
uses all the labels, as in (2)—and the robust but somewhat slower rates that majority vote estimators
enjoy (as in Proposition 4). That full-label estimators’ performance so strongly depends on the
fidelity of the link (recall Corollary 4) suggests that we target estimators achieving the best of both
worlds: learn both a link function (or collection thereof) and refit the model using all the labels. In
this section, we develop this more efficient estimation scheme through semiparametric estimation
approaches.

We develop a few general convergence results into which we can essentially plug in semiparametric
estimators. In distinction from standard results in semiparametric theory (e.g. [36, Ch. 25] or [3]),
our results require little more than consistent estimation of the links σ⋆

j to recover 1/m (optimal)
scaling in the asymptotic covariance, as the special structure of our classification problem allows
more nuanced calculations; we assume each labeler (link function) generates labels for each of
the n datapoints X1, . . . , Xn, but we could relax the assumption at the expense of extraordinarily
cumbersome notation. We give two example applications of the general theory: the first (Sec. 5.2)
analyzing a full pipeline for a single index model setting, that robustly estimates direction u⋆, the link
σ⋆, and then re-estimates θ⋆; the second assuming a stylized black-box crowdsourcing mechanism
that provides estimates of labeler reliability, highlighting how even in some crowdsourcing scenarios,
there could be substantial advantages to using full label information.

5.1 Master results

For our specializations, we first provide master results that allow semi-parametric estimation of the
link functions. We consider Lipschitz symmetric link functions, where for L > 0 we define

FL
link := {σ | σ ̸≡ 1/2 is non-decreasing, symmetric, and L-Lipschitz continuous} ⊂ F0

link.
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We consider the general case where there are m distinct labeler link functions σ⋆
1, . . . , σ

⋆
m. To

eliminate ambiguity in the links, we assume the model is normalized, ∥θ⋆∥2 = 1 so θ⋆ = u⋆. To
distinguish from the typical case, we write σ⃗ = (σ1, . . . , σm), and for (x, y) ∈ Rd × {±1}m define

ℓσ⃗,θ(y | x) := 1

m

m∑
j=1

ℓσj ,θ(yj | x),

which allows us to consider both the standard margin-based loss and the case in which we learn
separate measures of quality per labeler. With this notation, we can then naturally define the
population loss

L(θ, σ⃗) :=
1

m

m∑
j=1

E[ℓσj ,θ(Yj | X)].

For any sequence {σ⃗n} ⊂ (FL
link)

m of (estimated) links and data (Xi, Yi) for Yi = (Yi1, . . . , Yim), we
define the semi-parametric estimator

θ̂spn,m := argmin
θ∈Rd

1

n

n∑
i=1

ℓσ⃗n,θ(Yi | Xi).

We will demonstrate both consistency and asymptotic normality under appropriate convergence
and regularity assumptions for the link functions. We assume there is a (semiparametric) collection
F sp
link ⊂ (FL

link)
m of link functions of interest, which may coincide with (FL

link)
m but may be smaller,

making estimation easier. Define the distance dF sp
link

on Rd ×F sp
link by

dF sp
link

((θ1, σ⃗1), (θ2, σ⃗2)) := ∥θ1 − θ2∥2 + ∥σ⃗1(−Y ⟨X,u⋆⟩)− σ⃗2(−Y ⟨X,u⋆⟩)∥L2(P) .

We make the following assumption.

Assumption A5. The links σ⃗⋆ ∈ F sp
link are normalized so that P(Yj = y | X = x) = σ⋆

j (y⟨x, u⋆⟩),
and the sequence {σ⃗n} ⊂ F sp

link is consistent:

∥σ⃗n(−Y ⟨X,u⋆⟩)− σ⃗⋆(−Y ⟨X,u⋆⟩)∥L2(P)
p→ 0.

Additionally, the mapping (θ, σ⃗) 7→ ∇2
θL(θ, σ⃗) is continuous for dF sp

link
at (u⋆, σ⃗⋆).

The continuity of ∇2
θL(θ, σ⃗) at (u⋆, σ⃗⋆) allows us to develop local asymptotic normality. To

see that we may expect the assumption to hold, we give reasonably simple conditions sufficient
for it, including that the collection of links F sp

link is sufficiently smooth or the data distribution is
continuous enough. (See Appendix H.1 for a proof.)

Lemma 5.1. Let dF sp
link

be the distance in Assumption A5. Let Assumption A1 hold, where |Z| > 0

with probability one, has nonzero and continuously differentiable density p(z) on (0,∞) satisfying
limz→s z

2p(z) = 0 for s ∈ {0,∞}. The mapping (θ, σ⃗) 7→ ∇2
θL(θ, σ⃗) is continuous for dF sp

link
at

(u⋆, σ⃗⋆) whenever E[∥X∥42] < ∞ and either of the following conditions holds:

1. For any σ⃗ = (σ1, . . . , σm) ∈ F sp
link, σ

′
j are L′-Lipschitz continuous.

2. X has continuous density on Rd.
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We can now present the master result for semi-parametric approaches, which characterizes the
asymptotic behavior of the semi-parametric estimator with the variance function

Cm,σ⃗⋆ :=
1

m
·

1
m

∑m
j=1 E[σ⋆

j (Z)(1− σ⋆
j (Z))]

( 1
m

∑m
j=1 E[σ⋆

j
′(Z)])2

.

Theorem 3. Let Assumption A1 hold and assume |Z| > 0 with probability one and has nonzero
and continuous density p(z) on (0,∞). Let Assumption A5 hold and assume that E[∥X∥42] < ∞.

Then
√
n(θ̂spn,m − u⋆) is asymptotically normal, and the normalized estimator ûspn,m = θ̂spn,m/∥θ̂spn,m∥2

satisfies
√
n
(
ûspn,m − u⋆

) d→ N

(
0, Cm,σ⃗⋆

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.

See Appendix F for proof details. Notably, Theorem 3 exhibits optimal 1/m scaling in the covariance
whenever E[σ⋆

j
′(Z)] ≳ 1.

5.2 A single index model

Our first example application of Theorem 3 is to a single index model. We present a multi-
phase estimator that first estimates the direction u⋆ = θ⋆/∥θ⋆∥2, then uses this estimate to find a
(consistent) estimate of the link σ⋆, which we can then substitute directly into Theorem 3. We defer
all proofs of this section to Appendix I, which also includes a few auxiliary results that we use to
prove the results proper.

We present the the abstract convergence result for link functions first, considering a scenario
where we have an initial guess uinitn of the direction u⋆, independent of (Xi, Yij)i≤n,j≤m, for example
constructed via a small held-out subset of the data. We set

σ⃗n = argmin
σ⃗∈F sp

link

n∑
i=1

m∑
j=1

(
σj(⟨uinitn , Xi⟩)− Yij

)2
,

where F sp
link ⊂ (FL

link)
m and so it consists of nondecreasing L-Lipschitz link functions with σ(0) = 1

2 .
We assume that for all n, there exists a (potentially random) ϵn such that

∥uinitn − u⋆∥2 ≤ ϵn.

Proposition 5. Let Xi be vectors with E[∥X∥k2] < ∞, where k ≥ 2. Then with probability 1, there
is a finite (random) C < ∞ such that for all large enough n,

∥σ⃗n(Y ⟨u⋆, X⟩)− σ⃗⋆(Y ⟨u⋆, X⟩)∥2L2(P) ≤ C
[
n

2
3k

− 2
3 + ϵ2n +Mn

− k
2(k+1)

]
.

The proof is more or less a consequence of standard convergence results for nonparametric function
estimation, though we include it for completeness in Appendix I.2 as it includes a few additional
technicalities because of the initial estimate of u⋆.

Summarizing, we see that a natural procedure is available: if we have models powerful enough
to accurately estimate the conditional label probabilities Y | X, then Proposition 5 coupled with
Theorem 3 shows that we can achieve estimation with near-optimal asymptotic covariance. In
particular, if uinitn is consistent (so ϵn

p→ 0), then θ̂spn,m induces a normalized estimator ûspn =

θ̂spn,m/∥θ̂spn,m∥2 satisfying
√
n(ûspn − u⋆)

d→ N(0, Cm,σ⃗(P
⊥
u⋆ΣP⊥

u⋆)†).
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5.3 Crowdsourcing model

Crowdsourcing typically targets estimating rater reliability, then using these reliability estimates to
recover ground truth labels as accurately as possible, with versions of this approach central since at
least Dawid and Skene’s Expectation-Maximization-based approaches [9, 41, 29]. We focus here
on a simple model of rater reliability, highlighting how—at least in our stylized model of classifier
learning—by combining a crowdsourcing reliability model and still using all labels in estimating a
classifier, we can achieve asymptotically efficient estimates of θ⋆, rather than the robust but slower
estimates θ̂mv

n,m arising from “cleaned” labels.
We adopt Whitehill et al.’s roughly “low-rank” model for label generation [41]: for binary

classification with m labelers and distinct link functions σ⋆
i , model the difficulty of Xi by βi ∈

(−∞,∞), where sign(βi) denotes the true class Xi belongs to. A parameter αj models the expertise
of annotator j, and the probability labeler j correctly classifies Xi is

P(Yij = 1) =
1

1 + exp(−αiβj)
.

(See also Raykar et al. [29].) The focus in these papers was to construct gold-standard labels and
datasets (Xi, Yi); here, we take the alternative perspective we have so far advocated to show how
using all labels can yield strong performance.

We thus adopt a semiparametric approach: we model the labelers, assuming a black-box
crowdsourcing model that can infer each labeler’s ability, then fit the classifier. We represent labeler
j’s expertise by a scalar α⋆

j ∈ (0,∞). Given data Xi = X and the normalized θ⋆ = u⋆, we assume a
modified logistic link

P(Yij = 1 | Xi = x) =
1

1 + exp(−α⋆
j ⟨θ⋆, x⟩)

= σlr(α⋆
j ⟨u⋆, x⟩),

so α⋆
j = ∞ represents an omniscient labeler while α⋆

j = 0 means the labeler chooses random labels
regardless of the data. Let α⋆ = (α⋆

1, . . . , α
⋆
m) ∈ Rm

+ . Then, in keeping with the plug-in approach
of the master Theorem 3, we assume the blackbox crowdsourcing model generates an estimate
αn = (αn,1, . . . , αn,m) ∈ Rm

+ of α⋆ from the data {(Xi, (Yi1, . . . , Yim))}ni=1.
We consider the algorithm using the blackbox crowdsourcing model and empirical risk minimiza-

tion with the margin-based loss ℓσ⃗n,θ as in Section 5.1, with σ⃗n(t) := (σlr(αn,1t), · · · , σlr(αn,mt)), or
equivalently using the rescaled logistic loss

ℓσ⃗n,θ(y | x) = 1

m

m∑
j=1

ℓlrθ (yj | αn,jx).

This allows us to apply our general semiparametric Theorem 3 as long as the crowdsourcing model
produces a consistent estimate αn

p→ α⋆ (see Appendix H.2 for a proof):

Proposition 6. Let Assumption A1 hold, |Z| > 0 have nonzero and continuous density p(z) on

(0,∞), and E[∥X∥42] < ∞. If αn
p→ α⋆ ∈ Rm, then

√
n(θ̂spn,m − u⋆) is asymptotically normal, and

the normalized estimator ûspn,m = θ̂spn,m/∥θ̂spn,m∥2 satisfies

√
n
(
ûspn,m − u⋆

) d→ N

(
0,

1∑m
j=1 E[σlr(α⋆

jZ)(1− σlr(α⋆
jZ))]

(
P⊥
u⋆ΣP⊥

u⋆

)†)
.
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By Proposition 6, the semiparametric estimator ûspn,m is efficient when the rater reliability
estimates αn ∈ Rm are consistent. It is also immediate that if α⋆

j ≤ αmax < ∞ are bounded, then

the asymptotic covariance multiplier Cm,α⋆ = (
∑m

j=1 E[σlr(α⋆
jZ)(1−σlr(α⋆

jZ))])−1 = O(1/m), so we
recover the 1/m scaling of the MLE, as opposed to the slower rates of the majority vote estimators
in Section 4.2. At this point, the refrain is perhaps unsurprising: using all the label information can
yield much stronger convergence guarantees.

6 Experiments

We conclude the paper with several experiments to evaluate the methods we propose in this paper
and to test whether their (sometimes implicit) methodological suggestions hold merit. Before delving
into our experimental results, we detail a few of the expected behaviors our theory suggests; if we
fail to see them, then the model we have proposed is too unrealistic to inform practice. First, based
on the results in Section 3, we expect the classification error to be better for the non-aggregated
algorithm θ̂lrn,m, and the gap between the two algorithms to become larger for less noisy problems.

Moreover, we only expect θ̂lrn,m to be calibrated, and our theory predicts that the majority-vote
estimator’s calibration worsens as the number of labels m increases. More generally, so long as
we model uncertainty with enough fidelity, Corollary 4 suggests that multilabel estimators should
exhibit better performance than those using majority vote labels Y .

To that end, we provide two experiments on real datasets: the BlueBirds dataset (Section 6.1)
and CIFAR-10H (Section 6.2). Unfortunately, a paucity of large-scale multi-label datasets that we
know of precludes more experiments; the ImageNet creators [10, 31] no longer have any intermediate
label information from their construction. We consider our two main algorithmic models:

(i) The maximum likelihood estimator θ̂lrn,m based on non-aggregated data in Eq. (2).

(ii) The majority-vote based estimator θ̂mv
n,m of Eq. (3), our proxy for modern data pipelines.

6.1 BlueBirds

We begin with the BlueBirds dataset [40], which is a relatively small dataset consisting of 108
images with ResNet features. The classification problem is challenging, and the task is to classify
each image as one of Indigo Bunting or Blue Grosbeak (two similar-looking blue bird species). For
each image, we have 39 labels, obtained through Amazon Mechanical Turk workers. We use a
pretrained (on ImageNet) ResNet50 model to generate image features, then apply PCA to reduce
the dimensionality from dinit = 2048 to d = 25.

We repeat the following experiment T = 100 times. For each number m = 1, . . . , 35 of labelers,
we fit the multilabel logistic model (2) and the majority vote estimator (3), finding calibration
and classification errors using 10-fold cross validation. We measure calibration error on a held-out
example x by | logit(p̃(x)) − logit(p̂(x))|, where p̃(x) is the predicted probability and p̂(x) is the
empirical probability (over the labelers), where logit(p) = log p

1−p ; we measure classification error

on example x with labels (y1, . . . , ym) by 1
m

∑m
j=1 1{yj ̸= sign(p̃(x)− 1

2)}, giving an inherent noise
floor because of labeler uncertainty. We report the results in Figure 1. These plots corroborate
our theoretical predictions: as the number of labelers m increases, both the majority vote method
and the full label method exhibit improved classification error, but considering all labels gives a
(significant) improvement in accuracy and in calibration error.
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Figure 1. Experiments on BlueBirds dataset. (a) Classification error. (b) Calibration error
| logit(p̃)− logit(p)| with ResNet features reduced via PCA to dimension d = 25. Error bars show 2
standard error confidence bands over T = 100 trials.
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Figure 2. Experiments on CIFAR-10H dataset. (a) Classification error. (b) Calibration error
| logit(p̃)− logit(p)| with ResNet features reduced via PCA to dimension d = 40. Error bars show 2
standard error confidence bands over T = 100 trials.

6.2 CIFAR-10H

For our second experiment, we consider Peterson et al.’s CIFAR-10H dataset [24], which consists of
10,000 images from CIFAR-10 test set with soft labeling in that for each image, we have approximately
50 labels from different annotators. Each 32× 32 image in the dataset belongs to one of the ten
classes airplane, automobile, bird, cat, dog, frog, horse, ship, or truck; labelers assign each
image to one of the classes. To maintain some fidelity to the binary classification setting we analyze
throughout the paper, we transform the problem into a set of 10 binary classification problems. For
each class c, we take each initial image/label pair (x, y) ∈ R32×32 × {1, . . . , 10}, assigning binary
label 1 if y = c and 0 otherwise (so the annotator labels it as an alternative class y ̸= c). Most of the
images in the dataset are very easy to classify: more than 80% have a unanimous label from each of
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the m = 50 labelers, meaning that the MLE and majority vote estimators (2) and (3) coincide for
these. (In experiments with this full dataset, we saw little difference between the two estimators.)

As our theoretical results highlight the importance of classifier difficulty, we therefore balance
the dataset by considering subsets of harder images as follows. For each fixed target c (e.g., cat)
and for image i, let p̂i be the empirical probability of the target among the 50 annotator labels.
Then for p ∈ [12 , 1], define the subsets

Sp = {i ∈ [n] : max {p̂i, 1− p̂i} ≤ p} ,

so that p = 1
2 corresponds to images with substantial confusion, and p = 1 to all images (most of

which are easy). We test on S0.9 (labelers have at most 90% agreement), which consists of with 441
images. For image i, we again generate features xi ∈ Rd by by taking the last layer of a pretrained
ResNet50 neural network x̃i ∈ Rdinit , using PCA to reduce to a d = 40-dimensional feature. We
follow the same procedure as in Sec. 6.1, subsampling m = 1, 2, . . . , 45 labelers and using 10-fold
cross validation to evaluate classification and calibration error. We report the results in Figure 2.
Again we see that—as the number of labelers increases—both aggregated and non-aggregated
methods evidence improved classification error, but the majority vote procedure (cleaned data)
yields less improvement than one with access to all (uncertain) labels. These results are again
consistent with our theoretical predictions.

7 Discussion

In spite of the technical detail we require to prove our results, we view this work as almost preliminary
and hope that it inspires further work on the full pipeline of statistical machine learning, from
dataset creation to model release. Many questions remain both on the theoretical and applied sides
of the work.

On the theoretical side, our main focus has been on a stylized model of label aggregation, with
majority vote mostly—with the exception of the crowdsourcing model in Sec. 5.3–functioning as
the stand-in for more sophisticated aggregation strategies. It seems challenging to show that no
aggregation strategy can work as well as multi-label strategies; it would be interesting to more
precisely delineate the benefits and drawbacks of more sophisticated denoising and whether it
is useful. We focus throughout on low-dimensional asymptotics, using asymptotic normality to
compare estimators. While these insights are valuable, and make predictions consistent with the
experimental work we provide, investigating how things may change with high-dimensional scaling
or via non-asymptotic results might yield new insights both for theory and methodology. As one
example, with high-dimensional scaling, classification datasets often become separable [5, 6], which
is consistent with modern applied machine learning [42] but makes the asymptotics we derive
impossible. One option—for which we have a few preliminary results that we omit, as they are
similar to the many results we already include—is to investigate the asymptotics of maximum-margin
estimators, which coincide with the limits of ridge-regularized logistic regression [30, 34].

On the methodological and applied side, given the extent to which the test/challenge dataset
methodology drives progress in machine learning [11], it seems that developing newer datasets to
incorporate labeler uncertainty could yield substantial benefits. A particular refrain is that modern
deep learning methods are overconfident in their predictions [13, 42]; perhaps by calibrating them
to labeler uncertainty we could substantially improve their robustness and performance. We look
forward to deeper investigations of the intricacies and intellectual foundations of the full practice of
statistical machine learning.
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A Technical lemmas

We collect several technical lemmas and their proofs in this section, which will be helpful in the
main proofs. See Appendices A.1, A.2, A.3 and A.4 for their proofs.

Lemma A.1. Suppose A,B ∈ Rd×d are symmetric, AB = BA = 0 and the matrix A + B is
invertible. Then

(A+B)−1 = A† +B†.

The next two lemmas characterize asymptotic behaviors of expectations involving a fixed function
f and some random variable Z that satisfies Assumption A2 for given β > 0 and cZ < ∞. To
facilitate stating the theorems, we recall that such Z are (β, cZ)-regular.

Lemma A.2. Let β > 0 and f be a function on R+ such that zβ−1f(z) is integrable. If Z is
(β, cZ)-regular (Assumption A2), then

lim
t→∞

tβE[f(t|Z|)] = cZ

∫ ∞

0
zβ−1f(z)dz.

Lemma A.3. Let β > 0 and cZ < ∞, and Z be (β, cZ)-regular, let f : R+ → R satisfy |f(z)| ≤
a0 + apz

p for some a0, ap < ∞ and all z ∈ R, and assume |Z| has finite pth moment. Additionally
let ρm(t) be the majority vote prediction function (15) and Assumption A4 hold for each σ⋆

j with
limiting average derivative σ⋆′(0) at zero. Then for any c > 0

lim
m→∞

m
β
2E
[
f(
√
m|Z|)(1− ρm(cZ))

]
= cZ

∫ ∞

0
zβ−1f(z)Φ

(
−2σ⋆′(0)cz

)
dz,

where Φ(z) =
∫ z
−∞

1√
2π
e−

t2

2 dt is the standard normal cumulative distribution function.

The fourth lemma is a uniform convergence result for the empirical risk in the case that we have
potentially distinct link functions (cf. Sec. 5.1).

Lemma A.4. Assume E[∥X∥γ2 ] ≤ Mγ for some M ≥ 1 and γ ≥ 2 and let the radius 1 ≤ r < ∞.
Let Flink ⊂ {σ : R → [0, 1], ∥σ∥Lip ≤ L}. Then for a constant C ≲

√
dL, we have

E

[
sup

∥θ∥2≤r
sup

σ⃗∈Fm
link

|Pnℓσ⃗,θ − L(θ, σ⃗)|

]
≤ C · (Mr)

4γ
3γ+1

(m
n

) γ
3γ+1

√
log(rn).

A.1 Proof of Lemma A.1

As AB = BA = 0, the symmetric matrices A and B commute and so are simultaneously orthogonally
diagonalizable [15, Thm. 4.5.15]. As AB = BA = 0, we can thus write

A = U

[
Λ1 0
0 0

]
U⊤, B = U

[
0 0
0 Λ2

]
U⊤,

for some orthogonal U ∈ Rd×d, and as A+B is invertible, Λ1,Λ2 are invertible diagonal matrices.
We conclude the proof by writing

(A+B)−1 = U

[
Λ−1
1 0

0 Λ−1
2

]
U⊤ = U

[
Λ−1
1 0
0 0

]
U⊤ + U

[
0 0

0 Λ−1
2

]
U⊤ = A† +B†.
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A.2 Proof of Lemma A.2

By the change of variables w = tz, we have

tβE[f(t|Z|)] =
∫ ∞

0
f(tz) · tβ−1p(z) · tdz =

∫ ∞

0
f(w) · tβ−1p(w/t)dw

=

∫ ∞

0
wβ−1f(w) · (w/t)1−βp(w/t)dw.

As |wβ−1f(w) · (w/t)1−βp(w/t)| ≤ supz∈(0,∞) z
1−βp(z) · |wβ−1f(w)|, where wβ−1f(w) is integrable

by assumption, we can invoke dominated convergence to see that

lim
t→∞

tβE[f(t|Z|)] =
∫ ∞

0
wβ−1f(w) · lim

t→∞
(w/t)1−βp(w/t)dw = cZ

∫ ∞

0
wβ−1f(w)dw.

A.3 Proof of Lemma A.3

By rescaling arguments, it suffices to prove the theorem for any function f satisfying |f(z)| ≤ 1+ zp

on R+ for any p ∈ N such that |Z| has finite pth moment. For such f , we wish to show

lim
m→∞

m
β
2E
[
f(
√
m|Z|)(1− ρm(cZ))

]
= cZ

∫ ∞

0
zβ−1f(z)Φ

(
−2σ⋆′(0)cz

)
dz,

where Φ is the standard normal cdf. The key insight is that we can approximate 1 − ρm(t) by
a suitable Gaussian cumulative distribution function (recognizing that ρm(t) > 1

2 for t ̸= 0 by
definition (15) as the probability the majority vote is correct given margin ⟨θ⋆, X⟩ = t).

We first assume Z ≥ 0 with probability 1, as the general result follows by writing Z =
(Z)+ − (−Z)+. We decompose into two expectations, depending on Z being large or small:

m
β
2E
[
f(
√
m|Z|)(1− ρm(cZ))

]
= m

β
2E
[
f(
√
mZ)(1− ρm(cZ))1

{
0 ≤ Z ≤ M√

m

}]
︸ ︷︷ ︸

(I)

+m
β
2E
[
f(
√
mZ)(1− ρm(cZ))1

{
Z >

M√
m

}]
︸ ︷︷ ︸

(II)

.

(16)

The proof consists of three main parts.

1. We approximate 1− ρm(t) by a Gaussian cdf.

2. We can approximate term (I) by replacing 1− ρm(t) with the Gaussian cdf, showing that∣∣∣∣ limm→∞
(I)− cZ

∫ ∞

0
zβ−1f(z)Φ

(
−2σ⋆′(0)cz

)
dz

∣∣∣∣ = oM (1). (17)

3. For term (II), we show 1− ρm(cz) is small when Z > M/
√
m, which allows us to show that

lim sup
m→∞

|(II)| = oM (1).

Thus by adding the two preceding displays and taking M → ∞, we obtain the lemma.
Before we dive into further details, we use the shorthand functions

σstd
m (z) :=,

∑m
j=1(σ

⋆
j (cz)− 1

2)√∑m
j=1 σ

⋆
j (cz)(1− σ⋆

j (cz))
, ∆m(z) := 1− ρm(cz)− Φ(−σstd

m (z)), (18)

and we also write p∞(β) := supz∈(0,∞) z
1−βp(z) < ∞.
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Part 1. Normal approximation for 1 − ρm(t) when t = O(1/
√
m). Let pj = σ⋆

j (t) for
shorthand and Yj ∼ Bernoulli(pj) be independent random variables. For t > 0, then

1− ρm(t) = P
(
Y1 + · · ·+ Ym <

1

2

)
= P

 ∑m
j=1(Yj − pj)√∑m
j=1 pj(1− pj)

< −
∑m

j=1(pj −
1
2)√∑m

j=1 pj(1− pj)

 .

Consider the centered and standardized random variables ξj = (Yj − pj)/
√∑m

j=1 pj(1− pj) so that

ξ1, · · · , ξm are zero mean, mutually independent, and satisfy

m∑
j=1

Var (ξj) = 1,

m∑
j=1

E
[
|ξj |3

]
=

∑m
j=1 pj(1− pj)(p

2
j + (1− pj)

2)

(
∑m

j=1 pj(1− pj))3/2
≤

max1≤j≤m(p2j + (1− pj)
2)√∑m

j=1 pj(1− pj)
.

By the Berry-Esseen theorem (cf. Chen et al. [8], Shevtsova [33]), for all t > 0∣∣∣∣∣∣1− ρm(t)− Φ

−
∑m

j=1

(
pj − 1

2

)√∑m
j=1 pj(1− pj)

∣∣∣∣∣∣ ≤ 3

4
·
max1≤j≤m(p2j + (1− pj)

2)√∑m
j=1 pj(1− pj)

.

Fix any M < ∞. Then for 0 ≤ t ≤ cM/
√
m and large enough m, the right hand side of the

preceding display has the upper bound 2/
√
m, as in numerator we have p2j + (1− pj)

2 ≤ 1, and in
denominator min1≤j≤m pj(1− pj) → 1/4 for all j as m → ∞, which follows from Assumption A4
that

1

2
≤ lim sup

m→∞
max

1≤j≤m
pj ≤ lim sup

m→∞
sup

1≤j<∞
σ⋆
j

(
cM√
m

)
=

1

2
.

By repeating the same argument for −cM/
√
m ≤ t < 0, we obtain that for largem and |t| ≤ cM/

√
m,∣∣∣∣∣∣∣∣1− ρm(t)− Φ

−

∣∣∣∣∣∣∣∣
∑m

j=1

(
σ⋆
j (t)− 1

2

)
√∑m

j=1 σ
⋆
j (t)

(
1− σ⋆

j (t)
)
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ ≤

2√
m
. (19)

Part 2. Approximating (I) by Gaussian cdf. For the first term (I) in (16), we further
decompose into a normal approximation term and an error term,

(I) = m
β
2E
[
f(
√
mZ)Φ(−σstd

m (z))1

{
0 ≤ Z ≤ M√

m

}]
︸ ︷︷ ︸

(III)

+m
β
2E
[
f(
√
mZ)∆m(z)1

{
0 ≤ Z ≤ M√

m

}]
︸ ︷︷ ︸

(IV)

,

where ∆m(z) = 1 − ρm(cz) − Φ(−σstd
m (z)) as in def. (18). We will show (IV) → 0 and so (III)

dominates. By the change of variables w =
√
mz, we can further write (III) as

(III) = m
β
2

∫ M√
m

0
f(
√
mz)Φ(−σstd

m (z)) · p(z)dz

=

∫ M

0
wβ−1f(w)Φ

(
−σstd

m

(
w√
m

))
· (w/

√
m)1−βp(w/

√
m)dw.
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We want to take the limitm → ∞ and apply dominated convergence theorem. Because (w/
√
m)1−βp(w/

√
m) ≤

p∞(β) < ∞ and σstd
m (w/

√
m) ≥ 0, we have

wβ−1f(w)Φ

(
−σstd

m

(
w√
m

))
·
(
−σstd

m

(
w√
m

))
· (w/

√
m)1−βp(w/

√
m) ≤ wβ−1f(w) · Φ(0)p∞(β).

As β > 0 and |f(w)| ≤ 1 + wp, wβ−1f(w) is integrable on [0,M ], and by (14a) and (14c) in
Assumption A4,

lim
m→∞

σstd
m

(
w√
m

)
= lim

m→∞

√
m
(
σ⋆
m

(
cw√
m

)
− 1

2

)
√

1
m

∑m
j=1 σ

⋆
j

(
cw√
m

)(
1− σ⋆

j

(
cw√
m

)) = 2σ⋆′(0)cw.

Using the above display and that limm→∞(w/
√
m)1−βp(w/

√
m) = cZ , we can thus apply dominated

convergence theorem to conclude that

lim
m→∞

(III) = cZ

∫ M

0
wβ−1f(w) · Φ

(
−2σ⋆′(0)cw

)
dw = cZ

∫ ∞

0
wβ−1f(w)Φ

(
−2σ⋆′(0)cw

)
dw + oM (1).

Next we turn to the error term (IV). By the bound (19), |∆m(z)| ≤ 2/
√
m when |z| ≤ M/

√
m

for large enough m, and substituting w =
√
mz,

|(IV)| ≤ m
β
2E
[
|f(

√
mZ)| · 2√

m
· 1
{
0 ≤ Z ≤ M√

m

}]
=

2√
m

∫ M√
m

0

√
m · |f(

√
mz)| ·m

β−1
2 p(z)dz =

2√
m

∫ M

0
wβ−1|f(w)| · (w/

√
m)1−βp(w/

√
m)dw.

By using Assumption A2 again that (w/
√
m)1−βp(w/

√
m) ≤ p∞(β) < ∞, we further have

|(IV)| ≤ 2p∞(β)√
m

·
∫ M

0
wβ−1|f(w)|dw ≤ 2p∞(β)√

m
·
(
Mβ

β
+

Mp+β

p+ β

)
→ 0,

where we use |f(w)| ≤ 1 + wp. We have thus shown the limit (17).

Part 3. Upper bounding (II). In term (II), when Z is large, the key is that the quantity
1− ρm(t) is small when |t| ≥ cM/

√
m: Hoeffding’s inequality implies the tail bound

0 ≤ 1− ρm(t) ≤ e−2(σ⋆
m(t)− 1

2)
2
m.

Thus

|(II)| ≤
∫ 1

M√
m

√
m|f(

√
mz)|e−2(σ⋆

m(cz)− 1
2)

2
m ·m

β−1
2 p(z)dz +

∫ ∞

1
m

β
2 |f(

√
mz)|e−2(σ⋆

m(cz)− 1
2)

2
m · p(z)dz.

Using the assumption that γ := lim infm inft≥c

(
σ⋆
m(t)− 1

2

)
> 0 from (14b), that |f(z)| ≤ 1 + zp

and |Z| has finite pth moment, we observe that∫ ∞

1
m

β
2 |f(

√
mz)|e−2(σ⋆

m(cz)− 1
2)

2
m · p(z)dz ≤ m

1
2
(β+p)e−2γ2m

∫ ∞

1
(1 + zp)p(z)dz → 0,
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and consequently

lim sup
m→∞

|(II)| ≤ lim sup
m→∞

∫ 1

M√
m

√
m|f(

√
mz)|e−2(σ⋆

m(cz)− 1
2)

2
m ·m

β−1
2 p(z)dz

= lim sup
m→∞

∫ √
m

M
wβ−1|f(w)|e−2

(
σ⋆
m

(
cw√
m

)
− 1

2

)2
m · (w/

√
m)1−βp(w/

√
m)dw.

For w ∈ [M,
√
m], we have

(
σ⋆
m

(
cw√
m

)
− 1

2

)2

m =

σ⋆
m

(
cw√
m

)
− 1

2

cw√
m

2

c2w2 ≥

(
inf

0<t≤c

σ⋆
m(t)− 1

2

t

)2

c2w2,

while Assumption (14b) gives δ := inf0<t≤c
σ⋆
m(t)− 1

2
t > 0, so

lim sup
m→∞

|(II)| ≤
∫ √

m

M
wβ−1|f(w)|e−δw2 · (w/

√
m)1−βp(w/

√
m)dw.

Using the inequality (w/
√
m)1−βp(w/

√
m) ≤ p∞(β) < ∞, we apply dominated convergence:

lim
m→∞

∫ √
m

M
wβ−1|f(w)|e−δw2 · (w/

√
m)1−βp(w/

√
m)dw = cZ

∫ ∞

M
wβ−1|f(w)|e−δw2

dw = oM (1).

A.4 Proof of Lemma A.4

We follow a typical symmetrization approach, then construct a covering that we use to prove the
lemma. Let P 0

n = n−1
∑n

i=1 εi1Xi,Yi be the (random) symmetrized measure with point masses at
(Xi, Yi) for Yi = (Yi1, . . . , Yim). Then by a standard symmetrization argument, we have

E

[
sup

∥θ∥2≤r
sup

σ⃗∈Fm
link

|Pnℓσ⃗,θ − L(θ, σ⃗)|

]
≤ 2E

[
sup

∥θ∥2≤r
sup

σ⃗∈Fm
link

∣∣P 0
nℓσ⃗,θ

∣∣] . (20)

We use a covering argument to bound the symmetrized expectation (20). Let R < ∞ to be
chosen, and for an (again, to be determined) ϵ > 0 let G ⊂ Flink denote an ϵ-cover of Flink in the
supremum norm on [−R,R], that is, ∥g − σ∥ = supt∈[−R,R] |g(t)− σ(t)|, and so for each σ ∈ Flink

there exists g ∈ G such that ∥g − σ∥ ≤ ϵ. Then [37, Ch. 2.7] we have log card(G) ≤ O(1)RL
ϵ .

Let Θϵ be a minimal ϵ-cover of {θ | ∥θ∥2 ≤ r} in ∥·∥2, so that log card(Θϵ) ≤ d log(1 + 2r
ϵ ) and

maxθ∈Θϵ ∥θ∥2 ≤ r. We claim that for each ∥θ∥2 ≤ r and σ ∈ Flink, there exists v ∈ Θϵ and g ∈ G
such that∣∣∣∣∣ 1n

n∑
i=1

εi (ℓσ,θ(Yij | Xi)− ℓg,v(Yij | Xi))

∣∣∣∣∣ ≤ ϵ+
1

n

n∑
i=1

∥Xi∥2 ϵ+
1

n

n∑
i=1

1{∥Xi∥2 ≥ R/r} . (21)

Indeed, for any g ∈ Flink and θ, v ∈ Rd, we have

|ℓσ,θ(y | x)− ℓg,v(y | x)| =

∣∣∣∣∣
∫ y⟨x,θ⟩

0
σ(−t)dt−

∫ y⟨x,v⟩

0
g(−t)dt

∣∣∣∣∣
≤ sup

|t|≤r∥x∥2
|σ(t)− g(t)|+

∣∣∣∣∣
∫ y⟨x,θ⟩

y⟨x,v⟩
|σ(−t)− g(−t)|dt

∣∣∣∣∣
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≤ ∥σ − g∥+ 1{∥x∥2 ≥ R/r}+ |⟨x, θ − v⟩|
≤ ∥σ − g∥+ ∥x∥2 ∥θ − v∥2 + 1{∥x∥2 ≥ R/r} ,

where we have used that σ, g ∈ [0, 1]. Taking the elements g, v in the respective coverings to minimize
the above bound gives the guarantee (21).

We now leverage inequality (21) in the symmetrization step (20). We have

E

[
sup

∥θ∥2≤r
sup

σ⃗∈Fm
link

|Pnℓσ⃗,θ − L(θ, σ⃗)|

]

≲ E
[
max
θ∈Θϵ

max
g⃗∈Gm

∣∣P 0
nℓg⃗,θ

∣∣]+ ϵ+ E[∥X1∥2]ϵ+
1

n

n∑
i=1

P(∥Xi∥2 ≥ R/r)

(i)

≲

√
dmRL

ϵ
log

(
1 +

2r

ϵ

)
E

[
r2

n

n∑
i=1

∥Xi∥22

]1/2
+ ϵ+ E[∥X1∥2]ϵ+

E[∥Xi∥γ2 ]
(R/r)γ

≤ Mr

√
dmRL

nϵ
log

(
1 +

2r

ϵ

)
+ (M + 1)ϵ+

Mγ

(R/r)γ
,

where inequality (i) uses that if Zi are τ
2-sub-Gaussian, then E[maxi≤N |Zi|] ≤

√
2τ2 logN , and that

conditional on {Xi, Yi}ni=1, the symmetrized sum
∑n

i=1 εi
1
m

∑m
j=1 ℓgj ,θ(Yij | Xi) is r2

∑n
i=1 ∥Xi∥22-

sub-Gaussian, as |ℓgj ,θ(Yij | Xi)| ≤ |⟨Xi, θ⟩| ≤ r ∥Xi∥2. We optimize this bound to get the final

guarantee of the lemma: set ϵ = (Rm/n)1/3 (and note that we will choose R ≥ 1) to obtain

E

[
sup

∥θ∥2≤r
sup

σ⃗∈Fm
link

|Pnℓσ⃗,θ − L(θ, σ⃗)|

]
≲
√
dL log(rn)Mr

(
Rm

n

)1/3

+
(Mr)γ

Rγ
.

Choose R = ((Mr)3(γ−1)n/m)
1

3γ+1 .

B Proof of Proposition 1

We assume without loss of generality m is odd. When m is even the proof is identical, except that
we randomize Y when we have equal votes for both classes. As the marginal distribution of X is

N(0, Id) for both Pσ⋆,θ⋆,m

(X,Y )
and Pσ,θ,m

(X,Y )
, we only have to show the existence of a link σ ∈ F0

link such

that the conditional distribution on any X = x is the same, i.e.,

Pσ⋆,θ⋆,m(Y = 1 | X = x) = Pσ,θ,m(Y = 1 | X = x). (22)

For m ∈ N, define the one-to-one transformations Tm : [0, 1] → [0, 1] by

Tm(t) :=

m∑
i=⌈m/2⌉

(
m

i

)
tm(1− t)m−i,

the probability that a Binom(m, t) is at least ⌈m/2⌉. For any m, Tm(t) is monotonically increasing
in t, and Tm(0) = 0, Tm(12) =

1
2 , Tm(1) = 1, and by symmetry Tm(t) + Tm(1− t) = 1. Importantly,

by the definition of majority vote, we have

Pσ⋆,θ⋆,m(Y = 1 | X = x) =
m∑

i=⌈m/2⌉

(
m

i

)
σ⋆(⟨θ⋆, x⟩)m(1− σ⋆(⟨θ⋆, x⟩))m−i = Tm ◦ σ⋆(⟨θ⋆, x⟩).
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Therefore, the σ defined as

σ(t) := T−1
m ◦ Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

)

still satisfies σ(0) = 1
2 and σ(t)− 1

2 > 0 for all t > 0, since Tm maps (12 , 1] to (12 , 1]. We also have

σ(t) + σ(−t) = T−1
m ◦ Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

)
+ T−1

m ◦ Tm ◦ σ⋆

(
−
∥θ∥2∥∥θ∥∥

2

t

)
(i)
= T−1

m ◦ Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

)
+ T−1

m ◦ Tm ◦

(
1− σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

))
(ii)
= T−1

m ◦ Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

)
+ T−1

m ◦

(
1− Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

t

))
= 1,

where (i) and (ii) follow from symmetry of σ⋆ and Tm, respectively. Thus σ is a valid link function
in F0

link. Using this σ̄ yields the desired equality (22)

Pσ,θ,m(Y = 1 | X = x) = Tm ◦ σ(⟨θ, x⟩) = Tm ◦ T−1
m ◦ Tm ◦ σ⋆

(
∥θ∥2∥∥θ∥∥

2

· ⟨θ, x⟩

)
= Pσ⋆,θ⋆,m(Y = 1 | X = x).

C Proof of Lemma 4.1

Recall that h = ht⋆,m is the calibration gap function (10). We see that because E[Z] = 0, we have
h(0) = −2E[Zφm(t⋆Z)] < 0, while using Assumption A3 and that E[|Z|] < ∞, we apply dominated
convergence and that limt→∞(σ(tZ)− 1

2)Z = c|Z| with probability 1 to obtain

lim
t→∞

h(t) = E[c|Z|(1− φm(t⋆Z))] + E[c|Z|φm(t⋆Z)] = cE[|Z|] > 0.

Because h′(t) = E[σ′(tZ)Z2(1 − φm(t⋆Z))] + E[σ′(−tZ)Z2φm(t⋆Z)] > 0, we see that there is a
unique tm solving h(tm) = 0, and evidently θ⋆L = tmu⋆ is a minimizer of L.

We compute the Hessian of L. For this, we again let θ = tu⋆ to write

∇2L(θ, σ) = E[σ′(−⟨θ,X⟩)XX⊤φm(⟨X, θ⋆⟩)] + E[σ′(⟨θ,X⟩)XX⊤(1− φm(⟨X, θ⋆⟩))]

= E
[
σ′(−tZ)φm(t⋆Z)

(
Z2u⋆u⋆⊤ +WW⊤

)]
+ E

[
σ′(tZ)(1− φm(t⋆Z))

(
Z2u⋆u⋆⊤ +WW⊤

)]
= E

[(
σ′(−tZ)φm(t⋆Z) + σ′(tZ)(1− φm(t⋆Z))

)
Z2
]
u⋆u⋆⊤

+ E
[
σ′(−tZ)φm(t⋆Z) + σ′(tZ)(1− φm(t⋆Z))

]
E[WW⊤],

which gives ∇2L(θ, σ) ≻ 0 and so θ⋆L is unique. Finally, the desired form of the Hessian follows as
E[WW⊤] = P⊥

u⋆ΣP⊥
u⋆ .

D Proof of Theorem 1

Let tm be the solution to ht⋆,m(t) = 0 as in Lemma 4.1. The consistency argument is immediate:
the losses ℓ are convex, continuous, and locally Lipschitz, so Shapiro et al. [32, Thm. 5.4] gives

30



θ̂n
a.s.→ θ⋆L. By an appeal to standard M-estimator theory [e.g. 36, Thm. 5.23], we thus obtain

√
n
(
θ̂n − θ⋆L

) d→ N

0,∇2L(θ⋆L, σ)
−1Cov

(
1

m

m∑
j=1

∇ℓσ,θ⋆L(Yj | X)

)
∇2L(θ⋆L, σ)

−1

 . (23)

We expand the covariance term to obtain the first main result of the theorem. For shorthand, let
Gj = ∇ℓσ,θ⋆L(Yj | X), so that

∑m
j=1 E[Gj ] = 0 and the Gj are conditionally independent given X.

Applying the law of total covariance, we have

Cov

(
1

m

m∑
j=1

Gj

)
= Cov

(
1

m

m∑
j=1

E[Gj | X]

)
+ E

Cov( 1

m

m∑
j=1

Gj | X
)

= Cov

(
1

m

m∑
j=1

E[Gj | X]

)
︸ ︷︷ ︸

(I)

+
1

m2

m∑
j=1

E [Cov(Gj | X)]︸ ︷︷ ︸
(II)

,

where we have used the conditional independence of the Yj conditional on X. We control each of
terms (I) and (II) in turn.

For the first, we have by the independent decomposition X = Zu⋆ + P⊥
u⋆W that

E[Gj | X] =
(
σ(tmZ)(1− σ⋆

j (t
⋆Z))− σ(−tmZ)σ⋆

j (t
⋆Z)
)
X,

and so

(I) = E
[
(σ(tmZ)(1− σ⋆(t⋆Z))− σ(−tmZ)σ⋆(t⋆Z))2XX⊤

]
= E

[
(σ(tmZ)(1− σ⋆(t⋆Z))− σ(−tmZ)σ⋆(t⋆Z))2 Z2

]
u⋆u⋆⊤

+ E
[
(σ(tmZ)(1− σ⋆(t⋆Z))− σ(−tmZ)σ⋆(t⋆Z))2

]
P⊥
u⋆ΣP⊥

u⋆

= E[le(Z)2Z2]u⋆u⋆⊤ + E[le(Z)2]P⊥
u⋆ΣP⊥

u⋆ ,

where we used the independence of W and Z. For term (II) above, we see that conditional on
X, ∇ℓσ,θ(Yj | X) is a binary random variable taking values in {−σ(−tmZ)X,σ(tmZ)X} with
probabilities σ⋆

j (t
⋆Z) and 1− σ⋆

j (t
⋆Z), respectively, so that a calculation leveraging the variance of

Bernoulli random variables yields

Cov(Gj | X) = σ⋆
j (t

⋆Z)(1− σ⋆
j (t

⋆Z)) (σ(tmZ) + σ(−tmZ))2XX⊤ = vj(Z)XX⊤,

where we used the definition (12) of the variance terms. A similar calculation to that we used for
term (I) then gives that

(II) =
1

m2

m∑
j=1

E[vj(Z)Z2]u⋆u⋆⊤ +
1

m2

m∑
j=1

E[vj(Z)]P⊥
u⋆ΣP⊥

u⋆ .

Applying Lemma A.1 then allows us to decompose the the covariance in expression (23) into terms
in the span of u⋆u⋆⊤ and those perpendicular to it, so that the asymptotic covariance is

E[le(Z)2Z2] + 1
m2

∑m
j=1 E[vj(Z)Z2]

E[he(Z)Z2]2
u⋆u⋆⊤ +

E[le(Z)2] + 1
m2

∑m
j=1 E[vj(Z)]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†
,
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by applying Lemma 4.1 for the form of the Hessian ∇2L(θ⋆L, σ) and Lemma A.1 for the inverse,
giving the first result of the theorem.

To obtain the second result, we apply the delta method with the mapping ϕ(x) = x/ ∥x∥2, which
satisfies ∇ϕ(x) = (I − ϕ(x)ϕ(x)⊤)/ ∥x∥2, so that for ûn = θ̂n/∥θ̂n∥2 we have

√
n(ûn − u⋆)

d→ N

(
0,

1

t2m

E[le(Z)2] + 1
m2

∑m
j=1 E[vj(Z)]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†)

as desired.

E Proof of Theorem 2

As in the proof of Theorem 1, we begin with a consistency result. Let tm be the solution to
ht⋆,m(t) = 0 as in Lemma 4.1. The once again, Shapiro et al. [32, Thm. 5.4] shows that θ̂n

a.s.→ θ⋆L.
As previously, appealing to standard M-estimator theory [e.g. 36, Thm. 5.23], we obtain

√
n
(
θ̂n − θ⋆L

) d→ N
(
0,∇2L(θ⋆L, σ)

−1Cov
(
∇ℓσ,θ⋆L(Y | X)

)
∇2L(θ⋆L, σ)

−1
)
, (24)

the difference from the asymptotic (23) appearing in the covariance term. Here, we recognize that
conditional onX = Zu⋆+W , the vector∇ℓσ,θ⋆L(Y | X) takes on the values {−σ(−tmZ)X,σ(tmZ)X}
each with probabilities φm(t⋆Z) and 1 − φm(t⋆Z), respectively, while ∇ℓσ,θ⋆L(Y | X) is (uncondi-
tionally) mean zero. Thus we have

Cov
(
∇ℓσ,θ⋆L(Y | X)

)
= E

[
σ(−tmZ)2φm(t⋆Z)XX⊤ + σ(tmZ)2(1− φm(t⋆Z))XX⊤

]
= E

[(
σ(−tmZ)2φm(t⋆Z) + σ(tmZ)2(1− φm(t⋆Z))

)
Z2
]
u⋆u⋆⊤

+ E
[
σ(−tmZ)2φm(t⋆Z) + σ(tmZ)2(1− φm(t⋆Z))

]
P⊥
u⋆ΣP⊥

u⋆ .

Applying Lemma A.1 as in the proof of Theorem 1 to decompose the covariance terms in the
asymptotic (24), and substituting in ρm(t) = σ(t)1{t ≥ 0} + (1 − σ(t))1{t < 0}, the limiting
covariance in expression (24) becomes

E[(σ(−tm|Z|)2ρm(t⋆Z) + σ(tm|Z|)2(1− ρm(t⋆Z)))Z2]

E[he(Z)Z2]2
u⋆u⋆⊤

+
E[σ(−tm|Z|)2ρm(t⋆Z) + σ(tm|Z|)2(1− ρm(t⋆Z))]

E[he(Z)]2

(
P⊥
u⋆ΣP⊥

u⋆

)†
.

Lastly, we apply the delta method to ϕ(x) = x/ ∥x∥2, exactly as in the proof of Theorem 1, which
gives the theorem.

F Proof of Theorem 3

We divide the theorem into two main parts, consistent with the typical division of asymp-
totic normality results into a consistency result and a distributional result. Recall the notation
L(θ, σ⃗) = E[ℓσ⃗,θ(Y | X)] and ∥σ⃗ − g⃗∥2L2(P) = E[∥σ⃗(Z)− g⃗(Z)∥22], where Z has the distribution that
Assumption A1 specifies.
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F.1 Proof of consistency

We demonstrate the consistency θ̂spn,m
p→ u⋆ in three parts, which we present as Lemmas F.1, F.2,

and F.4. The first presents an analogue of Lemma 4.1 generalized to the case in which there are m
distinct link functions, allowing us to characterize the link-dependent minimizers

θ⋆σ⃗ := argmin
θ

L(θ, σ⃗)

via a one-dimensional scalar on the line {tu⋆ | t ∈ R+}. The second, Lemma F.2, then shows
that θ⋆σ⃗ → u⋆ as σ⃗ approaches σ⃗⋆, where the scaling that ∥θ⋆σ⃗∥2 → 1 follows by the normalization

Assumption A5. Finally, the third lemma demonstrates the probabilistic convergence θ̂spn,m−θ⋆σ⃗n

p→ 0

whenever σ⃗n
p→ σ⃗⋆ in L2(P ).

We begin with the promised analogue of Lemma 4.1.

Lemma F.1. Define the calibration gap function

hσ⃗(t) :=
1

m

m∑
j=1

E
[(
σj(tZ)− σ⋆

j (Z)
)
Z
]
. (25)

Then the loss L(θ, σ⃗) has unique minimizer θ⋆σ⃗ = tσ⃗u
⋆ for the unique tσ⃗ ∈ (0,∞) solving hσ⃗(t) = 0.

Additionally, taking hej(t, z) := σ′
j(−tz)σ⋆

j (z) + σ′
j(tz)σ

⋆
j (−z), we have

∇2L(tu⋆, σ⃗) =
1

m

m∑
j=1

(
E[hej(t, Z)Z2]u⋆u⋆⊤ + E[hej(t, Z)]P⊥

u⋆ΣP⊥
u⋆

)
≻ 0.

Proof. We perform a derivation similar to that we used to derive the gap function (10), with a few
modifications to allow collections of m link functions. Note that

L(θ, σ⃗) =
1

m

m∑
j=1

E[ℓσj ,θ(1 | X)σ⋆
j (⟨X,u⋆⟩) + ℓσj ,θ(−1 | X)σ⋆

j (−⟨X,u⋆⟩)],

so that leveraging the usual ansatz that θ = tu⋆, we have

∇L(θ, σ⃗) = E

 1

m

m∑
j=1

(
σ⋆
j (−⟨X,u⋆⟩)σj(⟨θ,X⟩)− σ⋆

j (⟨X,u⋆⟩)σj(−⟨θ,X⟩)
)
X


=

1

m

m∑
j=1

E
[(
σ⋆
j (−Z)σj(tZ)− σ⋆

j (Z)σj(−tZ)Z
)]

u⋆

= hσ⃗(t)u
⋆,

where hσ⃗(t) =
1
m

∑m
j=1 E[(σ⋆

j (−Z)σj(tZ)− σ⋆
j (Z)σj(−tZ))Z] is the immediate generalization of the

gap (10). We now simplify it to the form (25). Using the symmetries σ⋆(z) = 1 − σ⋆(−z) and
σ(z) = 1− σ(−z) for any σ, σ⋆ ∈ Flink, we observe that

σ(tz)(1− σ⋆(z))− σ(−tz)σ⋆(z) = σ(tz)− (σ(tz) + σ(−tz))σ⋆(z) = σ(tz)− σ⋆(z),

and so hσ⃗(t) = 1
m

∑m
j=1 E[(σj(tZ) − σ⋆

j (Z))Z]. Of course, hσ⃗(0) = − 1
m

∑m
j=1 E[σ⋆

j (Z)Z] < 0, as

E[Z] = 0, while limt→∞ hσ⃗(t) =
1
m

∑m
j=1 E[|Z|−σ⋆

j (Z)Z] > 0. Then as h′σ⃗(t) =
1
m

∑m
j=1 E[σ′

j(tZ)Z2] >
0, there exists a unique tσ⃗ ∈ (0,∞) satisfying hσ⃗(tσ⃗) = 0.
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We turn to the Hessian derivation, where as in the proof of Lemma 4.1, we write for θ = tu⋆ that

∇2L(θ, σ⃗) =
1

m

m∑
j=1

E
[
(σ′

j(−tZ)σ⋆
j (Z) + σ′

j(tZ)σ⋆
j (−Z))Z2

]
u⋆u⋆⊤

+
1

m

m∑
j=1

E
[
(σ′

j(−tZ)σ⋆
j (Z) + σ′

j(tZ)σ⋆
j (−Z))

]
P⊥
u⋆ΣP⊥

u⋆ ,

and so ∇2L(θ, σ⃗) ≻ 0 and L(θ, σ⃗) has unique minimizer θ⋆σ⃗ = tσ⃗u
⋆.

With Lemma F.1 serving as the analogue of Lemma 4.1, we can now show the continuity of the
optimizing parameter θ⋆σ⃗ in σ⃗:

Lemma F.2. As ∥σ⃗ − σ⃗⋆∥L2(P) → 0, we have θ⋆σ⃗ − u⋆ → 0.

Proof. Via Lemma F.1, it is evidently sufficient to show that the solution tσ⃗ to hσ⃗(t) = 0 converges
to 1. To show this, note the expansion

mhσ⃗(t) =
m∑
j=1

(
E[(σj(tZ)− σ⋆

j (tZ))Z] + E[(σ⋆
j (tZ)− σ⋆

j (Z))Z]
)
. (26)

We use the following claim, which shows that the first term tends to 0 uniformly in t near 1:

Claim F.3. For any σ, σ⋆ ∈ Flink, we have supt∈[ 1
2
,2] ∥σ(tZ)− σ⋆(tZ)∥L2(P) → 0 whenever ∥σ⋆ − σ∥L2(P) →

0.

Proof. We use that the density p(z) of |Z| is continuous and nonzero on (0,∞). Take any 0 < M0 <
M1 < ∞. Then

sup
t∈[ 1

2
,2]

∥σ⋆(tZ)− σ(tZ)∥L2(P) = sup
t∈[ 1

2
,2]

√∫ ∞

0
(σ⋆(tz)− σ(tz))2 p(z)dz

(i)

≤ P(|Z| ≤ M0) + P(|Z| ≥ M1) + sup
t∈[ 1

2
,2]

√∫ M1

M0

(σ⋆(tz)− σ(tz))2 p(tz) · p(z)

p(tz)
dz

≤ P(|Z| ≤ M0) + P(|Z| ≥ M1) + sup
M0
2

≤z,z′≤2M1

√
p(z)

p(z′)
sup

t∈[ 1
2
,2]

√∫ M1

M0

(σ⋆(tz)− σ(tz))2 p(tz)dz,

where in (i) we use that the link functions σ⋆ and σ are bounded within [0, 1]. For any fixed

0 < M0 ≤ M1 < ∞, the ratio p(z)
p(z′) is bounded for z, z′ ∈ [12M0, 2M1], and using the substitution

tz 7→ z we have

sup
t∈[ 1

2
,2]

√∫ M1

M0

(σ⋆(tz)− σ(tz))2 p(tz)dz ≤
√
2 · ∥σ⋆ − σ∥L2(P) .

We thus have that ∥σ(tZ)− σ⋆(tZ)∥L2(P) ≤ K ∥σ − σ⋆∥L2(P)+P(|Z| ̸∈ [M0,M1]), where K depends
only on M0,M1 and the distribution of Z. Take M0 ↓ 0 and M1 ↑ ∞.
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Leveraging the expansion (26) preceding Claim F.3 and the claim itself, we see that

hσ⃗(t) = E[Z2] · o(1) + 1

m

m∑
j=1

E[(σ⋆
j (tZ)− σ⋆

j (Z))Z]

uniformly in t ∈ [12 , 2] as ∥σ⃗⋆ − σ⃗∥L2(P) → 0. The monotonicity of each σ⋆
j guarantees that if

fj(t) = E[(σ⋆
j (tZ)− σ⋆

j (Z))Z], then f ′
j(t) = E[σ⋆

j
′(tZ)Z2] > 0, and so t = 1 uniquely solves fj(t) = 0

and we must have tσ⃗ → 1 as ∥σ⃗ − σ⃗⋆∥L2(P) → 0.

Finally, we proceed to the third part of the consistency argument: the convergence in probability.

Lemma F.4. If ∥σ⃗n − σ⃗∥L2(P)
p→ 0, then θ̂spn,m − θ⋆σ⃗n

p→ 0.

Proof. By Lemma F.1 and the assumed continuity of the population Hessian, there exists δ > 0
such that

L(θ, σ⃗) ≥ L(θ⋆σ⃗, σ⃗) +
λ

2
∥θ − θ⋆σ⃗∥

2
2 (27)

whenever both ∥σ⃗ − σ⃗⋆∥L2(P) ≤ δ and
∥∥θ⋆σ⃗ − θ

∥∥
2
≤ δ. Applying the uniform convergence Lemma A.4,

we see that for any r < ∞, we have

sup
∥θ∥2≤r,σ⃗∈Fm

link

|Pnℓσ⃗,θ − L(θ, σ⃗)| p→ 0.

For δ > 0, define the events

En(δ) :=
{
∥θ⋆σ⃗ − u⋆∥2 ≤ δ, ∥σ⃗n − σ⃗⋆∥L2(P) ≤ δ

}
,

where Lemma F.2 and the assumption that ∥σ⃗n − σ⃗⋆∥L2(P)
p→ 0 imply that P(En(δ)) → 1 for all

δ > 0. By the growth condition (27) and uniform convergence Pnℓσ⃗,θ − L(θ, σ⃗)
p→ 0 over ∥θ∥2 ≤ r,

we therefore have that with probability tending to 1,

inf
∥θ−θ⋆

σ⃗n
∥2=δ

{
Pnℓθ,σ⃗n − Pnℓθ⋆

σ⃗n
,σ⃗n

}
≥ λ

4
δ2.

The convexity of the losses ℓθ,σ⃗ in θ and that θ̂spn,m minimizes Pnℓθ,σ⃗n then guarantee the desired

convergence θ̂spn,m − θ⋆σ⃗n

p→ 0.

F.2 Asymptotic normality via Donsker classes

While we do not have ∥σ⃗n − σ⃗⋆∥L2(P) = oP (n
−1/2), which allows the cleanest and simplest asymptotic

normality results with nuisance parameters (e.g. [36, Thm. 25.54]), we still expect
√
n(θ̂spn,m − θ⋆σ⃗n

)
to be asymptotically normal, and therefore, as θ⋆σ⃗ = tu⋆ for some t > 0, the normalized estimators

θ̂spn,m/∥θ̂spn,m∥2 should be asymptotically normal to u⋆. To develop the asymptotic normality results,

we perform an analysis of the empirical process centered at the estimators θ̂spn,m, rather than the
“true” parameter u⋆ as would be typical.

We begin with an expansion. We let θ⋆n = θ⋆σ⃗n
for shorthand. Then as Pn,m∇θℓθ̂spn,m,σ⃗n

= 0 and

P∇θℓθ⋆n,σ⃗n = 0, we can derive

Gn,m∇θℓθ̂spn,m,σ⃗n
=

√
n
(
Pn,m∇θℓθ̂spn,m,σ⃗n

− P∇θℓθ̂spn,m,σ⃗n

)
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=
√
n
(
P∇θℓθ⋆n,σ⃗n − P∇θℓθ̂spn,m,σ⃗n

)
=

√
n
(
∇θL(θ

⋆
n, σ⃗n)−∇θL(θ̂

sp
n,m, σ⃗n)

)
=

(∫ 1

0
∇2

θL((1− t)θ̂spn,m + tθ⋆n, σ⃗n)dt

)
·
√
n(θ⋆n − θ̂spn,m).

The assumed continuity of ∇2
θL(θ, σ⃗) at (u

⋆, σ⃗⋆) (recall Assumption A5) then implies that

√
n(θ⋆n − θ̂spn,m) =

(∫ 1

0
∇2

θL((1− t)θ⋆n + tθ̂spn,m, σ⃗n)dt

)−1

· Gn,m∇θℓθ̂spn,m,σ⃗n

=
(
∇2

θL(u
⋆, σ⃗⋆) + oP (1)

)−1 ·Gn,m∇θℓθ̂spn,m,σ⃗n
, (28)

where we have used the consistency guarantees θ⋆n
p→ u⋆, θ̂spn,m

p→ u⋆ by Lemmas F.2 and F.4 and

that ∥σ⃗n − σ⃗∥L2(P)
p→ 0 by assumption.

The expansion (28) forms the basis of our asymptotic normality result; while θ̂spn,m and σ⃗n may
be data dependent, by leveraging uniform central limit theorems and the theory of Donsker function
classes, we can show that Gn,m∇ℓ has an appropriate normal limit. To that end, define the function
classes

Fδ := {∇θℓθ,σ | ∥θ − u⋆∥2 ≤ δ, σ ∈ Flink} ,

where we leave the Lipschitz constant L in Flink tacit. By Assumption A5 and that θ̂spn,m
p→ u⋆, we

know with probability tending to 1 we have the membership ∇θℓθ̂spn,m,σ⃗n
∈ Fδ. The key result is

then that Fδ is a Donsker class:

Lemma F.5. Assume that E[∥X∥42] < ∞. Then Fδ is a Donsker class, and moreover, if

dFlink
((θ̂spn,m, σ⃗n), (u

⋆, σ⃗⋆))
p→ 0, then

Gn,m∇θℓθ̂spn,m,σ⃗n
−Gn,m∇θℓu⋆,σ⃗⋆

p→ 0.

Temporarily deferring the proof of Lemma F.5, let us see how it leads to the proof of Theorem 3.
Using Lemma F.5 and Slutsky’s lemmas in the equality (28), we obtain

√
n(θ̂spn,m − θ⋆n) = −

(
∇2

θL(u
⋆, σ⃗⋆) + oP (1)

)−1 ·Gn,m∇θℓu⋆,σ⃗⋆ + oP (1)

d→ N

0,∇2L(u⋆, σ⃗⋆)Cov

(
1

m

m∑
j=1

∇ℓu⋆,σ⋆
j
(Yj | X)

)
∇2L(u⋆, σ⃗⋆)

 .

Calculations completely similar to those we use in the proof of Theorem 1 then give Theorem 3:
because P(Yj = y | X = x) = σ⋆

j (y⟨u⋆, x⟩) by assumption,

Cov

(
1

m

m∑
j=1

∇ℓu⋆,σ⋆
j
(Yj | X)

)
=

1

m2

m∑
j=1

Cov(∇ℓu⋆,σ⋆
j
(Yj | X))

because Yj | X are conditionally independent, while

Cov(∇ℓu⋆,σ⋆
j
(Yj | X)) = E[σ⋆

j (Z)(1− σ⋆
j (Z))XX⊤]

= E[σ⋆
j (Z)(1− σ⋆

j (Z))Z2]u⋆u⋆⊤ + E[σ⋆
j (Z)(1− σ⋆

j (Z))]P⊥
u⋆ΣP⊥

u⋆ .

When σj = σ⋆
j , the Hessian function hej in Lemma F.1 simplifies to hej(1, z) = σ⋆

j
′(z) as σ⋆

j is
symmetric about 0. We then apply the delta method as in the proof of Theorem 1.

Finally, we return to the proof of Lemma F.5.
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Proof of Lemma F.5. To prove Fδ is Donsker, we show that each coordinate of ∇θℓθ,σ ∈ Fδ

is, and as ∇θℓθ,σ(y | x) = −yσ(−y⟨x, θ⟩)x, this amounts to showing the coordinate functions

f
(i)
θ,σ(v) = viσ(−⟨v, θ⟩) form a Donsker class when v has distribution V = Y X. Let

F (i)
δ :=

{
f
(i)
θ,σ(·) | ∥θ − u⋆∥2 ≤ δ, σ ∈ Flink

}
,

so it is evidently sufficient to prove that F (1)
δ forms a Donsker class.

We use bracketing and entropy numbers [37] to control the F (i)
δ . Recall that for a function class

F , an ϵ-bracket of F in Lq(P) is a collection of functions {(li, ui)} such that for each f ∈ F , there
exists i such that ℓi ≤ f ≤ ui and ∥ui − li∥Lq(P) ≤ ϵ. The bracketing number N[ ](ϵ,F , Lq(P)) is the
cardinality of the smallest such ϵ-bracket, and the bracketing entropy is

J[ ](F , Lq(P)) :=
∫ ∞

0

√
logN[ ](ϵ,F , Lq(P))dϵ.

To show that F (i)
δ is Donsker, it is sufficient [37, Ch. 2.5.2] to show that J[ ](F

(i)
δ , L2(P)) < ∞. Our

approach to demonstrate that F (1)
δ is Donsker is thus to construct an appropriate ϵ-bracket of F (1)

δ ,
which we do by first covering ℓ2-balls in Rd, then for vectors θ ∈ Rd, constructing a bracketing of

the induced function class {f (1)
θ,σ}σ∈Flink

, which we combine to give the final bracketing of F (1)
δ .

We proceed with this two-stage covering and bracketing. Let ϵ, γ > 0 be small numbers whose
values we determine later. Define the ℓ2 ball Bd

2 = {x ∈ Rd | ∥x∥2 ≤ 1}, and for any 0 < ϵ < δ, let Nϵ

be a minimal ϵ-cover of δBd
2 in the Euclidean norm of size N = N(ϵ, δBd

2, ∥·∥2), Nϵ = {θ1, . . . , θN},
so that for any θ with ∥θ∥2 ≤ δ there exists θi ∈ Nϵ with ∥θ − θi∥2 ≤ ϵ. Standard bounds [39,
Lemma 5.7]) give

logN(ϵ, δBd
2, ∥·∥2) ≤ d log

(
1 +

2δ

ϵ

)
. (29)

For simplicity of notation and to avoid certain tedious negations, we define the “flipped” monotone
function family

Fflip := {g : R → R | g(t) = σ(−t)}σ∈Flink
.

Now, for any θ ∈ Rd, let µθ denote the pushforward measure of ⟨V, θ⟩ = Y ⟨X, θ⟩. For θ ∈ Rd, we then
letN[ ],γ,θ be a minimal γ-bracketing of Fflip in the L4(µθ) norm. That is, forN = N[ ](γ,Fflip, L

2(µθ)),

we have N[ ],γ,θ = {(lθ,i, uθ,i)}Ni=1, and for each σ ∈ Flink, there exists i = i(σ) such that

lθ,i(t) ≤ σ(−t) ≤ uθ,i(t) and ∥uθ,i − lθ,i∥L4(µθ)
≤ γ.

Because elements of Fflip ⊂ R → [0, 1] are monotone, van der Vaart and Wellner [37, Thm. 2.7.5]
guarantee there exists a universal constant K < ∞ such that

sup
Q

logN[ ](γ,Fflip, L
4(Q)) ≤ K

γ
, (30)

and in particular, logN[ ](γ,Fflip, L
4(µθ)) ≤ K

γ for each θ ∈ Rd.
With the covering Nϵ and induced bracketing collections N[ ],γ,θ, we now turn to a construction

of the actual bracketing of the class F (1)
δ . For any θ ∈ Rd and bracket (lθ,i, uθ,i) ∈ N[ ],γ,θ, define the

functionals l̂θ,j , ûθ,j : Rd → R by

l̂θ,j(v) := (v1)+max {lθ,j(⟨v, θ⟩)− L ∥v∥2 ϵ, 0} − (−v1)+min {uθ,j(⟨v, θ⟩) + L ∥v∥2 ϵ, 1} ,
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ûθ,j(v) := (v1)+min {uθ,j(⟨v, θ⟩) + L ∥v∥2 ϵ, 1} − (−v1)+max {lθ,j(⟨v, θ⟩)− L ∥v∥2 ϵ, 0} .

The key is that these functions form a bracketing of F (1)
δ :

Lemma F.6. Define the set

Bϵ,γ :=
{(

l̂θi,j , ûθi,j

)
| θi ∈ Nϵ, 1 ≤ j ≤ N[ ](γ,Fflip, L

4(µθi))
}
.

Then Bϵ,γ is a

2LE[∥X∥42]
1/2 · ϵ+ E[∥X∥42]

1/4 · γ

bracketing of F (1)
δ with cardinality at most log card(Bϵ,γ) ≤ K

γ + d log(1 + δ
ϵ ).

Proof. Let f
(1)
θ,σ(v) ∈ F (1)

δ . Take θi ∈ Nϵ satisfying ∥θ − θi∥2 ≤ ϵ and (lθi,j , uθ,j) ∈ N[ ],γ,θi such
that lθi,j(t) ≤ σ(−t) ≤ uθi,j(t) for all t, where ∥uθi,j − lθi,j∥L4(µθi

) ≤ γ. We first demonstrate the

bracketing guarantee

l̂θi,j(v) ≤ f
(1)
θ,σ(v) = v1σ(−⟨v, θ⟩) ≤ ûθi,j(v) for all v ∈ Rd.

For the upper bound, we have

f
(1)
θ,σ(v) = v1σ(−⟨v, θ⟩)
(i)

≤ (v1)+min {σ(−⟨v, θi⟩) + L|⟨v, θi − θ⟩|, 1} − (−v1)+max {σ(−⟨v, θi⟩)− L|⟨v, θi − θ⟩|, 0}
(ii)

≤ (v1)+min {σ(−⟨v, θi⟩) + L ∥v∥2 ϵ, 1} − (−v1)+max {σ(−⟨v, θi⟩)− L ∥v∥2 ϵ, 0}
(iii)

≤ (v1)+min {uθi,j(⟨v, θi⟩) + L ∥v∥2 ϵ, 1} − (−v1)+max {lθi,j(⟨v, θi⟩)− L ∥v∥2 ϵ, 0}
= ûθi,j(v),

where step (i) follows from the L-Lipschitz continuity of σ, (ii) from the Cauchy-Schwarz inequality
and that ∥θ − θi∥2 ≤ ϵ, while step (iii) follows by the construction that lθi,j(t) ≤ σ(−t) ≤ uθi,j(t)
for all t ∈ R. Similarly, we obtain the lower bound

f
(1)
θ,σ(v) = v1σ(−⟨v, θ⟩) ≥ l̂θi,j(v),

again valid for all v ∈ Rd.
The second part of the proof is to bound the distance between the upper and lower elements in

the bracketing. By definition, ûθi,j − l̂θi,j has the pointwise upper bound(
ûθi,j(v)− l̂θi,j(v)

)2
≤ (|v1| (uθi,j(⟨v, θi⟩)− lθi,j(⟨v, θi⟩) + 2L ∥v∥2 ϵ))

2 .

Recalling that V = Y X, by the Minkowski and Cauchy-Schwarz inequalities, we thus obtain∥∥∥ûθi,j(V )− l̂θi,j(V )
∥∥∥
L2(P)

≤ ∥|V1| (uθi,j(⟨V, θi⟩)− lθi,j(⟨V, θi⟩))∥L2(P) + ∥|V1| · 2L ∥V ∥2 ϵ∥L2(P)

≤ ∥|V1|∥L4(P) ·
(
∥uθi,j(⟨V, θi⟩)− lθi,j(⟨V, θi⟩)∥L4(P) + 2Lϵ · ∥∥V ∥2∥L4(P)

)
.

Noting the trivial bounds ∥|V1|∥L4(P) ≤ ∥X∥L4(P) < ∞ and the assumed bracketing distance

∥uθi,j(⟨V, θi⟩)− lθi,j(⟨V, θi⟩)∥L4(P) = ∥uθi,j − lθi,j∥L4(µθi
) ≤ γ,

we have the desired bracketing distance ∥ûθi,j − l̂θi,j∥L2(P) ≤ 2LE[∥X∥42]1/2ϵ+ E[∥X∥42]1/4γ.
The final cardinality bound is immediate via inequalities (29) and (30).
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Lemma F.6 will yield the desired entropy integral bound. Fix any t > 0, and note that if we take
ϵ = ϵ(t) := t/(4LE[∥X∥42]1/2) and γ = γ(t) := t/(2E[∥X∥42]1/4), then the set Bϵ,γ is a t-bracketing of

F (1)
δ in L2, and moreover, we have the cardinality bound

logN[ ](t,F
(1)
δ , L2(P)) ≤ d log

(
1 +

2δ

ϵ(t)

)
+

K

γ(t)
≤

8Ldδ · E[∥X∥42]1/2 + 2KE[∥X∥42]1/4

t
.

Additionally, as covering numbers are necessarily integer, we have logN[ ](t) = 0 whenever t >

(8Ldδ · E[∥X∥42]1/2 + 2KE[∥X∥42]1/4)/ log 2. This gives the entropy integral bound

J[ ](F
(1)
δ , L2(P)) =

∫ ∞

0

√
logN[ ](t,F

(1)
δ , L2(P))dt < ∞,

and consequently (cf. [36, Thm. 19.5] or [37, Ch. 2.5.2]), F (1)
δ is a Donsker class. A completely

identical argument shows that F (i)
δ , i = 2, 3, · · · , d are Donsker, and so Fδ is a Donsker class,

completing the proof of the first claim in Lemma F.5.
To complete the proof of Lemma F.5, we need to show that

Gn,m(∇θℓθ̂spn,m,σ⃗n
−∇θℓu⋆,σ⃗⋆) =

1

m

m∑
j=1

G(j)
n (∇θℓθ̂spn,m,σn,j

−∇θℓu⋆,σ⋆
j
)

p→ 0,

where G(j)
n denotes the empirical process on (Xi, Yij)

n
i=1. Notably, because m is finite, it is sufficient

to show that
G(j)

n (∇θℓθ̂spn,m,σn,j
−∇θℓu⋆,σ⋆

j
)

p→ 0, j = 1, . . . ,m.

To that end, we suppress dependence on j for notational simplicity and simply write Gn and ℓ
θ̂spn,m,σn

,

where ∥σn − σ⋆∥L2(P)
p→ 0. For any Donsker class F ⊂ X → Rd and ϵ > 0, we have

lim sup
δ↓0

lim sup
n→∞

P

(
sup

∥f−g∥L2(P)≤δ
Gn(f − g) ≥ ϵ

)
= 0,

(see [12, Thm. 3.7.31]), and so in turn it is sufficient to prove that∥∥∥∇ℓ
θ̂spn,m,σn

−∇ℓu⋆,σ⋆

∥∥∥
L2(P)

p→ 0. (31)

To demonstrate the convergence (31), let M be finite, and note that for any fixed θ, σ ∈ Flink

that for V = Y X we have

∥∇ℓθ,σ −∇ℓu⋆,σ⋆∥2L2(P) = E
[
∥V σ(−⟨V, θ⟩)− V σ⋆(−⟨V, u⋆⟩)∥22

]
≤ E

[
∥V ∥22 1{∥V ∥2 ≥ M}

]
+M2 ∥σ(−⟨V, θ⟩)− σ⋆(−⟨V, u⋆⟩)∥2L2(P)

≤ E
[
∥X∥22 1{∥X∥2 ≥ M}

]
+ 2M2 ∥σ(−⟨V, u⋆⟩)− σ⋆(−⟨V, u⋆⟩)∥2L2(P)

+ 2M2 ∥σ(−⟨V, u⋆⟩)− σ(−⟨V, θ⟩)∥2L2(P)

by the triangle inequality. As

∥σ(−⟨V, u⋆⟩)− σ(−⟨V, θ⟩)∥L2(P) ≤ L ∥θ − u⋆∥2 · ∥V ∥L2(P) = L ∥θ − u⋆∥2 · ∥X∥L2(P)
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and θ̂spn,m − u⋆
p→ 0 and

∥σn(−⟨V, u⋆⟩)− σ⋆(−⟨V, u⋆⟩)∥L2(P) = ∥σn − σ⋆∥L2(P)
p→ 0

by assumption, it follows that for any ϵ > 0 that

P
(∥∥∥∇θℓθ̂spn,m,σn

−∇θℓu⋆,σ⋆

∥∥∥
L2(P)

≥ E[∥X∥22 1{∥X∥2 ≥ M}] + ϵ

)
→ 0.

Taking M ↑ ∞ gives the convergence (31), completing the proof.

G Proofs of asymptotic normality

In this appendix, we include proofs of the convergence results in Propositions 2, 3, and 4. In
each, we divide the proof into three steps: we characterize the loss minimizer, apply one of the
master Theorems 1 or 2 to obtain asymptotic normality, and then characterize the behavior of the
asymptotic covariance as m → ∞.

G.1 Proof of Proposition 2

Asymptotic normality of the MLE. The asymptotic normality result is an immediate conse-
quence of the classical asymptotics for maximum likelihood estimators [36, Thm. 5.29].

Normalized estimator. For the normalized estimator, we appeal to the master results developed
in Section 4.1. In particular, since we are in the well-specified logistic model, we can invoke
Corollary 3 and write directly that

√
n(ûlrn,m − u⋆)

d→ N

(
0,

1

m
· 1

t⋆2
E[σlr(t⋆Z)(1− σlr(t⋆Z))]

E[σlr′(t⋆Z)]2
P⊥
u⋆ΣP⊥

u⋆

)
,

which immediately implies

C(t) =
1

t2
E[σlr(tZ)(1− σlr(tZ))]

E[σlr′(tZ)]2
=

1

t2E
[

etZ

(1+etZ)2

] ,
and that further C(t)t2−β = t−βE[ et|Z|

(1+et|Z|)2
]−1. To compute the limit when t → ∞, we invoke

Lemma A.2 and we conclude that

lim
t→∞

C(t)t2−β = lim
t→∞

1

tβE[ et|Z|

(1+et|Z|)2
]
=

1

cZ
∫∞
0

zβ−1ez

(1+ez)2
dz

.

G.2 Proof of Proposition 3

Minimizer of the population loss. We can see identity (6) still holds with the calibration gap

h(t) = hm(t) = E[|Z|(1− ρm(t⋆|Z|))]− E[ |Z|
1+et|Z| ] in Eq. (5) as X − u⋆Z and u⋆Z are independent.

The function h(t) is monotonically increasing in t with h(∞) = E [|Z|(1− ρm(t⋆|Z|))] > 0, while
1− ρm(t|Z|) ≤ 1− ρ1(t|Z|) = 1

1+et|Z| , we must have h(t⋆) ≤ 0. Therefore there must be a unique

zero point tm ≥ t⋆ of h(t), and so tmu⋆ is the unique minimizer of the population loss Lmv
m (θ).
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Asymptotic variance. As tm solves hm(tm) = 0, Eq. (6) guarantees that tmu⋆ is the global

minimizer of the population loss Lmv
m . Appealing to Theorem 2, it follows that θ̂mv

n,m
p→ tmu⋆, and

√
n(ûmv

n,m − u⋆)
d→ N

(
0, Cm(t⋆) (Pu⋆ΣPu⋆)†

)
for the variance function (13), which in this case simplifies to

Cm(t⋆) =
E[ 1

(1+etm|Z|)2
ρm(t⋆|Z|) + 1

(1+e−tm|Z|)2
(1− ρm(t⋆|Z|))]

t2mE[ etmZ

(1+etmZ)2
]2

via the symmetry ρm(t) = ρm(−t).

Large m behavior. The remainder of the proof is to characterize the behavior of Cm(t⋆) as
m → ∞. We first derive asymptotics for tm. To simplify notation, we let ∥θ∥2 = t = t⋆. Because tm
solves hm(tm) = 0 we have

E
[

|Z|
1 + etm|Z|

]
= E [|Z|(1− ρm(t|Z|))] , (32)

we must have tm → ∞ as m → ∞ because ρm(t) → 1 for any t > 0 as m → ∞, so the right side
of equality (32) converges to 0 by the dominated convergence theorem, and hence so must the left
hand side. Invoking Lemma A.2 for the left hand side, it follows that

lim
m→∞

tβ+1
m E

[
|Z|

1 + etm|Z|

]
= lim

m→∞
tβmE

[
tm|Z|

1 + etm|Z|

]
= cZ

∫ ∞

0

zβ

1 + ez
dz,

while invoking Lemma A.3 for the right hand side of (32), it follows that

lim
m→∞

m
β+1
2 E [|Z|(1− ρm(t|Z|))] = lim

m→∞
m

β
2E
[√

m|Z|(1− ρm(t|Z|))
]

= cZ

∫ ∞

0
zβΦ

(
− tz

2

)
dz = cZt

−β−1

∫ ∞

0
zβΦ

(
−z

2

)
dz,

where the last line follows from change of variables tz 7→ z. The identity (32) implies that the ratio
E[|Z|/(1 + etm|Z|)]/E[|Z|(1− ρm(t|Z|))] = 1 and so we have that as m → ∞,

tm√
m

=

(
tβ+1
m

m
β+1
2

) 1
β+1

=

 tβ+1
m E

[
|Z|

1+etm|Z|

]
m

β+1
2 E [|Z|(1− ρm(t|Z|))]


1

β+1

→

( ∫∞
0

zβ

1+ez dz∫∞
0 zβΦ

(
− z

2

)
dz

) 1
β+1

· t =: at.

In particular, tm/t⋆
√
m = a(1 + om(1)).

We finally proceed to compute asymptotic behavior of Cm(t⋆), the variance (13). By Lemma A.2
the limit of its denominator as tm → ∞ satisfies

lim
m→∞

t2βm E
[

etmZ

(1 + etmZ)2

]2
︸ ︷︷ ︸

:=den(Cm(t))

= lim
t→∞

(
tβE

[
etZ

(1 + etZ)2

])2

=

(
cZ

∫ ∞

0

zβ−1ez

(1 + ez)2
dz

)2

.

We decompose the numerator into the two parts

m
β
2E

[
1(

1 + etm|Z|
)2 ρm(t|Z|) + 1(

1 + e−tm|Z|
)2 (1− ρm(t|Z|))

]
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= m
β
2E

[(
1(

1 + e−tm|Z|
)2 − 1(

1 + etm|Z|
)2
)
(1− ρm(t|Z|))

]
︸ ︷︷ ︸

(I)

+m
β
2E

[
1(

1 + etm|Z|
)2
]

︸ ︷︷ ︸
(II)

.

As we have already shown that m− 1
2 tm → at, we know for any ϵ > 0 that for large enough m,

(1− ϵ)at
√
m ≤ tm ≤ (1 + ϵ)at

√
m. We can thus invoke Lemma A.2 to get

lim
m→∞

(II) = lim
m→∞

m
β
2E

[
1(

1 + e
√
mat|Z|

)2
]
= cZ

∫ ∞

0

zβ−1

(1 + eatz)2
dz = cZt

−β

∫ ∞

0

zβ−1

(1 + eaz)2
dz.

With the same argument, we apply Lemma A.3 to establish the convergence

lim
m→∞

(I) = cZ

∫ ∞

0
zβ−1

(
1

(1 + e−atz)2
− 1

(1 + eatz)2

)
Φ

(
− tz

2

)
dz

= cZ

∫ ∞

0
zβ−1 e

atz − 1

eatz + 1
Φ

(
− tz

2

)
dz = cZt

−β

∫ ∞

0
zβ−1 e

az − 1

eaz + 1
Φ
(
−z

2

)
dz,

where we use the change of variables tz 7→ z. Taking limits, we have

lim
m→∞

m1− 1
2
βCm(t) = lim

m→∞

m
β
2E[ 1

(1+etm|Z|)2
ρm(t|Z|) + 1

(1+e−tm|Z|)2
(1− ρm(t|Z|))]

mβ−1t2−2β
m · t2βm E[ etmZ

(1+etmZ)2
]2

= lim
m→∞

(
tm√
m

)2β−2

· limm→∞ (I) + limm→∞ (II)

den(Cm(t))

= (at)2β−2 ·
cZt

−β
∫∞
0 zβ−1

(
1

(1+eaz)2
+ eaz−1

eaz+1Φ
(
− z

2

))
dz

(cZ
∫∞
0

zβ−1ez

(1+ez)2
dz)2

,

where we used that tm/
√
m → at as above.

G.3 Proof of Proposition 4

Minimizer of the population loss. By Lemma 4.1, we know the gap h(t) = 0 has a unique
solution tm, with tmu⋆ minimizing the population loss L(θ, σ).

Asymptotic variance. Directly invoking Theorem 2 yields asymptotic normality:

√
n
(
ûmv
n,m − u⋆

) d→ N

(
0, Cm(t⋆)

(
P⊥
u⋆ΣP⊥

u⋆

)†)
,

where the covariance function (13) has the form

Cm(t⋆) =
1

t2m

E[σ(−tm|Z|)2ρm(t⋆Z) + σ(tm|Z|)2(1− ρm(t⋆Z))]

E[σ′(tmZ)]2
(33)

and again tm is the implicitly defined zero of h(t) = 0.
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Large m behavior. We derive the large m asymptotics of tm and Cm under Assumption A4
and using the shorthand ∥θ⋆∥2 = t. The proof is essentially identical to that of Proposition 3 in
Appendix G.2. First, recalling the probability (15), ρm(t) = P(Y = sign(⟨X, θ⋆⟩) | ⟨X, θ⋆⟩ = t),
we see that 1 − ρm(tz) → 0 for any z ̸= 0 as m → ∞, and thus by dominated convergence,
E [|Z| (1− ρm(tZ))] → 0. The analogue of the identity (32) in the proof of Proposition 3, that tm is
the zero of h(t) = E[σ(t|Z|)|Z|(1− ρm(t⋆Z))]− E[σ(−t|Z|)|Z|ρm(t⋆Z)], implies

E[σ(tm|Z|)|Z|(1− ρm(t⋆Z))] = E [σ(−tm|Z|)|Z|ρm(t⋆Z)] . (34)

As σ is bounded and E[σ(−t|Z|)|Z|ρm(t⋆|Z|)] → E[σ(−t|Z|)|Z|] for any t, the convergence of the
left hand side of equality (34) to 0 as m → ∞ means we must have tm → ∞. Invoking Lemma A.2
yields

lim
m→∞

tβ+1
m E [|Z|σ(−tm|Z|)] = lim

m→∞
tβmE [tm|Z|σ(−tm|Z|)] = cZ

∫ ∞

0
zβσ(−z)dz.

Applying Lemma A.3 gives

m
β+1
2 E [|Z|(1− ρm(tZ))] = m

β
2E
[√

m|Z|(1− ρm(tZ))
]
→ cZt

−β−1

∫ ∞

0
zβΦ

(
−2σ⋆′(0)z

)
dz.

Rewriting the identity (34) using the symmetry of σ, so that σ(t)+σ(−t) = 1, we have the equivalent
statement that E[|Z|(1−ρm(t⋆Z))] = E[σ(−tm|Z|)|Z|], or E[σ(−tm|Z|)|Z|]/E[|Z|(1−ρm(t⋆Z))] = 1.
Using this identity ratio, we find that

tm√
m

=

(
tβ+1
m E [|Z|σ(−tm|Z|)]

m
β+1
2 E [|Z|(1− ρm(tZ))]

) 1
β+1

→

( ∫∞
0 zβσ(−z)dz∫∞

0 zβΦ(−2σ⋆′(0)z)dz

) 1
β+1

· t⋆ =: at⋆.

This concludes the asymptotic characterization that tm =
√
mat⋆ · (1 + om(1)).

Finally, we turn to the asymptotics for Cm(t⋆) in (33). By Lemma A.2 its denominator has limit

lim
m→∞

t2βm E
[
σ′(tmZ)

]2︸ ︷︷ ︸
:=denCm(t⋆)

= lim
t→∞

(
tβE

[
σ′(tZ)

])2
=

(
cZ

∫ ∞

0
zβ−1σ′(z)dz

)2

.

We decompose the (rescaled) numerator of the variance (33) into the two parts

m
β
2E
[(
σ(tm|Z|)2 − σ(−tm|Z|)2

)
(1− ρm(t|Z|))

]︸ ︷︷ ︸
(I)

+m
β
2E
[
σ(−tm|Z|)2

]︸ ︷︷ ︸
(II)

.

Lemmas A.2 and that tm = a
√
mt⋆(1 + om(1)) → ∞, coupled with the dominated convergence

theorem, establishes the convergence

lim
m→∞

(II) = lim
m→∞

m
β
2E
[
σ(−

√
mat⋆|Z|)2

]
= cZt

−β

∫ ∞

0

zβ−1

(1 + eaz)2
dz.

Similarly, Lemma A.3 and that tm = a
√
mt⋆(1 + om(1)) gives that

lim
m→∞

(I) = lim
m→∞

m
β
2E
[(
σ(at⋆

√
m|Z|)2 − σ(−at⋆

√
m|Z|)2

)
(1− ρm(tZ))

]
= cZ

∫ ∞

0
zβ−1

(
σ(at⋆z)2 − σ(−at⋆z)2

)
Φ
(
−2σ⋆′(0)tz

)
dz
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= cZt
⋆−β

∫ ∞

0
zβ−1

(
σ(az)2 − σ(−az)2

)
Φ
(
−2σ⋆′(0)z

)
dz,

where in the last line we use change of variables tz 7→ z. Hence we have

lim
m→∞

m1− 1
2
βCm(t⋆) = lim

m→∞

1

mβ−1t2−2β
m

· limm→∞ (I) + limm→∞ (II)

den(Cm(t⋆))

= lim
m→∞

(
tm√
m

)2β−2

·
cZt

⋆−β
∫∞
0 zβ−1(σ(az)2 + (σ(az)2 − σ(−az)2)Φ(−2σ⋆′(0)z))dz

(cZ
∫∞
0

zβ−1ez

(1+ez)2
dz)2

.

Finally, as tm/
√
m = at⋆(1 + om(1)) we obtain that m1−β/2Cm(t⋆) = t⋆β−2b for some constant b

depending only on β, cZ , σ
⋆′(0), and σ.

H Proofs for semiparametric approaches

H.1 Proof of Lemma 5.1

As σ and σ⋆ are L-Lipschitz, we may without loss of generality assume that L = 1 and so
∥∥∥σ′

j

∥∥∥
∞

≤ 1

and
∥∥∥σ⋆

j
′
∥∥∥
∞

≤ 1. We can compute the Hessian at any θ ∈ Rd and σ⃗ = (σ1, · · · , σm),

∇2L(θ, σ⃗) = E

 1

m

m∑
j=1

(
σ⋆
j (−⟨X,u⋆⟩)σ′

j(⟨θ,X⟩) + σ⋆
j (⟨X,u⋆⟩)σ′

j(−⟨θ,X⟩)
)
XX⊤


=

1

m

m∑
j=1

E
[
σ′
j(−Y ⟨X, θ⟩)XX⊤

]
,

where in the last line we use that σ⋆
j and σj are symmetric for j = 1, · · · ,m. Therefore we can

upper bound the distance between Hessians by

∥∥∇2L(θ, σ⃗)−∇2L(u⋆, σ⃗⋆)
∥∥ ≤ 1

m

m∑
j=1

∥∥∥E [σ′
j(−Y ⟨X, θ⟩)XX⊤

]
− E

[
σ⋆
j
′(−Y ⟨X,u⋆⟩)XX⊤

]∥∥∥︸ ︷︷ ︸
:=δj

,

and thus we only need to prove each quantity δj → 0 if dF sp
link
((θ, σ⃗), (u⋆, σ⃗⋆)) → 0, that is, if

∥θ − u⋆∥2 → 0 and
∥∥∥σj(−Y ⟨X,u⋆⟩)− σ⋆

j (−Y ⟨X,u⋆⟩)
∥∥∥
L2(P)

→ 0. In the following, we will show

δj → 0 under the two different conditions. To further simplify the quantity, we claim it is sufficient

to show ξj :=
∥∥∥E[σ′

j(−Y ⟨X, θ⟩)XX⊤]− E[σ′
j(−Y ⟨X,u⋆⟩)XX⊤]

∥∥∥→ 0. Indeed, we have

Lemma H.1. If ξj → 0 and
∥∥∥σj(−Y ⟨X,u⋆⟩)− σ⋆

j (−Y ⟨X,u⋆⟩)
∥∥∥
L2(P)

→ 0, then δj → 0.

Proof. By the triangle inequality and the independent decomposition X = Zu⋆ +W , we have

δj ≤ ξj +
∥∥∥E [σ′

j(−Y ⟨X,u⋆⟩)XX⊤
]
− E

[
σ⋆
j
′(−Y ⟨X,u⋆⟩)XX⊤

]∥∥∥
= ξj +

∥∥∥E [(σ′
j(Z)− σ⋆

j
′(Z))Z2

]
· u⋆u⋆⊤

∥∥∥ = ξj +
∣∣E [(σ′

j(Z)− σ⋆
j
′(Z))Z2

]∣∣ .
44



It remains to show E
[
(σ′

j(Z)− σ⋆
j
′(Z))Z2

]
→ 0. Using the symmetry of σj and σ⋆

j , so σ
′
j(t) = σ′

j(−t),

we can replace Z by |Z|. Then integrating by parts, for any 0 < ϵ < M < ∞ we have

E
[
σ′
j(Z)Z21{ϵ ≤ |Z| ≤ M}

]
=

∫ M

ϵ
σ′
j(z)z

2p(z)dz

= σj(M)M2p(M)− σj(ϵ)ϵ
2p(ϵ)−

∫ M

ϵ
σj(z)(2zp(z) + z2p′(z))dz.

By our w.l.o.g. assumption that ∥σ′∥∞ ≤ 1, we have |E[σ′
j(Z)Z2]− E[σ′

j(Z)Z21{ϵ ≤ |Z| ≤ M}]| ≤
E[Z21{|Z| < ϵ or |Z| > M}]. Thus, recognizing the trivial bound ∥σj∥∞ ≤ 1, we have∣∣E [(σ′

j(Z)− σ⋆
j
′(Z))Z2

]∣∣ ≤ 2E[Z21{|Z| < ϵ or |Z| > M}] + 2
(
ϵ2p(ϵ) +M2p(M)

)
+

+

∣∣∣∣∫ M

ϵ
σj(z)(2zp(z) + z2p′(z))−

∫ M

ϵ
σ⋆
j (z)(2zp(z) + z2p′(z))

∣∣∣∣︸ ︷︷ ︸
(⋆)

.

We show for any fixed 0 < ϵ < M < ∞, (⋆) → 0. Applying the Cauchy-Schwarz inequality twice,
we have the bounds∣∣∣∣∫ M

ϵ
(σj(z)− σ⋆

j (z))zp(z)dz

∣∣∣∣ ≤ ∥∥σj(Z)− σ⋆
j (Z)

∥∥
L2(P) ·

√
E[Z2] → 0,∣∣∣∣∫ M

ϵ
(σj(z)− σ⋆

j (z))z
2p′(z)dz

∣∣∣∣ ≤ ∥∥σj(Z)− σ⋆
j (Z)

∥∥
L2(P) ·

√∫ M

ϵ
z4
(
p′(z)

p(z)

)2

p(z)dz

≤
∥∥σj(Z)− σ⋆

j (Z)
∥∥
L2(P) · sup

z∈[ϵ,M ]

∣∣∣∣p′(z)p(z)

∣∣∣∣√E[Z4] → 0,

where for the final inequality we use that p(z) is nonzero and continuously differentiable.
As (⋆) → 0, we evidently have lim sup |E[(σ′

j(Z) − σ⋆
j
′(Z))Z2]| ≤ 2E[Z2(1{|Z| < ϵ}+ 1{|Z| >

M})] + 2(ϵ2p(ϵ) +M2p(M)) for arbitrary 0 < ϵ < M < ∞. Using the assumptions that E[Z2] ≤
E[∥X∥22] < ∞ and limz→s z

2p(z) = 0 for s ∈ {0,∞}, we conclude the proof by taking ϵ → 0 and
M → ∞.

Finally we prove ξj :=
∥∥∥E[σ′

j(−Y ⟨X, θ⟩)XX⊤]− E[σ′
j(−Y ⟨X,u⋆⟩)XX⊤]

∥∥∥ → 0 under the two

conditions in the statement of Lemma 5.1: that σ′
j are Lipschitz or X has a continuous density.

Condition 1. The links have Lipschitz derivatives We apply Jensen’s inequality to write

ξj ≤ E
[
|σ′

j(−Y ⟨X, θ⟩)− σ′
j(−Y ⟨X,u⋆⟩)| ·

∥∥∥XX⊤
∥∥∥] = E

[
|σ′

j(−Y ⟨X, θ⟩)− σ′
j(−Y ⟨X,u⋆⟩)| · ∥X∥22

]
≤ L′ ∥θ − u⋆∥2 · E

[
∥X∥32

]
by the L′-Lipschitz continuity of σ′. Taking θ → u⋆ completes the proof for this case.

Condition 2. The covariates have continuous density Let X have density q(x). We
rewrite the convergence θ → u⋆ instead as θ = V u⋆ where V → Id is invertible. We again divide
the expectation into large ∥X∥2 part and small ∥X∥2 part. Let M < ∞ be large enough that
E[∥X∥22 1{∥X∥2 > M}] ≤ ϵ. Then using ∥σ′

j∥∞ ≤ L′, we obtain

ξj ≤
∥∥∥E [(σ′

j(−Y ⟨X, θ⟩)− σj
′(−Y ⟨X,u⋆⟩))XX⊤

]
1{∥X∥2 ≤ M}

∥∥∥+ 2L′E
[
∥X∥22 1{∥X∥2 > M}

]
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≤
∥∥∥(V −⊤E

[
σ′
j(−⟨V ⊤X,u⋆⟩)V ⊤XXV

]
V − E

[
σj

′(−⟨X,u⋆⟩)XX⊤
])

1{∥X∥2 ≤ M}
∥∥∥+ 2L′ϵ.

By the linear transformation of variables X ′ := V ⊤X, the first term in the above display is∥∥∥V −⊤E
[
σ′
j(−Y ⟨V ⊤X,u⋆⟩)V ⊤XXV

]
V − E

[
σj

′(−Y ⟨X,u⋆⟩)XX⊤
]∥∥∥

=

∥∥∥∥∥det(V −1) · V −⊤

(∫
∥V ⊤x∥

2
≤M

σ′
j(−x⊤u⋆)xx⊤p(V −⊤x)dx

)
V −

∫
∥x∥2≤M

σ′
j(−x⊤u⋆)xx⊤p(x)dx

∥∥∥∥∥ .
Since p(x) is absolutely continuous on any compact set, the above term converges to 0 as V → Id.
Finally, as ϵ > 0 was arbitrary, we take M → ∞ to conclude that ξj → 0.

H.2 Proof of Proposition 6

We apply Theorem 3. We first give the specialization of Cm,σ⃗⋆ that the assumptions of the proposition

imply, recognizing that as σlr′ = σlr(1− σlr), we have

Cm,σ⃗⋆ =

∑m
j=1 E[σlr(α⋆

jZ)(1− σlr(α⋆
jZ))]

(
∑m

j=1 E[σlr′(α⋆
jZ)])2

=

 m∑
j=1

E[σlr(α⋆
jZ)(1− σlr(α⋆

jZ))]

−1

.

We now argue that we can actually invoke Theorem 3, which requires verification of Assumption A5.
Because for any M < ∞, the link functions t 7→ σlr(αt) have Lipschitz continuous derivatives for
|α| ≤ M , so when σ⃗n has form σ⃗n = [σlr(αn,j ·)]mj=1, Lemma 5.1 implies the continuity of the mapping

(θ, σ⃗) 7→ ∇2
θL(θ, σ⃗) for dF sp

link
at (u⋆, σ⃗⋆). Then recognizing that by Lipschitz continuity of σlr we have

∥σ⃗n(Z)− σ⃗⋆(Z)∥L2(P) ≤ ∥αn − α⋆∥22 ∥Z∥2L2(P)
p→ 0

whenever αn ∈ Rm satisfies αn
p→ α⋆, we obtain the proposition.

I Proofs of nonparametric convergence results

In this technical appendix, we include proofs of the results from Section 5.2 as well as a few additional
results, which are essentially corollaries of results on localized complexities and nonparametric
regression models, though we require a few modifications because our setting is slightly non-standard.

I.1 Preliminary results

To set notation and to make reading it self-contained, we provide some definitions. The Lr(P )
norm of a function or random vector is ∥f∥Lr(P ) = (

∫
|f |rdP )1/r, so that its L2(Pn)-norm is

∥f∥2L2(Pn)
= 1

n

∑n
i=1 f(Xi)

2. We consider the following abstract nonparametric regression setting:
we have a function class F ⊂ {R → R} with f⋆ ∈ F , and our observations follow the model

Yi = f⋆(Xi) + ξi, (35)

but instead of observing (Xi, Yi) pairs we observe (X̃i, Yi) pairs, where X̃i may not be identical to
Xi (these play the roll of ⟨u⋆, Xi⟩ versus ⟨uinitn , Xi⟩ in the results to come). We assume that ξi are
bounded so that sup ξ − inf ξ ≤ 1, independent, and satisfy the conditional mean-zero property that
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E[ξi | Xi] = 0 (though ξi may not be independent of Xi). For a (thus far unspecified) function class
F we set

f̂ = argmin
f∈F

Pn(Y − f(X̃))2.

We now demonstrate that the error ∥f̂ − f⋆∥2L2(Pn)
= 1

n

∑n
i=1(f̂(Xi)− f⋆(Xi))

2 can be bounded

by a combination of the errors X̃i −Xi and local complexities of the function class F . Our starting
point is a local complexity bound analagous to the localization results available for in-sample
prediction error in nonparametric regression [cf. 39, Thm. 13.5]. To present the results, for a
function class H we define the localized ξ-complexity

Rn(u;H) := E

[
sup

h∈H,∥h∥L2(Pn)≤u

∣∣∣∣∣n−1
n∑

i=1

ξih(xi)

∣∣∣∣∣
]
,

where we treat the expectation conditionally on Xi and ξi are random (i.e. ξi = Yi − f⋆(Xi)). For
the model (35), we define the centered class F⋆ = {f − f⋆ | f ∈ F}, which is star-shaped as F is a
convex set.1 We say that δ satisfies the critical radius inequality if

1

δ
Rn(δ;F⋆) ≤ δ. (36)

With this, we can provide a proposition giving a high-probability bound on the in-sample prediction
error of the empirical estimator f̂ , which is essentially identical to [39, Thm. 13.5], though we require
a few modifications to address that we observe X̃i and not Xi and that the noise ξi are bounded
but not Gaussian.

Proposition 7. Let F be a convex function class, δn > 0 satisfy the critical inequality (36), and let
γ2 = supf∈F

1
n

∑n
i=1(f(Xi)− f(X̃i))

2. Then for t ≥ δn,

P
(
∥f̂ − f⋆∥2L2(Pn)

≥ 30tδn + 25γmax{γ, ∥ξ∥L2(Pn)} | Xn
1 , X̃

n
1

)
≤ exp

(
−ntδn

4

)
.

See Section I.3 for a proof of the proposition.
Revisiting the critical radius inequality (36), we can also apply [39, Corollary 13.7], which allows

us to use an entropy integral to guarantee bounds on the critical radius. Here, we again fix Xn
1 = xn1 ,

and for a function class H we let Bn(δ;H) = {h ∈ Star(H) | ∥h∥L2(Pn)
≤ δ}. Let Nn(t;B) denote

the t-covering number of B in ∥n·∥L2(Pn)
-norm. Then modifying a few numerical constants, we have

Corollary 5 (Wainwright [39], Corollary 13.7). Let the conditions of Proposition 7 hold. Then for
a numerical constant C ≤ 16, any δ ∈ [0, 1] satisfying

C√
n

∫ δ

δ2/4

√
logNn(t;Bn(δ,F⋆))dt ≤ δ2

2

satisfies the critical inequality (36).

As an immediate consequence of this inequality, we have the following:

1A set H is star-shaped if for all h ∈ H, if α ∈ [0, 1] then αh ∈ H.
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Corollary 6. Assume |xi| ≤ b for all i ∈ [n] and that F is contained in the class of M-Lipschitz
functions with f(0) = 0 (or any other fixed constant). Then for a numerical constant c < ∞, the
choice

δn = c

(
Mb

n

)1/3

satisfies the critical inequality (36).

Proof. The covering numbers N∞ for the class F of M -Lipschitz functions on [−b, b] satisfying
f(0) = 0 in supremum norm ∥f∥∞ = supx∈[−b,b] |f(x)| satisfy logN∞(t;F) ≲ Mb

t [cf. 39, Example
5.10]. Using that Nn ≤ N∞, we thus have∫ δ

δ2/4

√
logNn(t;Bn(δ,F⋆)) ≲

∫ δ

δ2/4

√
Mb

t
dt = 2

√
Mb

(√
δ − δ/4

)
≤ 2

√
Mbδ

whenever δ ≤ 1. For a numerical constant c > 0 it suffices in Corollary 5 to choose δ satisfying
c 1√

n

√
Mbδ ≤ δ2, or δ = c(Mb

n )1/3.

I.2 Proof of Proposition 5

We assume without loss of generality that m = 1, as nothing in the proof changes except notationally
(as we assume m is fixed). We apply Proposition 7 and Corollary 6. For notational simplicity, let Q
denote the measure on R that Y ⟨u⋆, X⟩ induces for X ∼ P , and Qn similarly for Pn. We first show
that ∥σn − σ⋆∥L2(Qn) converges quickly. First, we recall [23, Lemma 3] that maxi≤n n

−1/k ∥Xi∥2
a.s.→ 0

as n → ∞. Thus there is a (random) B < ∞ such that maxi≤n ∥Xi∥2 ≤ Bn1/k for all n. Therefore,
Corollary 6 implies that the choice δn = c( MB

n1−1/k )
1/3 satisfies the critical inequality (36), and taking

γ2n = M2

n

∑n
i=1⟨uinitn − u⋆, Xi⟩2 ≤ M2ϵ2n ∥X∥2L2(Pn)

, we have that for t ≥ δn,

∥σn − σ⋆∥2L2(Pn)
≲ tδn +M2ϵ2n ∥X∥2L2(Pn)

with probability at least 1− exp

(
−ntδn

4

)
on the event that maxi≤n ∥Xi∥2 ≤ Bn1/k for all n, where we have conditioned (in the probability)

on Xi. As ∥X∥2L2(Pn)
a.s.→ E[∥X∥22], we may choose t = δn ≫ 1/n1/3 and find that the Borell-Cantelli

lemma then implies that with probability 1, there is a random C < ∞ such that

∥σn − σ⋆∥2L2(Qn)
≤ C

(
n

2
3k

− 2
3 + ϵ2n

)
(37)

for all n with probability 1.
Finally we argue that ∥σn − σ⋆∥L2(Q)

a.s.→ 0. Let b < ∞ be otherwise arbitrary, and let Gb be
the collection of 2M -Lipschitz functions on [−b, b] with ∥g∥∞ ≤ 1 and g(0) for g ∈ Gb, noting that
σn − σ⋆ restricted to [−b, b] evidently belongs to Gb. Then we have

∥σn − σ⋆∥2L2(Q)

= ∥σn − σ⋆∥2L2(Qn)
+

∫
|t|≤b

(σn(t)− σ⋆(t))
2(dQ(t)− dQn(t)) +

∫
|t|>b

(σn(t)− σ⋆(t))
2(dQ(t)− dQn(t))

≤ ∥σn − σ⋆∥2L2(Qn)
+ sup

g∈Gb

|Qg2 −Qng
2|+Q([−b, b]c) +Qn([−b, b]c), (38)
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where the inequality used that ∥σn − σ⋆∥∞ ≤ 1 by construction. The first term in inequality (38)
we have already controlled. We may control the second supremum term almost immediately using
Dudley’s entropy integral and a Rademacher contraction inequality. Indeed, we have

E[ sup
g∈Gb

|Qng
2 −Qg2|]

(i)

≤ 2E[ sup
g∈Gb

|Q0
ng

2|]
(ii)

≤ 4E[ sup
g∈Gb

|Q0
n|]

(iii)

≲
1√
n

∫ ∞

0

√
logN∞(t;Gb)dt,

where inequality (i) is a standard symmetrization inequality, (ii) is the Rademacher contraction
inequality [19, Ch. 4] applied to the function t 7→ t2, which is 2 Lipschitz for t ∈ [−1, 1], and (iii) is
Dudley’s entropy integral bound. As the sup-norm log-covering numbers of M -Lipschitz functions
on [−b, b] scale as Mb

t for t ≤ Mb and are 0 otherwise, we obtain E[supg∈Gb
|Qng

2 − Qg2|] ≲ Mb√
n
.

The bounded-differences inequality then implies that for any t > 0,

P

(
sup
g∈Gb

|(Qn −Q)g2| ≥ c
Mb√
n
+ t

)
≤ P

(
sup
g∈Gb

|(Qn −Q)g2| ≥ E[ sup
g∈Gb

|(Qn −Q)g2|] + t

)
≤ exp(−cnt2).

Finally, the final term in the bound (38) evidently satisfiesQ([−b, b]c) ≤ E[∥X∥k2 ]
bk

and supb |Qn([−b, b]c)−
Q([−b, b])| ≤ 2

√
t/n with probability at least 1− e−2t2 by the DKW inequality. We thus find by the

Borel-Cantelli lemma that simultaneously for all b < ∞, with probability at least 1− e−nt2 we have

∥σn − σ⋆∥2L2(Q) ≤ ∥σn − σ⋆∥2L2(Qn)
+

CMb√
n

+ Ct+
E[∥X∥k2]

bk
,

where C is a numerical constant.
Substituting inequality (37) into the preceding display and taking b = n

− 1
2(k+1) , we get the

result.

I.3 Proof of Proposition 7

We begin with an extension of the familiar basic inequality [e.g. 39, Eq. (13.18)], where we see by
convexity that for any η > 0 we have

n∑
i=1

(Yi − f̂(Xi))
2 ≤ (1 + η)

n∑
i=1

(Yi − f̂(X̃i))
2 + (1 + 1/η)

n∑
i=1

(f̂(X̃i)− f̂(Xi))
2

≤ (1 + η)

n∑
i=1

(Yi − f⋆(X̃i))
2 + (1 + 1/η)

n∑
i=1

(f̂(X̃i)− f̂(Xi))
2

≤ (1 + η)2
n∑

i=1

(Yi − f⋆(Xi))
2 + (2 + η + 1/η)

n∑
i=1

[
(f̂(X̃i)− f̂(Xi))

2 + (f⋆(X̃i)− f⋆(Xi))
2
]
.

Noting that Yi = f⋆(Xi) + ξi, algebraic manipulations yield that if ∆ = [f⋆(Xi)− f̂(Xi)]
n
i=1 is the

error vector, then

∥∆∥2L2(Pn)
− 2

n
ξT∆+∥ξ∥2L2(Pn)

≤ (1+η)2 ∥ξ∥2L2(Pn)
+
2 + η + 1/η

n

n∑
i=1

[
(f̂(X̃i)− f̂(Xi))

2 + (f⋆(X̃i)− f⋆(Xi))
2
]
.

Simplifying, we obtain the following:

49



Lemma I.1. Let γ2 = supf∈F
1
n

∑n
i=1(f(Xi)− f(X̃i))

2 and ∆ = [f̂(Xi)− f⋆(Xi)]
n
i=1. Then

∥∆∥2L2(Pn)
≤ inf

η

{
(2η + η2) ∥ξ∥2L2(Pn)

+
2

n
ξT∆+ (4 + 2η + 2/η)γ2

}
≤ 2

n
ξT∆+ 11γmax

{
γ, ∥ξ∥L2(Pn)

}
.

Proof. The first inequality is algebraic manipulations and uses that our choice of η was arbitrary.
For the second, we consider two cases: that ∥ξ∥L2(Pn)

≥ γ and that ∥ξ∥L2(Pn)
≤ γ. In the first case,

we consider η ≤ 1, yielding the simplified bound that ∥∆∥2L2(Pn)
≤ 2

nξ
T∆+ 3η ∥ξ∥2L2(Pn)

+ 8γ2

η for
η ≤ 1. Taking η = γ/ ∥ξ∥L2(Pn)

gives that

∥∆∥2L2(Pn)
≤ 2

n
ξT∆+ 11 ∥ξ∥L2(Pn)

γ.

In the case that γ ≥ ∥ξ∥L2(Pn)
, we choose η = 1, and the bound simplifies to ∥∆∥2L2(Pn)

≤
2
nξ

T∆+ 3 ∥ξ∥2L2(Pn)
+ 8γ2 ≤ 2

nξ
T∆+ 11γ2.

We now return to the proof of the proposition proper. We begin with an essentially immediate
extension of the result [39, Lemma 13.12]. We let H be an arbitrary star-shaped function class.
Define the event

A(u) :=
{
there exists g ∈ H s.t. ∥g∥L2(Pn)

≥ u and |Pnξg| ≥ 2 ∥g∥L2(Pn)
u
}
, (39)

which we treat conditionally on Xn
1 = xn1 as in the definition of the local complexity Rn. (Here the

noise ξi are still random, taken conditionally on Xn
1 = xn1 .)

Lemma I.2 (Modification of Lemma 13.12 of Wainwright [39]). Let H be a start-shaped function
class and let δn > 0 satisfy the critical radius inequality

1

δ
Rn(δ;H) ≤ δ.

Then for all u ≥ δn, we have

P(A(u)) ≤ exp

(
−nu2

4

)
.

Deferring the proof of Lemma I.2 to Section I.3.1, we can parallel the argument for [39, Thm. 13.5]
to obtain our proposition.

Let H = F⋆ in Lemma I.2. Whenever t ≥ δn, we have P(A(
√
tδn)) ≤ e−ntδn/4. We consider the

two cases that ∥∆∥L2(Pn) ≶
√
tδn. In the former that ∥∆∥L2(Pn) ≤

√
tδn, we have nothing to do. In

the latter, we have f̂ − f⋆ ∈ F⋆ while ∥∆∥L2(Pn) >
√
tδn, so that if A(

√
tδn) fails then we must have∣∣∣∣∣ 1n

n∑
i=1

ξi∆(xi)

∣∣∣∣∣ ≤ 2 ∥∆∥L2(Pn)

√
tδn.

From the extension of the basic inequality in Lemma I.1 we see that

∥∆∥2L2(Pn)
≤ 4 ∥∆∥L2(Pn)

√
tδn + 11max

{
γ2, γ ∥ξ∥L2(Pn)

}
.

Solving for ∥∆∥L2(Pn)
then yields

∥∆∥L2(Pn)
≤

4
√
tδn +

√
16tδn + 44γmax{γ, ∥ξ∥L2(Pn)

}

2
≤ 4
√
tδn +

√
11γmax{γ, ∥ξ∥L2(Pn)

}.

Simplifying gives Proposition 7.
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I.3.1 Proof of Lemma I.2

Mimicking the proof of [39, Lemma 13.12], we begin with [39, Eq. (13.40)]:

P(A(u)) ≤ P(Zn(u) ≥ 2u2) for Zn(u) := sup
g∈H,∥g∥L2(Pn)≤u

∣∣∣∣∣n−1
n∑

i=1

ξig(xi)

∣∣∣∣∣ .
Now note that if ∥g∥L2(Pn) ≤ u, then the function ξ 7→ |n−1

∑n
i=1 ξig(xi)| is u/

√
n-Lipschitz with

respect to the ℓ2-norm, so that convex concentration inequalities [e.g. 39, Theorem 3.4] imply that

P(Zn(u) ≥ E[Zn(u)] + t) ≤ exp(− t2n
4b2u2 ) whenever sup ξ − inf ξ ≤ b, and so for b = 1 we have

P(Zn(u) ≥ E[Zn(u)] + u2) ≤ exp

(
−nu2

4

)
.

As E[Zn(u)] = Rn(u), we finally use that the normalized complexity t 7→ Rn(t)
t is non-decreasing [39,

Lemma 13.6] to obtain that for u ≥ δn,
1
uRn(u) ≤ 1

δn
Rn(δn) ≤ δn, the last inequality by assumption.

In particular, we find that for u ≥ δn we have E[Zn(u)] = Rn(u) ≤ uδn ≤ u2, and so

P(Zn(u) ≥ 2u2) ≤ P(Zn(u) ≥ E[Zn(u)] + u2) ≤ exp

(
−nu2

4

)
,

as desired.
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