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Abstract

We study computational and statistical consequences of problem geometry in stochastic and
online optimization. By focusing on constraint set and gradient geometry, we characterize the
problem families for which stochastic- and adaptive-gradient methods are (minimax) optimal and,
conversely, when nonlinear updates—such as those mirror descent employs—are necessary for
optimal convergence. When the constraint set is quadratically convex, diagonally pre-conditioned
stochastic gradient methods are minimax optimal. We provide quantitative converses showing
that the “distance” of the underlying constraints from quadratic convexity determines the sub-
optimality of subgradient methods. These results apply, for example, to any ℓp-ball for p < 2,
and the computation/accuracy tradeoffs they demonstrate exhibit a striking analogy to those in
Gaussian sequence models.

1 Introduction

The default procedures for solving the stochastic optimization problem

minimize
x∈X

fP (x) := EP [F (x, S)] =

∫
F (x, s)dP (s), (Opt)

where {F (·, s), s ∈ S} are convex functions F (·, s) : Rn → R, P is a distribution on S, and X ⊂ Rn

is a closed convex set, are variants of the stochastic subgradient method, where one iteratively draws
Sk

iid∼ P and updates
xk+1 := xk − αkgk, where gk ∈ ∂F (xk, Sk). (1)

The simplicity and scalability of this update make stochastic subgradient methods the de facto
choice for large-scale optimization [30, 26, 7]. The geometry of the underlying underlying constraint
set X and subgradients ∂F (·, s) impact the performance of algorithms for problem (Opt), and so a
question arises: are such linear updates (1) enough to obtain (minimax rate) optimal convergence
guarantees for the problem (Opt), or does does the structure of the problem necessitate nonlinearity
to achieve optimization efficiency? Convergence guarantees for stochastic gradient methods depend
on the ℓ2-diameter of X and ∂F (·, s), while for non-Euclidean geometries (e.g. when X is an ℓ1- or
ℓ∞-ball) mirror descent, dual averaging and adaptive gradient methods provide better convergence
guarantees [25, 26, 5, 27, 17, 13]. We investigate these gaps by precisely quantifying convergence
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for different method families, highlighting a particular way to trade between computational power—
which we treat as whether purely linear operations suffice to optimally solve problem (Opt), or
nonlinear updates are necessary—and optimization and statistical efficiency.

To set the stage, let us revisit Donoho, Liu, and MacGibbon’s study of optimal estimation in
Gaussian sequence models [15]. One observes a vector x ∈ X corrupted by Gaussian noise,

y = x+ N(0, σ2I),

and seeks to estimate x. For such problems, one can consider linear estimators—x̂ = AY for a
A ∈ Rn×n—or potentially non-linear estimators

x̂ = Φ(y)

where Φ : Rn → X is otherwise arbitrary. When X is quadratically convex, meaning the set
X2 := {(x2j ) | x ∈ X} is convex, Donoho et al. show there exist minimax rate-optimal linear
estimators; conversely, there are non-quadratically convex X for which rate-optimal estimators x̂
must be nonlinear in y. In particular, as we discuss in Section 5, this gap depends on the difference
between the Kolmogorov (linear) n-width of X and its “nonlinear” n-width, that is,

w2(n) := sup
v∈Conv(X2)

∑
j>n

v(j) versus w2
nl(n) := sup

v∈X2

∑
j>n

v(j), (2)

where |v(1)| ≥ |v(2)| ≥ · · · denote the elements of v sorted by magnitude. We show how these
results follow from convex duality, and the difference between w2(n) and w2

nl(n) allows a quantitative
characterization of how far X is from being quadratically convex and the impact this distance has
on the (sub)optimality of linear estimators.

Our main results show how stochastic and online convex optimization analogize these sequence
models. To build the analogy, consider dual averaging [27], where for a strongly convex h : X → R,
one iteratively receives Sk ∈ S, chooses gk ∈ ∂F (xk, Sk), and for a stepsize αk > 0 updates

xk+1 := argmin
x∈X

{∑
i≤k

g⊤i x+
1

αk
h(x)

}
. (3)

When X = Rn and h is Euclidean, that is, h(x) = 1
2x

⊤Ax for some A ≻ 0, the updates are linear in
the observed gradients gi, as

xk = −αkA−1
∑
i≤k

gi.

Drawing a parallel between Φ in the Gaussian sequence model and h in dual averaging (3), we
show that because of duality gaps in certain min-max problems, a dichotomy holds for stochastic
and online convex optimization similar to that holding for the Gaussian sequence model: if X is
quadratically convex, there is a Euclidean h (yielding “linear” updates (3)) that is minimax rate
optimal for problem (Opt), while there exist non-quadratically convex X for which Euclidean
distance-generating h are arbitrarily suboptimal. Taking a computational perspective, this means
that for some problems one must use more sophisticated methods than “linear” updates. We show
that this analogy holds, though the measurement of a set’s deviance from quadratic convexity, and
hence the gap in attainable performance between linear and nonlinear methods, differs between
Gaussian sequence models and stochastic optimization: there are constraint sets X for which linear
estimators are (rate) optimal in the Gaussian sequence model but not for stochastic optimization,
and vice versa. Nonetheless, we fully characterize minimax rates when the subgradients g ∈ ∂F

2



lie in a quadratically convex set or a weighted ℓr ball, r ≥ 1. (This issue does not arise for the
Gaussian sequence model, as the observations Y come from a fixed distribution, so there is no notion
of alternative norms on Y .)

More precisely, we prove that for orthosymmetric quadratically convex bodies X, subgradient
methods with a fixed diagonal re-scaling are minimax rate optimal. This guarantees that for a
large collection of constraints (e.g. ℓ2-balls, weighted ℓp-bodies for p ≥ 2, or hyperrectangles) a
diagonal re-scaling suffices. This is important in, e.g., machine learning problems of appropriate
geometry, such as in linear classification problems where the data (features) are sparse, so using a
dense predictor x is natural [17, 18]. Conversely, we show that if the constraint set X is a (scaled)
ℓp-ball, 1 ≤ p < 2, then, considering unconstrained updates (3), the regret of the best method of
linear type (i.e. h quadratic) can be

√
n/ log n times larger than the minimax rate in online convex

optimization. As part of this, we provide new information-theoretic lower bounds on optimization
for general convex constraints X. In contrast to the frequent (but illogical) practice of comparing
convergence upper bounds, we demonstrate the gap between linear and non-linear methods must
hold. Sections 4.2 and 5 also show how the departure from quadratic convexity affects convergence
guarantees: comparing the ℓ1 diameters of X and its second-order lifts via

sup
x∈X

∥x∥1 versus sup
v

{
∥v∥1 | v

2 ∈ Conv{diag(xx⊤), x ∈ X})
}
,

the gap between the left and right quantities (essentially) characterizes the gap in performance
between linear and nonlinear methods for stochastic optimization, while Kolmogorov n-widths (2)
capture that in the Gaussian sequence model.

We extend our results to an additional computational consideration: whether an algorithm must
be adaptive, that is, it must change its update rules over time based on observations. We demonstrate
that non-adaptive linear methods necessarily suffer slower convergence rates than adaptive methods
in online problems. One perspective on our results is thus computational, though with a different
angle than most current work on tradeoffs between statistics and computational complexity. Much
of this literature takes as inspiration the classical perspective that the gap between polynomial
and non-polynomial time algorithms forms the great watershed in computational complexity, thus
necessitating a class of “hard” problems while allowing essentialy arbitrary algorithms [6, 8, 9]. We
take an alternative perspective that allows more nuance in the types of convergence rates we can
achieve—differentiating between various polynomials—by restricting the algorithms we consider to
those in families common in optimization.

Our conclusions relate to the growing literature in adaptive algorithms [4, 17, 28, 29, 14]. Our
results effectively prescribe that these adaptive algorithms are useful when the constraint set is
quadratically convex, as this guarantees a minimax optimal diagonal pre-conditioner. More, different
sets suggest different regularizers. For example, when the constraint set is a hyperrectangle, AdaGrad
has regret at most

√
2 times that of the best post-hoc pre-conditioner, which we show is minimax

optimal, while (non-adaptive) standard gradient methods can be
√
n suboptimal on such problems.

Conversely, our results strongly recommend against those methods for non-quadratically convex
constraint sets. Our results thus clarify existing convergence guarantees [27, 26, 17, 39]: when the
geometry of X and ∂F is appropriate for adaptive gradient methods or Euclidean algorithms, one
should use them; when it is not—the constraints X are not quadratically convex—one should not.

Notation We use n to refer to the dimension of problems, and we use k to denote either a
sample size or number of iterations. We let RN = {(xj)∞j=1} denote sequence space. For a norm
γ, the set Bγ(x0, r) := {x | γ(x − x0) ≤ r} denotes the ball of radius r around x0 in the γ
norm. For p ∈ [1,∞] we use the shorthand Bp(x0, r) := B∥·∥p(x0, r). The dual norm of γ is
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γ∗(z) = supγ(x)≤1 ⟨x, z⟩. For x, τ ∈ Rn or RN, we abuse notation and define x2 := (x2j )j≥1,
|x| := (|xj |)j≥1, xτ := (xj/τj)j≥1 and x⊙ τ := (xjτj)j≥1, and similarly for sets X, if f : R → R then
we let f(X) = {(f(xj))j≥1 | x ∈ X} be the elementwise application of f to elements of X. The
function h denotes a distance generating function, i.e. a function strongly convex with respect to a
norm ∥·∥; Dh(x, y) = h(x) − h(y) − ⟨∇h(y), x− y⟩ denotes the Bregman divergence, where recall
that h is strongly convex with respect to ∥·∥ if and only if Dh(x, y) ≥ 1

2 ∥x− y∥2. The subdifferential
of F (·, s) at x is ∂xF (x, s). I(X;Y ) is the (Shannon) mutual information between random variables
X and Y . For a set Ω and f, g : Ω → R, we write f ≲ g if there exists a finite numerical constant C
such that f(t) ≤ Cg(t) for t ∈ Ω, and f ≍ g if g ≲ f ≲ g.

2 Preliminaries and Background

We begin by reviewing the classical results in Gaussian sequence models and presenting and defining
the minimax framework in which we analyze procedures. We also review standard stochastic
subgradient methods and introduce the relevant geometric notions of convexity we require. As part
of this, we give a new argument showing the optimality of linear estimators for Gaussian sequence
models when the underlying constraint set is quadratically convex (which we define presently).

Quadratic convexity and orthosymmetry

A few geometric quantities are central to our development. For a set X, let X2 := {x2, x ∈ X}
denote its (elementwise) square. The set X is quadratically convex if X2 is convex; typical examples
of quadratically convex sets are weighted ℓp bodies for p ≥ 2 or hyperrectangles. We let QHull(X) be
the quadratic convex hull of X, meaning the smallest convex and quadratically convex set containing
X. The set X ⊂ Rn or X ⊂ RN is orthosymmetric if it is invariant to flipping the signs of any
coordinate: if x ∈ X then σj ∈ {±1} implies (σjxj)j≥1 ∈ X. Similarly, a norm γ is orthosymmetric
if γ(g) = γ(|g|) for all g, and γ is quadratically convex if it induces a quadratically convex unit ball
Bγ(0, 1). For any set X, we define the squared convex hull and square root

SqHull(X) := Conv
{
(x2j ) | x ∈ X

}
and

√
SqHull(X) = {(√yj) | y ∈ SqHull(X)},

the latter of which is always convex by the concavity of the square root. For orthosymmetric X,

QHull(X) =
{
s⊙ x | x ∈

√
SqHull(X), sj ∈ {±1} for all j

}
.

2.1 The Gaussian sequence model

Gaussian sequences provide a model for analyzing parametric and nonparametric statistical proce-
dures, and tools developed in their analysis form a bedrock of modern statistical estimation [36, 22];
we provide some perspective on estimation in the sequence model. In the Gaussian sequence model,
we begin with a (typically convex and compact) set X ⊂ Rn or in sequence space RN, and for
an unknown x ∈ X observe y = x + ξ, where ξ ∼ N(0, σ2I). The goal is to estimate x in some
sense optimally, and frequently one considers sequences with X ⊂ Rn and σ2 scaling as 1/n, which
analogizes estimation with n observations, so that rates of convergence as σ2 ↓ 0 become the main
focus [22]. An interesting point of contrast is when linear estimators are sufficient to achieve (near)
optimal performance or nonlinear estimators are necessary. An estimator x̂ = x̂(y) is linear if it has
the form x̂ = Ay for a linear operator A and nonlinear otherwise. We consider the risk

R(x̂, x) := E
[
∥x̂(y)− x∥22

]
,
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where for linear estimators of the form x̂ = Ay, we use the shorthand

R(A, x) = E
[
∥Ay − x∥22

]
= E

[
∥(A− I)x+Aξ∥22

]
= ∥(A− I)x∥22 + σ2 ∥A∥2Fr . (4)

The maximum risk of an estimator over the set X is

R∗(x̂, X) := sup
x∈X

R(x̂, x),

while the minimax risk and linear minimax risk are

R∗(X) := inf
x̂
R∗(x̂, X) and R∗

lin(X) := inf
A
R∗(A,X).

Donoho et al. [15] proved fundamental results relating the minimax risk and linear minimax risk for
the Gaussian sequence model, and among their main results is that if the set X is an orthosymmetric
quadratically convex body, then R∗

lin(X) ≤ 1.25R∗(X), and moreover, R∗
lin(X) = supH⊂X R

∗
lin(H),

where H is a (hyper)rectangle. We begin by giving an alternative approach to some of these
arguments here via convex duality, which allows us to put these arguments and the rest of our
development on similar intellectual footing. In brief, the Sion and Fan minimax theorems [34, 19],
coupled with quadratic lifts of the set X, play an essential role in all of our results.

Proposition 2.1. Assume σ2 > 0 and X ⊂ Rn is an orthosymmetric convex body. Then the matrix
A minimizing R∗(A,X) is diagonal and unique. Moreover,

inf
A
R∗(A,X) = inf

d∈Rn
sup
x∈X


n∑
j=1

(dj − 1)2x2j + σ2d2j

 .

We provide a proof of the proposition in Appendix B.1, noting the following corollary of our proof
technique. In the corollary, we say that a measure ν is orthosymmetric if for all diagonal sign
matrices Σ ∈ diag({±1}n) and sets C ⊂ Rn, we have ν(C) = ν(ΣC).

Corollary 2.1. There exists an orthosymmetric probability measure ν on X such that the A
minimizing R∗(A,X) minimizes

∫
X E[∥Ay − x∥22]dν(x), and it coincides with the diagonal matrix

D = diag(d1, . . . , dn) minimizing R∗(D,X), which similarly minimizes
n∑
j=1

∫
X

[
d2jx

2
j − 2djx

2
j + σ2d2j

]
dν(x).

With these results in place, we can provide alternative proofs characterizing the linear minimimax
risk for the Gaussian sequence model. We first evaluate the risk.

Corollary 2.2. Let X ⊂ Rn be an orthosymmetric quadratically convex body. Then

inf
A
R∗(A,X) = sup

q∈QHull(X)

n∑
j=1

σ2q2j
q2j + σ2

.

Proof. Proposition 2.1 implies that

inf
A

sup
x∈X

Ex
[
∥Ay − x∥22

]
= inf

d∈Rn
sup
x∈X

n∑
j=1

(
(dj − 1)2x2j + σ2d2j

)
= inf

d
sup

v∈SqHull(X)

n∑
j=1

(
(dj − 1)2vj + σ2d2j

)

= sup
v∈SqHull(X)

inf
d


n∑
j=1

(
(dj − 1)2vj + σ2d2j

) , (5)
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where equality (5) is a standard convex/concave saddle-point result (we may without loss of generality
restrict d to the set [0, 1]n). Continuing the equalities, we have

inf
d

{
(dj − 1)2vj + σ2d2j

}
=

σ2vj
vj + σ2

,

which implies the result.

An approximation argument extends Corollary 2.2 to sequence space (see Appendix B.2).

Corollary 2.3. Let X ⊂ RN be orthosymmetric and compact for ℓ2(N). Then

inf
A
R∗(A,X) = sup

q∈QHull(X)

∞∑
j=1

q2jσ
2

q2j + σ2
.

The two preceding corollaries—particularly via the swap of the min/max in equality (5)—highlight
that if QHull(X) = X, then linear estimators can be essentially chosen assuming knowledge that
coordinate j of x lies in a [−|xj |, |xj |].

With these results in place, we can provide an alternative proof that if X is quadratically convex,
then the linear minimax risk for the Gaussian sequence model is equal to linear minimax risk
over all rectangular subsets of X (recovering [15, Theorem 7]). Let R(X) denote the collection of
orthosymmetric rectangular subsets of X, that is, sets of the form [−xj , xj ]j≥1 ⊂ X.

Corollary 2.4. Let X be quadratically convex, compact, and orthosymmetric. Then

inf
x̂=Ay

sup
x∈X

E[∥x̂− x∥22] = inf
A
R∗(A,X) = sup

H∈R(X)
inf
A
R∗(A,H) = σ2 sup

x∈X

∑
j≥1

x2j
x2j + σ2

.

Proof. Because X = QHull(X), Corollary 2.3 implies infAR
∗(A,X) = supx∈X

∑
j≥1

σ2x2j
x2j+σ

2 . Now

note that given any hyperrectangle H =
⊗

j≥1[−xj , xj ] for x ∈ X, we have again by Corollary 2.3

that infAR
∗(A,H) =

∑
j≥1

σ2x2j
x2j+σ

2 . Take a supremum.

2.1.1 Fundamental limits for the Gaussian sequence model

To introduce the ideas for lower bounds we employ in the remainder of the paper and highlight
quadratic convexity, we also review some of the fundamental lower and upper bounds in Gaussian
sequence models for general orthosymmetric sets X. The following result, which for completeness we
prove in Appendix B.3, is typical; it provides worse constants than those available by more careful
constructions (cf. [22, Chapter 4]), but it introduces some of our main types of arguments.

Proposition 2.2. Let X be an orthosymmetric convex set. Then for any x ∈ X,

R∗(X) ≥ 1

10

∑
j≥1

x2j ∧ σ2.

As an immediate consequence to Proposition 2.2, we see that linear estimators are minimax rate
optimal whenever X is quadratically convex.

Corollary 2.5. Let X be quadratically convex, orthosymmetric, and compact. Then

R∗(X) ≤ inf
A
R∗(A,X) ≤ 10R∗(X).
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Proof. Observe that x2j ∧ σ2 ≥
x2jσ

2

x2j+σ
2 , and then apply Corollary 2.4 and Proposition 2.2.

Given that whenever X is quadratically convex, linear estimators are (nearly) minimax optimal,
the fundamental question then becomes when we indeed require nonlinearity and which nonlinear
methods are rate optimal.

2.1.2 Soft-thresholding and nonlinear estimators

Soft-thresholding, which estimates x by elementwise applying the soft-thresholding operator

Sλ(y) := sign(y) · (|y| − λ)+ ,

provides a nearly optimal procedure for estimation in Gaussian sequence models. Johnstone [22,
Corollary 8.4] gives a paradigmatic bound for the risk of soft thresholding on a single coordinate:

Corollary 2.6. Let y ∼ N(x, σ2) and δ ∈ (0, 1]. Then for λ =
√

2σ2 log δ−1,

E[(Sλ(y)− x)2] ≤ δσ2 +
(
1 + 2 log δ−1

)
· x2 ∧ σ2.

In particular, if X ⊂ Rn and δ = 1
n , then defining the estimator x̂ coordinatewise by x̂j = Sλ(yj) for

λ =
√

2σ2 log n, we obtain

E[∥x̂− x∥22] ≤ σ2 + (2 log n+ 1)
n∑
j=1

x2j ∧ σ2,

whose risk is within a factor O(1) log n of the minimax risk lower bound in Proposition 2.2. In fact,
the factor 2 log n is sharp [22, Proposition 8.8] as n→ ∞.

One typically considers the risk in Gaussian sequence models as σ2 → 0—for example, with the
scaling σ2 ∝ 1/n in an n-dimensional model—so that we wish to understand the “right” scaling
in the model. For this, we adapt Donoho et al.’s results [15, Thm. 12] by combining projecting
coordinates to zero and soft-thresholding. Define

N(σ,X) := inf

{
n | sup

x∈X
|xj | ≤ σ for all j ≥ n

}
,

and for λ =
√

2σ2 logN(σ), define the truncated soft-thresholding estimator

x̂j =

{
Sλ(yj) if j ≤ N(σ,X)

0 otherwise.
(6)

An adaptation of their arguments [15, pg. 1430] yields the following corollary.

Corollary 2.7. The truncated soft-thresholding estimator (6) satisfies

E[∥x̂− x∥22] ≤ σ2 + (2 logN(σ,X) + 1)
∑
j≥1

x2j ∧ σ2.

If N(σ,X) is polynomial in 1/σ as σ → 0, there exists C(σ) ≤ O(1) log 1
σ such that

R(x̂, X) ≤ C(σ) ·R∗(X).
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Proof. For N = N(σ,X) we have

E[∥x̂− x∥22] =
N∑
j=1

E[(Sλ(yj)− xj)
2] +

∑
j>N

x2j ≤ σ2 + (1 + 2 logN)

N∑
j=1

x2j ∧ σ2 +
∑
j>N

x2j ∧ σ2,

as x2j ≤ σ2 for j > N(σ,X), which implies the first result. Proposition 2.2 implies the second.

The assumption that N(σ,X) is polynomial in 1/σ as σ → 0 is typically lenient; any X ⊂ Rn

evidently satisfies it, and so do sets contained in ℓp bodies {x ∈ RN |
∑∞

j=1 aj |xj |p ≤ 1} so long as
aj → ∞ polynomially quickly in the index j. In brief, the (nonlinear) truncated soft-thresholding
estimator (6) is nearly minimax rate-optimal: to within a logarithmic factor it achieves the minimax
optimal rate for any “sufficiently compact” set X. Moreover, because 1

2(a ∧ b) ≤
ab
a+b ≤ a ∧ b for

a, b ≥ 0, the difference between the quantities

sup
x∈X

∑
j

x2j ∧ σ2 and sup
x∈QHull(X)

∑
j

x2j ∧ σ2

evidently determines whether nonlinear estimators are necessary.

2.2 Minimax rate for convex stochastic optimization

We turn to stochastic optimization. We measure the complexity of problem families in two familiar
ways: stochastic minimax complexity and regret [25, 1, 10, 16]. Let X ⊂ Rn be a closed convex
set, S a sample space, and F a collection of functions F : Rn × S → R. For a collection P of
distributions over S, recall (Opt) that fP (x) :=

∫
F (x, s)dP (s) is the expected loss of the point x.

Then the minimax stochastic risk is

MS
k(X,F ,P) := inf

x̂k
sup
F∈F

sup
P∈P

E

[
fP (x̂k(S

k
1 ))− inf

x∈X
fP (x)

]
,

where the expectation is taken over Sk1
iid∼ P and the infimum ranges over all measurable functions x̂k

of Sk. A related notion is the average minimax regret, which instead takes a supremum over samples
sk1 ∈ Sk and measures losses instantaneously. In this case, an algorithm consists of a sequence of
decisions x̂1, x̂2, . . . , x̂k, where x̂i is chosen conditional on samples si−1

1 , so that

MR
k (X,F ,S) := inf

x̂1:k
sup

F∈F ,sk1∈Sk,x∈X

1

k

k∑
i=1

[
F
(
x̂i
(
si−1
1

)
, si
)
− F (x, si)

]
.

In the regret case we may of course identify si with individual functions F . In both definitions, we
do not constrain the point estimates x̂ to lie in the constraint sets—in language of learning theory,
improper predictions—but in our cases, this does not change regret by more than a constant factor.
As online-to-batch conversions make clear [11], we always have MS

k ≤ MR
k ; thus we typically provide

lower bounds on MS
k and upper bounds on MR

k . In many of the cases we consider, these quantities
are essentially equivalent [e.g. 33], and in cases where we wish to provide explicit lower bounds on
algorithms we typically use regret.

Lipschitz continuity properties form a central lever for demonstrating convergence in general
(potentially non-smooth) stochastic convex optimization [25, 1, 16], and consequently, we study
functions for which a norm γ on Rn (γ as a mnemonic for gradient) specifies these:

Fγ,r := {F : Rn × S → R | for all x ∈ Rn, g ∈ ∂xF (x, s), γ(g) ≤ r} , (7)
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The gradient bound condition γ(g) ≤ r is equivalent to the Lipschitz condition |F (x, s)−F (x′, s)| ≤
rγ∗(x− x′), where γ∗ is the dual norm to γ. We use the shorthands

MR
k (X, γ) := sup

S
MR

k (X,Fγ,1,S) and MS
k(X, γ) := sup

S
sup

P⊂P(S)
MS

k(X,Fγ,1,P)

as the Lipschitzian properties of F in relation to X determine the minimax regret and risk.

2.3 Stochastic gradient methods, mirror descent, and regret

Let us briefly review the canonical algorithms for solving the problem (Opt) and their associated
convergence guarantees. For an algorithm outputing points x1, . . . , xk, the regret on the sequence
F (·, si) with respect to a point x is

Regretk(x) :=
k∑
i=1

[F (xi, si)− F (x, si)].

Recalling the definition Dh(x, x0) = h(x)− h(x0)− ⟨∇h(x0), x− x0⟩ of the Bregman divergence, the
mirror descent algorithm [25, 5] iteratively sets

gi ∈ ∂xF (xi, si) and updates xMD
i+1 := argmin

x∈X

{
g⊤i x+

1

α
Dh(x, xi)

}
(8)

where α > 0 is a stepsize. When the function h is 1-strongly convex with respect to a norm ∥·∥ with
dual norm ∥·∥∗, the iterates (8) and the iterates (3) of dual averaging satisfy (cf. [5, 10, 27])

Regretk(x) ≤
Dh(x, x0)

α
+
α

2

∑
i≤k

∥gi∥2∗ for all x ∈ X. (9)

The choice h(x) = 1
2 ∥x∥

2
2 recovers the classical stochastic gradient method, while the p-norm

algorithms [20, 31, 26, 16], defined for 1 < p ≤ 2, use h(x) = 1
2(p−1) ∥x∥

2
p; each is strongly convex

with respect to the ℓp-norm ∥·∥p. If G = {g ∈ ∂xF (x, s) | x ∈ X, s ∈ S} denotes the set of possible
subgradients, the regret guarantee (9) becomes

Regretk(x) ≤
∥x∥2p

2(p− 1)α
+
kα

2
sup
g∈G

∥g∥2q

if x0 = 0 and q = p
p−1 is conjugate to p. The choice α = 1√

k
supx∈X ∥x∥p / supγ(g)≤1 ∥g∥q gives the

following now standard minimax regret bound [cf. 32, Corollary 2.18].

Proposition 2.3. Let X be closed convex, γ a norm, and 1 < p ≤ 2, q = p
p−1 . Mirror descent with

distance generating function h(x) := 1
2(q−1) ∥x∥

2
p and stepsize α =

supx∈X∥x−x0∥p√
k supγ(g)≤1∥g∥q

achieves regret

MR
k (X, γ) ≤

supx∈X ∥x∥p supg∈Bγ(0,1) ∥g∥q√
k(p− 1)

.

As we previously stated in our definitions of minimax risk and regret, we do not constrain the
point estimates to lie in the constraint set X, which is equivalent to taking X = Rn in the updates (8)
or (3). The regret bound (9) still holds whenever x ∈ X. Even with unconstrained updates, the
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form (9) still captures the regret for all common constraint sets X [31]. To give one example of
this phenomenon, take X = Rn in the updates (8) or (3) while choosing h(x) = 1

2(p−1) ∥x∥
2
p and

p = 1+ 1
log(2n) . Then with dual q = p

p−1 = 1+ log(2n), and x0 = 0, we see that for any set X ′ ⊂ Rn,

sup
x∈X′

Regretk(x) ≤
2

α
sup
x∈X′

h(x) +
α

2

∑
i≤k

∥gi∥2q ≤
2

α
sup
x∈X′

h(x) +
e2α

2

∑
i≤k

∥gi∥2∞ .

When we take the comparator class X ′ to be the ℓ1 ball X = {x | ∥x∥1 ≤ 1}, then we see the familiar
logarithmic scaling

sup
∥x∥1≤1

Regretk(x) ≤
2 log(2n)

α
+
α

2

∑
i≤k

∥gi∥2∞ ,

and if ∥gi∥∞ ≤ 1 for all i then taking α = 2
e

√
log(2n)/k gives O(1) ·

√
k log n regret.

We frequently focus on distance generating functions of the form h(x) = 1
2 ⟨x,Ax⟩ for a fixed

positive semi-definite matrix A. For an arbitrary A, we will refer to these methods as Euclidean
gradient methods and for a diagonal A as diagonally scaled gradient methods. In this case,
the mirror descent update is the stochastic gradient update with A−1g, where g is a stochastic
subgradient. We refer to all such methods as methods of linear type, as their update sequence
guarantees the linearity

xk = −A−1
k−1∑
i=1

gi.

The remainder of the paper develops the analogy of linear and nonlinear updates in stochastic
optimization problems with those in Gaussian sequence models, highlighting when methods of linear
type are minimax rate optimal, and when more computational power—we require nonlinearity—is
necessary.

3 Minimax optimality and quadratically convex constraint sets

We begin by providing lower bounds on the minimax risk and matching upper bounds on the
minimax regret of convex optimization over quadratically convex constraint sets, where diagonally
scaled gradient methods achieve the regret bounds. While the analogy with the Gaussian sequence
model is nearly complete, in distinction to the work of Donoho et al. (where results depend solely
on the constraints X, as in Corollary 2.4), our results necessarily depend on the geometry of the
subdifferential. Consequently, we distinguish throughout this section between quadratically and
non-quadratically convex geometry of the gradients. To set the stage our contributions, we begin
with the classical case of X = Bp(0, 1) with p ∈ [2,∞] (so that X is quadratically convex) and norm
γ = ∥·∥r with r ≥ 1. We then turn to arbitrary quadratically convex constraint sets and first show
results in the case of general quadratically convex norms on the subgradients. We conclude the
section by proving that, when the subgradients do not lie in a quadratically convex set but lie in a
weighted ℓr ball (for r ∈ [1, 2]), diagonally scaled gradient methods are still minimax rate optimal.

3.1 A warm-up: p-norm constraint sets for p ≥ 2

Though the results for the basic case that X is an ℓp-ball while the gradients belong to a different
ℓr-ball are special cases of the theorems to come, the proofs (appendicized) are simpler and provide
intuition for the later results. We distinguish between two cases depending on the value of r in the
gradient norm. The case that r ∈ [1, 2] corresponds roughly to “sparse” gradients, while the case
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r ≥ 2 corresponds to harder problems with dense gradients. We provide information theoretic proofs
of the following two results in Appendices C.1 and C.2, respectively.

Proposition 3.1 (Sparse gradients). Let X = Bp(0, 1) with p ≥ 2 and γ(·) = ∥·∥r where r ∈ [1, 2].
Then

1 ∧ n
1
2
− 1

p

√
k

≲ MS
k(X, γ) ≤ MR

k (X, γ) ≲ 1 ∧ n
1
2
− 1

p

√
k
.

Proposition 3.2 (Dense gradients). Let X = Bp(0, 1) with p ≥ 2 and γ(·) = ∥ · ∥r with r ≥ 2. Then

1 ∧ n
1
2
− 1

pn
1
2
− 1

r

√
k

≲ MS
k(X, γ) ≤ MR

k (X, γ) ≲ 1 ∧ n
1
2
− 1

pn
1
2
− 1

r

√
k

.

In both cases, the stochastic gradient method achieves the regret upper bound via a straightforward
optimization of the regret bounds (9) with h(x) = 1

2 ∥x∥
2
2; a method of linear type is optimal.

3.2 General quadratically convex constraints

We now turn to the more general case that X is an arbitrary orthosymmetric quadratically convex
body. We combine two techniques to develop the results. The first builds out of the ideas of Donoho
et al. [15] in Gaussian sequence estimation, where, as in Section 2.1 the largest hyperrectangle in X
governs the performance of linear estimators; this gives us a lower bound. The key second technique
is in the upper bound, where a strong duality result holds because of the quadratic convexity of
X, allowing us to prove minimax optimality of diagonally scaled Euclidean procedures. As in the
previous section, we divide our analysis into cases depending on whether the gradient norm γ is
quadratically convex or not (the analogs of r ≶ 2 in Propositions 3.1 and 3.2).

We begin with the lower bound, which relies on rectangular structures in the primal X and
dual gradient spaces. For the proposition, we use a specialization of the function families (7) to
rectangular sets, where for M ∈ Rn

+ we define

FM :=
{
F : Rn × S → R | for all x ∈ Rn and g ∈ ∂xf(x, s), max

j≤n

|gj |
Mj

≤ 1
}
.

Proposition 3.3 (Duchi et al. [18], Proposition 1). Let M ∈ Rn
+ and FM be as above. Let a ∈ Rn

+

and assume the hyperrectangular containment
∏n
j=1[−aj , aj ] ⊂ X. Then

MS
k(X,FM ) ≥ 1

8
√
k log 3

n∑
j=1

Mjaj .

We begin the analysis of the general case by studying the rates of diagonally scaled gradient methods.

3.2.1 Diagonal re-scaling in gradient methods

diagonally scaled gradient methods (componentwise re-scaling of the subgradients) are equivalent to
using hΛ(x) := 1

2x
⊤Λx for Λ = diag(λ) ⪰ 0 in the mirror descent update (8). In this case, for any

norm γ on the gradients, the minimax regret bound (9) becomes

sup
x∈X

Regretk,Λ(x) ≤
1

2k

sup
x∈X

x⊤Λx+
∑
i≤k

g⊤i Λ
−1gi

 ≤ 1

2k

[
sup
x∈X

x⊤Λx+ k sup
g∈Bγ(0,1)

g⊤Λ−1g

]
.
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The rightmost term upper bounds the minimax regret, so we may take an infimum over Λ, yielding

MR
k (X, γ) ≤

1

2k
inf
λ⪰0

sup
x∈X

sup
g∈Bγ(0,1)

[∑
j≤n

λjx
2
j + k

∑
j≤n

1

λj
g2j

]
(10)

The regret bound (10) holds without assumptions on X or γ. However, in the case when X is
quadratically convex, strong duality allows us to simplify this quantity:

Proposition 3.4. Let V,X ⊂ Rn be convex, quadratically convex and compact sets. Then

inf
λ≻0

sup
x∈X,v∈V

{
λ⊤x2 +

(
1

λ

)⊤
v2

}
= sup

x∈X,v∈V
inf
λ≻0

{
λ⊤x2 +

(
1

λ

)⊤
v2

}
.

Proof. The quadratic convexity of the sets X and V implies that a (weighted) squared 2-norm
becomes a linear functional when lifted to the squared sets X2 := {x2 | x ∈ X} and V 2. Indeed,
defining J : R2n

+ ×Rn
+ → R, J(τ, w, λ) := λ⊤τ + ( 1λ)

⊤w, the function J is concave-convex: it is
linear (a fortiori concave) in (τ, w) and convex in λ. Thus, using that the set {λ ∈ Rn

+} is convex and
X2 × V 2 is convex compact (because X and V are quadratically convex compact), Sion’s minimax
theorem [34] implies

inf
λ≻0

sup
x∈X,v∈V

{
λ⊤x2 +

(
1

λ

)⊤
v2

}
= inf

λ≻0
sup

τ∈X2,w∈V 2

{
λ⊤τ +

(
1

λ

)⊤
w

}

= sup
τ∈X2,w∈V 2

inf
λ≻0

{
λ⊤τ +

(
1

λ

)⊤
w

}
.

Replacing τ with x2 and w with v2 gives the result.

Proposition 3.4 provides a powerful hammer for diagonally scaled Euclidean algorithms, as we
can choose an optimal scaling for any fixed pair x, g, taking a worst case over such pairs:

Corollary 3.1. Let X be a convex, quadratically convex, compact set. Then

MR
k (x, γ) ≤

1√
k

sup
g∈QHull(Bγ(0,1)),x∈X

x⊤g,

and diagonally scaled gradient methods achieve this regret.

Proof. We upper bound the minimax regret (10) by taking a supremum over the quadratic hull
g ∈ QHull (Bγ(0, 1)), which contains Bγ(0, 1). Using that for a, b > 0, infλ>0 aλ+ b/λ = 2

√
ab and

applying Proposition 3.4 gives the proof.

The corollary allows us to provide concrete upper and lower bounds on minimax risk and regret,
with the results differing slightly based on whether the gradient norms are quadratically convex.

3.2.2 Orthosymmetric and quadratically convex gradient norms

We now provide lower bounds on minimax risk complementary to Corollary 3.1, focusing first on the
case that the gradient norm γ is quadratically convex.

Assumption A1. The norm γ is orthosymmetric and quadratically convex, meaning γ(σ⊙v) = γ(v)
for all σ ∈ {±1}n and Bγ(0, 1) is quadratically convex.
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With this, we have the following theorem, which shows that diagonally-scaled gradient methods
are minimax rate optimal, and that the constants are sharp up to a factor of 9, whenever the gradient
norms are quadratically convex. While the constant 9 is looser than that Donoho et al. [15] provide
for Gaussian sequence models, this theorem highlights the essential structural similarity between the
sequence model case and stochastic optimization methods.

Theorem 1. Let Assumption A1 hold and let X be quadratically convex, orthosymmetric, and
compact. Then

1

8
√
log 3

1√
k
sup
x∈X

γ∗(x) ≤ MS
k(X, γ) ≤ MR

k (X, γ) ≤
1√
k
sup
x∈X

γ∗(x).

There exists λ∗ ∈ Rn
+ such that diagonally scaled gradient methods with λ∗ achieve this rate.

Proof. For the upper bound, we use Corollary 3.1. Because Bγ(0, 1) is quadratically convex, we
have QHull(Bγ(0, 1)) = Bγ(0, 1), so that supg∈QHull(Bγ(0,1)) x

⊤g = γ∗(x), giving the upper bound.
The lower bound uses Proposition 3.3. Define the hyperrectangle Rec(x) :=

∏
j≤n[−|xj |, |xj |], so

that, by orthosymmetry of X, X ⊃ Rec(x) for all x ∈ X. Additionally, recalling the notation (7) of
Fγ,1 and FM , if M ∈ Rn

+ satisfies γ(M) ≤ 1 then, by orthosymmetry of γ, Fγ,1 ⊃ FM . Thus

MS
k(X, γ) ≥ MS

k(Rec(x), γ) ≥ MS
k(Rec(x),FM ) ≥ 1

8
√
k log 3

∑
j≤n

|xj |Mj

for all M ∈ Bγ(0, 1) ∩Rn
+ and x ∈ X. Taking a supremum over M ∈ Bγ(0, 1) and x ∈ X, we have

MS
k(X, γ) ≥

1

8
√
k log 3

sup
x∈X

sup
γ(M)≤1

x⊤M =
1

8
√
k log 3

sup
x∈X

γ∗(x).

3.2.3 Arbitrary gradient norms

When the norm γ on the gradients defines a non-quadratically convex norm ball Bγ(0, 1)—for
example, when the gradients belong to an ℓr-norm ball for r ∈ [1, 2]—our results become less general.
Nonetheless, when γ is a weighted ℓr-norm ball (for r ∈ [1, 2]), diagonally scaled gradient methods
remain minimax rate optimal, as Corollary 3.2 will show. When the norms γ are arbitrary we have
a that uses the rescaled vector res(x, γ) := (xj/γ(ej))

n
j=1, where ej are the standard basis vectors:

Theorem 2. Let X be an orthosymmetric, quadratically convex, convex and compact set and γ an
arbitrary norm. For any d ∈ N,

1

8
√
k log 3

(
1− d

k log 3

)
sup

x∈X,∥x∥0≤d
∥res(x, γ)∥2 ≤ MS

k(X, γ)

≤ MR
k (X, γ) ≤

1√
k
sup
x∈X

sup
g∈QHull(Bγ(0,1))

x⊤g.

(11)

Corollary 3.1 gives the upper bound in the theorem. The lower bound consists of an application
of Assouad’s method [2], but, in parallel to the warm-up examples, we construct well-separated
functions with “sparse” gradients. See Appendix D.1 for a proof.

We can develop a corollary of this result when the norm γ is a weighted-ℓr norm for r ∈ [1, 2].
While these do not induce quadratically convex norm balls, the previous theorem still guarantees
that diagonally scaled gradient methods are minimax rate optimal.

13



Corollary 3.2. Let the conditions of Theorem 2 hold and assume that γ(g) = ∥β ⊙ g∥r with r ∈ [1, 2],
βj > 0 and (β ⊙ g)j = βjgj. Then for k ≥ 2n,

1

16

1√
k
sup
x∈X

∥res(x, γ)∥2 ≤ MS
k(X, γ) ≤ MR

k (X, γ) ≤
1√
k
sup
x∈X

∥res(x, γ)∥2 .

There exists λ∗ ∈ Rn
+ such that diagonally scaled gradient methods with λ∗ achieve this rate.

A minor modification of Theorem 2 gives the lower bound, while we obtain the upper bound by
noting that the quadratic hull of a weighted-ℓr norm ball for r ∈ [1, 2] is the weighted-ℓ2 norm ball.
The dual norm of γ(g) = ∥β ⊙ g∥2 being γ∗(g) = ∥g/β∥2, the upper bound holds by duality. See
Appendix D.2 for the (short) proof.

Theorem 1 and Corollary 3.2 show that for a large collection of norms γ on the gradients,
diagonally scaled gradient methods is minimax rate optimal. Arguing that diagonally scaled gradient
methods are minimax rate optimal when γ is neither a weighted-ℓr norm nor induces a quadratically
convex unit ball remains an open question, though weighted-ℓr norms for r ∈ [1,∞] cover the
majority of practical applications of stochastic gradient methods.

We conclude this section by generalizing our results to sets X that are rotations of orthosymmetric
and quadratically convex sets. This is for example the case when features are sparse in an appropriate
basis (e.g. wavelets [24]). Unsurprisingly, methods of linear type retain their optimality properties.

Corollary 3.3. Let X0 be a compact, orthosymmetric, convex and quadratically convex set. Let
U ∈ On(R) be a rotation matrix and X := UX0 = {Ux | x ∈ X0}. Consider the collection

F := {F : Rn × S → R | for all s ∈ S, x ∈ Rn, and g ∈ ∂xF (x, s), γ(U
T g) ≤ 1}.

A method of linear type is minimax rate optimal for the pair (X,F).

Proof. There is a bijective mapping between F and Fγ,1: for F ∈ F , x0 ∈ X0, and s ∈ S, we define
F̃ (x0, s) := F (Ux0, s). Then dom F̃ (·, s) ⊃ X0, and its subdifferential [21, Thm. 4.2.1] is

∂xF̃ (x0, s) = U⊤∂xF (Ux0, s).

As F̃ falls within the scope of Theorems 1 or Corollary 3.2, there exists a diagonal re-scaling Λ∗ that
achieves the optimal rate. We conclude the proof by observing that a diagonally re-scaled stochastic
gradient update on F̃ corresponds to the update xi+1 = xi − UΛ∗U⊤gi where gi ∈ ∂xF (xi, Si).

4 Beyond quadratic convexity: the necessity of non-linear methods

For X ⊂ Rn quadratically convex, the results in Section 3 show that methods of linear type achieve
optimal rates of convergence. When the constraint set is not quadratically convex, it is unclear
whether methods of linear type are sufficient to achieve optimal rates. As we now show, they are not:
we exhibit collections of problem instances in which the constraint sets are orthosymmetric convex
bodies but not quadratically convex, and where methods of linear type must have regret at least
a factor

√
n/ log n worse than the minimax optimal rate, which (non-linear) mirror descent with

appropriate distance generating function achieves. We also develop more general results to highlight
the way in which the quadratic hull of the underlying constraint set X necessarily characterizes the
regret of Euclidean gradient methods, which allows for a more explicity delineation of those sets X for
which nonlinear methods are necessary: when supx∈X ∥x∥1 is much smaller than supx∈QHull(X) ∥x∥1.

To construct these problem instances, we first turn to simple non-quadratically convex constraint
sets: ℓp balls for p ∈ [1, 2]. We measure subgradient norms in the dual ℓq norm, q = p−1

p . Our
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analysis consists of two steps: we first prove sharp minimax rates on these problem instances and
show that mirror descent with the right (non-linear) distance generating function is minimax rate
optimal. These results extend those of Agarwal et al. [1], who provide matching lower and upper
bounds for p ≥ 1 + c for a fixed numerical constant c > 0. In contrast, we prove sharp minimax
rates for all p ≥ 1. To precisely characterize the gap between linear and non-linear methods, we
show that for any linear pre-conditioner, we can exhibit functions for which the regret of Euclidean
gradient methods is nearly the simple upper regret bound of standard gradient methods, Eq. (9)
with h(x) = 1

2 ∥x∥
2
2. Thus, when p is very close to 2 (nearly quadratically convex), the gap remains

within a constant factor, whereas when p is close to 1, the gap can be as large as
√
n/ log n.

4.1 Minimax rates for p-norm constraint sets and general convex bodies

For p ∈ [1, 2], we consider the constraint set X = Bp(0, 1) ⊂ Rn and bound gradients with norm
γ = ∥ · ∥p∗ . We begin by proving sharp minimax rates on this collection of problems and show that,
in these cases, non-linear mirror descent is minimax optimal.

Theorem 3. Let p ∈ [1, 2], X = Bp(0, 1) ⊂ Rn and γ = ∥ · ∥p∗.

(i) If 1 ≤ p ≤ 1 + 1/ log(2n), then

1 ∧
√

log(2n)

k
≲ MS

k(X, γ) ≤ MR
k (X, γ) ≲ 1 ∧

√
log(2n)

k
.

(ii) If 1 + 1/ log(2n) < p ≤ 2, then

1 ∧

√
1

k(p− 1)
≲ MS

k(X, γ) ≤ MR
k (X, γ) ≲ 1 ∧

√
1

k(p− 1)

In both cases, mirror descent (8) with distance generating function h(x) := 1
2(a−1) ∥x∥

2
a for a =

max{1 + 1
log(2n) , p} achieves the optimal rate.

The upper bound essentially follows from Proposition 2.3, and the lower bound uses either reductions
from estimation to testing or Assouad’s method (see Appendix A.2). See Appendix E.1 for a proof.

We can also consider the minimax risk and regret for general optimization methods. To reduce
complexity, we focus on the case that the gradients are bounded in ℓ∞-norm—the “most” quadratically
convex set—to make dependence on X the clearest. In the sequel it will sometimes be useful to
consider sequence space RN, so we give a result that allows the infinite dimensional containment
X ⊂ RN; in this case we consider domains X that are appropriately compact for the ℓ1-norm. A
sufficient condition for the results is that X have finite effective dimension, which we define by

effdim(X) := inf
β≥0

e1/β | sup
x∈X

∞∑
j=1

jβ|xj | ≤ e sup
x∈X

∥x∥1

 , (12)

where effdim(X) = +∞ if only β = 0 satisfies the inequality. It is immediate that if X ⊂ Rn, then
effdim(X) ≤ n because n1/ logn = e. The next observation summarizes a few sufficient conditions for
the effective dimension (12) to be finite. We include the proof in Appendix E.3 for completeness.

Observation 4.1. The following conditions are sufficient to guarantee effdim(X) <∞.

i. If X ⊂ Rn, then effdim(X) ≤ n.
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ii. If limβ↓0 supx∈X
∑

j≥1 j
β|xj | <∞, then effdim(X) <∞.

iii. Let N <∞ and γ > 0 satisfy the tail condition that supx∈X
∑N

j=1 |xj | ≥ n2γ supx∈X
∑

j>n |xj |
for all n > N . Then effdim(X) ≤ O(1) · (N2 + exp( 3γ log

1
γ )).

The next proposition then shows that the ℓ1-diameter of X always provides lower bounds on
the (stochastic) minimax risk, while p-norm-based mirror descent algorithms achieve regret at
most logarithmic in the effective-dimension (12), making the ℓ1-diameter of X the central quantity
governing minimax risk. See Appendix E.2 for the proof.

Proposition 4.1. Let X be an orthosymmetric convex set. Then

1

8 log 3

1√
k
sup
x∈X

∥x∥1 ≤ MS
k(X, ∥·∥∞).

If additionally X has finite effective dimension N = effdim(X) as in (12), then

MR
k (X, ∥·∥∞) ≤ O(1) ·

√
logN

1√
k
sup
x∈X

∥x∥1 .

Letting β = 1
logN and defining the operator A by Ax = (jβxj)j≥1, the mirror descent method with

distance generating function h(x) = 1
2(p−1) ∥Ax∥

2
p for p = 2

2−β achieves this regret.

To preview our discussion to come, note the similarities between Proposition 4.1 and Corollary 2.7
in the Gaussian sequence model case: so long as X is appropriately regular, there is a “standard”
nonlinear method—in the case of Gaussian sequence models, soft-thresholding with truncation (6), in
the case of stochastic and online optimization, mirror descent with a p-norm-based distance-generating
function—that achieves nearly rate-optimal minimax risk.

4.2 Hard problems for Euclidean gradient methods and quadratic hulls

Theorem 3 shows that (non-linear) mirror descent methods are minimax rate-optimal for ℓp-ball
constraint sets, p ∈ [1, 2], with gradients contained in the corresponding dual ℓq-norm ball (q = p

p−1).
For such problems and p, standard subgradient methods achieve worst-case regret O(n1/2−1/q/

√
k).

This is an upper bound, but in fact is sharp: in the next theorem, we show that for any method of
linear type, we can construct a sequence of (linear) functions such that the method’s regret achieves
the worst-case upper bound for standard subgradient methods, precisely quantifying the gap between
linear and non-linear methods for this problem class. To that end, we let

Regretk,A(x) :=
k∑
i=1

g⊤i (xi − x)

denote the regret of the Euclidean online mirror descent method with distance generating function
hA(x) = 1

2x
⊤Ax for functions Fi with subgradients gi In the lower bounds to come, we take

Fi(x) = g⊤i x to be linear, so that ∇Fi(x) = gi is independent of x.

Theorem 4. For any A ⪰ 0 and p ∈ [1, 2] with q = p
p−1 , there exists a sequence of vectors gi ∈ Rn,

∥gi∥q ≤ 1, and point x ∈ Rn with ∥x∥p ≤ 1 such that

Regretk,A(x) ≥
1

2
min

{
k/2,

√
2k · n1/2−1/q

}
.

Scaled identity matrices A = c · In achieve these bounds to within a factor of
√
2 for k ≥ 2n1−2/q.
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We provide the proof in Appendix F.1. These results explicitly exhibit a gap between methods
of linear type and non-linear mirror descent methods for this problem class. In contrast to the
frequent practice in literature of simply comparing regret upper bounds—prima facie illogical—we
demonstrate the gap indeed must hold.

In combination with Theorem 4, Proposition 2.3 precisely characterizes the gap between linear
and non-linear mirror descent on these problems for all values of p ∈ [1, 2]. Indeed, when p = 1, for
any pre-conditioner A, there exists a problem on which Euclidean gradient methods have regret at
least Ω(1)

√
n/k. On the same problem, non-linear mirror descent has regret at most O(1)

√
log n/k,

showing the advertised
√
n/ log n gap. When p ≥ 2− 1/ log n (so X is nearly quadratically convex),

the gap reduces to at most a constant factor.
To highlight the role of quadratically convex hulls, we provide an alternative version of Theorem 4

that allows us to focus more precisely on the constraint set X itself. In this case, we focus on scenarios
where the gradients have bounded ℓ∞-norm, γ(g) = ∥g∥∞, which also more neatly analogizes with
Gaussian sequence models y = x+ ξ for ξ ∼ N(0, In), as we expect the scale of noise ξj on different
coordinates to be similar. Recall also the notation (7) that F∥·∥∞,1 is the collection of functions with
subgradients g ∈ ∂F (x, s) satisfying ∥g∥∞ ≤ 1.

Theorem 5. Let X ⊂ Rn be an orthosymmetric convex body. For any sequence A(k) ⪰ 0, there
exist sequences of vectors gi = gi(k) ∈ Rn, i = 1, . . . , k, with ∥gi∥∞ ≤ 1, such that

lim inf
k

1√
k
sup
x∈X

Regretk,A(k)(x) ≥ sup
x∈QHull(X)

∥x∥1 .

Additionally, for each k there exists a diagonal matrix D such that for any sequence of convex
functions Fi ∈ Fγ,1,

sup
x∈X

Regretk,D(x) ≤
√
k sup
x∈QHull(X)

∥x∥1 .

See Appendix F.2 for the proof of the result, which parallels that of Theorem 4.
In brief, the regret of Euclidean gradient methods necessarily scales with the size of the quadratic

hull QHull(X). Contrasting this result with Proposition 4.1, we see with nonlinear methods, the
regret need scale only as supx∈X ∥x∥1 rather than as supx∈QHull(X) ∥x∥1, so that the gap between
convergence achievable by linear and nonlinear methods is large precisely when

supx∈QHull(X) ∥x∥1
supx∈X ∥x∥1

≫ 1.

5 The role of quadratic convexity in sequence models and first-order
methods

The results in Section 2.1 highlight and recapitulate some of the ways that quadratic convexity
distinguishes linear and nonlinear methods in Gaussian sequence models. Theorems 4 and 5,
along with the complimentary results in Proposition 4.1, address these differences for stochastic
optimization problems. So in both sequence models and convex optimization, geometric aspects of
the underlying set X determine nonlinear methods’ necessity. The analogy between sequence models
and stochastic optimization methods is not perfect, however, as there are sets X for which linear
methods are minimax rate optimal for stochastic optimization problems and not for sequence models
and vice versa. In both problem families, a particular “distance” of a set X from quadratic convexity
delineates determines when nonlinear methods are necessary; we show that these can be different.
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We begin by translating the results in Section 2.1 on Gaussian sequence models into a more
geometric form; Donoho et al. [15] more or less give this translation but we make a few minor
modifications for convenience in exposition. The measure of size most natural for Gaussian sequence
models turns out to be (duality-based variants of) the Kolmogorov n-width of the underlying set:

Definition 5.1. The n-width of a set X is

w2(n) := inf
0⪯d⪯1,⟨1,d⟩=n

sup
x∈X

∑
j

(1− dj)x
2
j .

The nonlinear n-width of X is

w2
nl(n) := sup

x∈X
inf

0⪯d⪯1,⟨1,d⟩=n

∑
j

(1− dj)x
2
j .

Recalling Corollaries 2.3 and 2.7, the gap between the linear minimax and nonlinear minimax risk is
large for (compact) convex sets X whenever the difference between

sup
x∈X

∞∑
j=1

x2jσ
2

x2j + σ2
and sup

q∈QHull(X)

∞∑
j=1

q2jσ
2

q2j + σ2
.

The next proposition, parts of which are present in Donoho et al. [15, Section 6], connects the n-widths
to the linear and nonlinear minimax risks, where for a vector x ∈ RN, we let |x(1)| ≥ |x(2)| ≥ · · ·
denote the entries of x sorted by magnitude.

Proposition 5.1. For any compact orthosymmetric convex set X,

w2(n) = sup
q∈QHull(X)

∑
j≥n+1

q2(j) and w2
nl(n) = sup

x∈X

∑
j≥n+1

x2(j).

Additionally, for any σ2,
sup
x∈X

∑
j

x2j ∧ σ2 = inf
n

{
w2

nl(n) + nσ2
}
,

and
sup

q∈QHull(X)

∑
j

q2j ∧ σ2 = inf
n

{
w2(n) + nσ2

}
.

Proof. For the characterizations, we use duality to see that

w2(n) = inf
0⪯d⪯1,⟨1,d⟩=n

sup
v∈SqHull(X)

⟨1− d, v⟩

= sup
v∈SqHull(X)

inf
0⪯d⪯1,⟨1,d⟩=n

⟨1− d, v⟩ = sup
v∈SqHull(X)

∑
j≥n+1

v(j),

while it is immediate that w2
nl(n) = supx∈X

∑
j≥n+1 x

2
(j). Then we recognize that for any sorted

nonnegative vector a1 ≥ a2 ≥ · · · ,

inf
n

{ ∑
j≥n+1

aj + nσ2
}

= inf
n

{ ∑
j≥n+1

aj +
n∑
j=1

σ2
}

=
∑
j

aj ∧ σ2

by choosing any n such that aj ≤ σ2 for all j ≥ n, while aj ≥ σ2 for j < n.
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Using Proposition 5.1, we see that under the conditions of Corollary 2.7, because for any a, b ≥ 0
we have 1

2 min{a, b} ≤ ab
a+b ≤ min{a, b}, the linear sequence model risk satisfies

1

2
inf
n

{
w2(n) + nσ2

}
≤ R∗

lin(X) ≤ inf
n

{
w2(n) + nσ2

}
,

while the (nonlinear) minimax risk satisfies

1

4
inf
n

{
w2

nl(n) + nσ2
}
≤ R∗(X) ≲ log

1

σ2
· inf
n

{
w2

nl(n) + nσ2
}
.

The linear and nonlinear n-widths of X therefore (up to a logarithmic factor in 1
σ ) determine the risk

in sequence models, so that when they are similar the linear and nonlinear minimax risks coincide.
In stochastic optimization, in contrast, Section 4 shows that convergence guarantees for methods of
linear type coincide with those for arbitrary methods (again, up to logarithmic factors) if and only if

sup
x∈QHull(X)

∥x∥1 ≍ sup
x∈X

∥x∥1 .

The typical scenario in sequence models one considers is the risk as σ ↓ 0, and the following
essentially trivial observation shows that for regular enough sets X, when the linear and nonlinear
n-widths differ, the rates at which R∗

lin and R∗ converge to zero differ.

Observation 5.1. Let α > 0 be such that nαw2
nl(n) ≍ w∗ > 0 as n → ∞, and assume for some

β > 0 that w2(n) ≥ nβw2
nl(n). Then

R∗(X)

R∗
lin(X)

≲ log
1

σ2
· σ

2β
(1+α)(1+α−β) → 0 as σ ↓ 0.

Proof. The assumption that w2
nl(n) ≲ w∗n−α guarantees the assumptions of Corollary 2.7 apply,

and we necessarily have β ≤ α (as otherwise we would have w2
nl(n) → ∞). Thus there exists a

(numerical) constant C <∞ such that for all small enough σ2 > 0,

R∗(X) ≤ C log
1

σ2
· inf
n

{
w∗n−α + nσ2

}
≍ log

1

σ2
· σ

2α
1+α ,

which follows by setting n = σ−2/(1+α). In contrast, the linear risk satisfies

R∗
lin(X) ≳ inf

n

{
nβw2

nl(n) + nσ2
}
≍ σ

2(α−β)
1+α−β

as σ ↓ 0. Then observe that α
1+α − δ

1+δ = α−δ
1+α+δ+αδ , and set δ = α− β.

The role of quadratic convexity of X differs between Gaussian sequence models and stochastic
optimization problems, however, and the remainder of this section explores two extended examples
highlighting this. We focus on sets X ⊂ RN in sequence space.

5.1 A constraint set requiring nonlinearity only in Gaussian sequence models

We show that for a large family of ℓ1-bodies X, minimax (rate) optimal estimation requires
nonlinearity for Gaussian sequence models but not in stochastic optimization. Take

X :=

{
x ∈ RN |

∞∑
j=1

aj |xj | ≤ 1

}
so QHull(X) =

{
x ∈ RN |

∞∑
j=1

a2jx
2
j ≤ 1

}
,
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where (aj) is a nondecreasing positive sequence where (w.l.o.g.) we take a1 = 1. Computing the
ℓ1-diameters of X and its quadratic hull, we then have

sup
x∈X

∥x∥1 = 1 and sup
x∈QHull(X)

∥x∥1 =
( ∞∑
j=1

a−2
j

)1/2

(13)

by the Cauchy-Schwarz inequality. On the other hand, because the coefficients aj are increasing, we
can compute both the linear and nonlinear widths via

w2(n) = sup

{ ∞∑
j=n+1

x2j |
∞∑
j=1

a2jx
2
j ≤ 1, x1 ≥ x2 ≥ · · · ≥ 0

}
and

w2
nl(n) = sup

{ ∞∑
j=n+1

x2j |
∞∑
j=1

ajxj ≤ 1, x1 ≥ x2 ≥ · · · ≥ 0

}
.

By convexity (we maximize a convex function over a convex set in each case), for each width the
maximizing point takes the form (t, t, . . . , t, 0, . . .), with m repeated values t. Then we obtain

w2(n) = sup
m≥n,t≥0

{
(m− n)t2 | t2

m∑
j=1

a2j ≤ 1

}
= sup

m≥n

m− n∑m
j=1 a

2
j

w2
nl(n) = sup

m≥n,t≥0

{
(m− n)t2 | t

m∑
j=1

aj ≤ 1

}
= sup

m≥n

m− n

(
∑m

j=1 aj)
2
.

(14)

Comparing the ℓ1-diameters (13) and the widths (14), we see that whenever
∑

j a
−2
j is summable

Euclidean gradient methods are minimax (rate) optimal for stochastic optimization. If aj = jα/2 for
some α > 1, however, we have

w2(n) = sup
m≥n

m− n∑m
j=1 j

α
≍ sup

m≥n

m− n

m1+α
≍ 1

nα
while

w2
nl(n) = sup

m≥n

m− n

(
∑m

j=1 j
α/2)2

≍ sup
m≥n

m− n

m2+α
≍ 1

n1+α

because
∑m

j=1 j
β ≍

∫m
0 tβdt = 1

β+1m
1+β for β > 0. Summarizing, we have the following corollary.

Corollary 5.1. Let X = {x |
∑∞

j=1 aj |xj | ≤ 1}, where aj = jα/2. Then minimax rate optimal
estimation for Gaussian sequence models requires that the estimator x̂ be nonlinear, while Euclidean
gradient methods are minimax rate optimal for stochastic optimization.

5.2 A constraint set requiring nonlinearity only in stochastic optimization

To contrast with Corollary 5.1, we can also give families of underlying constraint sets X for which only
nonlinear methods can be rate-optimal for stochastic optimization problems, while linear estimators
x̂ = Ay can be rate-optimal in Gaussian sequence models. At the grossest level, we construct sets X
for which supx∈X ∥x∥1 ≲ 1 while supx∈QHull(X) ∥x∥1 = +∞, while w2

nl(n) and w2(n) are comparable.
To give a slightly more nuanced picture, we consider the rates at which the two ℓ1-diameters approach
+∞, comparing

sup
x∈X

⟨1n, x⟩ and sup
x∈QHull(X)

⟨1n, x⟩,
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where 1n ∈ RN denotes the sequence with 1 in its first n positions and 0 elsewhere.
Here, we elaborate on the ℓ1 bodies yielding Corollary 5.1 to consider smaller axis-aligned

polyhedra. Letting ej be the basis vectors (i.e. sequences with a 1 in position j and 0 elsewhere), let
aj be a nondecreasing sequence with a1 = 1 and bj be arbitrary (for now), define the two sets

C0 := {σjajej}j∈N and C1 :=

{
1

Z(n)

n∑
j=1

σjbjej

}
n∈N

, where σj ∈ {±1}.

We choose the normalizing constants Z(n) so that the points in C1 all lie in

QHull(C0) = QHull

{
x |

∞∑
j=1

aj |xj | ≤ 1

}
=

{
x |

∞∑
j=1

a2jx
2
j ≤ 1

}
,

i.e. Z(n) = (
∑n

j=1 a
2
jb

2
j )

1/2 so that Z(n)−2
∑n

j=1 a
2
jb

2
j = 1. Then the set

X := Conv (C0 ∪ C1) satisfies QHull(X) = QHull(C0). (15)

We obtain the following corollary of the our convergence guarantees in Section 4 and the technical
lemmas we provide in Appendix G.

Corollary 5.2. Let aj = jα/2 for some 0 < α < 1 and b2j = 2j in the construction of X above. Then

n−α ≤ w2
nl(n) ≤ w2

nl(n) ≲ n−α,

while
supx∈QHull(X)⟨1n, x⟩

supx∈X⟨1n, x⟩
≳ n

1−α
2 .

In particular, linear methods are rate optimal for estimation in Gaussian sequence models, while
stochastic optimization over X requires nonlinear methods.

Summarizing the conclusions of the corollary, as α ↓ 0, the ratio of the ℓ1-diameters of QHull(X)
and X grows as

√
n, which by Cauchy-Schwarz is as large as possible: there is a large gap between the

achievable performance by nonlinear methods, as Proposition 4.1 demonstrates, and linear methods,
whose regret necessarily scales as the ℓ1-diameter of QHull(X) (Theorem 5). Yet the nonlinear
widths are comparable for all n, so linear methods are minimax rate optimal as σ2 ↓ 0.

6 The need for adaptive methods

We have so far demonstrated that diagonal re-scaling is sufficient to achieve minimax optimal rates
for problems over quadratically convex constraint sets. In practice, however, it is often the case
that we do not know the geometry of the problem in advance, precluding selection of the optimal
linear pre-conditioner. To address this problem, adaptive gradient methods choose, at each step,
a (usually diagonal) matrix Λi conditional on the subgradients observed thus far, {gl}l≤i. The
algorithm then updates the iterate based on the distance generating function hi(x) := 1

2x
⊤Λix. In

this section, we present a problem instance showing that when the “scale” of the subgradients varies
across dimensions, adaptive gradient methods are crucial to achieve low regret. While there exists an
optimal pre-conditioner, if we do not assume knowledge of the geometry in advance, AdaGrad [17]
achieves the minimax optimal regret while standard (non-adaptive) subgradient methods can be

√
n

suboptimal on the same problem.
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We consider the following setting: X = B∞(0, 1) and γβ(g) = ∥β ⊙ g∥1, for an arbitrary
β ∈ Rn, β ≻ 0. Intuitively, βj corresponds to the “scale” of the j-th dimension. On this problem, a
straightforward optimization of the regret bound (9) guarantees that stochastic gradient methods
achieve regret

√
nk/minj βj . We exhibit a problem instance (in Appendix F.3) such that, for any

stepsize α, online gradient descent attains this worst-case regret.

Theorem 6. Let Regretk,α(x) =
∑

i≤k g
⊤
i (xi − x) denote the regret of the online gradient descent

method with stepsize α ≥ 0 for linear functions Fi(x) = g⊤i x. For any choice of α ≥ 0 and β ≻ 0,
there exists a sequence of vectors {gi}i≤k ⊂ Rn, γβ(gi) ≤ 1 and point x ∈ X such that

Regretk,α(x) ≥
1

2
min

{
nk

2 ∥β∥1
,

√
2nk

minj≤n βj

}
.

In contrast, AdaGrad [17] achieves regret
√
k ∥1/β∥2, demonstrating suboptimality gap as large

as
√
n for some choices of β. Indeed, let Regretk,AdaGrad(x) be the regret of AdaGrad. Then

Regretk,AdaGrad(x) ≤ 2
√
2
∑
j≤n

√∑
i≤k

g2i,j .

(see Duchi et al. [17, Corollary 6]), and by Cauchy-Schwarz,∑
j≤n

√∑
i≤k

g2i,j =
∑
j≤n

1

βj

√∑
i≤k

β2j g
2
i,j ≤ ∥1/β∥2

√∑
i≤k

∥β ⊙ gi∥22 ≤
√
k ∥1/β∥2 .

To concretely consider different scales across dimensions, take βj = j. Theorem 6 guarantees that
there exists a collection of linear functions such that stochastic gradient methods suffer regret
Ω(1)

√
nk. Given that ∥1/β∥2 ≤

√
ζ(2) ≤ π/

√
6, AdaGrad achieves regret O(1)

√
k—amounting to a

suboptimality gap of order
√
n—exhibiting the need for adaptivity. This

√
n gap is also the largest

possible over subgradient methods, which achieve regret
√
n
∑

i≤k ∥gi∥
2
2 ≤

√
n
∑

j≤n

√∑
i≤k g

2
i,j

for X = B∞(0, 1). Finally, we note in passing that AdaGrad is minimax optimal on this class of
problems via a straightforward application of Theorem 1.

7 Discussion

We provide concrete foundations to compare adaptive, mirror, or standard gradient methods, showing
how problem geometry necessarily impacts convergence. This paper puts a particular computational
spin on optimization by connecting to Gaussian sequence models and linear versus nonlinear updates,
which we advocate for its ability to paint a different picture than pure polynomial versus non-
polynomial computational complexity. This perspective draws from information-based models in
optimization [25, 1] and models in scientific computing where one uses certain families of operations—
e.g., matrix vector multiplies—to build up optimal algorithms under these constraints [35, 3]. We
hope to see more exploration in these directions. While Section 6 emphasizes the importance
of adaptivity, the picture is not fully complete: for example, in the case of quadratically convex
constraint sets, while the best diagonal pre-conditioner achieves optimal rates, the extent to which
adaptive gradient algorithms find this optimal pre-conditioner remains an open question. Another
avenue to explore involves the many flavors of adaptivity—while the minimax framework assumes
knowledge of the problem setting (e.g. a bound on the domain or the gradient norms), it is often the
case that such parameters are unknown to the practitioner. To what extent can adaptivity mitigate
this and achieve optimal rates, and is minimax (i.e. worst-case) optimality truly the right measure of
performance?
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A The Assouad and Fano Methods for Minimax Lower Bounds

In this precursor to the appendix, we review the Le Cam, Fano and Assouad methods [2, 40, 1, 38]
for proving lower bounds for stochastic optimization. Each reduces estimation to testing then uses
information theoretic tools to bound the probability of error in various hypothesis tests.

A.1 Le Cam and Fano Methods

We start with a lemma that provides the standard reduction from estimation to testing that we
extensively use in our proofs. Duchi [16, Ch. 5] essentially contains this result; we provide the proof
for completeness.

Lemma A.1 (From estimation to testing). Let P be a collection of distributions over S and
L : X × P → R+ satisfy

inf
x∈X

L(x, P ) = 0 for P ∈ P.

For distributions P,Q ∈ P, define the separation

sepL(P,Q;X) := sup

{
δ ≥ 0

∣∣∣∣ for all x ∈ X,
L(x, P ) ≤ δ implies L(x,Q) ≥ δ
L(x,Q) ≤ δ implies L(x, P ) ≥ δ

}
.

Let δ > 0 and {Pv}v∈V ⊂ P be a family of distributions indexed by a finite set V satisfying the
separation condition sepL(Pv, Pv′ ;X) ≥ δ for v ̸= v′ ∈ V. Then for Sk1

iid∼ P ,

inf
x̂

sup
P∈P

EPL(x̂(S
k
1 ), P ) ≥ δ inf

ψ
P(ψ(Sk1 ) ̸= V ),

where P is the joint distribution over the random index V chosen uniformly in V and Sk1
iid∼ Pv

conditional on V = v.

Proof. Let V ∼ Uniform(V) and Sk1 | (V = v)
iid∼ Pv. Then for any estimator x̂, we have

sup
P∈P

EPL(x̂(S
k
1 ), P ) ≥

1

|V|
∑
v

EPvL(x̂, Pv) ≥ δ
1

|V|
∑
v

Pv(L(x̂, Pv) ≥ δ) = δP(L(x̂(Sk1 ), PV ) ≥ δ),
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where P denotes the joint distribution of Sk1 and V . Define the test ψ(sk1) := argminv∈V L(x̂(s
k
1), Pv).

The separation assumption guarantees that if ψ(x) ̸= v then L(x, Pv) ≥ δ, so

P(L(x̂(Sk1 ), PV ) ≥ δ) ≥ P
(
ψ(Sk1 ) ̸= V

)
.

Taking the infimum over all tests ψ yields the result.

With this, the classical Le Cam and Fano methods are straightforward combinations of Lemma A.2
with (respectively) Le Cam’s lemma [40, Lemma 1] and Fano’s inequality [12, Theorem 2.10.1].

Proposition A.1 (Le Cam’s method). Let P0 and P1 be two distributions of P over S. Let δ > 0
be such that sepL(P0, P1, X) ≥ δ. Then

inf
x̂

sup
P∈P

EPL(x̂(S
k
1 ), P ) ≥

δ

2
(1−

∥∥∥P k0 − P k1

∥∥∥
tv
).

Proposition A.2 (Fano’s method). Let V be a finite index set and {Pv}v∈V a collection of distribu-
tions contained by P such that minv ̸=v′ sepL(Pv, Pv′ , X) ≥ δ, then

inf
x̂

sup
P∈P

EPL(x̂(S
k
1 ), P ) ≥ δ

(
1− I(Sk1 ;V ) + log 2

log |V|

)
.

With these tools, minimax lower bounds on the stochastic risk MS
k in Section 2 follow by (i)

demonstrating an appropriate loss L and (ii) separation. The next lemma, essentially present in the
paper [1] (cf. [16]), reduces optimization to testing by providing an appropriate separation function.

Lemma A.2 (From optimization to function estimation). Let S be a sample space, X ⊂ Rn, F be
a collection a functions Rn × S → R, and P be a collection of distributions over S. Let V index
{Pv}v∈V ⊂ P. For F ∈ F , define fv(x) := EPv [F (x, S)] and for each v, v′ ∈ V, set

dopt(v, v
′, X) := inf

x∈X

{
fv(x) + fv′(x)− inf

x∈X
fv(x)− inf

x∈X
fv′(x)

}
.

If dopt(v, v
′, X) ≥ δ ≥ 0 for all v ̸= v′ ∈ V, then

MS
k(X,F) ≥ MS

k(X,F ,P) ≥ δ

2
inf
ψ

P(ψ(Sk1 ) ̸= V ).

Proof. We construct an appropriate loss L and apply Lemma A.1. Define L(x, P ) := fP (x) −
infx∈X fP (x). By construction, L(x, P ) ≥ 0 and infx∈X L(x, P ) = 0 for all x ∈ X and P ∈ P. Let
v ̸= v′ ∈ V. Then if L(x, Pv) = fv(x)− infx∈X fv(x) ≤ 1

2dopt(v, v
′, X), it is evidently the case that

fv′(x)− infx∈X fv′(x) ≥ 1
2dopt(v, v

′, X), so that sepL(Pv, Pv′ , X) ≥ 1
2dopt(v, v

′, X). The distributions
{Pv}v∈V are δ/2-separated, allowing application of Lemma A.1.

Our general strategy for proving lower bounds on MS
k is as follows:

• Choose a function F ∈ F and define V and {Pv}v∈V ⊂ P such that dopt(v, v
′, X) ≥ δ > 0.

• Lower bound the testing error infψ P(ψ(Sk1 ) ̸= V ), and choose the largest separation δ to make
this testing error a positive constant.

To showcase this proof technique, we prove that minimax stochastic risk for 1-dimensional
optimization has lower bound 1/

√
k; we use this to address technicalities in later proofs.
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Lemma A.3. Let Fn=1 = {f : R× S → R | f(·, s) is convex and 1-Lipschitz}. Then

MS
k([−1, 1],Fn=1) ≥ 1

4
√
6k
.

Proof. Let X = [−1, 1] and S = {±1},V = {±1}.
To see the separation condition, let F (x, s) := |x− s|. For δ ∈ [0, 12 ], we define Pv s.t. if S ∼ Pv

we have

S =

{
1 with probability 1+vδ

2

−1 with probability 1−vδ
2 .

We have fv(x) = 1+δ
2 |x− v|+ 1−δ

2 |x+ v| and infx fv(x) =
1−δ
2 . To lower bound the separation, note

that
f1(x) + f−1(x)− inf

X
f1 − inf

X
f−1 = |x− 1|+ |x+ 1| − (1− δ) ≥ δ.

This yields dopt(1,−1, X) ≥ δ.
We lower bound the testing error via Proposition A.1:

inf
ψ:Sk→{±1}

P(ψ(Sk1 ) ̸= V ) =
1

2

(
1−

∥∥∥P k1 − P k−1

∥∥∥
tv

)
≥ 1

2

(
1−

√
k

2
Dkl (P1||P−1)

)
,

where the rightmost inequality is Pinsker’s inequality. Noting that Dkl (P1||P−1) = δ log 1+δ
1−δ ≤ 3δ2

for δ ∈ [0, 12 ] and setting δ = 1/
√
6k yields the result.

A.2 The Assouad Method

Assouad’s method reduces the problem of estimation (or optimization) to one of multiple binary
hypothesis tests. In this case, we index a set of distributions P = {Pv}v∈V on a set S by the
hypercube V = {±1}n. For a function F : Rn × S → R, we define fv(x) := EPv [F (x, S)]. Then
for a vector δ ∈ Rn

+, following Duchi [16, Lemma 5.3.2], we say that the functions {fv} induce a
δ-separation in Hamming metric if

fv(x)− inf
x∈X

fv(x) ≥
n∑
j=1

δj1(sign(xj) ̸= vj) . (16)

With this condition, we have the following generalized Assouad method [16, Lemma 5.3.2].

Lemma A.4 (Generalized Assouad’s method). Let Sk1
iid∼ PV , where V ∼ Uniform({±1}n). Define

the averages

P+j :=
1

2n−1

∑
v:vj=1

P kv and P−j :=
1

2n−1

∑
v:vj=−1

P kv .

Assume that the collection {fv} for fv = EPv [F (·, S)] induces a δ-separation (16). Then letting
F = {F}, the single function F ,

MS
k(X,F ,P) ≥ 1

2

n∑
j=1

δj(1− ∥P+j − P−j∥tv).
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B Duality results and minimax linear estimators

In this section, we prove many of the optimality results for the Gaussian sequence model in Section 2.1
that we use. The first result we require is a specialization of Sion’s minimax theorem [34], which is
originally due to Fan [19].

Lemma B.1. Let X and Y be compact convex subsets of (possibly distinct) topological vector spaces
and L : X × Y → R be convex in its first argument, concave in its second, and continuous. Then

inf
x∈X

sup
y∈Y

L(x, y) = sup
y∈Y

inf
x∈X

L(x, y)

and the infimum and supremum are attained.

For a vector space X with norm ∥·∥ and function f : X → R, the Lipschitz norm on f is
∥f∥Lip = supx ̸=y∈X |f(x)− f(y)|/ ∥x− y∥. The Wasserstein distance between measures ν, µ on the
space X is then

W (µ, ν) = sup
∥f∥Lip≤1

∫
f(dµ− dν).

The Wasserstein distance metrizes convergence in distribution µn
d→ µ if the measures µn, µ have

bounded first moment and turns the space of measures on X into a (topological) vector space.

B.1 Proof of Proposition 2.1

Recalling the form (4) of the risk R(A, x) = xT (A− I)T (A− I)x+ σ2 ∥A∥2Fr, it is immediate that
A is unique, as ∥A∥2Fr is strongly convex in A and supx∈X ∥(A− I)x∥22 is convex in A. As X is
compact, the risk R∗(A,X) is finite for all A, and hence its minimum is attained.

We now consider the saddle point problem

inf
A

sup
x∈X

R(A, x) = inf
A

sup
x∈X

{
xTATAx− 2xTAx+ σ2 ∥A∥2Fr

}
.

By lifting to the space P(X) of probability measures defined on X, we have for each A that

R∗(A,X) = sup
ν∈P(X)

∫
tr((A− I)T (A− I)xxT )dν(x) + σ2 ∥A∥2Fr .

We shall apply Fan’s minimax theorem (Lemma B.1) to construct the A minimizing this worst-case
risk. In our case, we define

L(A, ν) :=

∫
tr((A− I)T (A− I)xxT )dν(x) + σ2 ∥A∥2Fr ,

which is clearly convex/concave and continuous in A. To see the continuity of L in ν, we note that
for any matrix B and any x, y ∈ X we have

⟨xxT − yyT , B⟩ = (x− y)T (B +BT )(x+ y)/2 ≤ 2 |||B|||op ∥x− y∥2 diam(X),

so that x 7→ ⟨xxT , B⟩ is Lipschitz and

|L(A, ν)− L(A,µ)| ≤ 2 |||A− I|||2op diam(X) ·W (ν, µ).
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Thus L is continuous in ν for for the Wasserstein distance (or topology of convergence in distribution),
and P(X) is compact for this topology by Prokhorov’s theorem. In particular, if we use the shorthand
Xν =

∫
xxTdν(x), there exist A, ν such that

inf
B
L(B, ν) = L(A, ν) = tr((A− I)T (A− I)Xν) + σ2 ∥A∥2Fr = sup

µ∈P(X)
L(A,µ). (17)

We now construct the A solving the saddle point problem (17), that is, given ν, we show
the (unique) A minimizing L(A, ν). Taking derivatives of L(A, ν) and recalling the shorthand
Xν =

∫
xxTdν(x), we see that A must satisfy

AXν +XνA
T − 2Xν + σ2(A+AT ) = 0.

If Xν has spectral decomposition Xν = UΛUT we let A = UDUT for a diagonal matrix D to be
determined, and it is evidently enough to solve

2DΛ− 2Λ + 2σ2D = 0, or D = (Λ + σ2I)−1Λ.

In particular, the choice A = (Xν + σ2I)−1/2Xν(Xν + σ2I)−1/2 is optimal; it is also unique for
the given ν as A 7→ L(A, ν) is strongly convex in A.

Finally, we show that without loss of generality, we may take A to be diagonal. If S is a
diagonal matrix of independent random signs, then Eν [(Sx)(Sx)

T ] = diag(Xν) = Eν [diag(x)2]. Let
ν be the measure on X induced by drawing x ∼ ν and then multiplying x by the random signs
Sx. Notably, we have tr(Xν) = tr(Xν) and tr(DXν) = tr(DXν) for any diagonal matrix D, as
diag(Xν) = diag(Xν). Suppose for the sake of contradiction that L(diag(A), ν) > L(A, ν). In this
case, A must be non-diagonal, and so we have

L(diag(A), ν) = tr(diag(A)2Xν)− 2tr(diag(A)Xν) + tr(Xν) + σ2 ∥diag(A)∥2Fr
= tr(diag(A)2Xν)− 2tr(diag(A)Xν) + tr(Xν) + σ2 ∥diag(A)∥2Fr
(⋆)
< tr(A2Xν)− 2tr(diag(A)Xν) + tr(Xν) + σ2 ∥A∥2Fr ,

where inequality (⋆) follows because ∥A∥Fr > ∥diag(A)∥Fr while diag(A)2 ⪯ diag(A2). Finally, noting
that tr(diag(A)Xν) = tr(AXν), we see that L(diag(A), ν) < L(A, ν), and so we have demonstrated
that L(A, ν) < L(A, ν). But this contradicts the assumed maximality of ν, and so it must be the
case that A is diagonal.

Now that we have A diagonal, the claimed equality is immediate, and we also notice that
L(D, ν) = L(D, ν) for any diagonal D.

B.2 Proof of Corollary 2.3

For any linear operator A : RN → RN, we may write

(Ay)j = aj(y) = aj(x+ ξ) = aj(x) + aj(ξ)

for each j. Let Πn : RN → Rn be the projection onto the first n coordinates of a vector and
Zn : RN → RN be the projection zeroing the first n elements. Then

inf
A

sup
x∈X

Ex
[
∥Ay − x∥22

]
≥ inf

A
sup

x∈ΠnX
Ex[∥Ay − x∥22] = inf

A
sup

x∈ΠnX

n∑
j=1

Ex[(aj((x,0) + ξ)− xj)
2],
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where (x,0) ∈ ΠnX ×RN. Then by linearity, for x ∈ Rn we write

aj((x,0) + ξ) = φj(x) + aj(Znξ) + aj((I − Zn)ξ)

where φj : Rn → R is the linear function φj(x) = aj((x,0)). But Znξ and (I−Zn)ξ = (ξ1, . . . , ξn,0)
are independent, and because E[aj(Znξ)] = 0 we obtain

Ex[(aj((x,0) + ξ)− xj)
2] = E[(φj(x+ [ξj ]j≤n)− xj + aj(Znξ))

2]

= E[(φj(x+ [ξj ]j≤n)− xj)
2] + Var(aj(Znξ)).

The optimal choice of aj then necessarily satisfies aj(Znu) = 0 for all u. Thus, by restricting to
finite dimensions, we use Proposition 2.1 to see that for any n,

inf
A

sup
x∈X

Ex
[
∥Ay − x∥22

]
≥ inf

d∈Rn
sup
x∈X

n∑
j=1

(
(dj − 1)2x2j + σ2d2j

)
= sup

v∈SqHull(X)
inf
d

n∑
j=1

(
(dj − 1)2vj + σ2d2j

)
= sup

v∈SqHull(X)

n∑
j=1

σ2vj
vj + σ2

as in the proof of Corollary 2.2.
By compactness, for each ϵ > 0, we can choose N <∞ such that supx∈X

∑
j>N x

2
j < ϵ. We thus

have upper bound
inf
A
R∗(A,X) ≤ inf

A
sup

x∈ΠNX
Ex[∥Ay − x∥22] + ϵ.

Apply the same proof technique as that in Corollary 2.2 to obtain

inf
A
R∗(A,ΠNX) = sup

v∈SqHull(ΠNX)

N∑
j=1

σ2vj
vj + σ2

= sup
v∈SqHull(X)

N∑
j=1

σ2vj
vj + σ2

.

Now use that ϵ > 0 was arbitrary, X is compact, and take n and N to infinity.

B.3 Proof of Proposition 2.2

We apply Le Cam’s two point method via the reduction from estimation to testing that Lemma A.1
implies. Consider for any fixed b > 0 the problem of estimating a single value x ∈ [−b, b] with
y ∼ N(x, σ2). Then for v ∈ {−1, 1}, letting Pv be the normal distribution N(δv, σ2) for some δ ∈ [0, b]
to be chosen, we have

inf
x̂

sup
x∈[−b,b]

Ex[(x̂− x)2] ≥ inf
x̂

1

2

{
EP1 [(x̂− x)2] +EP−1 [(x̂− x)2]

}
≥ δ2

2
(1− ∥P−1 − P1∥tv) .

Recalling the Hellinger distance d2hel(P,Q) = 1−
∫ √

dPdQ between probabilities and the standard re-

lationship ∥P−1 − P1∥tv ≤ dhel(P1, P−1)
√
2− d2hel(P1, P−1), we note that d2hel(N(µ0, σ

2),N(µ1, σ
2)) =

1− exp(− 1
8σ2 (µ0 − µ1)

2) to obtain

inf
x̂

sup
x∈[−b,b]

Ex
[
(x̂− x)2

]
≥ sup

0≤δ≤b

δ2

2

(
1−

√
1− exp(−δ2/σ2)

)
≥ σ2 ∧ b2

10

via the choice δ = min{σ, b}. We thus obtain for any hypercube H = [−xj , xj ]j≥1 that

R∗(X) ≥ R∗(H) ≥ 1

10

∑
j≥1

σ2 ∧ x2j .
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C Proofs for Section 3.1

C.1 Proof of Proposition 3.1

We use the general information-theoretic framework of reduction from estimation to testing presented
in Section A.1 to prove the lower bound.

Separation Let us consider the sample space S = {±ej}j≤n and the function F (x, s) := x⊤s, so
F belongs to Fγ,1. Letting δ ∈ [0, 1/2] to be determined, for v ∈ {±1}n, we define Pv such that for
S ∼ Pv we have

S =

{
vjej with probability 1+δ

2n

−vjej with probability 1−δ
2n .

We then have fv(x) = δ
nx

⊤v. By duality,

f∗v := inf
X
fv = − δ

n
sup

x∈Bp(0,1)
v⊤x = − δ

n
∥v∥p∗ ,

where p∗ is such that 1/p+ 1/p∗ = 1. For v, v′ ∈ {±1}n, we thus have

dopt(v, v
′, X) = inf

x∈X
fv(x) + fv′(x)− f∗v − f∗v′ = inf

x∈Bp(0,1)

δ

n
(x⊤(v + v′) + ∥v∥p∗ + ∥v′∥p∗)

=
δ

n
(∥v∥p∗ + ∥v′∥p∗ − ∥v + v′∥p∗)

= 2
δ

n

[
n1/p

∗ − (n− dHam(v, v
′))1/p

∗
]
,

where dHam(v, v
′) is the Hamming distance between v and v′. The Gilbert-Varshimov bound [38,

Example 5.3] guarantees the existence of an n/2 ℓ1-packing of {±1}n of size at least exp(n/8). Let
V be such a packing; we have for a numerical constant c0 > 0 that

dopt(v, v
′, X) ≥ c0δn

−1/p for all v ̸= v′ ∈ V. (18)

Applying Lemma A.2 yields

MS
k(X, γ) ≥

c0
2
δn−1/p inf

ψ
P(ψ(Sk1 ) ̸= V ).

Bounding the testing error We bound the testing error with Fano’s inequality and upper
bounding the mutual information I(S;V ). Using the identity δ log 1+δ

1−δ ≤ 3δ2, it holds

I(Sk1 ;V ) ≤ nmax
v,v′

Dkl (Pv||Pv′) ≤ 3nδ2,

and, recalling that log |V| ≥ n/8 yields

inf
ψ

P(ψ(Sk1 ) ̸= V ) ≥
(
1− 3kδ2 + log 2

n/8

)
.

In the case that n ≥ 32 log 2, choosing δ =
√

n
48k yields the desired lower-bound. In the case that

n < 32 log 2, with Fn=1 as in Lemma A.3, that any 1-dimensional optimization problem may be
embedded into a n-dimensional problem yields

MS
k(X, γ) ≥ MS

k([−1, 1],Fn=1) ≳
1√
k
.
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This gives the lower bound for all n ∈ N.
To conclude the proof, we establish an upper bound on the minimax regret. We consider

the regret guarantee of (9) for h(x) = 1
2∥x∥

2
2. Since p ≥ 2, it holds that for all x ∈ Rn, we

have ∥x∥2 ≤ n
1
2
− 1

p ∥x∥p and thus supx,x′∈X Dh(x, x
′) ≤ n

1
2
− 1

p . On the other hand, since r ∈ [1, 2],
∥g∥2 ≤ ∥g∥r ≤ 1. A straightforward optimization of the stepsize α yields the upper bound on
MR

k (X, γ).

C.2 Proof of Proposition 3.2

The proof is similar to Proposition 3.1 so we forego some of the details.

Separation Let η > 0 to be determined, and consider the sample space and objectives S = {±1}n
and F (x, s) := ηx⊤s. For v ∈ {±1}n, we define Pv such that S ∼ Pv has coordinates satisfying

Sj =

{
vj with probability 1+δ

2

−vj with probability 1−δ
2 .

This yields fv(x) = ηδx⊤v. Considering again the Gilbert-Varshimov packing V ⊂ {±1}n, we lower
bound the separation by noting that for all v ̸= v′ ∈ V,

dopt(v, v
′, X) = inf

x∈X
fv(x) + fv′(x)− f∗v − f∗v′ ≥ c0ηδn

1/p∗ .

Bounding the testing error Noting that

Dkl (Pv||Pv′) =
∑
j≤n

1vj=v′jδ log
1 + δ

1− δ
≤ 3nδ2,

and so I(Sk1 ;V ) ≤ 3knδ2. For F to remain in Fγ,1, we must have that for all x ∈ S, η∥x∥r ≤ 1;
noting that ∥x∥r = n1/q, we choose η = n−1/q. In the case that n ≥ 32 log 2, taking δ = 1/

√
48k

yields the minimax lower-bound

MS
k(X, γ) ≳

n
1
p∗ n

− 1
q

√
k

=
n

1
2
− 1

pn
1
2
− 1

q

√
k

.

In the case that n < 32 log 2, we once again refer Lemma A.3, which concludes the proof for the
lower bound on the minimax stochastic risk.

For the upper bound, we turn to (9), with h(x) = 1
2∥x∥

2
2. It holds again that supx,x′∈X Dh(x, x

′) ≤
n1/2−1/p. Since r ≥ 2, we have that sup∥g∥r≤1 ∥g∥2 = n

1
2
− 1

r and choosing the stepsize α to optimize (9)
yields the upper bound on the minimax regret.

D Proofs for Section 3.2

D.1 Proof of Theorem 2

The upper bound is simply Corollary 3.1. For the lower bound, similar to our warm-up in Section 3.1,
we consider “sparse” gradients, though instead of using Fano’s method we use Assouad’s method to
more carefully relate the geometry of the norm γ and constraint set X.
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Let a ∈ Rn
+ be such that Rec(a) ⊂ X. We consider the sample space S := {±ej}j≤n and

functions
F (x, s) :=

∑
j≤n

1

γ(ej)
|sj ||xj − ajsj |.

For any s ∈ S, the subdifferential ∂xF (x, s) has at most one non-zero coordinate; the orthosymmetry
of γ implies F ∈ Fγ,1. Let p ∈ Rn

+ (to be specified presently) be such that 1⊤p = 1 and for
1 ≤ j ≤ n, let δj ∈ [0, 1/2]. We define the distributions Pv on S by

S =

{
vjej with probability pj(1+δj)

2

−vjej with probability pj(1−δj)
2 .

With this choice, we evidently have

fv(x) = ES∼PvF (x, S) =
∑
j≤n

pj
γ(ej)

[
1 + δj

2
|xj − ajvj |+

1− δj
2

|xj + ajvj |
]

and immediately that infX fv =
∑

j≤n
pjaj
γ(ej)

(1 − δj). As a consequence, we have the Hamming
separation (recall Eq. (16))

fv(x)− inf
X
fv =

∑
j≤n

pjajδj
γ(ej)

1sign(xj )̸=vj ,

which allows us to apply Assouad’s method via Lemma A.4.
Using the same notation as Lemma A.4, we have∥∥∥Pk+j − Pk−j

∥∥∥2
tv
≤ 1

2
Dkl

(
Pk+j ||Pk−j

)
≤ log 3 · kpjδ2j .

Choosing δj = min{1
2 ,

1

2
√
kpj log(3)

} yields the lower bound

MS
k(X, γ) ≥

1

8

∑
j≤n

aj
γ(ej)

min

{
pj ,

√
pj√

k log 3

}
,

and by taking pj = (
aj
γ(ej)

)2/ ∥res(a, γ)∥22, we obtain for any a ∈ X that

MS
k(X, γ) ≥ MS

k(Rec(a), γ) ≥
1

8

∑
j≤n

aj
γ(ej)

min

{
a2j

γ(ej)2 ∥res(a, γ)∥22
,

1√
k log 3

aj
γ(ej) ∥res(a, γ)∥2

}

=
1

8 ∥res(a, γ)∥22

n∑
j=1

a2j
γ(ej)2

min

{
aj
γ(ej)

,
∥res(a, γ)∥2√

k log 3

}

For notational simplicity, define the set T := {res(x, γ)) | x ∈ X}, which is evidently orthosym-
metric and convex (it is a diagonal scaling of X). Then

MS
k(X, γ) ≥ sup

u∈T

1

8 ∥u∥22

n∑
j=1

u2j min

{
uj ,

∥u∥2√
k log 3

}
. (19)
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For any vector u ∈ Rn
+ and c < 1, if we define J = {j ∈ [n] | uj ≥ c√

n
∥u∥2}, then

∥u∥22 = ∥uJ∥22 + ∥uJc∥22 ≤ ∥uJ∥22 + ∥u∥22
∑
j∈Jc

c2

n
≤ ∥uJ∥22 + c2 ∥u∥22 , i.e. ∥uJ∥2 ≥

√
1− c2 ∥u∥2 .

Now, fix d ∈ N. If in the supremum (19) we consider any vector u ∈ T, u ≥ 0 satisfying ∥u∥0 ≤ d,
then setting the index set J = {j : uj ≥ ∥u∥2 /

√
k log 3} = {j : uj ≥ ∥u∥2 /

√
d(k/d) log 3} we have

MS
k(X, γ) ≥

1

8 ∥u∥22

n∑
j=1

u2j min

{
uj ,

∥u∥2√
k log 3

}
≥ 1

8 ∥u∥22

∑
j∈J

u2j
∥u∥2√
k log 3

≥ 1

8

(
1− d

k log 3

)
∥u∥2√
k log 3

.

Taking a supremum over u with ∥u∥0 ≤ d gives the theorem.

D.2 Proof of Corollary 3.2

Given the proof of Theorem 2, the proof is nearly immediate. Let p ∈ [1, 2], β ∈ Rn
++, and

γ(v) = ∥β ⊙ v∥p. For the lower bound, the final display of the proof of Theorem 2 above guarantees
the lower bound MS

k(X, γ) ≥ 1
16 ∥u∥2 /

√
k for all u ∈ {res(x, γ) | x ∈ X} and k ≥ 2n. We first

observe that QHull(Bγ(0, 1)) = {v ∈ Rn | ∥β ⊙ v∥2 ≤ 1}. Thus, the upper bound in Theorem 2 is

MR
k (X, γ) ≤

1√
k
sup
x∈X

sup
g:∥β⊙g∥2≤1

x⊤g.

Using
sup

g:∥β⊙g∥2≤1
u⊤g = sup

z:∥z∥2≤1
u⊤ (z/β) = ∥u/β∥2 ,

and recalling βj = γ(ej) concludes the proof.

E Proofs for Section 4

E.1 Proof of Theorem 3

Let us tackle the first case stated in the theorem; we reduce the second case to the first one by
scaling the dimension.

E.1.1 Case 1 ≤ p ≤ 1 + 1/ log(2n)

We always have the lower bound 1/
√
k by Lemma A.3 by reducing to a lower-dimensional problem,

so we assume without loss of generality that n ≥ 8.

Separation Let us consider V = {±ej}j≤n. For v = ±ej ∈ V, we define Pv on S ∈ {±1}n by
choosing coordinates of S independently via

Sj =

{
1 with probability 1+δvj

2

−1 with probability 1−δvj
2 .
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Immediately, we have EPvS = δv. For s ∈ {±1}n, we define F (x, s) := n−1/p∗x⊤s, so F ∈ Fγ,1,
fv(x) = EPvF (x, S) = δn−1/p∗x⊤v, and a calculation gives that f∗v := infX fv = −δn−1/p∗ . For
v ̸= v′ ∈ V, we have

dopt(v, v
′, X) = inf

x∈X
fv(x) + fv′(x)− f∗v − f∗v′ = n−1/p∗δ inf

x∈X

(
(v + v′)⊤x+ 2

)
= δn−1/p∗(2− ∥v + v′∥p∗)
≥ (2−

√
2)δn−1/p∗ .

Lemma A.2 yields

MS
k(X, γ) ≥

2−
√
2

2
δn−1/p∗ inf

ψ:Sk→V
P(ψ(Sk1 ) ̸= V ).

It now remains to bound the testing error.

Bounding the testing error Noting that |V| = log(2n), we lower bound the testing error via
Fano’s inequality

inf
ψ:Sk→V

P(ψ(Sk1 ) ̸= V ) ≥
(
1− I(Sk1 ;V ) + log 2

log(2n)

)
.

For any v ̸= v′ ∈ V, we have for δ ∈ [0, 12 ] that

Dkl (Pv||Pv′) = δ log
1 + δ

1− δ
≤ 3δ2.

We can thus bound the mutual information between Sn1 and V

I(Sk1 ;V ) ≤ kmax
v ̸=v′

Dkl (Pv||Pv′) ≤ 3kδ2.

In the case that k < 8, the lower bound holds trivially via Lemma A.3. In the case that k ≥ 8,
assuming that choosing δ2 = log(2n)

6k ∧ 1
2 yields

MS
k(X, γ) ≥

2−
√
2

2
n−1/p∗ min

{√
log(2n)

6k
,
1

2

}(
1− 1

2
− 1

4

)
, (20)

which is valid for all p ∈ [1, 2]. In the case that 1 ≤ p ≤ 1 + 1/ log(2n), we note that n−1/p∗ =

1/n
p−1
p ≥ 1/e, which yields

MS
k(X, γ) ≥ c ·

√
log(2n)

k
∧ 1

for a numerical constant c0 > 0.
To conclude, we see that the upper bound is essentially Proposition 2.3. Choosing a = 1 +

1/ log(2n), the quantity
supx∈X ∥x∥a supg∈Bγ (0,1)∥g∥a∗√

a−1
√
k

upper bounds the minimax regret. As a > p,
supx∈X ∥x∥a = 1. We have a∗ = log(2n) + 1 and p∗ ≥ a∗, so that

∥g∥a∗ ≤ n
1
a∗−

1
p∗ ∥g∥p∗ ≤ n

1
a∗

as g ∈ Bp∗(0, 1). Once we note that both n1/a∗ = exp( logn
log(2n)+1) ≤ e and 1/

√
2(a− 1) =

√
log(2n)/2,

we conclude this case.
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E.1.2 Case 1 + 1/ log(2n) < p ≤ 2

Let n0 ≤ n. We can embed a function Fn0 : Rn0 × S → R as a function F : Rn × S → R by letting
πn0 denote the projection onto the first n0-components, and defining

F (x, s) = Fn0(πn0x, s).

If the subgradients of Fn0 lie in Bp∗(0, 1), so do those of F . Similarly, if x0 ∈ {τ ∈ Rn0 , ∥τ∥p ≤ 1}
then x = (x0,0n0+1:n) ∈ Bp(0, 1). As such, any lower bound for the n0-dimensional problem implies
an identical one for all n ≥ n0-dimensional problems. For 1 + 1/ log(2n) < p ≤ 2, let us define
n0 = ⌈exp( 1

p−1)/2⌉, so n0 ≤ n as desired. In the case that p > 1 + 1/ log 16, Lemma A.3 yields
the desired lower bound. In the case that p ≤ 1 + 1/ log 16, we have that n0 ≥ 8, and the lower
bound (20) holds so that for a numerical constant c > 0,

MS
k(X, γ) ≥ cn

−1/p∗

0 ·
√

log(2n0)

n
∧ 1.

Once we use that n−1/p∗

0 ≥ (1/2)
1
p
−1

exp(−1/p) ≥
√

2/e, substituting n0 = ⌈exp( 1
p−1)/2⌉ above

gives the final lower bound

MS
k(X, γ) ≥ c · 1√

2(p− 1)n
∧ 1.

Proposition 2.3 yields the upper bound and concludes this proof.

E.2 Proof of Proposition 4.1

To see the lower bound on the stochastic minimax risk, we apply Assouad’s method (see Section A.2).
Fix any x ∈ X, and let the sampled vectors s ∈ {−1, 1}n generate functions via

F (x; s) =
n∑
j=1

∣∣xj − sjx
⋆
j

∣∣ ,
which evidently satisfy ∥∂F (x; s)∥∞ ≤ 1. For v ∈ {±1}n, let the sampling distribution be Pv(S =

s) =
∏n
j=1

1+δvjsj
2 , that is, independent Bernoulli coordinates with biases 1+δvj

2 . Then

fv(x) := EPv [F (x;S)] =
n∑
j=1

1 + δ

2
|xj − vjx

⋆
j |+

1− δ

2
|xj + vjx

⋆
j |,

which induces the Hamming separation (16)

fv(x)− inf
x∈X

fv(x) ≥ δ

n∑
j=1

|x⋆j |1(sign(xj) ̸= vj) ,

as 1− (1− δ) = δ. Thus Lemma A.4 implies

MS
k(X,F∞) ≥ δ

2

n∑
j=1

|x⋆j |
(
1− ∥Pj − P−j∥tv

)
,

where Pj = 1
2n−1

∑
vj=1 P

k
v and P−j =

1
2n−1

∑
vj=−1 P

k
v . By Jensen’s inequality followed by Pinsker’s

inequality, we have

∥Pj − P−j∥2tv ≤
k

2
max

v,v′:vj ̸=v′j
Dkl (Pv||Pv′) =

k

2
Dkl

(
Ber

(
1 + δ

2

)
||Ber

(
1− δ

2

))
,
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where Ber(p) denotes a Bernoulli p distribution. Of course, this final quantity has upper bound

Dkl (Pv||Pv′) =
1 + δ

2
log

1 + δ

1− δ
+

1− δ

2
log

1− δ

1 + δ
≤ 2 log 3 · δ2

for δ ∈ [0, 12 ]. That is, for any x⋆ ∈ X, we have

MS
k(X,F∞) ≥ δ

2
∥x⋆∥1

(
1−

√
k log 3 · δ2

)
for δ ≤ 1

2 . Take δ2 = 1
4 log 3 .

To demonstrate the upper bound, we take X ⊂ RN, as the special case of finite dimensions
follows immediately. For notational simplicity, for a positive sequence (aj)j∈N to be chosen we let
A : RN → RN be the diagonal linear operator Ax = (ajxj)j∈N. Now, for p ∈ (1, 2] to be chosen as
well, define the distance generating function

h(x) =
1

2(p− 1)
∥Ax∥2p .

By an analogous argument to the finite-dimensional case, this is strongly convex with respect to the
norm ∥x∥ = ∥Ax∥p and has dual norm ∥g∥∗ =

∥∥A−1g
∥∥
q

for q = p
p−1 . In this case, for any sequence

of subgradients gi ∈ [−1, 1]N, we thus obtain regret bound

Regretk(x) ≤
1

2(p− 1)α
∥Ax∥2p +

α

2

k∑
i=1

∥∥A−1gi
∥∥2
q
.

Notably, for g ∈ [−1, 1]N we have ∥∥A−1g
∥∥q
q
≤

∞∑
j=1

a−qj .

We use the assumption in the proposition that X has finite effective dimension (12) N , so that
for β = 1

logN ≤ 1, supx∈X
∑∞

j=1 j
β|xj | ≤ e supx∈X ∥x∥1. Letting aj = jβ, we take q = 2

β , whence

∥A−1g∥qq =
∑∞

j=1 j
−2 = π2

6 . As this also gives conjugate p = q
q−1 = 2

2−β with p− 1 = β
2−β , we obtain

the regret bound

Regretk(x) ≤
1

α

2− β

2β
∥Ax∥2p +O(1) · αk ≤ O(1)

[
1

αβ
sup
x∈X

∥x∥21 + αk

]
.

Take α = supx∈X ∥x∥1 /
√
kβ to obtain the convergence upper bound.

E.3 Proof of Observation 4.1

The first claim of the observation is trivial. For the second and third, we use a bit of additional
notation, saying that X is β-self-similar if

sup
x∈X

∞∑
j=1

jβ|xj | ≤ e sup
x∈X

∥x∥1 . (21)

We show that if limβ↓0 supx∈X
∑∞

j=1 j
β|xj | < ∞, then there is some β > 0 for which X is β-self-

similar (21). The key is the following claim:
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Lemma E.1. Let X satisfy limβ↓0 supx∈X
∑∞

j=1 j
β|xj | < ∞. Then there exists β0 > 0 such that

β 7→ s(β) := supx∈X
∑∞

j=1 j
β|xj | is continuous on [0, β0), and limβ↓0 s(β) = supx∈X ∥x∥1.

Proof. Let β0 = sup{β > 0 | s(β) < ∞}. Take β ∈ [0, β0), and let β′ → β in [0, β0). By the
assumption that supx∈X

∑∞
j=1 j

β|xj | <∞ for all β < β0, for any ϵ > 0 and all suitably small γ > 0,
we may take N such that supX

∑
j>N j

β+γ |xj | < ϵ. Then for β′ close enough to β, we obtain

|s(β)− s(β′)| ≤ sup
x∈X

∑
j≤N

|jβ − jβ
′ ||xj |+ sup

x∈X

∑
j>N

(jβ + jβ
′
)|xj | ≤ sup

x∈X

∑
j≤N

|jβ − jβ
′ ||xj |+ 2ϵ.

As β 7→ jβ is continuous in β, when β′ is close enough to β we obtain N |jβ − jβ
′ | ≤ ϵ for all j ≤ N .

So |s(β)− s(β′)| ≤ ϵ supx∈X ∥x∥1 + 2ϵ. As ϵ > 0 was arbitrary this completes the proof.

The preceding lemma demonstrates that limβ↓0 supx∈X
∑∞

j=1 j
β|xj | = supx∈X ∥x∥1, so there is some

β > 0 for which supx∈X
∑∞

j=1 j
β|xj | ≤ e supx∈X ∥x∥1. Thus effdim(X) <∞.

Finally, for the final claim of the observation, let 1n denote the linear functional ⟨1n, x⟩ =
∑n

j=1 xj ,
and let Nγ be the smallest N such that supx∈X⟨1N , x⟩ ≥ supx∈X n

2γ
∑

j>n |xj | for all n ≥ N . Define

N := max

{
Nγ , exp

(
1 +

3

2γ
log

3

2γ

)
, exp

(
1

2 log(e−
√
e)

)}
.

We claim that X is β-self-similar (21) for β = 1
2 logN , so that effdim(X) ≤ exp(1/β) = N2 as desired.

To see the claim of self-similarity, note that the choice β = 1
2 logN guarantees β − 2γ ≤ −3γ

2 , and

∞∑
j=1

jβ|xj | ≤ N
1

2 logN

N∑
j=1

|xj |+
∞∑

j=N+1

jβ|xj | ≤
√
e sup
x∈X

⟨1N , x⟩+
∞∑

j=N+1

jβ|xj |.

Define the index blocks Bk := {i ∈ N | ek ≤ i < ek+1}, so that

∞∑
j=N+1

jβ|xj | ≤
∞∑

k=⌊logN⌋

∑
j∈Bk

jβ|xj | ≤
∞∑

k=⌊logN⌋

eβ(k+1) 1

e2kγ
sup
x∈X

⟨1N , x⟩

because
∑

j∈Bk
|xj | ≤ e−2kγ supx∈X⟨1N , x⟩ by assumption. Computing the infinite sums, we have

that because 1
2 logN ≤ γ

2 ,

∞∑
k=⌊logN⌋

eβ(k+1) 1

e2kγ
= eβ

∞∑
k=⌊logN⌋

ek(β−2γ) ≤ eβe−3γ⌊logN⌋/2
∞∑
k=0

e−3kγ/2

=
eβ−3γ⌊logN⌋/2

1− e−3γ/2
≤
(
N

e

)− 3
2
γ 2eβ

3γ
,

where we used that ex ≥ 1+x, or 1−ex ≤ −x. Finally, noting that (N/e)−κ ≤ κ iff logN ≥ 1+ 1
κ log

1
κ ,

we substitute κ = 3γ
2 to obtain

∑∞
j=N+1 j

β|xj | ≤ eβ supx∈X⟨1N , x⟩. We have shown that

∞∑
j=1

jβ|xj | ≤ (
√
e+ eβ) sup

x∈X
⟨1N , x⟩

for β = 1
2 logN . So long as β ≤ log(e−

√
e) we have

√
e+ eβ ≤ e.
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F Proofs of regret lower bounds

F.1 Proof of Theorem 4

Let A ≻ 0 be a positive semi-definite matrix for the distance generating function hA(x) = 1
2x

⊤Ax
defined above, and let q = p

p−1 be the conjugate to p. We choose linear functions Fi(x) := g⊤i x
where gi ∈ Bq(0, 1). In this case, letting {xi}i≤k be the points mirror descent plays, the regret with
respect to x ∈ Rn is

Regretk,A(x) =
∑
i≤k

Fi(xi)− Fi(x) =
∑
i≤k

g⊤i (xi − x),

so that

Regret∗k,A := sup
∥x∥p≤1

Regretk,A(x) =

∥∥∥∥∑
i≤k

gi

∥∥∥∥
q

+
1

2

∑
i≤k

∥gi∥2A−1 −
1

2

∥∥∥∥∑
i≤k

gi

∥∥∥∥2
A−1

.

Now, we choose linear functions fi so that the regret is large. To do so, choose vectors

u ∈ argmax
∥s∥q≤1

s⊤A−1s and v ∈ argmin
∥s∥q=1

s⊤A−1s. (22)

Then set the (gradient) vectors gi ∈ Rn so that for a δ ∈ [0, 1] to be chosen,

(a) gi = u for k/4 of the indices i ∈ [k]

(b) gi = −u for k/4 of the indices i ∈ [k]

(c) gi = v for k
4 (1 + δ) of the indices i ∈ [k]

(d) gi = −v for k
4 (1− δ) of the indices i ∈ [k].

With these choices, we obtain the regret lower bound

Regret∗k,A ≥ sup
δ≤1

[
k

2
δ ∥v∥q +

k

4
u⊤A−1u− δ2k2

8
v⊤A−1v

]
≥ k

4
·
[
u⊤A−1u+min

{
1,

2 ∥v∥q
kv⊤A−1v

}
∥v∥q

]
. (23)

We now consider two cases. In the first, A is large enough that ∥v∥q ≥
1
2kv

⊤A−1v. Then the
regret bound (23) becomes

Regret∗k,A ≥ k

4

[
u⊤A−1u+ ∥v∥q

]
≥ k

4
,

as ∥v∥q = 1 by the construction (22). This gives the first result of the theorem. For the second
claim, which holds in the case that ∥v∥q <

1
2kv

⊤A−1v, we consider the operator norms of general
invertible linear operators. For a mapping T : Rn → Rn, define the ℓp to ℓq operator norm

∥T∥ℓp→ℓq
:= sup

x ̸=0

∥T (x)∥q
∥x∥p

.
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Then the construction (22) evidently yields

u⊤A−1u = ∥A−1/2∥2ℓq→ℓ2 and
∥v∥2q

v⊤A−1v
= sup

x ̸=0

∥A1/2x∥2q
∥x∥22

= ∥A1/2∥2ℓ2→ℓq .

Revisiting the regret (23), we obtain

Regret∗k,A ≥ k

4
·
[∥∥∥A−1/2

∥∥∥2
ℓq→ℓ2

+
2

k

∥∥∥A1/2
∥∥∥2
ℓ2→ℓq

]
≥
√
k

2
∥A−1/2∥ℓq→ℓ2∥A1/2∥ℓ2→ℓq ,

where we have used that ab ≤ 1
2a

2 + 1
2b

2 for all a, b. But for any invertible linear operator, standard
results on the Banach-Mazur distance [37, Corollary 2.3.2] imply that

inf
A≻0

∥A∥ℓ2→ℓq

∥∥A−1
∥∥
ℓq→ℓ2

≥ n1/2−1/q.

This gives the lower bound.
For the claimed upper bound, note for h(x) = 1

2α ∥x∥22 (i.e. A = 1
αIn) and initial point x0 = 0, we

have Regretk(x) ≤ 1
2α ∥x∥22+

α
2

∑k
i=1 ∥gi∥

2
2. As ∥x∥2 ≤ 1 whenever ∥x∥p ≤ 1 and and ∥g∥2 ≤ n1/2−1/q

whenever ∥g∥q ≤ 1, we have Regretk(x) ≤ 1
2α + α

2 kn
1−2/q. Choose α = (kn1−2/q)−1/2 to minimize

this bound and achieve sup∥x∥p≤1 Regretk(x) ≤
√
kn1/2−1/q.

F.2 Proof of Theorem 5

As in the proof of Theorem 4, let A ≻ 0 be a positive definite matrix, so that the regret of (Euclidean)
mirror descent with distance generating function hA(x) = 1

2x
⊤Ax is

Regretk,A(x) =

〈∑
i≤k

gi, x

〉
+

1

2

∑
i≤k

∥gi∥2A−1 −
1

2

∥∥∥∥∑
i≤k

gi

∥∥∥∥2
A−1

.

For vectors u, v with ∥u∥∞ ≤ 1, ∥v∥∞ ≤ 1 to be chosen and p ∈ (0, 1) to be chosen as well, we set

(a) gi = u for pk/2 of the indices i ∈ [k]

(b) gi = −u for pk/2 of the indices i ∈ [k]

(c) gi = v for (1− p)k of the indices i ∈ [k].

This then yields regret lower bound

Regretk,A(x) ≥ (1− p)kv⊤x− (1− p)2k2

2
v⊤A−1v +

pk

2
u⊤A−1u. (24)

We argue we may assume w.l.o.g. that lim supk |||A(k)|||op /
√
k <∞. Suppose to the contrary that

along a subsequence, which for simplicity we take to be the entire sequence, that |||A(k)|||op ≫
√
k.

Let C < ∞ be arbitrary, take k large enough that |||A(k)|||op ≥ C
√
k, and assume w.l.o.g. that

C ≤
√
k (we can always take k larger). Let w be the unit eigenvector of A = A(k) achieving

w⊤Aw = |||A|||op, and set v = δw for a 0 ≤ δ ≤ 1 to be chosen, so that ∥v∥∞ ≤ δ ≤ 1. Then at such
indices k the lower bound (24) implies

Regretk,A(k)(x) ≥ (1− p)kδw⊤x− (1− p)2k2δ2

2 |||A(k)|||op
+
kp

2
u⊤A−1u ≥ k(1− p)δ

2

[
w⊤x− (1− p)

√
kδ

2C

]
.
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Taking a supremum over x ∈ X, which is a convex body (so that it has interior), we have
supx∈X w

⊤x = c(X) > 0, whence

sup
x∈X

Regretk,A(k)(x) ≥ sup
0≤δ≤1

k(1− p)δ

[
c(X)− (1− p)

√
kδ

2C

]
≥ C(1− p) ·min{c(X), 1}

2

√
k,

where the second inequality sets δ = C ·min{c(X), 1}/
√
k. As c(X) > 0 and C <∞ was otherwise

arbitrary, whenever p < 1 the preceding lower bound is stronger than that the theorem claims.
Returning to the main thread, we may therefore assume that supk |||A(k)|||op /

√
k ≤ C for some

finite C. Returning to the regret bound (24), we optimize over v and u to obtain

Regretk,A(x) ≥ sup
∥v∥∞≤1,∥u∥∞≤1

[
k(1− p)v⊤x− k2(1− p)2

2
v⊤A−1v +

kp

2
u⊤A−1u

]
.

Considering the supremum over v, we have for any A ≻ 0 that

argmax
v

{
k(1− p)v⊤x− k2(1− p)2

2
v⊤A−1v

}
=

1

k(1− p)
Ax.

Because X is bounded and |||A|||op ≤ C/
√
k, for p < 1 and suitably large k the v achieving this

supremum evidently satisfies ∥v∥∞ = ∥Ax∥∞ /(k(1 − p)) ≤ 1, and so for any p ∈ (0, 1) and large
enough k we obtain

Regretk,A(x) ≥ sup
∥u∥∞≤1

1

2

[
kpu⊤A−1u+ x⊤Ax

]
. (25)

We use a duality argument to lower bound the quantity (25). Let P(X) denote the collection of
probability measures on X, and let u be a random vector, uniform on {−1, 1}n. Then

inf
A⪰0

sup
x∈X

sup
∥u∥∞≤1

{
kpu⊤A−1u+ x⊤Ax

}
≥ inf

A⪰0
sup

ν∈P(X)

[
kp⟨A−1,E[uu⊤]⟩+ ⟨A,Eν [xx⊤]⟩

]
≥ sup

ν∈P(X)
inf
A⪰0

{
kp · tr(A−1) + ⟨A,Eν [xx⊤]⟩

}
.

Taking derivatives with respect to A, we see that the inner infimum is achieved whenever

−kpA−2 +Eν [xx
⊤] = 0, i.e. A =

√
kpEν [xx

⊤]−1/2.

So long as Eν [xx
⊤] ⪰ C−1In, which we may choose, this satisfies the constraint that |||A|||op ≤ C

√
k.

Substituting into the regret lower bound (25), we have for any C < ∞ and p ∈ (0, 1) that for all
large enough k

sup
x∈X

Regretk,A(x) ≥
√
kp sup

ν∈P(X)

{
tr
(
Eν [xx

⊤]1/2
)
| Eν [xx⊤] ⪰ C−1In

}
.

Finally, we use the following lemma relating quadratic hulls and measures.

Lemma F.1. Let P(X) denote the collection of probability measures on an orthosymmetric convex
set X ⊂ Rn. Then

sup
ν∈P(X)

tr
(
Eν [xx

⊤]1/2
)
= sup

ν∈P(X)

n∑
j=1

√
Eν [x2j ] = sup

q∈QHull(X)
⟨1, q⟩.

Moreover, the suprema can be taken over symmetric measures.
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Proof. We prove the first equality first. The function
√
· is concave, and so the function A 7→ tr(A1/2),

as a permutation-symmetric function only of the eigenvalues of A ⪰ 0, is concave on A ⪰ 0 as
well [23], with derivative ∇tr(A1/2) = 1

2A
−1/2. Letting D = diag(A) be the diagonal of A, we thus

have by the standard first-order concavity inequality

tr(A1/2) ≤ tr(D1/2) + ⟨∇tr(D1/2), D −A⟩ = tr(D1/2) +
1

2
⟨D−1/2, D −A⟩ = tr(D1/2),

so that for any positive semidefinite matrix A we have tr(A1/2) ≤ tr(diag(A)1/2). Taking A =
Eν [xx

⊤]1/2 then gives the first equality once we recognize that if ν is symmetric, so that Eν [xx
⊤] is

diagonal, then tr(Eν [xx
⊤]1/2) =

∑n
j=1

√
Eν [x2j ].

For the second equality, recall that for any vector q ∈ QHull(X) with q ⪰ 0, we may write q =
√
z

(applied elementwise), where z is a convex combination of vectors of the form [x2j ]
n
j=1, x ∈ X. Letting

xi, i = 1, . . . ,m be these vectors, with z =
∑m

i=1 λi(x
i)2 for some λ ≥ 0 and 1⊤λ = 1, we let ν be

the distribution on X assigning probabilities λi
2 to xi and λi

2 to −xi, which is evidently symmetric

and satisfies
∑n

j=1

√
Eν [x2j ] = 1⊤q.

By a slight perturbation, we therefore obtain that for any ϵ > 0, we can choose C large enough
that for all large k, we have

sup
x∈X

Regretk,A(k)(x) ≥
√
kp sup

ν∈P(X)

{
tr
(
Eν [xx

⊤]1/2
)
| Eν [xx⊤] ⪰ C−1In

}
≥ (1− ϵ)

√
kp sup

q∈QHull(X)
⟨1, q⟩.

As ϵ > 0 and p < 1 were arbitrary, this completes the proof of the lower bound.
For the upper bound on the regret, note that with the updates xk+1 = xk −D−1gk, we have

Regretk(x) ≤
1

2
(x0 − x)⊤D(x0 − x) +

1

2

k∑
i=1

g⊤i D
−1gi.

Take x0 = 0 and gi = 1 to obtain the upper bound

sup
x∈X

Regretk(x) ≤ sup
x∈X

1

2

n∑
j=1

djx
2
j +

k

2

n∑
j=1

1

dj

for D = diag(d). Applying Sion’s minimax theorem, we have

inf
D⪰0

sup
x∈X

Regretk(x) = sup
ν∈P(X)

inf
d⪰0

1

2

n∑
j=1

djEν [x
2
j ] +

k

2

n∑
j=1

1

dj
=

√
k · sup

ν∈P(X)

n∑
j=1

√
Eν [x2j ],

which is the claimed result.

F.3 Proof of Theorem 6

The proof follows similar lines as the one we show in Appendix F.1 but choosing different u, v ∈ Rn.
Let α ≥ 0 be a stepsize. We consider linear functions Fi(x) := g⊤i x with ∥β ⊙ gi∥1 ≤ 1. Let {xi}i≤k
be the iterates of online gradient descent. The regret with respect to x ∈ Rn is

Regretk,α(x) =
∑
i≤k

g⊤i (xi − x).
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This yields

Regret∗k,α = sup
∥x∥∞≤1

Regretk,α(x) =

∥∥∥∥∥∥
∑
i≤k

gi

∥∥∥∥∥∥
1

+
α

2

∑
i≤k

∥gi∥22 −
α

2

∥∥∥∥∥∥
∑
i≤k

gi

∥∥∥∥∥∥
2

2

.

Let d = argminj≤n βj , we choose

u = ed/βd and v =
1

∥β∥1
.

For δ ∈ [0, 1], we now choose the vectors gi ∈ Rn as follows:

(a) gi = u for k/4 of the indices i ∈ [k].

(b) gi = −u for k/4 of the indices i ∈ [k].

(c) gi = v for k
4 (1 + δ) of the indices i ∈ [k].

(d) gi = −v for k
4 (1− δ) of the indices i ∈ [k].

For this construction, we lower bound the regret

Regret∗k,α ≥ sup
0≤δ≤1

{
kδ

2
∥v∥1 +

kα

4
∥u∥22 −

αδ2k2

8
∥v∥22

}
≥ kα

4
∥u∥22 +

k ∥v∥1
4

min

{
1,

2 ∥v∥1
kα ∥v∥22

}
.

(26)

If the stepsize is too small (i.e. α ≤ 2
k
∥v∥1
∥v∥22

) then (26) becomes

Regret∗k,α ≥ kn

4 ∥β∥1
.

In the other case that α > 2
k
∥v∥1
∥v∥22

, (26) yields

Regret∗k,α ≥ k

4α
∥u∥22 +

∥v∥21
∥v∥22

α

2
≥

√
2

2

√
kn

minj≤n βj
,

which is the desired result.

G Proofs related to ℓ1-diameters and n-widths

Here, we collect the lemmas necessary to prove Corollary 5.2. Recall that 1n ∈ RN denotes the
vector with 1 in the first n positions and 0 elsewhere.

Lemma G.1. For the set X = Conv(C0 ∪ C1) that equation (15) defines, we have

sup
q∈QHull(X)

⟨1n, q⟩ =

√√√√ n∑
j=1

a−2
j and sup

x∈X
⟨1n, x⟩ = max

m≤n

∑m
j=1 bj√∑m
j=1 a

2
jb

2
j

= max
m≤n

⟨1m, b⟩
Z(m)

.
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Proof. Let Q = QHull(X) = {q |
∑∞

j=1 a
2
jq

2
j ≤ 1}. By Cauchy-Schwarz, the suprema of ⟨1n, q⟩ over

q ∈ Q satisfy qj = λ
a2j

where λ > 0 normalizes q so that
∑n

j=1 a
2
jq

2
j = 1, that is, λ = (

∑n
j=1 a

−2
j )−1/2.

For the second equality, note that ⟨1n, x⟩ is linear in x, and so the supremum is achieved at one of
the vertices of C0 or C1. Thus

sup
x∈X

⟨1n, x⟩ = max
x∈C0

⟨1n, x⟩ ∨max
x∈C1

⟨1n, x⟩ = max
j≤n

1

aj
∨max
m≤n

1

Z(m)
⟨1m, b⟩.

Substitute 1 = maxj≤n
1
aj

, as a1 = 1 and aj are nondecreasing, then recognize that b1/
√
b21 = 1 to

obtain the lemma.

We now give rough bounds on the widths of the set X and its hull.

Lemma G.2. For the set X = Conv(C0 ∪ C1), we have

w2(n) = sup
m≥n

m− n∑m
j=1 a

2
j

and

w2(n) ≥ w2
nl(n) ≥ sup

m≥n

1

Z(m)2

m∑
j=n+1

b2j = sup
m≥n

∑m
j=n+1 b

2
j∑m

j=1 a
2
jb

2
j

.

Proof. For the linear width, we recognize that Q = {q |
∑∞

j=1 a
2
jq

2
j ≤ 1} is elliptical, so using the

characterization (14) of w2(n) gives the first claim of the lemma. For the second we can take as a
lower bound the nonlinear width of the set C1, so that

w2
nl(n) ≥ sup

x∈C1

{∑
j>n

x2(j)

}
= sup

m≥n

{
1

Z(m)2

m∑
j=n+1

b2j

}
as desired.

Finally, we take the scalars aj , bj as in the statement of Corollary 5.2. Set

aj = jα/2 and b2j = 2j ,

where 0 < α < 1. Then direct calculations yield the asymptotics that for m ≥ n,

m∑
j=1

a2j =

m∑
j=1

jα ∈
[∫ m

0
tαdt,

∫ m+1

1
tαdt

]
≍ mα+1,

2mmα = a2mb
2
m ≤

m∑
j=1

a2jb
2
j = 2mmα

m∑
j=1

(
j

m

)α
2j−m ≤ 2mmα

m−1∑
j=0

2−j ≤ 2m+1mα

2m = b2m ≤
m∑

j=n+1

b2j ≤
m∑
j=1

2j ≤ 2m+1.

(27)

The first equation in (27) implies that

w2(n) = sup
m≥n

m− n∑m
j=1 a

2
j

≍ sup
m≥n

m− n

m1+α
≍ n−α,
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while the last two equations lower bound the nonlinear width (via Lemma G.2) by

w2
nl(n) ≥ sup

m≥n

∑m
j=n+1 b

2
j∑m

j=1 a
2
jb

2
j

≥ sup
m≥n

2m

2mmα
= n−α,

and so we have w2(n) ≲ w2
nl(n) ≤ w2(n) for all n.

To prove Corollary 5.2, it remains to compute ℓ1 diameter ratio. Applying Lemma G.1, for α < 1
we have

sup
q∈QHull(X)

⟨1n, q⟩ =

√√√√ n∑
j=1

a−2
j =

√√√√ n∑
j=1

j−α ≍ n
1−α
2 .

On the other hand, because
∑m

j=1 bj ≍ 2m/2, the bounds (27) and Lemma G.1 give

sup
x∈X

⟨1n, x⟩ = max
m≤n

∑m
j=1 bj√∑m
j=1 a

2
jb

2
j

≲ max
m≤n

2m/2

mα/22m/2
= 1.
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