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Abstract

We study the problem of collaboratively learning least squares estimates for m agents. Each
agent observes a different subset of the features—e.g., containing data collected from sensors of
varying resolution. Our goal is to determine how to coordinate the agents in order to produce
the best estimator for each agent. We propose a distributed, semi-supervised algorithm Collab,
consisting of three steps: local training, aggregation, and distribution. Our procedure does not
require communicating the labeled data, making it communication efficient and useful in settings
where the labeled data is inaccessible. Despite this handicap, our procedure is nearly asymptotically
local minimax optimal—even among estimators allowed to communicate the labeled data such as
imputation methods. We test our method on real and synthetic data.

1 Introduction
Consider a set of agents that collect data to make predictions, where different agents may collect
different features—because of different sensor availability or specialization—but wish to leverage shared
structure to achieve better accuracy. Concretely, suppose we have m agents, where each agent i ∈ [m]
observes n samples of (xi+, y) where xi+ ∈ Rdi is some subset of x ∈ Rd. We set this as a regression
problem where the data (x, y) has the linear relationship y = ⟨x, θ⟩+ ξ for some noise variable ξ. For
example, these agents could be a network of satellites, each collecting data with a distinct set of sensors
of varying resolution and specialization, with the purpose of estimating quantities like crop-yields
[22], biomass [19], and solar-flare intensity [12]. Or these agents could be a group of seismic sensors,
using acoustic modalities or accelerometers to predict whether an earthquake will occur [2]. Other
examples may include networks of hospitals or phones [13]. In these settings, the agents can share
information to collaboratively train a model; however, they are limited by communication bandwidth
constraints, a situation satellites and seismic sensors often face due to radio frequency spectrum scarcity
and interference [6, 20]. Without being too rigorous, we will define a communication efficient algorithm
as one with communication cost that is sublinear in n; this definition is suited for applications with
significant data volume but limited communication resources. Can we construct a statistically optimal
and communication efficient procedure to estimate θ?

We answer in the affirmative and introduce our estimator Collab. Collab consists of three steps:
local training on all agents, aggregation on a coordinating server, and distribution back to all agents.
Our algorithm is communication-efficient: each agent i ∈ [m] syncs twice with a coordinating server and
incurs communication cost scaling like Θ(d2i ). We prove local minimax lower bounds which prove that
Collab is (nearly) instance-optimal. We choose to study this problem in a stylized linear setting so
that we can provide stronger guarantees for the algorithms we make. Indeed, our results which pair the
exact asymptotic covariance of our estimator Collab with matching asymptotic local minimax lower
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bounds heavily rely on the linearity of our problem and would not be possible without strong structural
assumptions. Having said this, the theory we develop for linear models does hint at potential methods
for non-linear settings, which we discuss in Section 7. We also acknowledge privacy considerations are
important for real world systems such as hospitals. We choose to focus instead on sensor settings where
privacy is less of a concern. We leave adapting our results to privacy-sensitive settings to future work.
We compare our methods to single-imputation methods theoretically and empirically. We choose to
baseline against imputation methods for three reasons. First, if we ignore communication constraints,
our problem is a missing data problem, where formally the data is “missing at random” (MAR) [16].
MAR problems are well studied, so we know that imputation methods work well theoretically and in
practice [25, 15]. Second, because we have instance-optimal lower bounds, we know that imputation
methods are also optimal for our problem. Finally, because imputation methods use more information
than the method we propose, imputation will serve as a “oracle” baseline of sorts.

Contributions. We briefly summarize our contributions.

1. We design a communication-efficient, distributed learning algorithm Collab which performs a
weighted de-biasing procedure on the ordinary least squares estimator of each agent’s data.

2. We show Collab is asymptotically locally minimax optimal among estimators which have access
to the ordinary least squares estimator of each agent’s data. We also show that with some
additional assumptions, Collab is also asymptotically locally minimax optimal among estimators
that have access to all of the training data of all agents.

3. We propose and develop theory for various baseline methods based on imputation. We compare
the statistical error and communication cost of Collab against these baseline methods both
theoretically and empirically on real and synthetic data.

4. We discuss generalizations of Collab for non-Gaussian feature settings and non-linear settings.
We highlight open problems and identify possible directions for future work.

1.1 Related Work
Missing data. If we ignore the communication and computational aspects of our problem, the
problem we study reduces to one of estimation with missing data. There has been a lot of work on
this topic; please see [17] for an overview. The data in our problem is missing at random (MAR)—the
missing pattern does not depend on the value of the data and is known given agent i. There are
many approaches to handling missing data such as weighting and model-based methods [24]. Most
related to our work are methods on single imputation. Schafer and Schenker [25] shows imputation
with conditional mean is nearly optimal with special corrections applied. More recently, Chandrasekher
et al. [3] show that single imputation is minimax optimal in the high dimensional setting. Another
closely related popular approach is multiple imputation [23, 1]. Previous work [27, 29] has shown
that multiple imputation in low dimensional settings produces correct confidence intervals under a
more general set of assumptions compared to single imputation settings. However, we choose to focus
on single imputation methods for two reasons. First, we are interested in estimation error and not
confidence intervals, and our lower bounds show that single imputation has optimal estimation error
for our setting. Second, in our problem context, multiple imputation would require more rounds of
communication and consequently higher communication cost. Other methods for missing data include
weighting and model-based methods.

Distributed learning. Learning with communication constraints is a well studied practical problem.
We provide a couple of examples. Suresh et al. [26] study how to perform mean estimation with
communication constraints. Duchi et al. [8] develop communication-constrained minimax lower bounds.
Distributed convex optimization methods like Hogwild [21] have also been well studied. However,
the works mentioned all concern the no-missing-data regime. A more relevant subfield of distributed
learning is federated learning. In federated learning, a central server coordinates a collection of client
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devices to train a machine learning model. Training data is stored on client devices, and due to
communication and privacy constraints, clients are not allowed to share their training data with each
other or the central server [13]. In the no-missing-features regime, optimization algorithms for federated
optimization are well studied. There is also more theoretical work, which focus on characterizing
communication, statistical, and privacy tradeoffs, albeit for a more narrow set of problems such as mean
and frequency estimation [4]. More related to the missing data regime we consider is cross-silo federated
learning [13] or vertical federated learning [30]. In this paradigm, the datasets on client machines
are not only partitioned by samples but also by features. Researchers have studied this problem in
the context of trees [5], calculating covariance matrices [14], k-means clustering [28], support vector
machines [31], and neural nets [18]. Most related to our work is Gascón et al. [9], Hardy et al. [11]; they
study how to privately perform linear regression in a distributed manner. However, unlike our work,
these works focus more on developing algorithms with privacy guarantees rather than statistical ones.

2 Mathematical model
We assume we have m agents that observes a subset of the dimensions of the input data x ∈ Rd. Each
agent i has a “view” permutation matrix Π⊤

i :=
[
Π⊤

i+ Π⊤
i−
]
∈ Rd×d. Πi+ ∈ Rdi×d describes which

feature dimensions the agent sees, and Πi− ∈ R(d−di)×d describes the dimensions the agent does not
see. For a feature, label pair (x, y), the i-th agent has data (xi+, y) where xi+ := Πi+x ∈ Rdi . Each
agent has n such observations (independent across agents) denoted as a matrix Xi+ ∈ Rn×di and vector
yi ∈ Rn. We let Xi− ∈ Rn×(d−di) denote the unobserved dimensions of the input data x drawn for the
i-th agent, and we let Xi ∈ Rn×d denote the matrix of input data x drawn for the i-th agent, including
the dimensions of x unobserved by the i-th agent. To simplify discussions in the following sections,
for any vector v ∈ Rd we use the shorthand vi+ = Πi+v and vi− = Πi−v. Similarly for any matrix
A ∈ Rd×d we denote by

Ai+ = Πi+AΠ
⊤
i+, Ai− = Πi−AΠ

⊤
i−,

Ai± = Πi+AΠ
⊤
i−, Ai∓ = Πi−AΠ

⊤
i+.

For a p.s.d. matrix A, we let ∥x∥A = ⟨x,Ax⟩.
We assume the data from the m agents follow the same linear model. The features vectors x

comprising the data matrices X1, . . . , Xm are i.i.d. with zero mean and covariance Σ ≻ 0. We will
assume that each agent has knowledge of Σi+—e.g., they have a lot of unlabeled data to use to estimate
this quantity. The labels generated follow the linear model

yi = Xiθ + ξi, ξi
iid∼ N(0, σ2In).

Throughout this work we consider a fixed ground truth parameter θ.

Objectives. We are interested in proposing a method of using the data of the agents to form an
estimate θ̂ which minimizes the full-feature prediction error on a fresh sample x ∈ Rd

Ex[(⟨x, θ̂⟩ − ⟨x, θ⟩)2] = ∥θ̂ − θ∥2Σ. (1)

We are also interested in forming an estimate θ̂i which minimizes the missing-feature prediction
error of a fresh sample xi+ ∈ Rdi for agent i—i.e., xi+ = Πi+x where x ∈ Rd is fresh. Define
Ti :=

[
Idi

Σ−1
i+Σi±

]
Πi and the Schur complement Γi− := Σ\Σi+ := Σi− −Σi∓Σ

−1
i+Σi±. The local test

error is then

Ex[(⟨xi+, θ̂i⟩ − ⟨x, θ⟩)2] = ∥θ̂i − Tiθ∥2Σi+
+ ∥θi−∥2Γi−

(2)

Here, ∥θi−∥2Γi−
is irreducible error. The role of the operator Ti is significant as Tiθ is the best

possible estimator for the ith agent1. Through this paper, we will also highlight the communication
1Maybe surprisingly, Tiθ is better than naively selecting the subset of θ corresponding to the features observed by

agent i—i.e., Πiθ. This is because Tiθ leverages the correlations between features.
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costs of the methods we consider. Recall that we would like our methods to have o(n) communication
cost.

3 Our approach
We begin by outlining an approach of solving this problem for general feature distributions. The general
approach is not immediately usable because it requires some knowledge of θ, so we need to do some
massaging. In Section 3.2, we show how to circumvent this issue in the Gaussian feature setting and
introduce our method Collab. Adapting the general approach to other non-Gaussian settings is an
open problem, but we discuss some potential approaches in Section 7.

3.1 General approach
Our solution begins with each agent i performing ordinary least squares on their local data

θ̂i = X†
i+yi

(i)
= (X⊤

i+Xi+)
−1X⊤

i+yi,

where A† denotes the Moore–Penrose inverse for a general matrix A, and (i) holds whenever rank(Xi+) ≥
di. Because we focus on the large sample asymptotics regime (n≫ di), (i) will hold with probability 1.

Then, we aggregate θ̂ using a form of weighted empirical risk minimization parameterized by the
positive definite matrices Wi ∈ Rdi×di

θ̂ = θ̂(W1, · · · ,Wm) := argmin
θ

m∑
i=1

∥∥∥θi+ +Σ−1
i+Σi±θi− − θ̂i

∥∥∥2
Wi

. (3)

We know by first order stationarity that θ̂ =
(∑m

i=1 T
⊤
i WiTi

)−1(∑m
i=1 T

⊤
i Wiθ̂i

)
. θ̂ is a consistent

estimate of θ regardless the choice of weighting matrices Wi. Furthermore, if the features Xi, θ̂ are
Gaussian, θ̂ is also unbiased. We show this result in the Appendix in Lemma B.1. While Lemma B.1
shows that the choice of weighting matrices Wi does not affect consistency, the choice of weighting
matrices Wi does dictate the asymptotic convergence rate of the estimator. In the next theorem, we
show what the best performing choice of weighting matrices are. The proof is in Appendix B.2.

Theorem 3.1. For any weighting matrices Wi, the aggregated estimator θ̂ = θ̂(W1, · · · ,Wm) is
asymptotically normal

√
n
(
θ̂ − θ

)
= N(0, C(W1, · · · ,Wm)),

with some covariance matrix C(W1, · · · ,Wm). The optimal choice of weighting matrices is

W ⋆
i := Σi+(E

[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
+ σ2Σi+)

−1Σi+,

where zi+ = xi− − Σi∓Σ
−1
i+ xi+. In particular, for all Wi, C(W1, · · · ,Wm) ⪰ C(W ⋆

1 , · · · ,W ⋆
m) =(∑m

i=1 T
⊤
i W

⋆
i Ti
)−1.

The main challenge of using Theorem 3.1 is in constructing the optimal weights W ⋆
i , as at face

value, they depend on knowledge of θ. While we will discuss high level strategies of bypassing this issue
in non-Gaussian data settings in Section 7, we will currently focus our attention on how we can make
use of Gaussianity to construct our estimator Collab.

3.2 Collab Estimator - Gaussian feature setting
If Xi are distributed as N(0,Σ), W ⋆

i has an explicit closed form as

W ⋆
i =W g

i :=
Σi+

∥θi−∥2Γi−
+ σ2

=
Σi+

Ex,y[(⟨xi+, θ̂i⟩ − y)2]
,
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Algorithm 1: Collab algorithm
Data: m agents with training data (X1+, y1), . . . , (Xm+, ym) each with n datapoints
for Each agent i = 1, . . . ,m in parallel do

Compute θ̂i = (X⊤
i+Xi+)

−1X⊤
i+yi;

Compute Σ̂i =
1
nX

⊤
i+Xi+ or with additional unlabeled data;

Compute Ri =
1
n∥Xi+θ̂i − y∥22;

Send θ̂i, Σ̂i, Ri to central server;
end
Central server constructs Ŵ g

i := Σ̂i+/Ri;
Central server computes θ̂clbi = Tiθ̂(Ŵ

g
1 , · · · , Ŵ g

m) and distributes them to respective agents;

where Γi− = Σi− − Σi∓Σ
−1
i+Σi± is the Schur complement. Recall we assume that each agent has

enough unlabeled data to estimate Σi+. Furthermore, 1
n∥Xi+θ̂i − y∥22 is a consistent estimator of

Ex,y[(⟨xi+, θ̂i⟩ − y)2]. Thus, each agent is able to construct estimates of W g
i by computing

Ŵ g
i :=

Σi+

1
n∥Xi+θ̂i − y∥22

Now we construct our global and local Collab estimators defined respectively as

θ̂clb := θ̂(Ŵ g
1 , · · · , Ŵ g

m), θ̂clbi := Tiθ̂(Ŵ
g
1 , · · · , Ŵ g

m). (4)

We summarize the Collab algorithm in Algorithm 1. At a high level, θ̂clb is an estimate of θ which
also minimizes the full-feature prediction error (1) and θ̂clbi minimizes the missing-feature prediction
error for agent i (2). Now we show that using the collective “biased wisdom” of local estimates θ̂i, our
collaborative learning approach returns an improved local estimator. The proof is in Appendix B.3.

Corollary 3.2. Let Xi ∼ N(0,Σ) and define Cg := (
∑m

i=1 T
⊤
i W

g
i Ti)

−1. The global Collab estimator
θ̂clbi and the local θ̂clbi on agent i are asymptotically normal

√
n
(
θ̂clb − θ

)
d→ N (0, Cg) and

√
n
(
θ̂clbi − Tiθ

)
d→ N

(
0, TiC

gT⊤
i

)
.

The following are true

(i) W g
i are the optimal choice of weighting matrices i.e.,particular, C(W1, · · · ,Wm) ⪰ C(W g

1 , · · · ,W g
m) =

Cg.

(ii) On agent i, we have
√
n(θ̂i − Tiθ)

d→ N(0, (W g
i )

−1). The asymptotic variance of θ̂i is larger than
that of the Collab estimator θ̂clbi —i.e., (W g

i )
−1 ⪰ TiC

gT⊤
i .

4 Comparison with other methods
In this section, we compare our collaborative learning procedure with other popular least squares
techniques based on imputation and comment on the statistical efficacy and communication cost
differences. We summarize our analysis in Table 1. The proofs of the theorems are in Appendix C.

Local imputation w/ collaboration. Suppose a coordinating server collected covariance information
Σi from each agent and then distributed Σ back to each of them. Then one intuitive strategy is to use
this information to impute each agent’s local data by replacing Xi+ with E[Xi | Xi+] = Xi+Ti, before
performing local linear regression. In other words, instead of computing θ̂i, compute

θ̂imp
i = (T⊤

i X
⊤
i+Xi+Ti)

†T⊤
i X

⊤
i+yi
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Method
Full-feature
asymptotic
covariance

Missing-feature
asymptotic covariance

Communication
cost for agent

i

Local OLS - θ̂i - (W g
i )

−1 0

Local imputation w/
collaboration - θ̂imp

i

(∑m
i=1 T

⊤
i W

g
i Ti
)−1

Ti
(∑m

i=1 T
⊤
i W

g
i Ti
)−1

T⊤
i Θ(d2)

Global imputation -
θ̂imp-glb
i

(∑m
i=1 T

⊤
i W

g
i Ti
)−1

Ti
(∑m

i=1 T
⊤
i W

g
i Ti
)−1

T⊤
i Θ(ndi)

Collab - θ̂clbi

(∑m
i=1 T

⊤
i W

g
i Ti
)−1

Ti
(∑m

i=1 T
⊤
i W

g
i Ti
)−1

T⊤
i Θ(d2i )

Table 1. Full and Missing feature asymptotic covariance and communication cost for agent i. Commu-
nication cost is measured by how many real numbers are received and sent from agent i.

to send back to the coordinating server. Note that we use Moore–Penrose inverse here as T⊤
i X

⊤
i+Xi+Ti

is in general of rank di, and θ̂imp
i is then the min-norm interpolant of agent i’s data. Similar to Collab,

we can use weighted empirical risk minimization parameterized by Wi ∈ Rd×d and to aggregate θ̂imp

via

θ̂imp = θ̂(W1, · · · ,Wm) := argmin
θ

m∑
i=1

∥∥∥T⊤
i (TiT

⊤
i )−1Tiθ − θ̂imp

i

∥∥∥2
Wi

.

The next theorem, in conjunction with Theorem 3.1, implies that under the WERM optimization
scheme, aggregation of least squares estimators on imputed local data does not bring additional
statistical benefit. In fact, the local imputation estimator is a linearly transformed on local OLS θ̂i.

Theorem 4.1. For θ̂imp
i from agent i, we have θ̂imp

i = T⊤
i (TiT

⊤
i )−1θ̂i. Given any weighting matrices

Wi ∈ Rd×d, the aggregated imputation estimator θ̂imp is consistent and asymptotically normal

√
n
(
θ̂imp − θ

)
= N(0, C imp(W1, · · · ,Wm)).

Using the same weights W ⋆
i ∈ Rdi×di as in Theorem 3.1 for aggregated θ̂imp, we have under p.s.d. cone

order, for weights Wi, C imp(W1, · · · ,Wm) ⪰ C⋆, where C⋆ = (
∑m

i=1 T
⊤
i W

⋆
i Ti)

−1. In addition, the
equality holds when Wi = T⊤

i W
⋆
i Ti.

As we will see in Sec. 5 where we provide minimax lower bound for weak observation models, the
fact that the weighted imputation does not outperform our Collab approach is because the WERM
on local OLS without imputation is already optimal. In fact, having access to the features will not
achieve better estimation rate for both the global parameter θ and local parameters Tiθ.

In terms of communication cost, this local imputation method requires more communication than
Collab, as a central server needs to communicate Σ to all the hospitals. This amounts to a total of
Θ(md2) communication cost instead of Θ(

∑
i∈[m] d

2
i ) communication cost for Collab.

Global imputation. Finally, we analyze the setting where we allow each agent to send the central
server all of their data (Xi+, yi) for i = 1, · · · ,m instead of their local estimators, θ̂i or θ̂imp

i . Having all
the data with structured missingness available, a natural idea is to first impute the data, replacing Xi+

with E[Xi | Xi+] = Xi+Ti, and then performing weighted OLS on all of the nm data points. Namely
for scalars α1, · · · , αm > 0, we take

θ̂imp-glb = θ̂imp-glb(α1, · · · , αm) :=

(
m∑
i=1

αiT
⊤
i X

⊤
i+Xi+Ti

)−1( m∑
i=1

αiT
⊤
i X

⊤
i+yi

)
.

Surprisingly, in spite of the additional power, θ̂imp-glb still does not beat θ̂ in Theorem 3.1.
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Theorem 4.2. For any scalars α1, · · · , αm > 0, θ̂imp-glb is consistent and asymptotically normal
√
n
(
θ̂imp-glb − θ

)
= N(0, C imp-glb(α1, · · · , αm)).

Recall the lower bound matrix C⋆ := (
∑m

i=1 T
⊤
i W

⋆
i Ti)

−1 in Theorem 3.1. If Xi ∼ N(0,Σ), we have
under p.s.d. cone order and any αi > 0, C imp-glb(α1, · · · , αm) ⪰ C⋆. In addition, the equality holds
when αi = 1/(∥θi−∥2Γi−

+ σ2).

The communication cost for this method is significantly larger. Having each agent send all of its data
to a coordinating server requires Θ(

∑
i∈[m] din) communication cost, as opposed to the Θ(

∑
i∈[m] d

2
i )

communication cost for Collab. The fact that communication cost for this method scales with n is a
significant disadvantage for the reasons we outlined in the introduction.

5 Asymptotic Local Minimax Lower Bounds
In this section, we prove asymptotic local minimax lower bounds that show Collab is (nearly) optimal.
We work in the partially-fixed-design regime. For every sample x ∈ Rd, xi+ ∈ Rdi is a fixed vector.
We draw xi− from N(µi−,Γi−) where µi− and Γi− is the conditional mean and variance of xi− given
xi+. Here Γi− is also the Schur complement. We draw xi− from N(µi−,Γi−). The samples xi+ ∈ Rdi

comprise the matrices Xi+ ∈ Rn×di . For all i ∈ [m], we will assume we have an infinite sequence (w.r.t.
n) of matrices Xi+. This partially-fixed-design scheme gives the estimators knowledge of the observed
features and the distribution of the unobserved features, which is consistent with knowledge that
Collab has access to. In this section we fix θ ∈ Rd. The corresponding label y = xi+θi+ + xi−θi− + ξ,
where ξ ∈ R is drawn from i.i.d. N(0, σ2). We use yj ∈ Rn to denote its vector form for the agent j. To
model the estimator’s knowledge about the labels, we will have two observation models—one weaker
and one stronger—which we will specify later when we present our results.

For each observation model, we will have two types of results. The first type of result is a minimax
lower bound for full-featured data; i.e., how well can estimator perform on a fresh sample without
missing features. This type of result will concern the full-feature asymptotic local minimax risk

lim inf
n→∞

Mm,ε({Xi+}i∈[m];Pn, u) := lim inf
n→∞

inf
θ̄

sup
P∈Pn

nEZ∼P ⟨u, θ̄(Z, {Xi+}i∈[m])− θ⟩2.

We will show that there exists a B ∈ Rd×d such that the local minimax risk in the previous display
is lower bounded by uTBu for all u ∈ Rd. In other words, we have lower bounded the asymptotic
covariance of our estimator with B (with respect to the p.s.d. cone order). The second type of result is
an agent specific minimax lower bound; i.e., what is the best prediction error an estimator (for the
given observation model) can possibly have on a fresh sample for a given agent. This type of result will
deal with the missing-feature asymptotic local minimax risk, defined as

lim inf
n→∞

Mi+
m,ε({Xi+}i∈[m];Pn, u) := lim inf

n→∞
inf
θ̄

sup
P∈Pn

nEZ∼P ⟨u, θ̄(Z, {Xi+}i∈[m])− Tiθ⟩2.

Similar to the first minimax error definition, we will again show that there exists a Bi ∈ Rdi×di such
that the local minimax risk we just defined is lower bounded by uTBiu for all u ∈ Rdi . Recall (2) for
discussion surrounding why Tiθ is the right object to compare against.

5.1 Weak Observation Model: Access only to local models and features

Recall the local least squares estimator θ̂i = (X⊤
i+Xi+)

−1X⊤
i+yi. Let P θ̂

θ be a distribution over

θ̂1, . . . , θ̂m induced by θ and (ξ1, . . . , ξm)
iid∼ N(0, σ2In). We define the following family of distributions

P θ̂
n,c := {P θ̂

θ′ : ∥θ′ − θ∥2 ≤ cn−1/2} which defines our observation model. Intuitively, in this observation
model, we are constructing a lower bound for estimators which have access to the features X1+, . . . , Xm+,
the population covariance Σ, and access to θ̂1, . . . , θ̂m. In comparison, our estimator Collab only uses
Σ and θ̂1, . . . θ̂m. We present our first asymptotic local minimax lower bound result here. The proof of
this result can be found in Appendix D.1.
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Theorem 5.1. Recall that Cg := (
∑m

i=1 T
⊤
i W

g
i Ti)

−1. For all ∈ [m] and n let the rows of Xi+ be drawn
i.i.d. from N(0,Σi+). Then for all u ∈ Rd, with probability 1, the full-feature asymptotic local minimax
risk for P θ̂

n,c is bounded below as,

lim inf
c→∞

lim inf
n→∞

Mm,ε({Xi+}i∈[m];P θ̂
n,c, u) ≥ u⊤Cgu.

For all u ∈ Rdi , with probability 1, the missing-feature asymptotic local minimax risk for P θ̂
n,c is bounded

below as

lim inf
c→∞

lim inf
n→∞

Mi+
m,ε({Xi+}i∈[m];P θ̂

n,c, u) ≥ u⊤TiC
gT⊤

i u.

This exactly matches the upper bound for Collab we presented in Corollary 3.2.

5.2 Strong Observation Model: Access to features and labels
Define the family of distributions Py

n,c := {P y
θ′ : ∥θ′ − θ∥2 ≤ cn−1/2} as the observation model.

Intuitively, in this model, we are constructing a lower bound for estimators having access to all of
the features X1+, . . . , Xm+ and access to y1, . . . ym. This observation model is stronger than the
previous observation model because estimators now have access to the labels y. We note again that our
estimator Collab only uses Σ and θ̂1, . . . θ̂m. The quantities our estimator rely on do not scale with
n, making our estimator much weaker than other potential estimators in this observation model, as
estimators are allowed to depend on yi, which grows in size with n. We present our second asymptotic
local minimax lower bound result here, starting with defining the strong local lower bound matrix
Cs := (

∑m
i=1 2Σ/(∥θi−∥

2
Γi−

+ σ2))−1. The proof of this result is in Appendix D.2.

Theorem 5.2. For all i ∈ [m] and n let the rows of Xi+ be drawn i.i.d. from N(0,Σi+). Then for all
u ∈ Rd, with probability 1, the full-feature asymptotic local minimax risk for Py

n,c is bounded below as

lim inf
c→∞

lim inf
n→∞

Mm,ε({Xi+}i∈[m];Py
n,c, u) ≥ u⊤Csu.

For all u ∈ Rdi , with probability 1, the missing-feature asymptotic local minimax risk for Py
n,c is bounded

below as

lim inf
c→∞

lim inf
n→∞

Mi+
m,ε({Xi+}i∈[m];Py

n,c, u) ≥ u⊤TiC
sT⊤

i u.

In view of the lower bound in the strong observation model and that of the weak observation model
in Theorem 5.1, it is clear that the lower bound in the strong observation setting is in general smaller as

Σ− T⊤
i Σi+Ti = Π⊤

i

[
0 0
0 Γi−

]
Πi ⪰ 0,

which further implies Cg ⪰ (
∑m

i=1 Σ/(∥θi−∥
2
Γi−

+ σ2))−1 ⪰ Cs.
We argue that the two lower bounds are comparable in the missing completely at random [17].

Consider for every agent i, each coordinate is missing independently with probability p. In this case,
(di,Σi+, Ti) are i.i.d. random triplets parameterized by p.

Corollary 5.3. Under the random missingness setup with missing probability p, let the eigenvalue
of Σ be λ1(Σ) ≥ · · · ≥ λd(Σ) > 0 and define its condition number κ = λ1(Σ)/λd(Σ). Suppose
p ≤ 1

2κ
−1(1 + ∥θ∥2Σ/σ2)−1, we have the limits limm→∞mCg and limm→∞mCs exist and

4 lim
m→∞

mCs ⪰ lim
m→∞

mCg ⪰ lim
m→∞

mCs.

6 Experiments
We perform experiments to empirically test and compare the methods we have discussed in this paper.
Our first experiment is on real data with potential distribution shift between agents and models a
potentially real setting concerning the US Census. This experiment is meant to show how our methods
would perform in practice. The setup of the synthetic experiment is similar to the setup of our theory;
due to space, we defer this to Appendix A.2.
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Figure 1: Experimental results for US Census Experiment

6.1 US Census Experiments
We experiment on real US census data modified from the ACSTravelTime dataset from the folktables
package [7] to test how our methods work on real data, which may contain covariate shift across agents.
After dataset preprocessing, described in the Appendix A.1, we have d = 37 features. We plot the
covariance matrix of the features in Appendix A.1. We compute the covariance from training data
across all of the datacenters. We assume we are able to do this because this computation can be done
in a distributed manner, without communicating training data points or labels.

We (artificially) construct m = 5 datacenters (agents), each containing data from one of California,
New York, Texas, Florida, and Illinois. The goal is to collaboratively learn a model for each datacenter
in a communication efficient way. This setup models potentially real settings where state governments
are interested in similar prediction tasks but may not be allowed to directly transfer data about their
constituents directly to one another due to privacy or communication constraints. The California
datacenter will have access to 37 features, New York to 36, Texas to 35, Florida to 30, and Illinois to
27. This models the feature heterogeneity which varies across geography. Each datacenter will have n
datapoints, which we vary in this experiment. The objective to predict people from Illinois’s travel
time to work given all 37 features. This task models the setting where the datacenter of interest does
not have access to labeled full-featured, data to use to predict on full-featured test data.

We compare our method Collab against methods we call Naive-Local, Naive-Collab, Optimized-
Naive-Colllab, Imputation, and RW-Imputation. We briefly describe each method here; Appendix A.1
contains a more detailed description of each method. Naive-Local refers to each agent locally per-
form OLS to construct θ̂i. Naive-Collab does an equal-weighted average of the agent OLS models—∑

i∈[m] Π
⊤
i+θ̂i/m. Optimized-Naive-Collab uses gradient descent to optimize the choices of weights

of Naive-Collab. Optimized-Naive-Collab uses fresh labeled samples without any missing features
during gradient descent, so in this sense, Optimized-Naive-Collab is more powerful than our method.
Imputation refers to the global imputation estimator θ̂imp-glb with αi = 1/m. RW-Imputation is
Imputation but with the optimal choice of weights αi. We also compare against Naive-Local trained
with 5n datapoints. We choose 5n to model the hypothetical scenario setting where all of the other
datacenters available contain data (albeit with missing features) from Illinois. For each method that
we test, we run 80 trials to form 95% confidence intervals. We see that for n ≤ 800 in Figures 1(b)
and 1(c), Collab performs the best; the imputation methods do the worst, and have much higher
variance. In this small n regime, even the Naive-Local method with 5 times the data does worse
than Collab. For n ≥ 2000 in Figure 1(a), the aggregation methods do worse than the imputation
methods, and Naive-Local method with 5 times the data is the best performing method. However,
Collab remains better than Optimized-Naive-Collab and Naive-Collab. The fact that the performance
of the Naive-Collab approaches in much closer to the performance of Collab than in the Synthetic
experiment in Appendix A.2 is not surprising, as the covariance of the features is much more isotropic,
meaning that the naive aggregation methods will not incur nearly as much bias.
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7 Discussion and Future Work
Optimal weights beyond Gaussianity. E

[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
has a nice closed form in Gaussian

setting because zi+ and xi+ are independent—which is in general not true without Gaussianity. If we
can directly sample from the feature distribution P (e.g., unlabeled data), then we can empirically
estimate E

[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
by sampling from P and using any consistent plug-in estimate θ̂ (e.g.,

run Collab with weights Wi = Idi
). This will return a good estimate of the optimal weights. An

interesting future direction is to prove lower bounds without the Gaussianity assumption.

Generalization to non-linear models. Recall in the Gaussian setting, the optimal weights in
Collab are W g

i = Σi+/(Ex,y[(⟨xi+, θ̂i⟩ − y)2]). Then, the optimal loss function in Eq. (3) becomes

m∑
i=1

∥∥∥θi+ +Σ−1
i+Σi±θi− − θ̂i

∥∥∥2
W g

i

=

m∑
i=1

Exi+
[(⟨xi+, θ̂i⟩ − ⟨xi+, Tiθ⟩)2]
Ex,y[(⟨xi+, θ̂i⟩ − y)2]

.

This hints at a generalization to non-linear models. Suppose the local agents train on models
f i(xi+; θi),Rdi × Rdi 7→ Y and the global model f(x; θ),Rd × Rd 7→ Y satisfies for some mapping
Ti : Rd → Rdi , f(x;Tiθ) = f i(xi+; θi). Consider a loss function ℓ(·, ·) : Y × Y → [0,∞). Then we can
consider the following way of aggregation inspired by Collab for linear models

θ̂ := argmin
θ

m∑
i=1

Exi+
ℓ(f i(xi+; θ̂i), f(xi+;Tiθ))

Exi+,yℓ(f i(xi+; θ̂i), y)
.

We can consistently estimate the denominators (weights) using training time loss. An interesting future
direction is to investigate the performance of this general approach for non-linear problems.
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Figure 2: Covariance Heatmap for US Census Experiment
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Figure 3: Experimental results for Synthetic Experiment

A Experimental Details

A.1 Census Experimental Details
We use the 15 of the 17 features in the ACSTravelTime dataset—which include Age, Educational
Attainment, Marital Status, Sex, Disability record, Mobility status, Relationship, etc. More specifically,
using the notation from [7], we choose to keep the ’AGEP’, ’SCHL’, ’MAR’, ’SEX’, ’DIS’, ’MIG’,
’RELP’, ’RAC1P’, ’PUMA’, ’CIT’, ’OCCP’, ’JWTR’, ’POWPUMA’, and ’POVPIP’ features. We
choose to exclude the State code (ST) and Employment Status of Parents (ESP) as a quick way to
bypass low-rank covariance matrix issues. We turn the columns ’MAR’, ’SEX’, ’DIS’, ’MIG’, ’RAC1P’,
’CIT’, ’JWTR’ into one-hot vectors. We make use commute time ’JWMNP’ as the target variable. We
clean our data by making sure AGEP (Age) must be greater than 16, PWGTP (Person weight) must
be greater than or equal to 1, ESR (Employment status recode) must be equal to 1 (employed), and
JWMNP (Travel time to work) is greater than 0. We normalize our features and targets by centering
and dividing by the standard deviation computed from the training data. The California datacenter
has access to all of the features. The New York datacenter has access to all categories except ’AGEP’.
The Texas datacenter has access to all but ’AGEP’, ’SCHL’. The Florida datacenter has access to all
but ’AGEP’, ’SCHL’, ’MAR’, ’SEX’, and the Illinois datacenter has access to all but ’AGEP’, ’SCHL’,
’MAR’, ’SEX’, ’DIS’, ’MIG’.

A.2 Synthetic Experiments
We start with a synthetic experiment where we generate m = 30 agents observing some subset of d = 30
features. Ten of the agents will have access to random subsets of 20 of the features. The other twenty
agents will have access to random subsets of 15 of the features. Each agent will have n samples which
we vary in this experiment. We sample the features from a N(0,Σ) distribution. We generate Σ by first
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generating d eigenvalues by sampling d times from a uniform [0, 1] distribution. We randomly select 3
eigenvalues to multiply by 10 and use these eigenvalues to populate the diagonal of a diagonal matrix
Λ. Then we use a randomly generated orthogonal matrix W to form Σ :=WΛWT . We plot a heatmap
of Σ in Figure 3(a). For each method that we test, we run 20 trials to form 95% confidence intervals.

We compare our method Collab, against the Imputation and RW-Imputation methods we outlined
in Section 6.1. After we train each of these methods using the data on our 30 agents, we measure
how well these methods perform in using the features of a test-agent with access to 20 of the total 30
features to predict outputs. We will also compare our methods against Naive-Local, where we only use
the n training datapoints of the 20 features our test-agent has access to, also described in Section 6.1.
We plot this result in Figure 3(b).

We also compare our methods in an alternative setting where the test-center of interest has access
to all 30 features. This setup models the setting where we are interested making the best possible
predictions from all of the features available. In this experiment, we compare against Naive-Collab,
Optimized-Naive-Collab, described in Section 6.1. We note that Optimized-Naive-Collab uses fresh
labeled samples without any missing features during gradient descent, so in this sense, Optimized-
Naive-Collab is more powerful than our method. We plot this result in Figure 3(c).

We see that reweighting is important; this is why Collab and RW-Imputation outperform the
unweighted Imputation method. Our Collab method improves over the Naive-Local approach, meaning
that the agents are benefiting from sharing information. Collab also matches the performance of the
RW-Imputation method, despite only needing to communicate the learned parameters of each agent’s
model, as opposed to all of the data on each agent. The Naive-Collab approaches level out very quickly,
likely reflecting the fact that these methods are biased, as the covariance of our underlying data is far
from isotropic.

B Proofs for Section 3
Lemma B.1. For any positive definite matrices Wi ∈ Rdi×di , i = 1, 2, . . . ,m, the aggregated estimator
θ̂ in Eq. (3) is consistent θ̂ p→ θ. In addition, if Xi ∼ N(0,Σ), we have unbiasedness E[θ̂] = θ where E
is over the random data Xi and noise ξi.

B.1 Proof of Lemma B.1
For the general case, identify for θ̂i, we can write

θ̂i = (X⊤
i+Xi+)

−1Xi+yi = (X⊤
i+Xi+)

−1X⊤
i+(Xi+θi+ +Xi−θi− + ξi)

= θi+ + (X⊤
i+Xi+)

−1(X⊤
i+Xi−θi− +X⊤

i+ξi)

= θi+ +

(
1

n
X⊤

i+Xi+

)−1(
1

n
X⊤

i+Xi−θi− +
1

n
X⊤

i+ξi

)
.

The weak law of large numbers implies that X⊤
i+Xi+/n

p→ Σi+, X⊤
i+Xi−/n

p→ Σi± and 1
nX

⊤
i+ξi

p→ 0.
Then Slutsky’s theorem gives the consistency guarantee

θ̂i
d→ θi+ +Σ−1

i+ (Σi±θi− + 0) = θi+ +Σ−1
i+Σi±θi− = Tiθ,

which is equivalent to θ̂i
p→ Tiθ. Substituting back into θ̂, we can obtain again from continuous mapping

theorem that

θ̂ =

(
m∑
i=1

T⊤
i WiTi

)−1( m∑
i=1

T⊤
i Wiθ̂i

)
p→

(
m∑
i=1

T⊤
i WiTi

)−1( m∑
i=1

T⊤
i WiTiθ

)
= θ.

Next, we specialize to Gaussian features and show θ̂ is indeed unbiased in this case. By the tower
property, we can write for each local OLS estimator,

E[θ̂i] = E[(X⊤
i+Xi+)

−1Xi+yi] = E
[
E[(X⊤

i+Xi+)
−1X⊤

i+(Xi+θi+ +Xi−θi− + ξi) | Xi+]
]
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= θi+ + E
[
(X⊤

i+Xi+)
−1X⊤

i+E[Xi− | Xi+]
]
θi−.

We want to compute E[Xi− | Xi+] and the key observation is that with Gaussianity in Xi, we have

Cov(xi− − Σi∓Σ
−1
i+ xi+, xi+) = Cov(xi−, xi+)− Σi∓Σ

−1
i+Cov(xi+, xi+)

= Σi∓ − Σi∓Σ
−1
i+ · Σi+ = 0,

and therefore xi+ is independent of xi− − Σi∓Σ
−1
i+ xi+, which further implies that

E [Xi− | Xi+] = E
[
Xi+Σ

−1
i+Σi± | Xi+

]
+ E

[
Xi− −Xi+Σ

−1
i+Σi± | Xi+

]
= Xi+Σ

−1
i+Σi±.

Substituting the above property into computing the expectation of local estimates θ̂i, it then holds

E[θ̂i] = θi+ + E[(X⊤
i+Xi+)

−1X⊤
i+Xi+Σ

−1
i+Σi±]θi− = θi+ +Σ−1

i+Σi±θi− = Tiθ.

We can then conclude the proof as

E[θ̂] =

(
m∑
i=1

T⊤
i WiTi

)−1( m∑
i=1

T⊤
i WiTiθ

)
= θ.

B.2 Proof of Theorem 3.1
We first study the central limit theorem for local OLS estimators θ̂i. Let the data matrices Xi+ =
[x1i+, . . . , x

n
i+]

⊤ and Xi− = [x1i−, . . . , x
n
i−] and the noise vector ξi = [ξ1i , . . . , ξ

n
i ]

⊤, we can write out for
θ̂i that

√
n
(
θ̂i − Tiθ

)
=
(
X⊤

i+Xi+/n
)−1︸ ︷︷ ︸

(I)

· 1√
n
X⊤

i±
{
(Xi− −Xi+Σ

−1
i+Σi±)θi− + ξi

}
︸ ︷︷ ︸

(II)

. (5)

For (II), note that

1√
n
X⊤

i±
{
(Xi− −Xi+Σ

−1
i+Σi±)θi− + ξi

}
=

1√
n

n∑
k=1

xji+

{
(xji− − Σi∓Σ

−1
i+ x

j
i+)

⊤θi− + ξji

}
.

The summands are independent mean zero random vectors, since

E
[
xji+

{
(xji− − Σi∓Σ

−1
i+ x

j
i+)

⊤θi−

}]
=
(
E
[
xji+x

j
i−

⊤]
− E

[
xji+x

j
i+

⊤]
Σ−1

i+Σi±

)
θi−

=
(
Σi± − Σi+Σ

−1
i+Σi±

)
θi− = 0,

and E[xji+ξ
j
i ] = E[xji+] ·E[ξ

j
i ] = 0. Denote by zji+ := xji− −Σi∓Σ

−1
i+ x

j
i+ and we can infer from the above

display that xi+ and zi+ are uncorrelated. (II) is then asymptotically normal by CLT with limiting
covariance (suppressing the superscript j below)

Cov
(
xi+

{
(xi− − Σi∓Σ

−1
i+ xi+)

⊤θi− + ξi
})

= E
[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
+ E

[
ξ2i xi+x

⊤
i+

]
= E

[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
+ σ2Σi+ := Qi. (6)

If Xi are Gaussian random vectors, we can additionally have independence between zi+ and xi+ by
zero correlation. Therefore

E
[
xi+θ

⊤
i−zi+z

⊤
i+θi−x

⊤
i+

]
= E

[
xi+θ

⊤
i−E

[
zi+z

⊤
i+

]
θi−x

⊤
i+

]
= θ⊤i−Cov

(
xi− − Σi∓Σ

−1
i+ xi+

)
θi− · E

[
xi+x

⊤
i+

]
= θ⊤i−

(
Σi− − Σi∓Σ

−1
i+Σi±

)
θi− · Σi+ = ∥θi−∥2Γi−

Σi+,

and Qi = (∥θi−∥2Γi−
+ σ2)Σi+.
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We proceed to show C(W1, · · · ,Wn) ⪰ C⋆ under general feature distribution P and W ⋆
i :=

Σi+Q
−1
i Σi+. By Slutsky theorem, (I) converges to Σ−1

i+ in probability and we can conclude from Eq. (5)
that

√
n
(
θ̂i − Tiθ

)
d→ N

(
0,Σ−1

i+QiΣ
−1
i+

)
. (7)

Further from θ̂ =
(∑m

i=1 T
⊤
i WiTi

)−1(∑m
i=1 T

⊤
i Wiθ̂i

)
, it follows that

√
n
(
θ̂i − θ

)
= N(0, C(W1, · · · ,Wn))

where

C(W1, · · · ,Wn) =

(
m∑
i=1

T⊤
i WiTi

)−1

·

(
m∑
i=1

T⊤
i WiW

⋆
i
−1WiTi

)
·

(
m∑
i=1

T⊤
i WiTi

)−1

. (8)

With the choice of Wi =W ⋆
i , we achieve the claimed lower bound for asymptotic covariance as in this

case C(W1, · · · ,Wm) =
(∑m

i=1 T
⊤
i W

⋆
i Ti
)−1. It thus remains to show

C(W1, · · · ,Wn) ⪰

(
m∑
i=1

T⊤
i W

⋆
i Ti

)−1

= C⋆.

To prove the above claim, we construct auxiliary matrices Mi as

Mi =

[
T⊤
i W

⋆
i Ti T⊤

i WiTi
T⊤
i WiTi T⊤

i WiW
⋆
i
−1WiTi

]
=

[
T⊤
i W

⋆
i

1
2

T⊤
i WiW

⋆
i
− 1

2

][
T⊤
i W

⋆
i

1
2

T⊤
i WiW

⋆
i
− 1

2

]⊤
⪰ 0.

Therefore
m∑
i=1

Mi =

[
C⋆−1 ∑m

i=1 T
⊤
i WiTi∑m

i=1 T
⊤
i WiTi

∑m
i=1 T

⊤
i WiW

⋆
i
−1WiTi

]
⪰ 0.

As the Schur complement is also p.s.d. we can conclude with

0 ⪯ C⋆−1 −

(
m∑
i=1

T⊤
i WiTi

)
·

(
m∑
i=1

T⊤
i WiW

⋆
i
−1WiTi

)−1

·

(
m∑
i=1

T⊤
i WiTi

)
= C⋆−1 − C(W1, · · · ,Wn)

−1.

B.3 Proof of Corollary 3.2

We first prove (i) and asymptotic normality of
√
n(θ̂clb−θ) d→ N (0, Cg). We point out that Theorem 3.1

is not directly applicable as we use estimated weights that reuse the training data. We claim consistency
for Ŵ g

i

p→W g, and under this premise, the proof is rather straightforward since we can write

√
n
(
θ̂clb − θ

)
=

(
m∑
i=1

T⊤
i Ŵ

g
i Ti

)−1( m∑
i=1

T⊤
i Ŵ

g
i (θ̂i − Tiθ)

)
.

With the asymptotic normality established for
√
n(θ̂i−Tiθ) in Eq. (7), Slutsky’s theorem and continuous

mapping theorem, we can conclude that
√
n(θ̂clb−θ) d→ N (0, Cg). Now it remains to showing Ŵ g

i

p→W g,
this is from Slutksy’s theorem applied to Ŵ g

i = Σ̂i+/R̂i and the weak law of large numbers as follows

Σ̂i+ =
X⊤

i+Xi+

n

p→ Σi+, R̂i =
1

n
∥Xi+θ̂i − y∥22

p→ E[
∥∥x⊤i+Tiθ − yi

∥∥2
2
],
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where

E[
∥∥x⊤i+Tiθ − yi

∥∥2
2
] = E[

∥∥x⊤i+Σ−1
i+Σi±θi− − x⊤i−θi−

∥∥2
2
] + σ2

= ∥θi−∥2Cov(xi−−Σi∓Σ−1
i+ xi+) + σ2 = ∥θi−∥2Γi−

+ σ2.

We proceed to prove (ii). Applying delta method to the mapping θ 7→ Tiθ,Rd → Rdi on
θ̂(W ⋆

1 , · · · ,W ⋆
m) immediately yields the asymptotic normality for θ̂clbi . It only remains to show

TiC
⋆T⊤

i ⪯W ⋆
i
−1.

Identify W ⋆
i
−1 − TiC

⋆T⊤
i as the Schur complement for the block matrix

M =

[
W ⋆

i
−1 Ti

T⊤
i C⋆−1

]
,

and it suffices to show M ⪰ 0. This follows from C⋆ = (
∑m

i=1 T
⊤
i W

⋆
i Ti)

−1 and thus

M =

[
W ⋆

i
−1 Ti

T⊤
i

∑m
j=1 T

⊤
j W

⋆
j Tj

]
⪰
[
W ⋆

i
−1 Ti

T⊤
i T⊤

i W
⋆
i Ti

]
=

[
W ⋆

i
− 1

2

T⊤
i W

⋆
i

1
2

][
W ⋆

i
− 1

2

T⊤
i W

⋆
i

1
2

]⊤
⪰ 0.

C Proofs for Section 4

C.1 Proof of Theorem 4.1
The key part of the proof is showing θ̂imp

i = T⊤
i (TiT

⊤
i )−1θ̂i. If we can have this claim established, we

can make use of the following transformation of the loss function
m∑
i=1

∥∥∥T⊤
i (TiT

⊤
i )−1Tiθ − θ̂imp

i

∥∥∥2
Wi

=

m∑
i=1

∥∥∥T⊤
i (TiT

⊤
i )−1Tiθ − T⊤

i (TiT
⊤
i )−1θ̂i

∥∥∥2
Wi

=

m∑
i=1

∥∥∥Tiθ − θ̂i

∥∥∥2
(TiT⊤

i )−1TiWiT⊤
i (TiT⊤

i )−1
.

This reduces the optimization problem into the same one in Eq. (3) up to weight transformation, and
the same lower bound for asymptotic covariance in Theorem 3.1 applies. Hence

C imp-glb(α1, · · · , αm) ⪰ C⋆.

By taking Wi = T⊤
i W

⋆
i Ti, we have the transformed weights satisfy

(TiT
⊤
i )−1TiWiT

⊤
i (TiT

⊤
i )−1 = (TiT

⊤
i )−1T⊤

i W
⋆
i Ti(TiT

⊤
i )−1 =W ⋆

i .

From the optimality condition in Theorem 3.1, the equality holds under this choice of Wi’s.
It then boils down to proving the claim θ̂imp

i = T⊤
i (TiT

⊤
i )−1θ̂i. We make use of the following two

properties of Moore-Penrose pseudo inverse—for A ∈ Rdi×d of rank di,

(A⊤A)† = A†(A†)⊤, A† = A⊤(AA⊤)−1.

Substituting A = (X⊤
i+Xi+)

1
2Ti into the above displays, we then have

θ̂imp
i = (T⊤

i X
⊤
i+Xi+Ti)

†T⊤
i X

⊤
i+yi

= T⊤
i (X⊤

i+Xi+)
1
2

(
(X⊤

i+Xi+)
1
2TiT

⊤
i (X⊤

i+Xi+)
1
2

)−2

· (X⊤
i+Xi+)

1
2TiT

⊤
i X

⊤
i+yi

= T⊤
i (X⊤

i+Xi+)
1
2

(
(X⊤

i+Xi+)
− 1

2 (TiT
⊤
i )−1(X⊤

i+Xi+)
− 1

2

)2
· (X⊤

i+Xi+)
1
2TiT

⊤
i X

⊤
i+yi

= T⊤
i (TiT

⊤
i )−1 · (X⊤

i+Xi+)
−1 · (TiT⊤

i )−1 · TiT⊤
i X

⊤
i+yi

= T⊤
i (TiT

⊤
i )−1 · (X⊤

i+Xi+)
−1X⊤

i+yi = T⊤
i (TiT

⊤
i )−1θ̂i.
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C.2 Proof of Theorem 4.2
By a direct calculation, we have

θ̂imp-glb − θ =

(
m∑
i=1

αiT
⊤
i X

⊤
i+Xi+Ti

)−1( m∑
i=1

αiT
⊤
i X

⊤
i+yi

)
− θ

=

(
m∑
i=1

αiT
⊤
i X

⊤
i+Xi+Ti

)−1( m∑
i=1

αiT
⊤
i X

⊤
i+(Xi+θi+ +Xi−θi− + ξi)

)
− θ

=

(
m∑
i=1

αiT
⊤
i X

⊤
i+Xi+Ti

)−1( m∑
i=1

αiT
⊤
i X

⊤
i+(Xi+θi+ +Xi−θi− −Xi+Tiθ + ξi)

)

=

(
m∑
i=1

αiT
⊤
i X

⊤
i+Xi+Ti

)−1( m∑
i=1

αiT
⊤
i X

⊤
i+(Xi−θi− −Xi+Σ

−1
i+Σi±θi− + ξi)

)
.

Consequently

√
n
(
θ̂imp-glb − θ

)
=

(
m∑
i=1

αiT
⊤
i · 1

n
X⊤

i+Xi+ · Ti

)−1

·

(
m∑
i=1

αiT
⊤
i · 1√

n
X⊤

i+(Xi−θi− −Xi+Σ
−1
i+Σi±θi− + ξi)

)

Following the same proof steps applied to Eq. (5) in Appendix B.2, we can conclude that

√
n
(
θ̂imp-glb − θ

)
d→ N

(
0,

(
m∑
i=1

αiT
⊤
i Σi+Ti

)−1( m∑
i=1

α2
iT

⊤
i QiTi

)(
m∑
i=1

αiT
⊤
i Σi+Ti

)−1

︸ ︷︷ ︸
:=Cimp-glb(α1,··· ,αm)

)
,

with the same Qi’s as in Eq. (6), and with Gaussianity of Xi, we also have the explicit form Qi =

(∥θi−∥2Γi−
+ σ2)Σi+. Note that if αi = 1/(∥θi−∥2Γi−

+ σ2),

C imp-glb(α1, · · · , αm) =

(
m∑
i=1

T⊤
i Σi+Ti

∥θi−∥2Γi−
+ σ2

)−1

= Cg = C⋆.

Finally, to show C imp-glb(α1, · · · , αm) ⪰ C⋆, we identify from Eq. (8) that

C imp-glb(α1, · · · , αm) = C(α1Σ1+, · · · , αmΣm+) ⪰ C⋆,

where the last inequality follows from Theorem 3.1.

D Proofs for Section 5
We will use the van Trees inequality to prove our lower bound shown. In particular, we will use a
slight modification to Theorem 4 of [10], which we state as a corollary below here. Throughout this
section, we let ψ : Rd → Rs be an absolutely continuous function. The distribution Pθ in the family
{Pθ}θ∈Rd is assumed to have density pθ which satisfies

∫
Rd ∥∇pθ(x)∥22 dx < ∞. Let P j

θ for j ∈ [m]

denote the distribution over either θ̃nj or yj ∈ Rn. Let In
i (θ) denote the Fisher Information of P i

θ , and
let In(θ) =

∑m
i=1 In

i (θ) denote the Fisher Information of Pθ. We note that Pθ is allowed to depend on
n.

Corollary D.1 (Gassiat [10]). Let ψ : Rd → Rs be an absolutely continuous function such that ∇ψ(θ)
is continuous at θ0. For all n, let all distributions Pθ in the family {Pθ}θ∈Rd have density pθ which
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satisfies
∫
Rd ∥∇pθ(x)∥22 dx < ∞. If limc→∞ limn→∞ sup∥h∥2<1 In(θ0 + ch/

√
n)/n exists almost surely

and is positive definite, denote it by ρ. Then for all sequences (θ̂n)n≥1 of statistics Sn : Xn → Rs and
for all u ∈ Rs

lim inf
c→∞

lim inf
n→∞

sup
∥h∥<1

En
θ0+

ch√
n

[〈√
n

(
θ̂n − ψ

(
θ0 +

ch√
n

))
, u

〉2
]
≥ u⊤∇ψ(θ0)⊤ρ−1∇ψ(θ0)u

Proof. The main difference between our version of the proof and the one presented in Theorem 4 of
Gassiat [10] is that we do not assume In = nI. We also select ℓ(x) = ⟨u, x⟩2 in particular. All the
steps and notation remain the same except with nI replaced with In up until equation (13), which we
define with a modified choice of Γc,n

Γc,n :=

(∫
Bp([0],1)

∇ψ(θ0 + ch/
√
n)q(h)dh

)⊤(
1

c2
Iq +

1

n

∫
Bp([0],1)

In(θ0 + ch/
√
n)q(h)dh

)−1

×

(∫
Bp([0],1)

∇ψ(θ0 + ch/
√
n)q(h)dh

)
.

By definition of ρ, with probability 1,

lim
c→∞

lim
n→∞

Γc,n = ∇ψ(θ0)⊤ρ−1∇ψ(θ0)

D.1 Proof of Theorem 5.1
We will apply Corollary D.1 and apply it to two different choices of ψ to get the full feature minimax
bound and missing feature minimax bound respectively. For notational simplicty, let Pθ denote
the distribution over {θ̃ni }i∈[m] induced by θ. Pθ is in the exponential family, so the conditions of
Corollary D.1 are satisfied.

We begin by computing the Fisher Information. Let P j
θ for j ∈ [m] denote the distribution over

θ̃nj ∈ Rdj . Let In
i (θ) denote the Fisher Information of P i

θ , and let In(θ) =
∑m

i=1 In
i denote the Fisher

Information of Pθ. Let xi+ denote an arbitrary row of Xi+. Let xi− be drawn from N(µi−(xi+),Γi−).
Some straightforward calculations tell us µi−(xi+) = Σi∓Σ

−1
i+ xi+ and Γi− = Σi− − Σi∓Σ

−1
i+Σi±. From

this we can deduce that θTi−xi− is distributed as N(µT
i−θi−, θ

T
i−Γi−θi−); we use µi− in place of µi−(xi−)

for simplicity. And yi is distributed as P i
θ which is N(θT γ, θTi−Γi−θi−+σ2) where γ := [xTi+Πi+, µ

T
i−Πi−]

T .

From this we can deduce that P i
θ is N

(
JiΠiθ, β

−1
i Σ̂−1

i+

)
, where β−1

i := θi−Γi−θi−+σ2

n ; let piθ denote its
density. We know In(θ) =

∑m
i=1 In

i (θ) due to independence. All that remains is to compute In
i (θ).

In
i (θ) =

∫
∇θ log p

i
θ(z)[∇θ log p

i
θ(z)]

T piθ(z)dz.

We know that for some constant C,

log pθi (z) = C +
di
2
log(βi)−

βi
2

∥∥∥Σ̂ 1
2
i+θi+ + Σ̂

1
2
i+Σ

−1
i+Σi±θi− − Σ̂

1
2
i+z
∥∥∥2
2
.

Taking derivaties we get that

∇θi+ log pθi (z) = −βi
[
Σ̂i+θi+ + Σ̂i+Σ

−1
i+Σi±θi− − Σ̂i+z

]
∇θi− log pθi (z) =

[
−di
n

+
∥∥∥Σ̂ 1

2
i+θi+ + Σ̂

1
2
i+Σ

−1
i+Σi±θi− − Σ̂

1
2
i+z
∥∥∥2
2

]
βiΓi−θi−

+
[
Σi∓Σ

−1
i+ Σ̂i+θi+ +Σi∓Σ

−1
i+ Σ̂i+Σ

−1
i+Σi±θi− − Σi∓Σ

−1
i+ Σ̂i+z

]
βi

19



Let b2 =
∥∥∥Σ̂ 1

2
i+θi+ + Σ̂

1
2
i+Σ

−1
i+Σi±θi− − Σ̂

1
2
i+z
∥∥∥2
2
. Now we compute the expectation over outer products:

E[∇θi+ log pθi (z)∇θi+ log pθi (z)
T ] = βiΣ̂i+

E[∇θi+ log pθi (z)∇θi− log pθi (z)
T ] = β2

i Σ̂i+β
−1
i Σ̂−1

i+ Σ̂i+Σ
−1
i+Σi± = βiΣ̂i+Σ

−1
i+Σi±

E[∇θi− log pθi (z)∇θi− log pθi (z)
T ] = βiΣi∓Σ

−1
i+ Σ̂i+Σ

−1
i+Σi±

+

(
d2i
n2

+ E[b2]
2di
n

+ E[b4]
)
β2
i Γi−θi−θ

T
i−Γi−

= βiΣi∓Σ
−1
i+ Σ̂i+Σ

−1
i+Σi± +

(
d2i
n2

+
2β−1

i d2i
n

+ β−2
i (2di + d2i )

)
β2
i Γi−θi−θ

T
i−Γi−

In
i (θ) =

∫
∇θ log p

i
θ(z)[∇θ log p

i
θ(z)]

T piθ(z)dz

=

∫
ΠT

i

[
∇θi+ log piθ(z)
∇θi− log piθ(z)

] [
∇θi+ log piθ(z)

T ∇θi− log piθ(z)
T
]
Πip

i
θ(z)dz

=
n

σ2 + θTi−Γθi−
ΠT

i

[
Σ̂i+ Σ̂i+Σ

−1
i+Σi±

Σi∓Σ
−1
i+ Σ̂i+ Σi∓Σ

−1
i+ Σ̂i+Σ

−1
i+Σi±

]
Πi

+ΠT
i

[
0 0

0
(

d2
iβ

2
i

n2 +
2βid

2
i

n + 2di + d2i

)
Γi−θi−θ

T
i−Γi−

]
Πi

=
n

σ2 + θTi−Γθi−
(Qi + on(1))

The on(1) term is due to strong law of large numbers. From this we know that, with probability 1,

lim
c→∞

lim
n→∞

sup
∥h∥2<1

In(θ0 + ch/
√
n)

n
=

m∑
i=1

1

σ2 + θTi−Γθi−
Qi =: ρ

Applying Corollary D.1 with ψRd → Rd as the identity function ψ(x) = x gives the full-feature
minimax lower bound. Applying Corollary D.1 with ψRd → Rdi as ψ(x) = Tix gives the missing-feature
minimax lower bound.

D.2 Proof of Theorem 5.2
We will apply Corollary D.1 and apply it to two different choices of ψ to get the full feature minimax
bound and missing feature minimax bound respectively. For notational simplicity, we will use Pθ in
place of P y

θ . Pθ is in the exponential family, so the conditions of Corollary D.1 are satisfied.
We begin by computing the Fisher Information. Let P j

θ for j ∈ [m] denote the distribution over
yj ∈ Rn. Let In

i (θ) denote the Fisher Information of Pi
θ, and let In(θ) =

∑m
i=1 In

i (θ) denote the Fisher
Information of Pθ.

Let x(k)i , y
(k)
i be the kth sample from agent i. We will let I(k)

i (θ) be the fisher information of y(k)i .
We know that In

i (θ) =
∑n

k=1 I
(k)
i (θ) by independence. Some straightforward calculations tell us that

x
(k)
i− is distributed as N(µ,Γ) where µ = Σi∓Σ

−1
i+ x

(k)
i+ and Γ = Σi− − Σi∓Σ

−1
i+Σi±. From this we can

deduce that θTi−x
(k)
i− is distributed as N(µT θi−, θ

T
i−Γθi−). And y(k)i is distributed as N(θT γ, θTi−Γθi−+σ2)

where γ := ΠT
i+x

(k)
i+ +ΠT

i−µ.
Let ϕ := z−γT θ

σ2+θT
i−Γθi−

and ∆ := ϕ2 − 1
σ2+θT

i−Γθi−
. Using pikθ denote the density of x(k)i− , y

(k)
i , we can

calculate the derivative of the log density

∇θi+ log pikθ (z) =
z − θTi+x

(k)
i+ − θTi−µ

σ2 + θi−Γθi−
x
(k)
i+ = ϕx

(k)
i+
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∇θi− log pikθ (z) = ∆Γθi− + ϕµ.

Using the facts that E[ϕ] = 0, E[ϕ2] = 1
σ2+θi−Γθi−

, E[ϕ∆] = 0, and E[∆2] = 2
(σ2+θi−Γθi−)2 , where

the expectation is an integral over z, we have that

I(k)
i (θ) =

∫
∇θ log p

ik
θ (z)[∇θ log p

ik
θ (z)]T pikθ (z)dz

=

∫
ΠT

i

[
∇θi+ log pikθ (z)
∇θi− log pikθ (z)

] [
∇θi+ log pikθ (z)T ∇θi− log pikθ (z)T

]
Πip

ik
θ (z)dz

= ΠT
i

[
E[ϕ2]x(k)i+ (x

(k)
i+ )T E[ϕx(k)i+ (∆Γθi− + ϕµ)T ]

E[(∆Γθi− + ϕµ)(ϕx
(k)
i+ )T ] E[(∆Γθi− + ϕµ)(∆Γθi− + ϕµ)T ]

]
Πi

=
1

σ2 + θi−Γθi−
ΠT

i

[
x
(k)
i+ (x

(k)
i+ )T x

(k)
i+ µ

T

µ(x
(k)
i+ )T µµT + 2

σ2+θT
i−Γθi−

Γθi−θ
T
i−Γ

]
Πi

=
1

σ2 + θi−Γθi−
ΠT

i

[
x
(k)
i+ (x

(k)
i+ )T x

(k)
i+ (x

(k)
i+ )TΣ−1

i+Σi±

Σi∓Σ
−1
i+ x

(k)
i+ (x

(k)
i+ )T Σi∓Σ

−1
i+ x

(k)
i+ (x

(k)
i+ )TΣ−1

i+Σi± + 2
σ2+θT

i−Γθi−
Γθi−θ

T
i−Γ

]
Πi.

From this we can sum over

In
i (θ) =

n∑
k=1

I(k)
i (θ)

=
n

σ2 + θTi−Γθi−
ΠT

i

[
Σ̂i+ Σ̂i+Σ

−1
i+Σi±

Σi∓Σ
−1
i+ Σ̂i+ Σi∓Σ

−1
i+ Σ̂i+Σ

−1
i+Σi± + 2

σ2+θT
i−Γθi−

Γθi−θ
T
i−Γ

]
Πi

=
n

σ2 + θTi−Γθi−

(
Qi + on(1) + ΠT

i

[
0 0
0 2

σ2+θT
i−Γθi−

Γθi−θ
T
i−Γ

]
Πi

)

The on(1) term is due to strong law of large numbers. From this we know that, with probability 1

lim
c→∞

lim
n→∞

sup
∥h∥2<1

In(θ0 + ch/
√
n)

n

=

m∑
i=1

1

σ2 + θTi−Γθi−

(
Qi +ΠT

i

[
0 0
0 2

σ2+θT
i−Γθi−

Γθi−θ
T
i−Γ

]
Πi

)
=: ρ

Applying Corollary D.1 with ψRd → Rd as the identity function ψ(x) = x gives the full-feature minimax
lower bound. Applying Corollary D.1 with ψRd → Rdi as ψ(x) = Tix gives the missing-feature minimax
lower bound.

One final transformation remains to get the form of this lower bound to match the one in the
theorem statement. We know that from Cauchy-Schwartz that for all u ∈ Rd−di

uTΓθi−θ
T
i−Γu

θTi−Γθi−
=

(uTΓ
1
2Γ

1
2 θi−)

2

θTi−Γθi−
≤ uTΓu.

Using this fact and the definition of Γ and Qi we have that

1

σ2 + θTi−Γθi−

(
Qi +ΠT

i

[
0 0
0 2

σ2+θT
i−Γθi−

Γθi−θ
T
i−Γ

]
Πi

)
⪯ 2n

σ2 + θTi−Γθi−
Σ.

Using this bound gives our final result.
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D.3 Proof of Corollary 5.3
The existence of the limits is a consequence of strong law of large numbers. To further show the
inequality in the limit, we note that

1

m

m∑
i=1

(
Σ

σ2 + θTi−Γi−θi−
− T⊤

i Σi+Ti
σ2 + θTi−Γi−θi−

)
=

1

m

m∑
i=1

Π⊤
i

[
0 0
0 Γi−

]
Πi

σ2 + θTi−Γi−θi−

⪯ 1

m

m∑
i=1

Π⊤
i

[
0 0
0 Γi−

]
Πi

σ2
⪯ 1

m

m∑
i=1

Π⊤
i

[
0 0
0 Σi−

]
Πi

σ2
→ pdiag(Σ) + p2(Σ− diag(Σ))

σ2
,

where the last step holds with probability one by strong law of large numbers. This is true as by our
random missing model, Σij is not observed with probability p if i = j, and p2 if i ≠ j. We can further
derive that

pdiag(Σ) + p2(Σ− diag(Σ))

σ2
⪯ pλ1(Σ)I

σ2
⪯ pκΣ

σ2
⪯ pλ1(Σ)I

σ2

(i)

⪯
pκ(σ2 + ∥θ∥2Σ)

σ2

1

m

m∑
i=1

Σ

σ2 + θTi−Γi−θi−
.

In (i), we make use of the fact that

Σ ⪰ Π⊤
i

[
0 0
0 Γi−

]
Πi

and therefore ∥θ∥2Σ ≥ ∥θi−∥2Γi−
. By our choice of p ≤ 1

2κ
−1(1 + ∥θ∥2Σ /σ2)−1, we can conclude that

lim
m→∞

1

m

m∑
i=1

T⊤
i Σi+Ti

σ2 + θTi−Γi−θi−
⪰ lim

m→∞

1

m

m∑
i=1

Σ/2

σ2 + θTi−Γi−θi−
.
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