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Abstract

Natural policy gradient (NPG) methods are among the most widely used policy optimization algo-
rithms in contemporary reinforcement learning. This class of methods is often applied in conjunction
with entropy regularization — an algorithmic scheme that encourages exploration — and is closely re-
lated to soft policy iteration and trust region policy optimization. Despite the empirical success, the
theoretical underpinnings for NPG methods remain limited even for the tabular setting.

This paper develops non-asymptotic convergence guarantees for entropy-regularized NPG methods
under softmax parameterization, focusing on discounted Markov decision processes (MDPs). Assuming
access to exact policy evaluation, we demonstrate that the algorithm converges linearly — or even
quadratically once it enters a local region around the optimal policy — when computing optimal value
functions of the regularized MDP. Moreover, the algorithm is provably stable vis-a-vis inexactness of
policy evaluation. Our convergence results accommodate a wide range of learning rates, and shed light
upon the role of entropy regularization in enabling fast convergence.

Keywords: natural policy gradient methods, entropy regularization, global convergence, soft policy itera-

tion, conservative policy iteration, trust region policy optimization
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1 Introduction

Policy gradient (PG) methods and their variants (Williams, 1992; Sutton et al., 2000; Kakade, 2002; Peters and Schaal,
2008; Konda and Tsitsiklis, 2000), which aim to optimize (parameterized) policies via gradient-type methods,

lie at the heart of recent advances in reinforcement learning (RL) (e.g. Mnih et al. (2015); Schulman et al.

(2015); Silver et al. (2016); Schulman et al. (2017b)). Perhaps most appealing is their flexibility in adopting

various kinds of policy parameterizations (e.g. a class of policies parameterized via deep neural networks),

which makes them remarkably powerful and versatile in contemporary RL.

As an important and widely used extension of PG methods, natural policy gradient (NPG) meth-
ods propose to employ natural policy gradients (Amari, 1998) as search directions, in order to achieve
faster convergence than the update rules based on policy gradients (Kakade, 2002; Peters and Schaal, 2008;
Bhatnagar et al., 2009; Even-Dar et al., 2009). Informally speaking, NPG methods precondition the gradient
directions by Fisher information matrices (which are the Hessians of a certain divergence metric), and fall
under the category of quasi second-order policy optimization methods. In fact, a variety of mainstream RL
algorithms, such as trust region policy optimization (TRPO) (Schulman et al., 2015) and prozimal policy op-
timization (PPO) (Schulman et al., 2017b), can be viewed as generalizations of NPG methods (Shani et al.,
2019). In this paper, we pursue in-depth theoretical understanding about this popular class of methods —
in conjunction with entropy regularization to be introduced momentarily.



1.1 Background and motivation

Despite the enormous empirical success, the theoretical underpinnings of policy gradient type methods
have been limited even until recently, primarily due to the intrinsic non-concavity underlying the value
maximization problem of interest (Bhandari and Russo, 2019; Agarwal et al., 2019b). To further exacerbate
the situation, an abundance of problem instances contain suboptimal policies residing in regions with flat
curvatures (namely, vanishingly small gradients and high-order derivatives) (Agarwal et al., 2019b). Such
plateaus in the optimization landscape could, in principle, be difficult to escape once entered, thereby
necessitating a higher degree of exploration in order to accelerate policy optimization.

In practice, a strategy that has been frequently adopted to encourage exploration and improve conver-
gence is to enforce entropy regularization (Williams and Peng, 1991; Peters et al., 2010; Mnih et al., 2016;
Duan et al., 2016; Haarnoja et al., 2017; Hazan et al., 2019; Vieillard et al., 2020; Xiao et al., 2019). By
inserting an additional penalty term to the objective function, this strategy penalizes policies that are not
stochastic/exploratory enough, in the hope of preventing a policy optimization algorithm from being trapped
in an undesired local region. Through empirical visualization, Ahmed et al. (2019) suggested that entropy
regularization induces a smoother landscape that allows for the use of larger learning rates, and hence,
faster convergence. However, the theoretical support for regularization-based policy optimization remains
inadequate.

Motivated by this, a very recent line of work set out to elucidate, in a theoretically sound manner,
the efficiency of entropy-regularized policy gradient methods. Assuming access to exact policy gradients,
Agarwal et al. (2019b) and Mei et al. (2020) developed convergence guarantees for regularized PG meth-
ods (with relative entropy regularization considered in Agarwal et al. (2019b) and entropy regularization in
Mei et al. (2020)). Encouragingly, both papers suggested the positive role of regularization in guaranteeing
faster convergence for the tabular setting. However, they fell short of explaining the role of entropy regular-
ization for other policy optimization algorithms like NPG methods — a goal we aim to accomplish in this

paper.

1.2 This paper

Inspired by recent theoretical progress towards understanding PG methods (Agarwal et al., 2019b; Bhandari and Russo,
2019; Mei et al., 2020), we seek to develop non-asymptotic convergence guarantees for entropy-regularized

NPG methods in conjunction with softmax parameterization. We focus attention on studying tabular dis-

counted Markov decision processes (MDPs), which is an important first step and a stepping stone towards
demystifying the effectiveness of entropy-regularized policy optimization in more complex settings.

Settings. Consider a y-discounted infinite-horizon MDP with state space S and action space A. Assuming
availability of exact policy evaluation, the update rule of entropy-regularized NPG methods with softmax
parameterization admits a simple update rule in the policy space (see Section 2 for precise descriptions)

_ a7 w® s.a
R afs) o (xO(als)) T exp <M> 1)
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for any (s,a) € § x A, where 7 > 0 is the regularization parameter, 0 < 7 < 1;—7 is the learning rate (or
stepsize), 7®) indicates the t-th policy iterate, and QT is the soft Q-function under policy 7 (to be defined in
(11a)). The update rule (1) is closely connected to several popular algorithms in practice. For instance, the
trust region policy optimization (TRPO) algorithm (Schulman et al., 2015), when instantiated in the tabular
setting, can be viewed as implementing (1) with line search. In addition, by setting the learning rate as
n = 1=2, the update rule (1) coincides with soft policy iteration (SPI) studied in Haarnoja et al. (2017).

Our contributions. The main contributions of this paper are summarized as follows, all of which are fully
non-asymptotic results containing no hidden constants.

e Linear convergence of exact entropy-regularized NPG methods. We establish linear conver-
gence of entropy-regularized NPG methods for finding the optimal policy of the entropy-regularized



MDP, assuming access to exact policy evaluation. To yield an e-optimal policy for the regularized
MDP, the algorithm (1) with a general learning rate 0 < n < 1777 needs no more than an order of

- (C)
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iterations, where we hide the dependencies that are logarithmic on salient problem parameters (see
Theorem 1). Some highlights of our convergence results are (i) their near dimension-free feature and
(ii) their applicability to a wide range of learning rates (including small learning rates).

e Linear convergence of approximate entropy-regularized NPG methods. We demonstrate the
stability of the regularized NPG method with a general learning rate 0 < n < I_TV even when the soft
Q-functions of interest are only available approximately. This paves the way for future investigations
that involve finite-sample analysis. Informally speaking, the algorithm exhibits the same convergence
behavior as in the exact gradient case before an error floor is hit, where the error floor scales linearly
in the entrywise error of the soft Q-function estimates (see Theorem 2).

e Quadratic convergence in the small-e regime. In the high-accuracy regime where the target level

€ is very small, the algorithm (1) with n = 1777 converges super-linearly, in the sense that the iteration

complexity to reach e-accuracy for the regularized MDP is at most on the order of

1
log log <—) ,
€

after entering a small local neighborhood surrounding the optimal policy. Here, we again hide the
dependencies that are logarithmic on salient problem parameters (see Theorem 3).

Comparisons with prior art. Agarwal et al. (2019b) proved that unregularized NPG methods with
softmax parameterization attain an e-accuracy within O(1/¢) iterations. In contrast, our results assert that
O(log(1/e€)) iterations suffice with the assistance of entropy regularization, which hints at the potential benefit
of entropy regularization in accelerating the convergence of NPG methods. Shortly after the initial posting of
our paper, Bhandari and Russo (2020) posted a note that proves linear convergence of unregularized NPG
methods with exact line search, by exploiting a clever connection to policy iteration. Their convergence
rate is governed by a quantity minges p(s), resulting in an iteration complexity at least |S| times larger
than ours. In comparison, our results cover a broad range of fixed learning rates (including small stepsizes
that are of particular interest in practice), and accommodate the scenario with inexact gradient evaluation.
See Table 1 for a quantitative comparison. Moreover, we note that the entropy-regularized NPG method
with general learning rates is closely related to TRPO in the tabular setting (see Shani et al. (2019)).
Recently, Shani et al. (2019) showed that TRPO converges with an iteration complexity O(1/e) in entropy-
regularized MDPs, which is outperformed by our linear convergence rate guarantees for entropy-regularized
NPG methods.

It is also helpful to compare our results with the state-of-the-art theory for PG methods with softmax pa-
rameterization Agarwal et al. (2019b); Mei et al. (2020). Specifically, Agarwal et al. (2019b) established the
asymptotic convergence of unregularized PG methods with softmax parameterization, while an iteration com-
plexity of O(1/€) was recently pinned down by Mei et al. (2020). In the presence of entropy regularization,
Agarwal et al. (2019b) showed that PG with relative entropy regularization and softmax parameterization
enjoys an iteration complexity of O(1/€?), while Mei et al. (2020) showed that the entropy-regularized soft-
max PG method converges linearly in O(log(1/¢)) iterations. However, the dependencies of the rates in
Mei et al. (2020) on other salient parameters like |S|, |A| and ﬁ are not fully specified. In contrast, our
bounds are fully non-asymptotic, delineating clear dependencies on all salient problem parameters. Fig. 1
depicts the policy paths of PG and NPG methods with entropy regularization for a simple bandit problem
with three actions. It is evident from the plots that the NPG method follows a more direct path to the global
optimum compared to the PG method and hence converges faster. In addition, both algorithms converge
more rapidly as the regularization parameter 7 increases.



paper iteration complexity | regularization learning rates
Agarwal et al. (2019Db) (17—%)25 + % unregularized | constant: (0,00)
Bhandari and Russo (2020) Wj;lsesp(s) log () | unregularized | exact line search
this work ﬁ log (%) regularized constant: 1;—7
this work n% log (%) regularized | constant: (O, 1_77)

Table 1: The iteration complexities of NPG methods to reach e-accuracy, where the unregularized (resp. reg-
ularized) version is given by (13) (cf. (15)) with 7 the learning rate. We assume exact gradient evaluation
and softmax parameterization, and hide the dependencies that are logarithmic on problem parameters. Here,
e-accuracy means V* — v <e (resp. Vr — VT”“) < ¢€) for the unregularized (resp. regularized) case, and p
denotes the initial state distribution obeying = |S].

1
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1.3 Other related work

There has been a flurry of recent activities in studying theoretical behaviors of policy optimization meth-
ods. For example, Fazel et al. (2018); Jansch-Porto et al. (2020); Tu and Recht (2019); Zhang et al. (2019a);
Mohammadi et al. (2019) established the global convergence of policy optimization methods for a couple
of control problems; Bhandari and Russo (2019) identified structural properties that guarantee the global
optimality of PG methods without parameterization; Karimi et al. (2019) studied the convergence of PG
methods to an approximate first-order stationary point, and Zhang et al. (2019b) proposed a variant of PG
methods that converges to locally optimal policies leveraging saddle-point escaping algorithms in nonconvex
optimization. Beyond the tabular setting, the convergence of PG methods with function approximations
has been studied in Agarwal et al. (2019b); Wang et al. (2019); Liu et al. (2019). In particular, Cai et al.
(2019) developed an optimistic variant of NPG that incorporates linear function approximation. We do not
elaborate on this line of work since our focus is on understanding the performance of entropy-regularized
NPG in the tabular setting. We also do not elaborate on PG methods that involve sample-based estimates,
since we primarily consider exact gradients or black-box gradient estimators.

Regarding entropy regularization, Neu et al. (2017); Geist et al. (2019) provided unified views of entropy-
regularized MDPs from an optimization perspective by connecting them to algorithms such as mirror descent
(Nemirovsky and Yudin, 1983) and dual averaging (Nesterov, 2009). The soft policy iteration algorithm is
identified as a special case of entropy-regularized NPG, highlighting again the link between policy gradient
methods and soft Q-learning (Schulman et al., 2017a). The asymptotic convergence of soft policy iteration
was established in Haarnoja et al. (2017), which fell short of providing explicit convergence rate guarantees.
Mei et al. (2020) showed that the sub-optimality gap of soft policy iteration is small if the policy improvement
is small in consecutive iterations.

1.4 Notation

Denote by A(S) (resp. A(A)) the probability simplex over the set S (resp. .A). When scalar functions such as
||, exp(+) and log(-) are applied to vectors, their applications should be understood in an entry-wise fashion.
For instance, given any vector z = [z;]1<i<n € R™, the notation |- | denotes |z| := [|2zi|]1<i<n; other functions
are defined analogously. Given two probability distributions 71 and ms over A, the Kullback-Leibler (KL)
m1(a)
ma(a)”
and w = [w;]1<i<n, the notation z > w (resp. z < w) means z; > w; (resp. z; < w;) for all 1 <i < n. Given

two probability distributions p and ¢ over S, we denote || £ ||OO = maxses gg:g and ||%HOO = maxses ﬁ .

divergence from 7y to 7 is defined by KL(7y || 72) := >°,c 4 m1(a)log For any vectors z = [zi]1<i<n
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Figure 1: Comparisons of PG and NPG methods with entropy regularization for a bandit problem (y = 0)
with 3 actions, whose corresponding rewards are 1.0, 0.9 and 0.1, respectively. The regularization parameter
is set as 7 = 0.1 for the first row and 7 = 1 for the second row. In (a) and (d), the policy paths of
(logm(a1),logm(az)) following the PG method are plotted in orange, with the blue lines indicating the
gradient flow; in (b) and (e), the policy paths of (log 7(a1),log m(az)) following the NPG method are depicted
in red, with the blue lines indicating the natural gradient flow. The error contractions of both PG and NPG
methods with = 0.1 are shown in (c) and (f).

2 Model and algorithms

2.1 Problem settings

Markov decision processes. The current paper studies a discounted Markov decision process (MDP)
(Puterman, 2014) denoted by M = (S, A, P,r,~), where S is the state space, A is the action space, v € (0,1)
indicates the discount factor, P : S x A — A(S) is the transition kernel, and r : S x A — [0, 1] stands for
the reward function.! To be more specific, for each state-action pair (s,a) € S x A and any state s’ € S,
we denote by P(s'|s,a) the transition probability from state s to state s’ when action a is taken, and
r(s,a) the instantaneous reward received in state s due to action a. A policy 7 : § — A(A) represents a
(randomized) action selection rule, namely, m(a|s) specifies the probability of executing action a in state s
for each (s,a) € S x A.

Value functions and Q-functions. For any given policy 7, we denote by V™ : § — R the corresponding
value function, namely, the expected discounted cumulative reward with an initial state sy = s, given by

VseS: VT(s) :=E Z'ytr(st,at) |so=s], (2)
t=0

IFor the sake of simplicity, we assume throughout that the reward is bounded in [0,1]. Our results can be generalized in a
straightforward manner to other ranges of bounded rewards.



where the action a; ~ 7(+|s;) follows the policy 7 and s;41 ~ P(+|s,a¢) is generated by the MDP M for all
t > 0. We also overload the notation V7 (p) to indicate the expected value function of a policy m when the
initial state is drawn from a distribution p over &, namely,

V7(p) = Eany [V7(5)]. (3)

Additionally, the Q-function Q™ : S x A — R of a policy m — namely, the expected discounted cumulative
reward with an initial state s) = s and an initial action ag = a — is defined by

V(s,a) € S x A: Q" (s,a):=E Z’ytr(st,at)|50:s,a0:a , (4)

t=0

where the action a; ~ 7(-|s;) follows the policy 7 for all t > 1, and sty1 ~ P(+|s¢, a:) is generated by the
MDP M for all t > 0.

Discounted state visitation distributions. A type of marginal distributions — commonly dubbed as
discounted state visitation distributions — plays an important role in our theoretical development. To be
specific, the discounted state visitation distribution df of a policy 7 given the initial state sp € S is defined
by

VseS: dg, (s) :== (1 —7) th]P’(st = s so0), (5)
t=0

where the trajectory (sg,s1,--) is generated by the MDP M under policy 7 starting from state so. In
words, df () captures the state occupancy probabilities when each state visitation is properly discounted
depending on the time stamp. Further, for any distribution p over §, we define the distribution d as follows

VseS: d7(s) := Egynp[dT, (5)], (6)

which describes the discounted state visitation distribution when the initial state sg is randomly drawn from
a prescribed initial distribution p.

Softmax parameterization. It is common practice to parameterize the class of feasible policies in a way
that is amenable to policy optimization. The focal point of this paper is softmax parameterization — a
widely adopted scheme which naturally ensures that the policy lies in the probability simplex. Specifically,
for any 6: S x A — R (called “logic values”), the corresponding softmax policy 7y is generated through the
softmax transform

exp(6(s, a))
weaexp((s,a’))’

7y := softmax(6) or V(s,a) eSxA: my(als):= 5 (7)

In what follows, we shall often abuse the notation to treat 7y and 6 as vectors in RISIMI and suppress the
subscript 6 from 7y, whenever it is clear from the context.

Entropy-regularized value maximization. To promote exploration and discourage premature conver-
gence to suboptimal policies, a widely used strategy is entropy regularization, which searches for a policy
that maximizes the following entropy-regularized value function

VZ(p) == V7 (p) + 7 H(p, 7). (8)

Here, the quantity 7 > 0 denotes the regularization parameter, and H(p, w) stands for a sort of discounted
entropy defined as follows

= _At = —
H(p,m) = SONPM[EWHM)’ lE v logw(at|st)] T SE; [ E 7(als) log s | 9)

t=
sep1~P(-|se.ar)vt>0 20 acA



Equivalently, V" can be viewed as the value function of 7 by adjusting the instantaneous reward to be
V(s,a) € S x A: rr(s,a) :=1r(s,a) — Tlogm(als). (10)

We also define V7 (s) analogously when the initial state is fixed to be any given state s € S. The regularized
Q-function QT of a policy =, also known as the soft Q-function,? is related to V™ as

V(s,a) e S x A: T(s,a) =7(s,a) + VEg o p(js,a) [V (5], (11a)

VseS: VI(s) = Equn(ls) | — Tlogm(als) + Q7 (s, a)]. (11b)

Optimal policies and stationary distributions. Denote by 7* (resp. 77) the policy that maximizes
the value function (resp. regularized value function with regularization parameter 7), and let V* (resp. V)
represent the resulting optimal value function (resp. regularized value function). Importantly, the optimal
policies 7 and ¥ of the MDP do not depend on the initial distribution p (Mei et al., 2020). In addition,
7* and 7} maximize the Q-function and the soft Q-function, respectively (which is self-evident from (11a)).
A simple yet crucial connection between 7* and 7% can be demonstrated via the following sandwich bound?

-
I—v

V7 (p) < V™ (p) < V™ (p) + —— log | A (12)
The key message is that: the optimal policy 7% of the regularized problem could also be nearly optimal in
terms of the unregularized value function, as long as the regularization parameter 7 is set sufficiently small.

2.2 Algorithm: NPG methods with entropy regularization

Natural policy gradient methods. Towards computing the optimal policy (in the parameterized form),
perhaps the first strategy that comes into mind is to run gradient ascent w.r.t. the parameter 6 until conver-
gence — a first-order method commonly referred to as the policy gradient (PG) algorithm (e.g. Sutton et al.
(2000)). In comparison, the natural policy gradient (NPG) method (Kakade, 2002) adopts a pre-conditioned
gradient update rule

0 — 0+n(F) VeV (p), (13)

in the hope of searching along a direction independent of the policy parameterization in use. Here, n is the
learning rate or stepsize, ]-"ﬁ denotes the Fisher information matrix given by

]—‘p" = E |:(V9 logma(als)) (Vo logﬂe(a|5))—r] ) (14)

SNdZQ ,ar~g(+]s)

and we use B to indicate the Moore-Penrose pseudoinverse of a matrix B. It has been understood that
the NPG method essentially attempts to monitor/control the policy changes approximately in terms of the
Kullback-Leibler (KL) divergence (see e.g. Schulman et al. (2015, Section 7)).

NPG methods with entropy regularization. Equipped with entropy regularization, the NPG update
rule can be written as

0« 0+n(F)'Vevre(p), (15)

where -7:;2 is defined in (14) and V7 (p) is defined in (8). Under softmax parameterization, this update
rule admits a fairly simple form in the policy space (see Appendix A.1 for detailed derivations), which,

2In this paper, we use the terms “regularized” value (resp. Q) functions and “soft” value (resp. Q) functions interchangeably.
3To see this, invoke the optimality of 7% and the elementary entropy bound 0 < H(p, ) < ﬁ log | A| to obtain

V™7 (p) + 155 log [A] > V™ (p) + TH(p, %) = V¥ (p) > Vi (p) = V™ (p).



interestingly, is invariant to the choice of p. More precisely, letting #*) denote the ¢-th iterate and 7 =
softmax(#®)) the associated policy, the entropy-regularized NPG updates satisfy

1
Z®(s)

t+1)(

7l als) =

™ (s,a
() als)) T exp ("Q%’))’ (16)

where Q;’(t) is the soft Q-function of policy 7, and Z (t)(s) is some normalization factor. This can alterna-
tively be viewed as an instantiation/variant of the trust region policy optimization (TRPO) algorithm (see
(Schulman et al., 2015; Shani et al., 2019)). As an important special case, the update rule (16) reduces to

1 Q1" (s, 1-7
7T(t+1)(.|s) - Z(t)(s) exp( 7’( )) when 7 = — (17)

for some normalization factor Z(*)(s). The procedure (17) can be interpreted as a “soft” version of the clas-
sical policy iteration algorithm (Bertsekas, 2017) (as it employs a softmax function to approximate the max
operator) w.r.t. the soft Q-function, and is often dubbed as soft policy iteration (SPI) (see (Haarnoja et al.,
2018, Section 4.1)).

To simplify notation, we shall use VT(t)7 9 and dgt) throughout to denote me7 Q7
tively. The complete procedure is summarized in Algorithm 1.

® ()
and dj , respec-

Algorithm 1: Entropy-regularized NPG with exact policy evaluation

1 inputs: learning rate 7, initialization 7(°).

2 fort=0,1,2,--- do

3 Compute the regularized Q-function QS-t) (defined in (11a)) of policy 7(*).
4 Update the policy:

®(s,a
V(s,a) e S x A: 7 (a)s) = Z(‘;(S) (ﬂ'(t)(a|8))17177 exp (L(’)), (18)

where ZW(s) =3, c 4 (7 (a'|s))l_% exp (%(za/))

2.3 A warm-up example: the bandit case

Inspired by Schulman et al. (2017a); Mei et al. (2020), we look at a toy example — the bandit case — before
proceeding to general MDPs. To be more precise, this is concerned with an MDP with only a single state and
discount factor v = 0. Despite its simplicity, the exposition of this example sheds light upon the convergence
behavior of the regularized NPG methods of interest.

In this single-state example with v = 0, the aim reduces to computing a policy 7y : A — A(A) that
solves the following optimization problem

maximize E [r(a) — 7logmy(a)], (19)
0 a~Tg

where r(a) is the instantaneous reward of taking action a (i.e. pulling arm a in the bandit language). As
demonstrated in Mei et al. (2020, Proposition 1), this toy case is already non-concave and hence nontrivial
to solve. As it turns out, direct calculation reveals that the optimal policy of (19) is given by

7y = softmax(r/7), (20)

which is in general a randomized policy. When applied to this example, the entropy-regularized NPG update
rule (18) simplifies to (up to normalization)

D (a) 7® (a) exp (nr(a) —n7log x® (a)) = (w(t) (a)) =T exp (nr(a)), (21)



with n the learning rate. The following proposition, whose proof is fairly elementary and can be found in
Appendix B, reveals that the above procedure converges (at least) linearly to the optimal policy 7¥.

Proposition 1 (The bandit case). The algorithm (21) converges linearly to 7% (cf. (20)) in an entrywise
fashion, namely,
Hlogw —logn; H <2(1—7n) ||1ogﬂ' )—1ogﬂ':||oo

While this result concentrates only on a toy example, it hints at the potential capability of entropy-
regularized NPG methods in achieving rapid convergence. In particular, by setting the learning rate to be
n = 1/7, the algorithm converges in a single iteration. This special choice corresponds to the SPI update
(17), which will be singled out in our general theory due to its appealing convergence properties.

3 Main results

Given its appealing convergence behavior when applied to the preceding warm-up example (the bandit case),
it is natural to ask whether the entropy-regularized NPG method is fast-convergent for general MDPs. This
section answers this question in the affirmative.

3.1 Exact entropy-regularized NPG methods

We first study the convergence behavior of entropy-regularized NPG methods (18) assuming access to exact

policy evaluation in every iteration (namely, we assume the soft Q-function Qgt) can be evaluated accurately
in all t). Remarkably, this algorithm converges linearly — in terms of computing both the optimal soft
Q-function Q* and the associated log policy logm; — as asserted by the following theorem. The proof of
this result is provided in Section 4.2.

Theorem 1 (Linear convergence of exact entropy-regularized NPG). For any learning rate 0 < n < (1—v)/r,
the entropy-regularized NPG updates (18) satisfy

| = UV, < Ciy (L =)', (22a)
||log 73 — log m(t+1) ||OO <2071 — 1)t (22b)

for allt > 0, where
Cy = HQ:—QSO)HOO—F%' (1_ﬁ> [|log 7 logw(O)H . (23)

It is worth emphasizing that (1) Theorem 1 is stated in a completely non-asymptotic form containing
no hidden constants, and that (2) our result covers any learning rate » in the range (0, (1 — v)/7]. A few
implications are in order.

)

e Linear convergence of soft Q-functions. To reach HQ: — < €, the entropy-regularized

NPG method needs at most nLT log (%) iterations. Remarkably, the iteration complexity almost

does not depend on the dimensions of the MDP (except for some very weak dependency embedded
in log C7) — this inherits a dimension-free feature of NPG methods that has been highlighted in
Agarwal et al. (2019b) for the unregularized case. When the learning rate 7 is fixed in the admissible
range, the iteration complexity scales inverse proportionally with 7, suggesting a higher level of entropy
regularization might accelerate convergence.

e Linear convergence of log policies. In contrast to the unregularized case, entropy regularization
ensures uniqueness of the optimal policy and, therefore, makes it possible to study the convergence
of the policy directly. Our theorem reveals that the entropy-regularized NPG method needs at most
an log (251) iterations to yield ||log s — log 7T(t+1)HOO <e

10



e Linear convergence of soft value functions. As a byproduct, Theorem 1 implies that the iterates
of soft value functions also converge linearly, namely,

[VF = V|| <30y (1 —nr) . (24)
To see this, we make note of the following relation previously established in Nachum et al. (2017):
V(s,a) €S x A: VX(s) = —1lognk(als) + Q% (s,a),

= VX(s) = E [ — Tlogmi(als) + Q%(s,a)].

T anm (D (]s)

Consequently, combining this with the definition (11b) yields

Vi) = Vi) = B [(=rlogmi(als) + Qi(s,0)) = (—rlogml D (als) + QU (s,a) )|

a~m(t+1)(1]s)
<7 logmy —logm V|| + @ - UV,
which together with (94) immediately establishes (24).

e Convergence rate of SPI. The best convergence guarantee is achieved when n = (1 —v)/7 (i.e. the
SPI case), where the iteration complexity to reach ||Q¢ — St) HOO < € reduces to

L Cmpﬁﬂu>
og c .

1—7

This means the iteration complexity of SPI recovers that of policy iteration (Puterman, 2014). Inter-
estingly, the contraction rate in this case (which is «y) is independent of the choice of the regularization
parameter 7. Similarly, the iteration complexity of SPI to reach Hlog mx — log a(t+D) Hoo < € becomes

O]
—L_log (M), and the contraction rate is again independent of 7.
1—v €T

Comparison with entropy-regularized policy gradient methods. Mei et al. (2020, Theorem 6)
proved that the entropy-regularized policy gradient method achieves*

V2 (o) = Vi (p) < (V2 (0) = VOp))

(1—)%
(8/7 4+ 4+ 8log |A|)|S]|

*
ﬂ—‘l’
dp

p
o0

2
. . . . (k)
exp rnslnp(s) (og}%ft_l min (a|s))

and they further showed that infj>ming, (k) (als) is non-vanishing in ¢. It remains unclear, however,

how inf;>oming , 7 (a|s) scales with other salient parameters like (|S|,|.Al, ﬁ, 1) that might be poten-
tially large. In contrast, our convergence guarantees for entropy-regularized NPG methods unveil concrete

dependencies on all problem parameters.

Computing an e-optimal policy for the original MDP. Thus far, we have established an intriguing
convergence behavior of the entropy-regularized NPG method. However, caution needs to be exercised when
interpreting the efficacy of this method: the preceding results are concerned with convergence to the optimal
regularized value function V*, as opposed to finding the optimal value function V* of the original MDP.
Fortunately, by choosing the regularization parameter 7 to be sufficiently small (in accordance with the target
accuracy level €), we can guarantee that V¥ = V* (cf. (12)), thus ensuring the relevance and applicability of
our results for solving the original MDP. To be specific, let us adopt the following choice of 7:

_ (A=)
"= Jlog A’ (25)

4Here, we have assumed the exact policy gradient is computed with respect to V.,(t)(p).
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and assume the error of the regularized value function satisfies HVT* B 7AS HOO < £ (which can be ensured by

Theorem 1). We have 3
V*(s) = VO (s) = V*(s) = V5 (s) + V5 (s) — VO (s) + VD (s) — VD (s)
(V2 (6) = V2 (0) + |V = VIO _+ (V) = VOO (o)
2rlog|A] €
ﬁ + 5= €

for any s € S, provided our choice of 7 in (25). Here, the second inequality follows from (12) and that for
any policy m,

IN

IN

7log | Al

|vr —V”HOO =ngx‘7-[(s,7r)’ < e

given that the entropy satisfies 0 < H(s,7) < ﬁ log | A

Convergence guarantee for conservative policy iteration (CPI). Our analysis delivers a similar con-
vergence guarantee for a type of policy updates adopted in conservative policy iteration (Kakade and Langford,
2002), where the policy is updated as a convex combination of the previous policy and an improved one. We
refer interested readers to Appendix D for details.

3.2 Approximate entropy-regularized NPG methods

There is no shortage of scenarios where the soft Q-function Q(Tt)(s, a) is available only in an approximate
fashion, e.g. the cases when the value function has to be evaluated using finite samples. To account for
inexactness of policy evaluation, we extend our theory to accommodate the following approximate update
rule: for any s € S and any ¢ > 0,

) o ~
7D (]s) oc (7 (a|“>’))1_lnf_W exp (77@%(:))’ where QY - QW] <. (26)

Here, § is some quantity that captures the size of approximation errors. We do not specify the estimator
for the soft Q-function (as long as it satisfies the entrywise estimation bound), thus allowing one to plug in
both model-based and model-free value function estimators designed for a variety of sampling mechanisms
(e.g. Azar et al. (2013); Li et al. (2020)). Encouragingly, the algorithm (26) is robust vis-a-vis inexactness
of value function estimates, as it still converges linearly until an error floor is hit. This is formalized in the
following theorem, with the proof postponed to Section 4.3.

Theorem 2 (Linear convergence of approximate entropy-regularized NPG). When 0 < n < (1 —~)/7, the
inexact entropy-regularized NPG updates (26) satisfy

|Q; = QWY <y [ =nn) G+ G (27a)
|log 73 — log x(t+D) ||OO <27t {(1 — ) Oy + C’z} (27b)

for all t > 0, where C is the same as defined in (23) and Cs is given by

Apparently, Theorem 2 reduces to Theorem 1 when § = 0. As implied by this theorem, if the ¢, error
of the soft-Q function estimates does not exceed

A2
5 < (1—7)% 7
e
then the algorithm (26) achieves 2e-accuracy (ie. ||Q% — Q(Tt)Hoo < 2¢) within n% log (C”) iterations. In

e
2
particular, in the case of soft policy iteration (i.e. n = 1777), the tolerance level § can be up to (1_2—1)6, which

matches the theory of approximate policy iteration in Agarwal et al. (2019a).
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3.3 Quadratic convergence in the small-¢ regime

Somewhat remarkably, the regularized NPG method with n = I_TV achieves super-linear convergence in
computing V¥, once the algorithm enters a sufficiently small local neighborhood surrounding the optimizer.

Before presenting the result, we need to introduce the stationary distribution over & of the MDP M
under policy 7%, denoted by pr € A(S). It is straightforward to verify the following basic property

art = ik, (20)

given that the state visitation distribution remains unchanged if the initial state is already in a steady state.
Throughout this paper, we assume that ming pX(s) > 0. Our finding is stated in the following theorem, with
the proof deferred to Section 4.4.

Theorem 3 (Quadratic convergence of exact regularized NPG). Suppose that the algorithm (17) with n =
I_TV (or SPI) satifies
Hlogw(t) —logmr|| <1 (30)

for allt > 0, then one has

1
J

1

(11—
4 s

4~2

£
J

(WMﬂ—WWMDYi

N
Remark 1. In view of the convergence guarantees in Theorem 2, a suitable initialization of ©© and VT(O)
2
(such that (14_VV)T} H_1¢ SVE(ur) — 7-(0)(;[;)) < 1) can be obtained by running SPI for sufficiently many
iterations; further, all subsequent iterations are then guaranteed to satisfy (30) according to Theorem 2.

W@—WWMSH

oo (o9}

Under the assumptions of Theorem 3, our result indicates that: when e is sufficiently small, the iteration
complexity for SPI to yield e-accuracy, i.e., V.¥(p) — VT(t)(p) <, is at most on the order of

log log <M %) . (31)

4~2
This uncovers the extremely rapid convergence behavior of regularized NPG methods in the high-accuracy
regime — an appealing convergence guarantee that is previously rarely available for the policy gradient types
of algorithms.

1—1

wr

L
[0

oo

4 Analysis

4.1 Main pillars for the convergence analysis

Before proceeding, we isolate a few ingredients that provide the main pillars for our theoretical development.
Performance improvement and monotonicity. This lemma is a sort of ascent lemma, which quantifies
the progress made over each iteration — measured in terms of the soft value function.

Lemma 1 (Performance improvement). Suppose that 0 <n < (1 —~)/7. For any distribution p, one has

1) () Oy — 17 (t+1) . . 1 ). (t+1) .
V(o) K'O»_yi?n{(n )KL [ 70(9) 4 2KL (5O 2 1) .

(32)

Proof. See Appendix C.1. O
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In a nutshell, Lemma 1 asserts that each iteration of the entropy-regularized NPG method is guaranteed
to improve the estimates of the soft value function, with the improvement depending on the KL divergence
between the current policy 7(Y) and the updated one m(**+1). Indeed, this lemma can be viewed as the
counterpart of the performance difference lemma in Kakade and Langford (2002) for the unregularized form.
Lemma 1 also implies the monotonicity of the soft Q-function in ¢, since for any (s,a) € S x A one has

QU (s.a)=r(sa)+7 B (VI zrea 4y B VO] =06, (39
s'~P(+]s,a) s'~P(+]s,a)

where the equalities follow from the definition (11a), and the inequality follows since AR (s) > v (s) for
all s € S — a consequence of Lemma 1 and the non-negativity of the KL divergence.

A key contraction operator: the soft Bellman optimality operator. An operator that plays a

pivotal role in the theory of dynamic programming (Bellman, 1952) is the renowned Bellman optimality
operator T : RISIMI — RISIAI defined as follows

V(s,a) e Sx A: T(Q)(s,a) :=r(s,a)+~ max Q(s’, a')} : (34)

s'~P(:|s,a) |: a

In order to facilitate analysis for entropy-regularized MDPs, we find it particularly fruitful to introduce a
“soft” Bellman optimality operator 7, : RISIIAI — RISIAL a5 follows

V(s,a) € SxA: T(Q)(s,a):=r(s,a)+y [Q(s’, a') — 7'10g7r(a’|s’)H , (35)

E { max E
s'~P(|s,a) [7(|s)EA(A) a/~m(-]s")

which reduces to 7 when 7 = 0. To see this, observe that

To(Q)(s,a) =r(s,a) + max E [Q(, a’)}]

2|
s~P(]s,a) [7C1NEAA) amm(-]s")

=rsa)+y B [maxQ(s,a)| = T(Q)(s,a),

s'~P(:[s,a) b @

where the last line follows since the optimal policy is exactly the greedy policy w.r.t. @ (Puterman, 2014).
The operator 7, plays a similar role as does the Bellman optimality operator for the unregularized case,
whose key properties are summarized below.

Lemma 2 (Soft Bellman optimality operator). The operator T, defined in (35) satisfies the properties below.

o T admits the following closed-form expression:

T-(Q)(s,a) =r(s,a) +7 s/~PH2:§|s,a) [T log (||exp (Q(s’, )/T) ||1)} ) (36)
o The optimal soft Q-function Q% is a fized point of T, namely,
T(Qx) = Qr- (37)
o T: is a y-contraction in the ls, norm, namely, for any Q1, Qo € RISIAl one has
HTT(Ql)—TT(Qz)HOO <7|@: —Q2Hoo- (38)
Proof. See Appendix C.2. O

For those familiar with dynamic programming, it should become evident that 7. inherits many appealing
features of the original Bellman optimality operator 7. For example, as an immediate application of the
~-contraction property (38) and the fixed-point property (37), the following soft @-value iteration

QY = Q%) t=o0

is guaranteed to converge linearly to the optimal (F with a contraction rate v — a simple observation
consistent with the behavior of value iteration designed for unregularized MDPs.
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4.2 Analysis of exact entropy-regularized NPG methods
4.2.1 The SPI case (i.e.n=(1—7)/7)

With the help of the soft Bellman optimality operator, we have

Q(TtJrl)(S7 a) @ r(s,a) + v E |:V7_(t+1)(8/):|

s'~P(-|s,a)
i r(s,a)+v  E [_Tlog D (a']s') + QUHY (S, a/)}
A
(iif)
> r(s,a) + 7 E {_Tlog W(t+1)(a/|5/) + Q(Tt)(sl’ a/)}
s'~P(:|s,a),

a/ ~r D (s
2 e, B, sl @ 0/1)

© T(Qg_t))(s, a). (39)

Here, (i) comes from the definition (11a) of the soft Q-function, (ii) follows from the relation (11b), (iii)
relies on the monotonicity of the soft Q-function (see (33)), (iv) uses the form of 7(!*1) in (17), whereas (v)

makes use of the expression (36). The inequality (39) further leads to 0 < Q7 — Q(THl) SQ7 - TT( $t+1))7
and hence
107 = ¥Vl < llQ7 = T (@) |l = 17-(Q7) = T (@) |o < ll@7 - Q] 40)
<7 Qs - Q...

where the first equality follows from the fixed-point property (37), and the second inequality is due to the

contraction property (38). We have thus established linear convergence of Q(Tt)

Turning to the log policies, recall that
wlFD(|s) ocexp (QW(s,)/7)  and  7(-]s) o exp (Q}(s,-)/T)

where the second relation comes from Nachum et al. (2017, Eqn. (12)). It then follows from an elementary
property of the softmax function (see (66) in Appendix A.2) that

in || - |leo for this case.

2 2
log 4 —togs ]| < 20 - @1l < 2@: - @]

thus concluding the proof for this case.

oo’

4.2.2 The case with general learning rates

We now move to the case with a general learning rate. For the sake of brevity, we shall denote

nT
a:=1- . 41
— (41)
Additionally, it is helpful to introduce an auxiliary sequence {¢ ®) ¢ R‘SHA‘} constructed recursively by
5(0)(5, a) = Hexp (Q:(s, )/T) Hl . w(o)(a|s), (42a)
o gt)(s a)
£ (s, a) :z[f(t)(s,a)} exp ((1 — ) 7’), vV (s,a) e Sx A, t>0. (42b)
T
It is easily seen from the construction (42b) that
Q% — rlog&" = Q1 — ralogé® — (1 - a)QW
= a(Q: — Tlog€™) + (1 - 0)(QF — QY) (43)
and, consequently,
Q7 = Tlog €V | < al|@r —7logg™ || + (1 - a)]|Qr — @V - (44)

15



Step 1: a linear system that describes the error recursions. In the case with general learning
rates, the estimation error ||Q¢ - St) HOO does not contract in the same form as that of soft policy iteration;
instead, it is more succinctly controlled with the aid of an auxiliary quantity HQ: — 7log&® ||OO In what

follows, we leverage a simple yet powerful technique by describing the dynamics concerning HQ: - Q(Tt) ||OO

and HQ: — 7log&® Hoo via a linear system, whose spectral properties dictate the convergence rate. Towards
this, we start with the following key observation, whose proof is deferred to Appendix C.3.

Lemma 3. For any learning rate 0 < n < (1 — )/, the entropy-reqularized NPG updates (18) satisfy

Q3 — Y|, <~llQr — Tlog g™V + 7t QY — loge V|, (45)
where « is defined in (41).

If we substitute (43) into (45), it is straightforwardly seen that Lemma 3 is a generalization of the
contraction property (40) of soft policy iteration (the case corresponding to « = 0). Given that Lemma
3 involves the interaction of more than one quantities, it is convenient to combine (44) and (45) into the
following linear system

Tep1 < Azy +yat Ty, (46)

where

Ae [7(1 —a) 704] - |Q; - Q(Tt)HOO and y = HQSO) - Tlogg(O)HOO . (47)
l-a o @; ~iogc], 0

We shall make note of the following appealing features of the rank-1 system matrix A:

A= |7 1—a, af, and A'=(1-nr)ttA4 vt >0, 48
1

which relies on the identity (1 — a)y + a = 1 — 97 (according to the definition (41) of «).

Step 2: characterizing the contraction rate from the linear system. In view of the recursion
formula (46) and the non-negativity of (4, z:,y), it is immediate to deduce that

Tir1 < A(Azi—y +yaly) +ya Ty
<ATzg+y (@ T+ A+ +aA)y
_ At+1x0 N (At“ _ at“I) (oflA _ I)_ly. (49)
Here, the last line follows from the elementary relation
(atHI +at A+ aAt) (a_lA — I) = AT oty

and the invertibility of 1A — I (since a~!A is a rank-1 matrix whose non-zero singular value is larger than
1). In addition, the Woodbury matrix inversion formula together with the decomposition (48) yields

(atA—1)"y= {[1 s ]—I} {O %} { ! (50)
! AU = YT YT R - rloa®

(I—a)y o

which is a non-negative vector. Consequently, this together with (49) gives

Ty < AT {wo +y(atA-1)" y} —aftt {7 (ata-1)"" y}

<A [zg+y (@t A-1) Ty

= (1)’ (m 1 —a,a]) lox - @]
! @5 =710l + ]| ~ Tloge
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— (1= {1 - @ - Q).+ (@: - 71ogs ]|+ 0 - rioee® )} 7] 61
where the third line follows from (48), (50) and the definition of x;. Further, observe that

Q7 = Tlog €|, +[|QF = rlog €@ — @7 - @],
< 2”@: — Tlogf(o)Hoo = 27'”10g71’: — logw(o)Hoo, (52)

where the inequality comes from the triangle inequality, and the last identity follows from (42a). Substituting
this back into (51), we obtain

s = (1= ) {03 - QP + 2ar|iogm: ~ 0=} 7] (53)

To finish up, recall that 7(*) is related to £®) as follows
B 1
1€0 (s, )1

which can be seen by comparing (42) with (18). Therefore, invoking the elementary property of the softmax
function (see (66) in Appendix A.2), we arrive at

VseS: 7®(|s) W (s, ), (54)

[togms ~tog r* V. < 2[@3 /7 ~ log V.

This combined with (53) as well as the definition (47) of 2441 immediately establishes Theorem 1.

4.3 Analysis of approximate entropy-regularized NPG methods

We now turn to the convergence properties of approximate entropy-regularized NPG methods — as claimed

)

in Theorem 2 — when only inexact policy evaluation Q') is available (in the sense of (26)).

Step 1: performance difference accounting for inexact policy evaluation. We first bound the

quality of the policy updates (26) by examining the difference between VT(tH) and VT(t) and how it is
impacted by the imperfectness of policy evaluation. This is made precise by the following lemma.

Lemma 4 (Performance difference of approximate entropy-regularized NPG). Suppose that 0 < n < (1 —
v)/7. For any state sg € S, one has

VA0 (s0) < VD (5) + %H@f) -QY.- (55)

Proof. See Appendix C.4. O

The careful reader might already realize that the above lemma is a relaxation of Lemma 1; in particular,
the last term of (55) quantifies the effect of the approximation error (i.e. the difference between Q(Tt) and

Qg)) upon performance improvement. Under the assumption ||@$t) - Q(Tt)HOO < §, repeating the argument
of (33) reveals that the soft Q-function estimates are not far from being monotone in ¢, in the sense that

VO (s _VT(t+1)(S/)} < 2v6

V(Saa) eESxA: QS’t)(Saa)_QS't-’_l)(Sva):’Y T - 1_’7'

E | (56)
s'~P(:|s,a)

Step 2: a linear system accounting for inexact policy evaluation. With the assistance of (56), it
is possible to construct a linear system — similar to the one built in Section 4.2 — that takes into account
inexact policy evaluation. Towards this end, we adopt a similar approach as in (42) by introducing the

following auxiliary sequence §<t> defined recursively using @S-t):

é\(o)(s, a) = Hexp (Q:(s, )/7’) ||1 . ﬂ'(o)(s, a), (57a)
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o A ()
g(t"'l)(s,a) — [g(t)(s,a)] exp ((1 —a) M), V (s,a) eSx A, t >0, (57Db)

T

where o := 1 — 7= as before.
We claim that the following linear system tracks the error dynamics of the policy updates:

zi41 < Bz + b, (58)
where
)
B:=| 1-«a a 0], z:= ||Qj_—rlog§(t)||oo ybi=(1-a)d 1
0 0 @ —min, 4 (Qs-t)(s, a) — Tlogg(t)(s, a)) 1+ 727_1
(59)

Here, the system matrix B (in particular its eigenvalues) governs the contraction rate, while the term b
captures the error introduced by inexact policy evaluation. Theorem 2 then follows by carrying out a similar
analysis argument as in Section 4.2 to characterize the error dynamics. Details are postponed to Appendix E.

4.4 Analysis of local quadratic convergence
We now sketch the proof of Theorem 3, which establishes local quadratic convergence of SPI.
Step 1: characterization of the sub-optimality gap. Lemma 1 bounds the performance improvement

of SPI by the KL divergence between the current policy 7(*) and the updated policy 7(**1). Interestingly,
the type of KL divergence can be further employed to bound the sub-optimality gap for each iteration.

Lemma 5 (Sub-optimality gap). Suppose that n = (1 —v)/7. For any distribution p, one has

L g [KL(7 ¢ Js) [ 7440 19))]

0 gog™

s~d,

Vi (p) = V9 (p) <
Proof. This result has appeared in Mei et al. (2020, Eqn. (486)). For completeness we include a proof in
Appendix C.5. O

In words, Lemma 5 formalizes the connection between the sub-optimality gap (w.r.t. the optimal soft
value function) and the proximity of the two consecutive policy iterates. As reflected by this lemma, if the
current and the updated policies do not differ by much (which indicates that the algorithm might be close
to convergence), then the current estimate of the soft value function is close to optimal.

Step 2: a contraction property. The importance of the above two lemmas is made apparent by the
following contraction property when n = (1 —~)/7:

V() = V(o) = V2 o) = V(o) + (VO () VD (o)

V) -V -1 B KO0 [ L))

n s~d£,t+1)
(i) e |
< Vi) -V -~ |25 B [KL(FOCs) 7))

n dP o SNd:T
() dﬂ-* -1
< Vo) = Vi) - | iy (v (o) = Vi)

P %)
dﬂ_* 71

= —$%; (v (o) = Vi) (60)
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Here, (i) arises from Lemma 1, (ii) employs the pre-factor ||d:,r:/ df,tH)H

distributions, whereas (iii) follows from Lemma 5.

;01 to accommodate the change of

Step 3: super-linear convergence in the small-e regime. The contraction property (60) implies
that VT(tH)(p) converges super-linearly to V>, once 7 gets sufficiently close to mx. In fact, once the ratio
dffﬂ)/dg: becomes sufficiently close to 1, the contraction factor 1 — HdZ; /dgtH)H;ol in (60) is approaching
0, thereby accelerating convergence. This observation underlies Theorem 3, whose complete analysis is
postponed to Appendix F.

5 Discussions

This paper establishes non-asymptotic convergence of entropy-regularized natural policy gradient methods,
providing theoretical footings for the role of entropy regularization in guaranteeing fast convergence. Our
analysis opens up several directions for future research; we close the paper by sampling a few of them.

e Extended analysis of policy gradient methods with inexact gradients. It would be of interest to see
whether our analysis framework can be applied to improve the theory of policy gradient methods
Mei et al. (2020) to accommodate the case with inexact policy gradients.

e Finite-sample analysis in the presence of sample-based policy evaluation. Another natural extension
is towards understanding the sample complexity of entropy-regularized NPG methods when the value
functions are estimated using rollout trajectories (see e.g. Kakade and Langford (2002); Agarwal et al.
(2019b); Shani et al. (2019)), or using bootstrapping (see e.g. Xu et al. (2020); Haarnoja et al. (2018);
Wu et al. (2020)).

e Function approximation. The current work has been limited to the tabular setting. It would certainly
be interesting, and fundamentally important, to understand entropy-regularized NPG methods in
conjunction with function approximation; see Sutton et al. (2000); Agarwal et al. (2019a,b) for a few
representative scenarios.
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A Preliminaries

A.1 Derivation of entropy-regularized NPG methods

This subsection establishes the equivalence between the update rules (15) and (18). Such derivations are in-
herently similar to the ones for the NPG update rule (without entropy regularization) (see, e.g., Agarwal et al.
(2019a)); we provide the proof here for pedagogical reasons.

First of all, let us follow the convention to introduce the advantage function AT : S x A +— R of a policy
m w.r.t. the entropy-regularized value function:

V(s,a) e S x A: AZ(s,a) == QX (s,a) — Tlogm(als) — VI (s) (61)

with QT defined in (11a), which reflects the gain one can harvest by executing action a instead of following
the policy 7 in state s. This advantage function plays a crucial role in the calculation of policy gradients,
due to the following fundamental relation (see Appendix C.6 for the proof):

Lemma 6. Under softmaz parameterization (7), the gradient of the reqularized value function satisfies

6VT7T9(p) _ 1 o o .
09(s, a) 11— 'ydp (s) - mo(als) - AT (s, a); (62a)
[(}—ﬁ)TV(yV:e (p)} (s,a) = %A:e (s,a) + c(s) (62b)

for any (s,a) € S x A, where ¢(s) := >, mg(a|s)ws, is some function depending only on s.

It is worth highlighting that the search direction of NPG, given in (62b), is invariant to the choice of p.
With the above calculations in place, it is seen that for any s € S, the regularized NPG update rule (15)
results in a policy update as follows

7 (afs) & exp (009 (s5,0)) @ exp (00 (s,0) + 1 [(F2) Va0 (p)] (5,0))

(gci) exp <9(t)(s, a) + %A@(s, a)>
-7
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(gé) x® (als) exp (%Q@(Sv a) — 1L 1Ogﬁ(t) (a|s))

= (+als) T exp (ﬁw(s,a)) |

where we use A" to abbreviate A’;m. Here, (i) uses the definition of the softmax policy, (ii) comes from the
update rule (15), (iii) is a consequence of (62b) (since ¢(-) does not depend on a), whereas (iv) results from
the definition (61) and the fact that V.7() is not dependent on a. This validates the equivalence between
(15) and (18).

A.2 Basic facts about the function log(|lexp(d)||;)

In the current paper, we often encounter the function log ([lexp(d)||, ) := log (Zl<a<|A‘ exp(f,)) for any
vector 0 = [0a]1<a<)a] € R, To facilitate analysis, we single out several basic properties concerning this
function, which will be used multiple times when establishing our main results. For notational convenience,
we denote by mg € Rl the softmax transform of # such that

o(a) = exp(f,)

- . 1<a<|Al 63
2<j<)al exp(85) A (05)

By straightforward calculations, the gradient of the function log (|lexp(6)]|; ) is given by

Vo log ([lexp(9)]]; ) exp(f) = my; . (64)

!
lexp(9)l;

Difference of log policies. In the analysis, we often need to control the difference of two policies, towards
which the following bounds prove useful. To begin with, the mean value theorem reveals a Lipschitz continuity
property (w.r.t. the /o, norm): for any 6y,6; € R,

[log (|l exp(61)]l1) — log (|| exp(62)]11)| = | (61 — b2, Vo log (lexp(B)[]; ) lo—s.)
< 161 = 02]l IV log (llexp(®)1 )o=o.llr = |62 — b2, (65)

where 6. is a certain convex combination of 6; and 62, and the second line relies on (64). In addition, for
any two vectors 7, and g, defined w.r.t. 01,6, € RIA! (see (63)), one has

[log mo, —log 7, [l < 2[[61 — b2, (66)
where log(+) denotes entrywise operation. To justify (66), we observe from the definition (63) that
l1og 7o, — 1og Tuy | < 1161 — Bl + | log (Ilexp(@)]12) — log (|l exp(82)l1) | < 262 — ..

where the last inequality is a consequence of (65).

B Proof for the bandit case (Proposition 1)
We start by defining an auxiliary sequence ¢) ¢ R (t > 0) recursively as follows
€O = Jexp(r/)l, - 7,
£ (q) = (§<t>(a))1_”’ exp (nr(a)), a€ A

When combined with (21), it is easily seen that 7(*)(-) oc £ (-) and, as a result, 7" = §(t)/||§(t)Hl.
By construction, the auxiliary sequence satisfies the following property

log (£+1(a)) = r(a)/7 = (1 =) log (£(a)) +1r(a) —r(a)/T
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=(1-mn) (log (§(t)(a)) — r(a)/T> ,

thus indicating that
Hlogg(t) - r/TH < (1—7n)t||loge©® — T/TH . (67)

This taken together with the optimal policy 7} = softmax(r/7) o exp (r/7) leads to

Hlog 7® —logm*

<2 |loge® —r/7| <201y

log ¢ —r/THOO
=2(1—-mn)t Hlogw(o) + (log HGXP(T‘/T)Hl) 21— T/THOO

=2(1 =) |[log7(® —log 7*

)
oo

where the first line follows from the inequality (66), the second line follows from the expression (67), whereas
the last line follows from the form of 7*. We have thus completed the proof of Proposition 1.

C Proof for key lemmas

C.1 Proof of Lemma 1
To begin with, the regularized NPG update rule (see (18) in Algorithm 1) indicates that

log m“+1) (a]s) = <1 - 1L) log 7 (als) + %Q(Tt)(s, a) —log Z®(s), (68)
- -

where Z(®) is some quantity depending only on the state s (but not the action a). Rearranging terms gives

1-— 1—
— rlogn®(als) + Q") (s,a) = % (1og 7+ (als) — log 7 (als) ) + p Llogz®(s).  (69)

This in turn allows us to express VT(t)(so) for any so € S as follows

VO(s)= B [=rlogm®(aolse) + Q) (s0,a0)]

ao~m® (:|s0)

1-— 1-—
[Pz ¢ E T (o aalso) - g aols))|
ag~7() (-|s0) n ag~m®) (-|sg) n

1-— 1-—
- Vog Z® (59) — TVKL (W(t)(.|80) I W(t+1)(.|80))

1- 1-—-
E [ L log z<t><50>} — KL (7 (Jso) | 7D lso) ) (70)
ag~7(t+1) (1]s0) n n

where the first identity makes use of the definitions (8) and (11a), the second line follows from (69), the third
line relies on the definition of the KL divergence, and the last line follows since Z(*)(s) does not depend on
a. Invoking (69) again to rewrite log Z(*)(so) appearing in the first term of (70), we reach

1—
VOG0 = B =rlogn aalsn) + Qs an) + (7 = 22 ) (logn D aolsn) ~ logn sk

ao~m (D (-[s0)
-~
_ 20k (W<t>(.|80) I 7T<t+1>(.|80))
n
1—
= E [—Tlogw(t+1)(ao|so) + QY (s0, ao)] + (T — —7) KL (7r<t+1)(-|so) I w(t)(-|so)>
ag~m(t+1D) (1|s) n

1—
_ TVKL (W<t>(.|80) I 7T<t+1>(.|80))
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= E [—Tlog 7 (ag|so) + 7(s0, a0) + VVT(t)(Sl)}

aow<t(+|1)(-\so)),
s1~P(-|s0,a0
1— —
- (T7 - T) KL (w<t+1 (Iso) || 7 |50)) g “ UKL (w(t)(-|so) I 7T(t+1)(~|50)) , (71)

where the second line uses the definition of the KL divergence, and the third line expands St) using the
definition (11a).

To finish up, applying the above relation (71) recursively to expand VT(t)( i) (i > 1), we arrive at
VD (s0) = E [Z”y { r(si, a; —Tlogw(t+1)(ai|si)}

airem T (1]s5),
Si+1~P(+|si,a:),Vi>0

—Z {57 -7) e (etda |s1>)+1_TVKL(”“)<"SZ'>H”“*”HS”)H

V)~ B (3 T KU ) a0 Cs) + KL (O | 7 ()]
SngBJrl) 1 n

n -7

(72)

where the second line follows since the regularized value function Vq-(tH) can be viewed as the value function
of 7(*+1) with adjusted rewards r< " (
the distribution p concludes the proof.

s,a) = r(s,a) — Tlog w1V (a|s). Averaging the initial state so over

C.2 Proof of Lemma 2

In the sequel, we prove each claim in Lemma 2 in order.

Proof of Eqn. (36). Jensen’s inequality tells us that: for any s € S one has

E |Q(s,a) — Tlogm(als }_TZ (als log(w>

arvr(-]s) (CL|S)

< oy (St 22 2]

= 7log (Z exp (s,a /7')) = 71log (||exp (Q(s, )/7’)“1), (73)

where in the second line, equality is attained if 7(+|s) o exp(Q(s,+)/7). This immediately gives rise to

a

T-(Q)(s,a) = r(s,a) +~ max E {Q(s’, a') — Tlogw(a’|s’)H

5
s'~P(+]s,a) 7(-]s’")EA(A) a’~m(-|s’)

=r(s,a) + VSINP]%IM) {7’ log (||exp (Q(s',-)/7) Hl)}

Proof of Eqn. (37). Recall the characterization of 7¥ and V* established in Nachum et al. (2017):

7 (als) = exp (Q:(S’ Q)T_ VT*(S>> , (74a)
VX (s) = 7log (Hexp (Q* /T)H ) (74b)

Substitution into the expression (36) tells us that for any (s,a) € S x A,

T(Q2)(s,0) =r(s,a) +7 B [rlog ([lexp (Q3(s',)/7)]],)]

s'~P(:|s,a)
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=r(s,a)+y  E  [VX()]
s'~P(-]s,a)
= Q% (s,a),

where the second line results from (74b), and the last line follows from the definition of the soft Q-function.

Proof of Eqn. (38). Invoking again the expression (36), we can demonstrate that for any @1 and @2,

To(Q1)(s.0) = T-(Q2) (s,0)

:‘%wp@.m) [r1oe (Jexp (Qu(s /)] = B [Tlog lexp (Qa(s', /7)), H
—vr| & [log (flexp (@u(s'. /7)) — ok ([lexp (@a(s', /)] )H
s'~P(:|s,a)
<AT||Q1/T = Q2/7
:7|‘Q1_Q2||oo

holds for all (s,a) € S x A, where the inequality follows from the Lipschitz property (65).

C.3 Proof of Lemma 3

For any state-action pair (s,a) € S x A, we observe that

Qx(s,a) — QYY) (s, a)
=r(s,a)+y  E  [VA(s)] - (T(s,a) ty B [VT(tJrl)(S/)])

s'~P(]s,a) s'~P(:|s,a)
* (o .
exp (2265)
T

=7 E {7’ log <
s'~P(:|s,a)
where the first step invokes the definition (11a) of @, and the second step is due to the expression (74b) of
V*. To continue, recall that 7(*) is related to () as

-0 B [ - st @), @)
1 s'~P(:|s,a),
G (s")

’
a ~T

-
1€ (s, )l

which can be seen by comparing (42) with (18). This in turn leads to

VseS: 7®(|s) = @ (s, (76)

log7“*1(a]s) = log "1 (s, a) — log ([|¢"“V (s,)]],)

QY (s,a)
O ()

:alogf(t)(s,a)—k (1-a) — log (Hé(tJrl)(Sa')"l)v (77)

where the second line comes from (42b). By plugging (77) into (75) we obtain

Qis,a) = Q¥ V(s.a) =y | B |7log (fexp (@3(s',)/)[|,) — log (|, |

s'~P(]s,a)

s'~P(:|s,a),
/Nﬂ_(t+1)("s/)

@) ot 7
- E [QS“”(S', a)-r <04 log &M (s',a') + (1 - G)M> ] (78)

=log £(t+1) (s7,a’)
for any (s,a) € S x A. In the sequel, we bound each term on the right-hand side of (78) separately.
e In view of the property (65), the first term on the right-hand side of (78) can be bounded by

rlog ([lexp (Q7(s',)/7)II,) = Tlog (|[€“V(s',)],) < [|Q — Tlog "V .
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e Regarding the second term, the monotonicity (33) of the soft Q-function allows us to derive
QU+ (s,a) — 7 (alog € (s,a) + (1 - )@ (s.a)/7)
> QW (s,0) — 7 (alog " (s,0) + (1 - )@ (s, 0)/7)
= a (@Y (s,0) — rlog (s, a))

2 a (@ (QUV(s,0) = 108V (s,0)) + Q) (s5,a) — QU (s,a) )

(i)
> o (Q 7 (s,) ~ Tlog €V (s.a))

(iii)
> ™! (QW(s,a) - T1og €™ (s,0))

i —a'™| QW) — 71og |

for any (s,a) € S x A. Here, (i) follows by construction (42b), (ii) invokes the monotonicity property
(33) (so that QY > Qg_l)), and (iii) follows by repeating the arguments (i) and (ii) recursively.

Combining the preceding two bounds with the expression (78), we conclude that
0 < Q5(s,a) = QU (s,0) < 7[|QF = Tlog €UV || | +7aTH|QY — Tlog | (79)

for any (s,a) € S x A, thus concluding the proof.

C.4 Proof of Lemma 4
Recall that, in this scenario, the policies are updated using inexact policy evaluation via (26), namely,

(w(t)(a|s))l_% exp (%@(Tt)(s, a))

V(s,a) €S x A, D (als) = 700)
S

, (80)

where Z(®)(s) := Sy (a/|s)' " T exp (% O (s,a’)). To facilitate analysis, we further introduce another
auxiliary policy sequence {%(t)}, which corresponds to the policy update as if we had access to exact soft

Q-function of 7(Y) in the ¢-th iteration; this is defined as

(w(t)(a|s))l_% exp (%Q(Tt)(s, a))

Ve eSx A () = 700 |
S

(81)

where we abuse the notation by letting Z®)(s) = >, 7 (a'|s)' 17 exp (ﬁ (Tt)(s,a’)). It is worth
emphasizing that 7#(**1) is produced on the basis of 7(*) as opposed to #(*); it should be viewed as a one-step
perfect update from a given policy w(*).

We first make note of the following fact: for any step size 0 < n < (1 — ~)/7, it follows from (66) —
together with the construction (80) and (81) — that

Hlog D) _Jog x(t+1) HOO

< 2o (0 a0 exp (-G 5,) ) = o (1 a0 exp (@l s,0)) )|
v - 00

_ 20 150 _ oo
= 1_7||QT QY| - (82)

Next, let us recall the inequality (70) in the proof of Lemma 1 under exact policy evaluation 7+ (|s);
when applied to the current setting, it essentially indicates that

1-— 1-— .
VT(t)(so) = il log Z(t)(so)] — TVKL (w(t)(-|so) H 7T(t+1)(-|80))

£
ao~# D (1]s0) n
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1—
T
ao~m D (1]s0) n

KL( O (:[so) || 7D (.Iso)), (83)

where the last step follows since the quantity Z (t)(s) does not depend on a at all. In order to control the
first term of (83), we invoke the definition of #(**1)(-|s) to show that

1—
E [ i log Z(t)(so)]
ao~m T (s0)

—~
=

1

ao,\,ﬂ-(f+1)

1

7log 7 t+1) (aolso) +Q (So,ao) + (T - T) (1 gﬂ(tﬂ (ao|so) — 10gﬁ(t)(@0|50)>}
(1) ) 1-

Tlogm (aolso0) + Q% (507a’0):| e

n
- ao,\,ﬂ.(t+l) s50) |:
[ —7) KL (w(tH ‘|s0) || mlt |so))
1=

[1og #+1) (ags0) — Tog 71 (ao|s0)|
n ap~m T (1sp)
1_
< ot [ﬂogw<t+1><ao|50>+@st><50,ao>}+(T——7)KL(7T““ To0) |7 150)
ao~m D (1]s0) n
+2)Q% - 0.

VD (so) <

agrm D (.

(84)
where the final step results from (82). Putting the above bound together with (83) guarantees that

|7 1og w1 (ag]s0) + Q1) (s0, )] ——KL( ) (Jso) || #40)-|s0) )
[so0)

1- ~
()R ) 2@ -

aDNﬂ(t+1)(

<

QY|
[~ 1og ) (aolso) + Q1) (s0,a0)] +2[1 Q% — QU]
“|s0)
= et [ rlogm D (aglso) + (s0,00) +7 B [VIO(sy }] +2[Q0 - QW .
ao~m D ((s0) s1~P(:|s0,a0) >
where the last identity makes use of the relation QY (50,a0) = (50, a0) +VEs, ~p(.|50,a0) [VT(t)( )]. Invoking
the above inequality recursively as in the expression (72) (see Lemma 1), we can expand it to establish

. 2
Vi (s0) < VIV (s0) +2[| QY — Q1| Zv VI (s0) + 75109 - Pl
C.5 Proof of Lemma 5

First of all, we follow the definition (8) of the entropy-regularized value function to deduce that
VT*(p) _VT(t)(p) = [Z’y (s, a;) _TIOgF (az|s ))
80~p7aw~ﬂ MQEDE

1+1~P( |si,a;),Vi>0

— V9 (p)

so~p,a;~Tr(-]si)

Z*y ( S5, ai) — Tlog mr(as]ss) + V. (s5) — V(t)(si))
Si+1NP('|Si,ai),Vié0

50~p7ai"’777*-('|5i)

V(t (s0 +ZW( si,a;) — Tlog mr(a]s:) + YV (si41) = VI ))
Si+1NP('|Si,ai),Vié0

—~

D)

50~p7ai"’7":—('|5i)

Zv( Tlogw:<az-|sz->+wv:t><si+1>—v“%w)]
si+1~P(~|si,ai),ViéO
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i) 1
W_° g [Z 7 (als) (r(s,a) — 7logmr(als) +

@ 1 E*lzw (als) (QV(s.0) ~ logm als)) ~ VL5 )

Here, (i) is due to the definition 1A% (p) = Egomnp [V(t)( 0)], (ii) follows by aggregating terms corresponding

to the same state-action pair and the definition of d," (cf. (5)), whereas (iii) results from the definition (11a)
of the regularized Q-function.

To continue, we shall attempt to control each part of (85) separately. To begin with, observe that the
first part of (85) can be bounded by Jensen’s inequality, namely,

. exp (Q(rt)(sa a)/7)
ZW (als) ( )sa)—Tlogw (als )—TZW (a|s 10g< 7*(als) )
(0) ™(als eXp( ()(S a)/T)
gﬂg(? 7(als) 7= (as) )

=rlog (Z exp (Qg)(s, a)/T)) . (86)

With regards to the second part of (85), it is seen from the definition of 7(*+1) (cf. (17)) that

QW (s,a) = 7log 7+ (a]s) + 7 log <Z exp (Q1(s, W)) , (87)
thus allowing one to derive

Me) = Xnl(al) (@1 (s,0) = 7 10g 7" (als))
Q- a 7 (als) {log ) (als) + log (Z exp (QU(s, a)/r)> ~log (¥ (a|s>}
— rlog <Z exp( QW (s,a /T)> +Tzﬁ D (als) (1og7r<t+1 (a]s) _1og7r§t>(a|s))
— 7log <Zexp( QW(s a)/T)> —TKL( *) (als) || =1 |s)), (88)

where (i) relies on the identity (87). Substituting the inequalities (86) and (88) into the expression (85), we
can demonstrate with a little algebra that

Vi(p) =V (p) <

B, KUt | 0)]

C.6 Proof of Lemma 6

The results of this lemma, or some similar versions, have appeared in prior work (e.g. Mei et al. (2020,
Lemma 10) and Agarwal et al. (2019b, Lemma 5.6)). We include the proof here primarily for the sake of
self-completeness.

Proof of Egn. (62a). The policy gradient of the unregularized value function V7 (sg) is well-known
as the policy gradient theorem (Sutton et al., 2000). Here, we deal with a slightly different variant — an
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entropy-regularized value function V™ (sg) in the expression (2) with the softmax policy parameterization
in (7). Invoking the Bellman equation and recognizing that V™ (sg) can be viewed as an unregularized value
function with instantaneous rewards r(s,a) — 7log mg(als) for any (s, a), we obtain

s'~P(:|s0,a0

VeV (s0) = Vg [Zﬂe aolso) ( (50, a0) — Tlogmg(ao|so) + v E : [VTM(S/)])}

Oy, [Z Ta(ao]s0) (@7 (s0, a0) Tlogw(aoﬁt)))]
- Z (Vmw(ao|50))( 9(s0,a9) — T log my(ag|so) ) ZW" aolso) V(-)( *(s0, a0) - Tlogm(aols()))
(i) Z (m(aolso)V.g log 7T9(%|80)> (Q’;ﬂ(so, ao) — 7log we(ao|80)>

+ Zﬂ'g(ao|so)V9( (s0,a0) —|—’yZP s1]80, o)V, (s1) — Tlogﬂ'g(ao|so))

ao S1

where (i) relies on the definition (11a) of Q7¢, and (ii) makes use of the identity

Vormg(ao|so) = me(ao|so) Ve logma(ap|so)

as well as the definition (11a) of @T°. Given that

Zﬂ'e ap|so) Ve log ma(ag|so) = Zv(ﬂrg aplso) = Ve(zﬂe(ao|80)) =Vyl=0 (89)
ag

ao

and that r(s,a) is independent of 6, one can continue the above derivative to reach

VoV (s0) = > (W@(ao|80)ve logﬂe(ao|80)> (Q:B(SO, ao) — TlOgﬂe(ao|80))

ao

+7> mlaolso) Y P(s1]s0,a0)VoV;™ (s1)

ao S1

= . IE( " {(V@ log 7r9(a0|so)) (Q:" (s0,a0) — 7log 7T9(0L0|so)) + VoV (sl)} .
sip1mP(-|$5,a0) W30

Repeating the above calculations recursively, we arrive at

VoV (s0) = E( » lz 7 (Vo logm(as|st)) (Q:B(Stvat) - Tlogﬂe(aﬂst))]
Si+1NZP('I?Si,aZ):ViZO t=0

_ 1 E E _(Vg log m(als)) (Q;’e (s,a) — Tlogwe(a|s))}

L =79 smdft ammo(-ls) L

1 . ] ]

T T g ol (Vs logms(als)) (A7 (s,0) + V7 (s)) |
1 _

=12 E B [(Vologml(als)AT(s0)], (90)

= smdf anma(]s) b

where the second line follows by aggregating the terms corresponding to the same state-action pair, and the
third line invokes the definition (61) of A7¢. To see why the last line holds, invoke (89) to reach

By (1) [V (5) Vo log mo(als)| = 3 V7 (5)ma (als) Vg log o (als)

=V7(s) Zﬂ'g(a|s)V9 log mg(als) = 0.
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Further, it is easily seen that under the softmax parametrization in (7),
al AV
Oagez,(Z)|S )= 1)y = s](1[a" = a] — mg(als)) (91)
for any (s,a),(s’,a’) € S x A. Combining with (90), it further implies that

AV (sp) 1 _Blog mo(a'|s")

= ]E ’ ™ Ea/wﬂ' s’ 714779 I7 /
09(s,a) 1— o s~did o(:]s") 90(s, a) (s a )‘|

1 T,
T By Barryon | (115 = 5110’ = a] = mo(als)) ) AT (5 a'>]
i) 1 [ Ly
EES’Nd:gEa/NTm("S/) _]l [(5/7 a/) = (S7 CL):I ATQ (S/, a/):|
1

5 (s)mo(al9) AT (5. 0).

—~

where (i) follows from E,/r,(. s AT (s, a") = >, mo(a'|s")AT°(s',a’) = 0 due to the definition (61). The
proof regarding V™ (p) can be obtained by averaging the initial state sp over the distribution p.

Proof of Egn. (62b). In order to establish (62b), a crucial observation is that wy := (]—“g)TV(;Vf@ (p) is
exactly the solution to the following least-squares problem

minimize,,cgsiAl H]:ﬁw — VoVTe (p)Hi (92)

From the definition (14) of the Fisher information matrix, we have

fgw =E, gm0 Eanry(ls) [(V@ logmg(als)) (Vg log 7r9(a|s))—rw} .

for any fixed vector w = [ws q](s,a)esx.A- As a result, for any (s,a) € S x A one has

dlogmy(a’|s) dlog g (a'|s’)
9 = us ’
(]:Pw)s,a = Es’Nd 0 Eqr ~mo(-|s’) [ 90(s,a) Z 90(3,a) Ws3,

wy
o

a

Wy

;) ES NdweEa’Nﬂ'e( [s") 11[5/ = 5](]1[6/ = CL] - 7T9(CL|S)) (

w
<Y}
=
"Wl
Il
t’l\
—~
=
=Y
|
g\
|
3
BY
—
=
S~—
~
V.13
o
~
1

=dy° (8)Earmmg (15 [ 1[a’ = a] — 7T9(CL|S)) (wsﬁa/ — c(s))}

)E
= d7°(8)Ear g (-|) [ [a' = alws o — Tg(als)ws,ar — L]a" = ale(s) + we(a|s)c(s)}
— 05 (5) [ro(als o — mo(als)e(s) — molals)e(s) + molals)e(s)
= dy° (s)mg(als) [wsya — c(s)},

where (i) makes use of the derivative calculation (91), and we define c(s) := >~ mg(als)ws .. Consequently,
the objective function of (92) can be written as

—

1

|70 = Vv ) = 3 (45 mo(als) e — ()] = T2 (Imofals) A7 5,0

2
1
—Z(d (rafals) (100 ()~ AT (50)) )
which is minimized by choosing ws , = EAP (s,a) + c(s) for all (s,a) € S x A. This concludes the proof.
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D Convergence guarantees for CPI-style policy updates

Employing the SPI update as the improved policy, we arrive at the following CPI-style update
D = (1 - B)r® 4 Y, (93a)

where 7D corresponds to a one-step SPI update from 7, namely,

V(s,a) € S x A, 7+ (g]s) = 7(+() exp (Qg)(s, a)/T) (93b)

with 7(t)(s) =), €exp (Qg-t)(s, a)/7) and Qi = Qim as usual. Here, 8 € (0, 1] is a parameter that controls
the “conservatism” of the updates. We characterize the convergence rate of this update rule (93) in the
following result.

Theorem 4 (Linear convergence of CPI-style updates). For any 0 < 8 < 1, the update rule (93) satisfies

VA (p) — VIO(p) < H °

T

(1=80 =) (Vis) -vOu), w0 (94)

oo

According to Theorem 4, it takes the CPI-style policy update (93) at most

L e Hﬁ VE(uz) = VA ()
Bl —7) wr

€
iterations to reach V*(p) — 1A% (p) < e. As it turns out, the CPI-style update rule can be analyzed using our
framework through the following performance improvement lemma, which is an adaptation of Lemma 1. In

) g PO

oo

what follows, we use Q to denote Qf(tﬂ) and V.* “* respectively.

Lemma 7 (Performance improvement of CPI-style updates). Consider the policy update rule (93a) with
any B € (0,1]. For any distribution p, one has

VI ) = VI 217 (KL (xOCs) [ 7 ().

11—y smd(D)

Proof. See Appendix D.1. O

Combining the above result with Lemma 5 and following a similar approach to (60) gives

V2(p) = VD (p) = VX (p) = VD (p) + (VT“) (p) — Vf(”l’(p))

SV VO - 1w [KL(rO ) [ 7))
s~ap

-1

(%) V*(p) = VO (p) — 16_77 dzt[jrl) ) SNIE;; [KL( O (]s) |7 (s ))}
(iii) a7
< Vip) =V (p) - 8 | o I (AP ERERIDY
P 1 ' h
~ (14 % ) (mo-v). (9%)

Here, (i) arises from Lemma 7, (ii) employs the pre-factor ||dj / d t+l)|| to accommodate the change of

distributions, whereas (iii) follows from Lemma 5. By taking p = uX, one “has

* —1
d’z
V) =V ) < | 1= 8| et (v () = v )
HE s



—1

o0

< (1 2 e ) (V) = Vo)
= (1= B0 =) (V7 () = Vi)

where we have used d;g = pr and stf b > (1 — v)pr in the second step. This immediately concludes the
proof.

D.1 Proof of Lemma 7

First of all, we claim that

VT(tJrl)(p) _ V(t)(p) — {KL( ( |s) || 7 7+ (s )> — KL (W(Hl)("‘s) HE(HD("S))} ’ (96)

L= goqlt+n

which we shall establish momentarily. Since the KL divergence KL (7(:|s)|| 7+ (-]s)) is convex in 7(-|s)
(Cover, 1999), the update rule (93a) necessarily implies that

KL (=D (1) |7 () < (1= KL (rOCJs) |70 C)s))

Substituting the above inequality into (96) allows us to conclude that

(1) () — pr *) (++1)
) V) 2 B [KL (7O 1s) [ 7D ()] -

The rest of this proof is then dedicated to establishing the claim (96), which is similar to the proof of
Lemma 1. To begin with, we express v (so) as follows

Vi(se)= E [_Tlogﬂ(t)(ad%) + QY (s0, aO)]

ag~7() (-|s0)

E [ 7log w(t)(a0|so) + 7log w1 (a0|30)} + T10g7(t)(80)

ag~7(®) (-|s0)
rlog 7 (s0) = 7KL (0 Jso) |7 (o)

=7 B [ Z ) =K (O o) |7 (o))

aowﬂ(t+1)(~|50)

where the first line makes use of the definitions (8) and (11a), the second line follows from (93), the third

line uses the definition of the KL divergence, and the last line follows since 7(1&)(50) does not depend on a.
To continue, we subtract and add 7KL (74D (-[sg) | 71 (+[s0)) to obtain

VO(s)= B |r10gZ " (s0) = Tlogm D (aolso) + 7 log 7D (aolso)]

ao~m (D (-[s0)
7KL (74D (Js0) [ 7D (Js0) ) =KL (7 (Js0) [ 74D (]s0))

= E  [-rlogn™D(aolso) + Q1 (s0,a0)| + 7KL (a D (so) [ FH (]s0)

ao~m D (-[s0)
= 7KL (7 (o) [ 7D (o)

V() —— R {KL (7r<t+1)('|8) I ﬁ(t+1>(-|s)) _ KL (W(t)(.|s) I ﬁ(t+1)(.|3))} ,
1—7v smd(FD)
Here, the first step relies on the definition of KL divergence, the second step comes from (93), while the last

step is obtained by using the relation Qg)(so, ao) = 7(s0,00) + YEg, ~p(-|s0,a0) [Vq-(t)(sl)} and then invoking
the above equality recursively as in the expression (72) (see Lemma 1). Averaging the equality over the
initial state distribution so ~ p thus establishes the claim (96).
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E Proof for approximate entropy-regularized NPG (Theorem 2)

In this section, we complete the proofs of Theorem 2 in Section 4.3, which consists of (i) establishing the
linear system in (58) and (ii) extracting the convergence rate from (58).

Step 1: establishing the linear system (58). In what follows, we shall justify the linear system relation
by checking each row separately.

(1) Bounding [|Q% — 7log £+ V|| . From the construction (57b) of £&¢+1) we have

Qr — rlog €' = a(Qf — 71ogg™) + (1 - )(Q; — QW) + (1 — ) (Q — Q).

t) @g) H

Taken together with the triangle inequality and the assumption ||QT o S 0, this gives

Q3 — rlog €| | < af| @ = Tlog €W L + (1 - )| Q5 = QY| . + (1 —a)s. (97)

ounding —ming, (Q7 " '(s,a) —7lo s,a)). Invoking the definition of & again im-
(2) Bounding — min, q Q" (s,a) — 71og€"+1)(s,a)). Invoking the definition (57b) of £*1) ag
plies that for any (s,a) € S x A,

— (@1 (s,a) — 71088 (s,0))
== (QU*(s,) = (alog €1 (s, ) + (1 = ) (5. ) /7))
= —a (Q(s,a) ~ T10g&0(s,0)) + (1 = @) (Q(5,0) = QW (s5,) ) + (@ (s,0) = QU+ (s,0))

< o (QV(s.0) - 710880 (5,0)) + (1 - )3 + L

where the last inequality follows from HQ(Tt) —QW H < 4 and (56). Taking the maximum over (s,a) € S x A
on both sides and using the definition o = 1 — yleld

— min (QS.Hl)(S, a) — Tlog £ (s, a)) < —amin (Qs.t)(s, a) — 7log €9 (s, a)) +(1-a)d (1 + 2—7> .

s,a s,a nT
(98)
(3) Bounding ||Q% — QY H Following the same arguments as for (78), we obtain
Qo) = Q0= B )[Tlog(||exp(Q¢(s’,~)/T)Hl) ~7log (€1 (5", )],)]
—7 | E QU0 - log (50
s'~P(]s,a),
a/NTr(t+l)(-‘s/)

<A||Q5 - Tlogg(Hl)HOO —ymin (Q(frl)(s, a) — 7log €11 (s, a)) :

where the last line follows from (65). By plugging (97) and (98) into the above inequality, we arrive at the
claimed bound regarding this term.

Step 2: deducing convergence guarantees from the linear system (58). We start by pinning down
the eigenvalues and eigenvectors of the matrix B. Specifically, the three eigenvalues can be calculated as

AM=a+y(1—-—a)=1-nr, Ao =« and A3 =0, (99)
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whose corresponding eigenvectors are given respectively by

0 o
, ve = |—11, and v3=|la—1]. (100)
1 0

v =

O~ 2

With some elementary computation, one can show that zo and b introduced in (59) can be related to the
eigenvectors of B in the following way:

Jo: -

0 < | @7 —rlogg|,
e

1
= 17 |- )]0 = @+ (107 = 7108, +[[@F ~ T108E”]|, )|
+ HQS.O) — Tlogg(o)Hoovz + c,v3
<7 —1777 (HQ; — QW _ +2ar|log 7 — IOgW(O)HOO) v+ ]|QO — Tloggo)noov2 +cous, (101)

where c, is some scalar whose value is immaterial since the eigenvalue corresponding to vz is A3 = 0, and
the last line follows from the same reasoning for (52). Another userful identity is:

SR 2 BN U PR A T R
1+ 22

With these preparations in place, we can now invoke the recursion relationship (58) and the non-negativity
of B to obtain

t
21 < B2+ ) BT
s=0

< B! [ﬁ (HQ: - QS.O)HOO + 2ar||log 7w — logw(O)HOO) v + HQS.O) - Tlogg(o)Hoovg + czv3}

t
_ t—s 2_/7 2_’}/
+(1 a)é;B |:(2+777') U1+<1+777') ’U2:|
t * 0 " 0 2,7 1— Xi—i-l
=M (HQT - Q! )HOO +2aTHlog7rT — log ¢ )Hoo) +(1—-a)f |2+ — | —"—]|uv
nT

1-X

T+ AEI0O — r10g 80 41— a)s (14 20) L2,
2 T o0 nT 1— X ’

where the eigenvalues and eigenvectors of B are given in (99) and (100), respectively, and the second in-
equality relies on (101) and (102). Note that we are only interested in the first two entries of the vector z.
Since the first two entries of the eigenvector v, are non-positive, we can safely drop the term involving v in
the above inequality to obtain

@ - @™
[HQ: - TlogE““)HJ

nT 1—X\
< { (1 —nr) (HQ: - QSO)HOO +2 <1 - %) 7|[log mr — logw(O)HOO> + 2 <1 + l) } [z] . (103)

_ )i+l
< {Ai (19 = Q.+ 207|iog 2 ~1og ) + (1= s (24 21 i} i

1—7
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When it comes to the log policies, we recall again the fact that 7(*) is related to §<f> as

VseS:  a®(]s) = ||§(t)1 T £0(s, ). (104)
1

Invoking the elementary property (66), we reach
Hlogm*_ - logw(t“)HOO < 2”@:/7’ — log £+ Hoo

This together with the bound on ||@QF — 7 log £(tH1) | in (103) establishes our claim for ||log 7 — log a(t+1) o

F Proof for local quadratic convergence (Theorem 3)

Assuming that the policy 7® obeys Condition (30), we can control the difference of the corresponding
discounted state visitation probabilities in terms of the sub-optimality gap w.r.t. the log policy. This is
stated in the following lemma, whose proof is deferred to Section F.1.

Lemma 8. Consider any policy 7 satisfying |[logm —log x| < 1. It follows that

ae 1 |ar-
1-— -2 <2 — |2 —1] 1 —logw*
-] (| e

In particular, by taking p = pr one has

o
— 1= dui
= I
oo nr

First, by virtue of the SPT update rule (17) and the inequality (66), it is guaranteed that

< %Hlogw—logwﬁ”oo

Jtog =2 —loga®+0]|__ < 2@z - Q|| < 2 vz — v, < 2
T T

T

‘1
H7 oo

(v () = V), (105)

where the last inequality comes from a change of distributions argument. Armed with Lemma 8 and the
inequality (105), we arrive at

dr: 2 4~2 1
_ “r v (t+1) _ * i — ( *(ox\ _ 1), * )
H d(tJrl) - 1-— v H lOgﬂ' IOgFTHoo < (1 _ 7)7— px VT (/1’7') VT (/1’7') : (106)
Wi [e%s) T lloo
Substitution into (60) gives
. -1
dz
V) = v ) < (1= =5 || (Ve = v )
du: I
d™7 — 44y
=1 e ey V() = VO ()
ur I
1
<|1 =T (V) = VO )
1+ | ( )

1|l @)
L+ 52y % (V) v ) T A=l




where the second inequality makes use of the bound (106). This in turn reveals that

2 1

Hr

1
Hr

(14_%% (V:(M*) V(t“)(uf)) < <%

which leads to our claimed result by a standard change of distributions.

(V) — VOO »))2,

o0 oo

F.1 Proof of Lemma 8

For any policy 7, denote by Py € RISIXIS| the state transition matrix induced by 7 as follows

Vs, s' € S [Prls,sr = Equn(ls) [ P(s']s,a)]. (107)
For any policy 7 satisfying |[logm —log7%|| < 1, we develop an upper bound on ‘ [P,r — P,rﬂ o o | as follows
‘[P — Pr:] (s'|s,a)(m(als) — 75 (als)) <ZP '|s,a)mx(als) m(als) —1‘
o mx(als)
®)
<(e—1 ZP "|s,a)mx(als )‘10g7r(a|s)—10g7r¢(a|s)‘
< |logm —log 7y, (e — 1 ZP ‘|5, a)7} (als)

< 2 [Pﬂ;}s s/ Hlogﬂ- - 10g7TT||OO 3

where (i) uses the assumption || log7* — log7||o < 1 together with the elementary inequality |z| < (e —
1) log(1 + )| when —1 < x < e — 1. With the preceding bound in mind, we can demonstrate that

|(@57) " (Pr = Pry) | < 2fogm — log 2|, (d57) " P (108)

Here and throughout, we overload the notation |z| for any vector z € RIS! to denote [|z;[]1<i<|s)-

In addition, the definitions of dj and dz: admit the following matrix-vector representation:
T T -
(d5) =(1=2p" (I =~P)"", (109)
AN T —
(d5) = =y)p" (I =~Pr)7", (110)
thus allowing one to derive
us 71':- T . — _
(dr—dp7) =(1=)p" (I =Pe) " [(I = Pre) = (I =vPr)] (I —vPr) "
—y(d}7) " (Py — Prs) (I —yPy) "

This together with the non-negativity of the matrix (I —vP;)~! (Li et al., 2020, Lemma 7) enables the
following bound

(I - ”YPTr)71

<2[logr —log || v (d57) " Prs (I = vPr) 7", (111)

(@5 =) | <7 |(d57) " (Pr = o)

where the last inequality results from (108).
Furthermore, we make the observation that
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where the last line comes from a change of distributions argument. Combining this bound with (111) gives
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where the last line arises from the expression (109). As a result, we establish the claimed bound
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