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Background: Micro-Robotics

• Small form factor: explore areas inaccessible to larger robots 
and humans (e.g. under canopy, earthquake aftermath)

• Low-cost hardware: valuable when at risk of losing robots (e.g. 
remote field survey, search & rescue) or need in a large quantity

Tamimi, Rubenstein’s Group at Harvard, EarthSense

https://www.tamimi.com/law-update-articles/how-medical-drones-can-save-lives/
https://www.wired.com/2014/08/largest-robot-swarm-ever/
https://www.earthsense.co/terrasentia


Can micro-robots intelligently navigate?
Typical brain of these robots:
• ARM Cortex M-series core
• Flat memory: flash <1MB, RAM <500KB
• Clock <200MHz
• Power consumption <5mW

< <



Today’s micro-robotic navigation

• Rely on cheap low-power sensors
• Run lightweight processing pipeline onboard

SpiDR (Bai et al., MobiSys ‘22) TinyOdom (Saha et al., IMWUT ‘22)



Towards lightweight intelligence

• Deep neural networks (DNNs) are widely used in navigation  (e.g. 
object avoidance, path planning, SLAM) but require substantial 
hardware resources.

• Adapting DNNs for resource-limited hardware is an active area of 
research.

Lin et al. "On-device training under 256kb memory." NeuRIPS, 2022.



Hyperdimensional Comptuing

• Brain-inspired computing paradigm that represents information 
using hypervectors.

• Known to be lightweight, error-resilient, hardware-friendly.

Model MNIST Acc (%) Flash (KB) RAM (KB) Latency (s)

HyperCam* 93.60 63.00 22.25 0.26

HyperCam** 90.36 52.62 22.25 0.08

xgBoost 76.86 365.55 77.09 0.01

MobileNet V3 98.69 1640.00 302.87 3.29

MCUNet V3 98.97 1340.00 502.91 46.71

Lee et al. ”HyperCam: Low-Power Onboard Computer Vision for IoT Cameras.” MobiCom, 2025.



HD-Based Q-Learning

Uses an HD encoder to map input state into hypervector and an 
HD-based regression to predict Q-value 𝑄(h𝑡 , a).

Ni et al. “Efficient Off-Policy Reinforcement Learning via Brain-Inspired Computing.” GLSVLSI, 2023.



NavHD

• A differentiable HDC-based sense-actuate model designed for 
training on common navigation tasks.

• Outperforms DNN and previous HD methods in Q-learning and 
zero-shot real-world experiments.

• Achieves highest resource efficiency: 10.2 KB for model storage, 
900 clock cycles per inference, 1.1 mJ of energy per frame.
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Encoder

Given encoder 𝜙: ℝ𝑑 → ℝ𝑛,
input sensors 𝐬𝑡 ∈ ℝ𝑑  in d directions is encoded into 𝐡𝑡 = 𝜙 𝐬𝑡 .

Using a learned scaling matrix 𝐁 ∈ ℝ𝑛×𝑑  with 𝐵𝑖𝑗 ~ 𝑁(0, 𝜎2) and a 
learned offset vector 𝐛 ∈ ℝ𝑛 with 𝑏𝑖  ~ Uniform 0,2𝜋 , 𝐡𝑡  is

𝜙 𝐬𝑡 = cos 𝐁 ⋅ 𝐬𝑡 + 𝐛 ⨀ sin(𝐁 ⋅ 𝐬𝑡)

The resulting 𝐡𝑡  is bounded within [-1, 1].



Action Prediction

Given model memory 𝐂 = 𝐜1, 𝐜𝟐, … , 𝐜𝑘  consisting of 𝑘 action 
hypervectors,

sim 𝐡𝑡 , 𝐜𝑘 = 𝐡𝑡
𝑇 ⋅ 𝐜𝑘

Next action is determined by
ො𝑦𝑡 = argmax𝑘sim 𝐡𝑡 , 𝐜𝑘



NavHD Characteristics

• Differentiable: Including encoder and similarity function. Can be 
trained using backpropagation.

• Exchangeable: All parameters are i.i.d. random variables at 
initialization. Loss function is based on hypervector distances, 
which are symmetric. Gradient-based training preserves 
symmetry.



NavHD Q-Learning

Estimate Q-values using 𝑄 𝐬𝑡 , 𝑎 = sim 𝜙 𝐬𝑡 , 𝐜𝑎 . Using Bellman 
equation, the target Q-value is:

𝑦𝑡 = 𝑟𝑡 + 𝛾 1 − done𝑡 max
𝑎′

𝑄′(𝐬𝑡+1, 𝑎′)

Then loss is computed as

𝑙𝑡 = HuberLoss(𝑄 𝐬𝑡 , 𝑎𝑡; 𝐂, 𝐁, 𝐛 , 𝑦𝑡)

NavHD uses Double DQN and experience replay to enhance 
training stability.



Hardware Implementation
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Evaluation



Object Avoidance Task
Input: observation (point cloud)
Output: action (4-class forward differential drive)



Learning Quality

• DNN: four-layer with hidden size 256, 128, 64.
• ReactHD: existing HD-based RL work. n=5,000.

(a) Hardware-optimized models in simulation (b) Real world experiments



Resource Usage

900 clock cyles in our MCU (64 MHz) takes ~14 us.



CPU-Only Experiments

Models that don’t fit in 
embedded hardware.
• DNN-qual: additional hidden 

layer of size 512.
• ReactHD-qual: uses 

hypervector length 10,000.
• LDC: state-of-the-art HD 

classifier + NavHD Q-learning



Encoder Ablation Study

• Explicit time encoding: 
𝜙 𝐬𝐭 = 𝐡𝑡 ⊕ 𝜌1 𝐡𝑡−1 ⊕
⋯ ⊕ 𝜌𝐿(𝐡𝑡−𝐿).

• Without activation function: 
𝜙 𝐬𝐭 = 𝐁 ⋅ 𝐬𝑡



Sensor Count

Ours-qual (108 sensors), ours-opt (8 sensors).

(a) Imitation Learning (b) Q-Learning



Conclusion & Takeaway

• NavHD outperforms both DNN and prior HD-based RL models in 
both accuracy and resource efficiency.

• NavHD uses ~10KB and can be deployed on extremely resource-
limited hardware. If needed, model can be trained onboard.

• We found a sweet spot at 8 proximity sensors that gives us 
comparable accuracy to LiDAR while using ~100x less power.
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