

International Conference on Intelligent Robotics and Systems (IROS) '25

Low-Power Neuromorphic Learning for Micro-Robotic Controls in the Wild

Chae Young Lee, Sara Achour, Zerina Kapetanovic
Stanford University

Background: Micro-Robotics

- **Small form factor:** explore areas inaccessible to larger robots and humans (e.g. under canopy, earthquake aftermath)
- **Low-cost hardware:** valuable when at risk of losing robots (e.g. remote field survey, search & rescue) or need in a large quantity

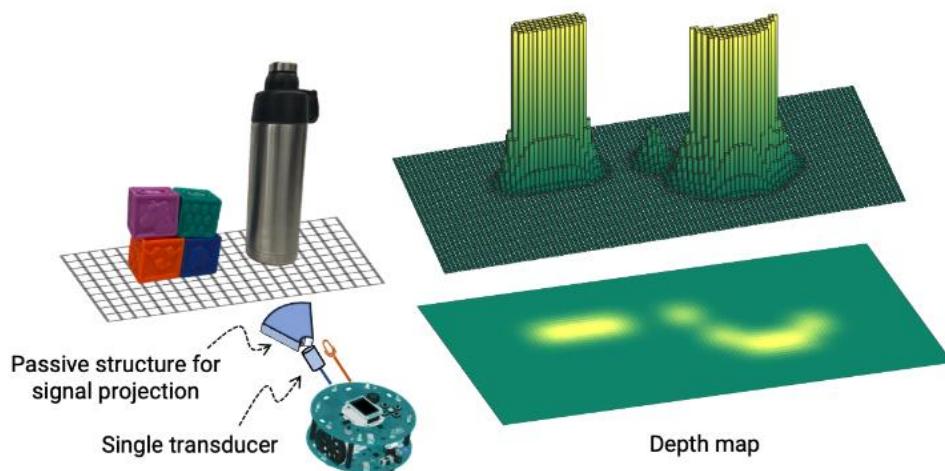
Can micro-robots intelligently navigate?

Typical brain of these robots:

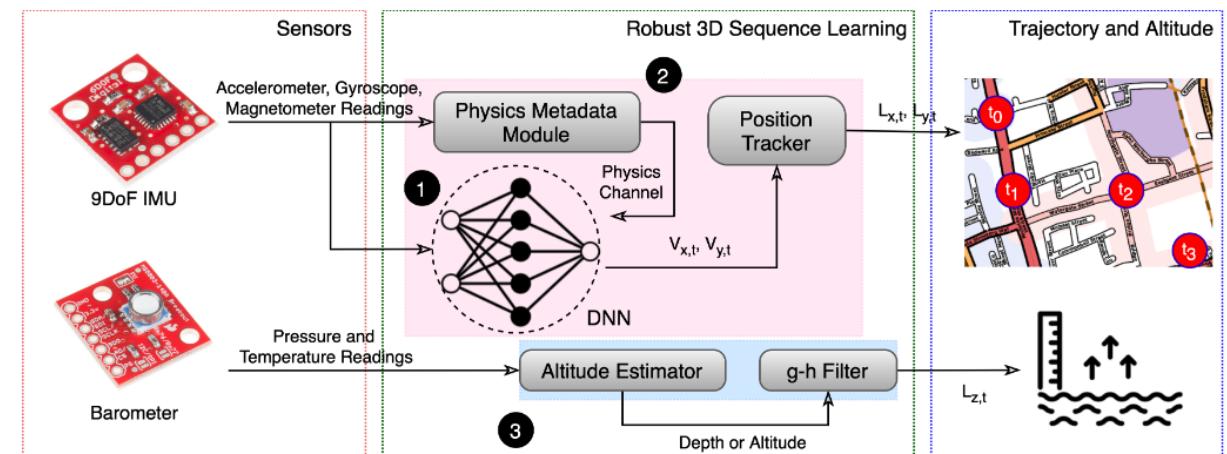
- ARM Cortex M-series core
- Flat memory: flash <1MB, RAM <500KB
- Clock <200MHz
- Power consumption <5mW

Today's micro-robotic navigation

- Rely on cheap low-power sensors
- Run lightweight processing pipeline onboard



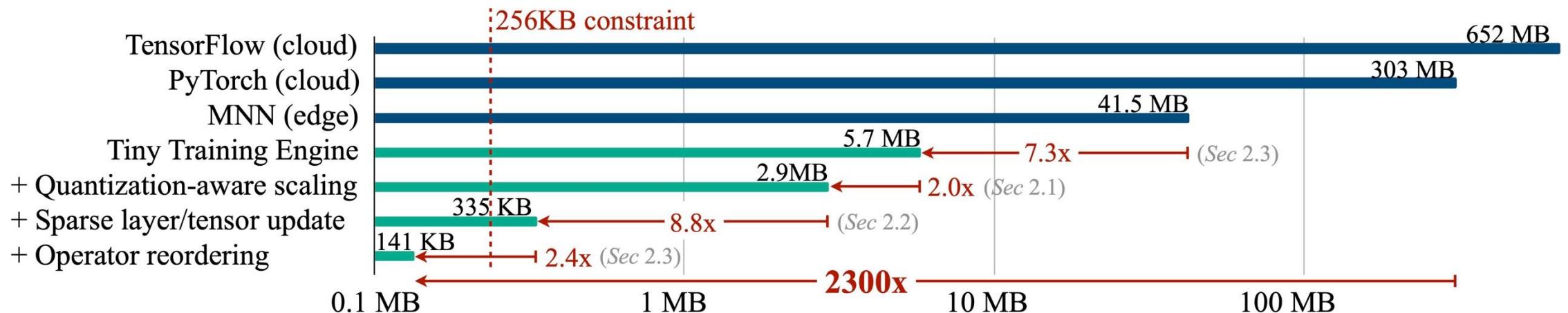
SpiDR (Bai et al., MobiSys '22)



TinyOdom (Saha et al., IMWUT '22)

Towards lightweight intelligence

- Deep neural networks (DNNs) are widely used in navigation (e.g. object avoidance, path planning, SLAM) but require **substantial hardware resources**.
- Adapting DNNs for resource-limited hardware is an active area of research.



Hyperdimensional Computing

- Brain-inspired computing paradigm that represents information using hypervectors.
- Known to be lightweight, error-resilient, hardware-friendly.

Model	MNIST Acc (%)	Flash (KB)	RAM (KB)	Latency (s)
HyperCam*	93.60	63.00	22.25	0.26
HyperCam**	90.36	52.62	22.25	0.08
xgBoost	76.86	365.55	77.09	0.01
MobileNet V3	98.69	1640.00	302.87	3.29
MCUNet V3	98.97	1340.00	502.91	46.71

HD-Based Q-Learning

Uses an HD encoder to map input state into hypervector and an HD-based regression to predict Q-value $Q(\mathbf{h}_t, \mathbf{a})$.

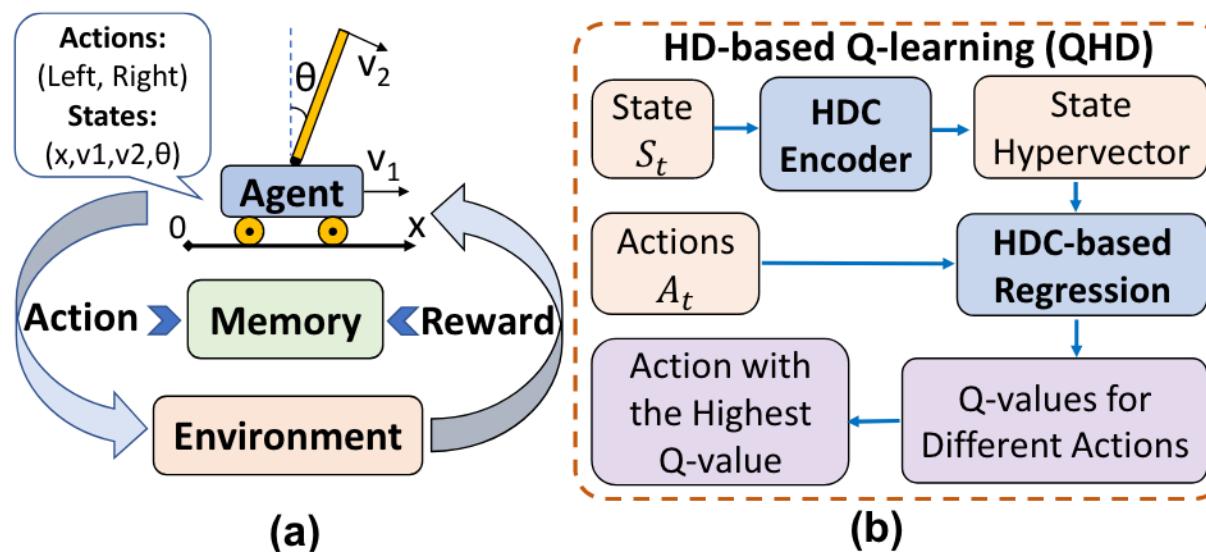
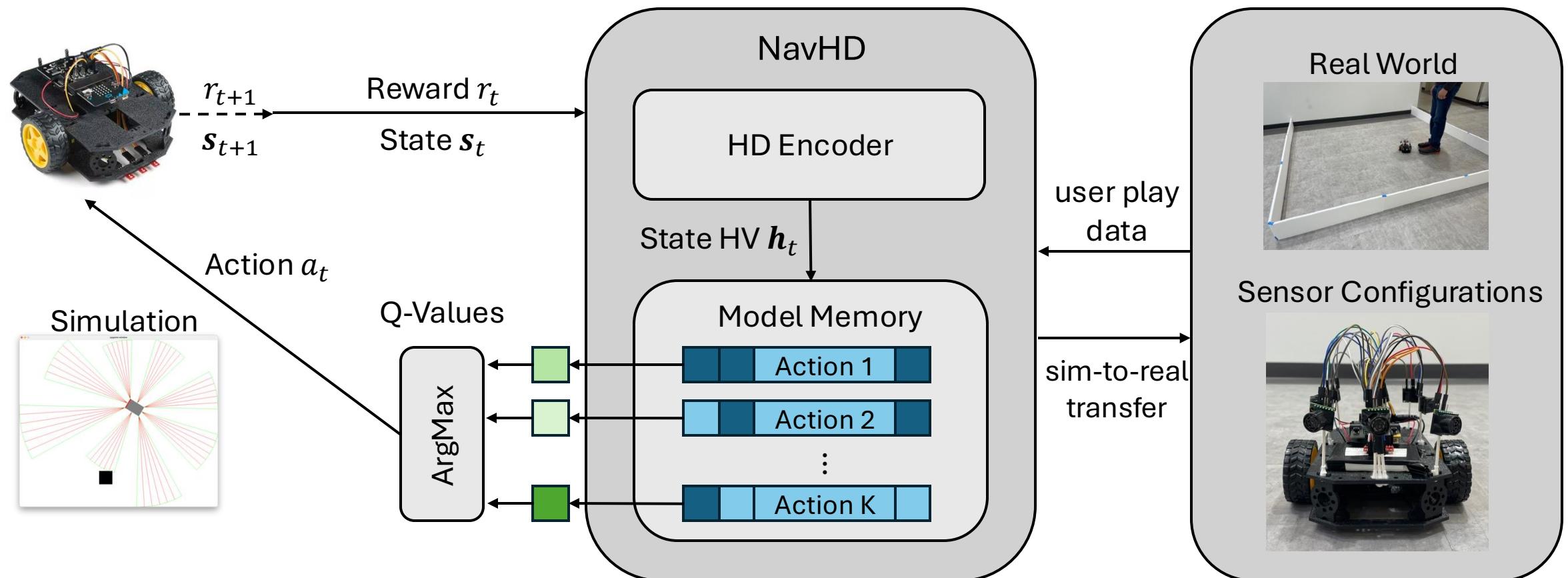


Figure 1: Overview of QHD reinforcement learning.

NavHD

- A differentiable HDC-based sense-actuate model designed for training on common navigation tasks.
- Outperforms DNN and previous HD methods in Q-learning and zero-shot real-world experiments.
- Achieves highest resource efficiency: 10.2 KB for model storage, 900 clock cycles per inference, 1.1 mJ of energy per frame.

NavHD



Encoder

Given encoder $\phi: \mathbb{R}^d \rightarrow \mathbb{R}^n$,

input sensors $\mathbf{s}_t \in \mathbb{R}^d$ in d directions is encoded into $\mathbf{h}_t = \phi(\mathbf{s}_t)$.

Using a learned scaling matrix $\mathbf{B} \in \mathbb{R}^{n \times d}$ with $B_{ij} \sim N(0, \sigma^2)$ and a learned offset vector $\mathbf{b} \in \mathbb{R}^n$ with $b_i \sim \text{Uniform}(0, 2\pi)$, \mathbf{h}_t is

$$\phi(\mathbf{s}_t) = \cos(\mathbf{B} \cdot \mathbf{s}_t + \mathbf{b}) \odot \sin(\mathbf{B} \cdot \mathbf{s}_t)$$

The resulting \mathbf{h}_t is bounded within $[-1, 1]$.

Action Prediction

Given model memory $\mathbf{C} = \langle \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k \rangle$ consisting of k action hypervectors,

$$\text{sim}(\mathbf{h}_t, \mathbf{c}_k) = \mathbf{h}_t^T \cdot \mathbf{c}_k$$

Next action is determined by

$$\hat{y}_t = \text{argmax}_k \text{sim}(\mathbf{h}_t, \mathbf{c}_k)$$

NavHD Characteristics

- **Differentiable:** Including encoder and similarity function. Can be trained using backpropagation.
- **Exchangeable:** All parameters are i.i.d. random variables at initialization. Loss function is based on hypervector distances, which are symmetric. Gradient-based training preserves symmetry.

NavHD Q-Learning

Estimate Q-values using $Q(\mathbf{s}_t, a) = \text{sim}(\phi(\mathbf{s}_t), \mathbf{c}_a)$. Using Bellman equation, the target Q-value is:

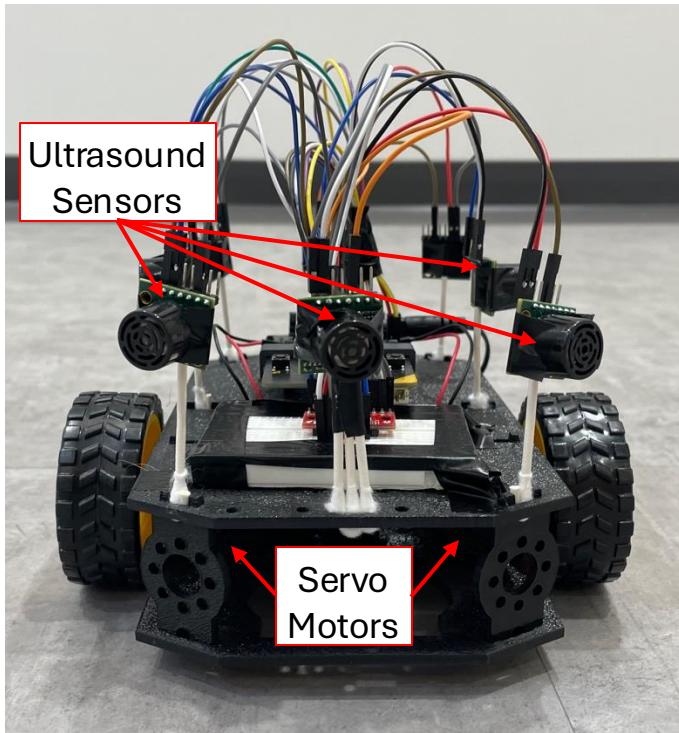
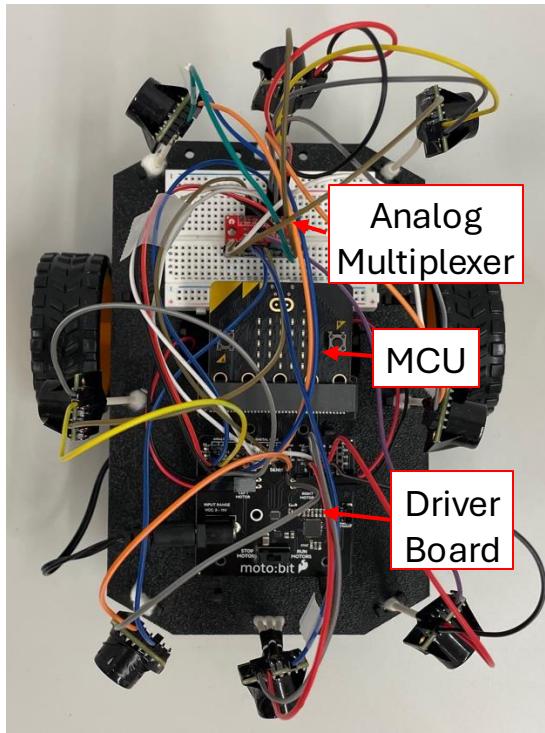
$$y_t = r_t + \gamma(1 - \text{done}_t) \max_{a'} Q'(\mathbf{s}_{t+1}, a')$$

Then loss is computed as

$$l_t = \text{HuberLoss}(Q(\mathbf{s}_t, a_t; \mathbf{C}, \mathbf{B}, \mathbf{b}), y_t)$$

NavHD uses Double DQN and experience replay to enhance training stability.

Hardware Implementation



Component	Idle (mW)	Full Throttle (mW)
Micro:bit v2	39.0	39.0
Carrier Board	43.9	48.4
Motors	0.0	2307.0
Ultrasound Sensors	40.0	40.0
Multiplexer	0.2	0.2
Total	123.1	2434.6

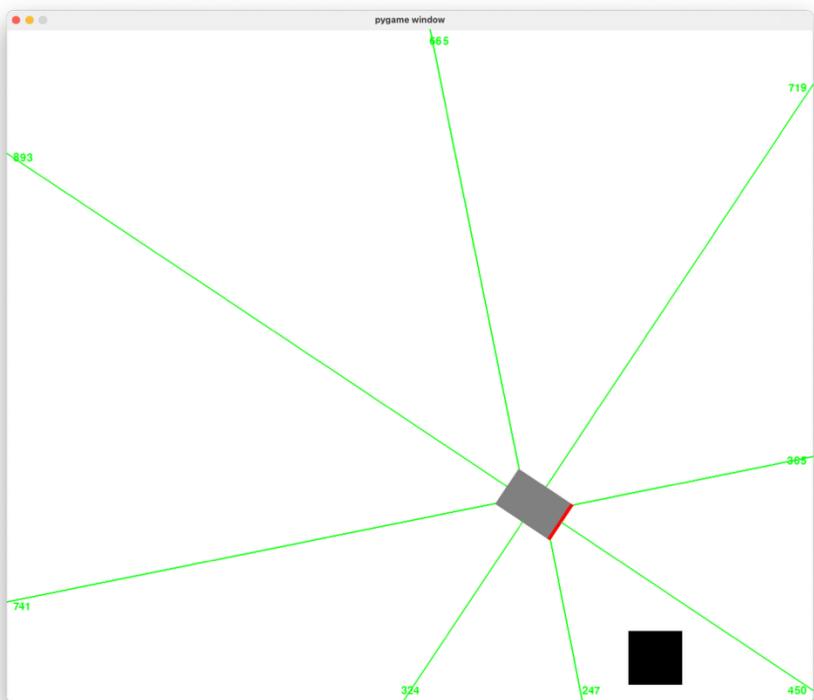
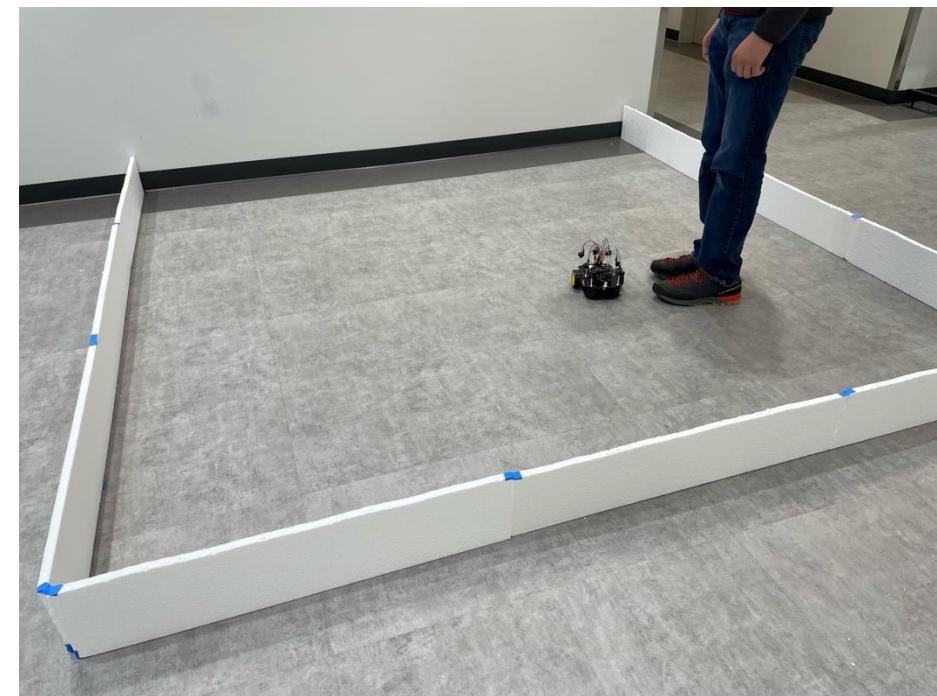
TABLE II: System power consumption.

Evaluation

Object Avoidance Task

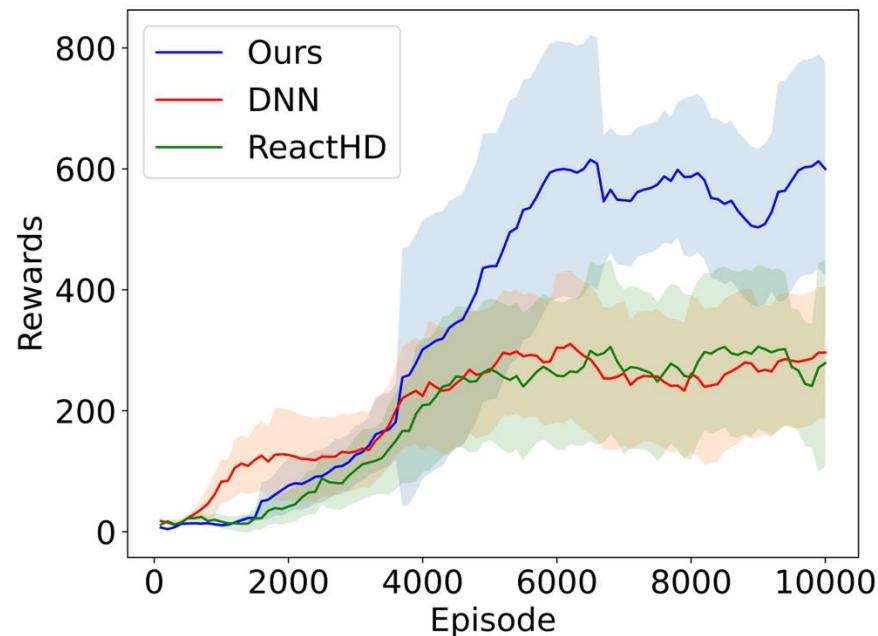
Input: observation (point cloud)

Output: action (4-class forward differential drive)

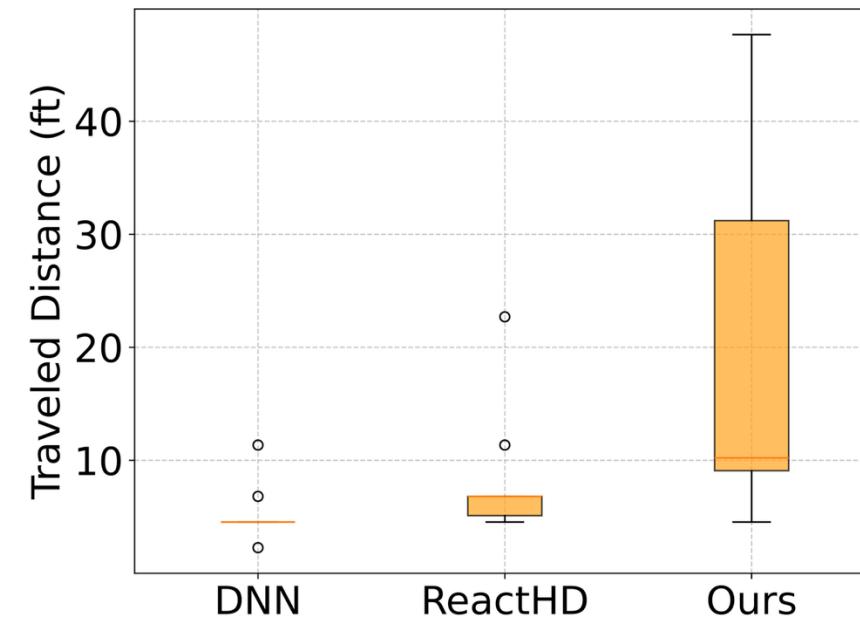


Learning Quality

- DNN: four-layer with hidden size 256, 128, 64.
- ReactHD: existing HD-based RL work. $n=5,000$.



(a) Hardware-optimized models in simulation



(b) Real world experiments

Resource Usage

TABLE IV: Resource usage on the target hardware.

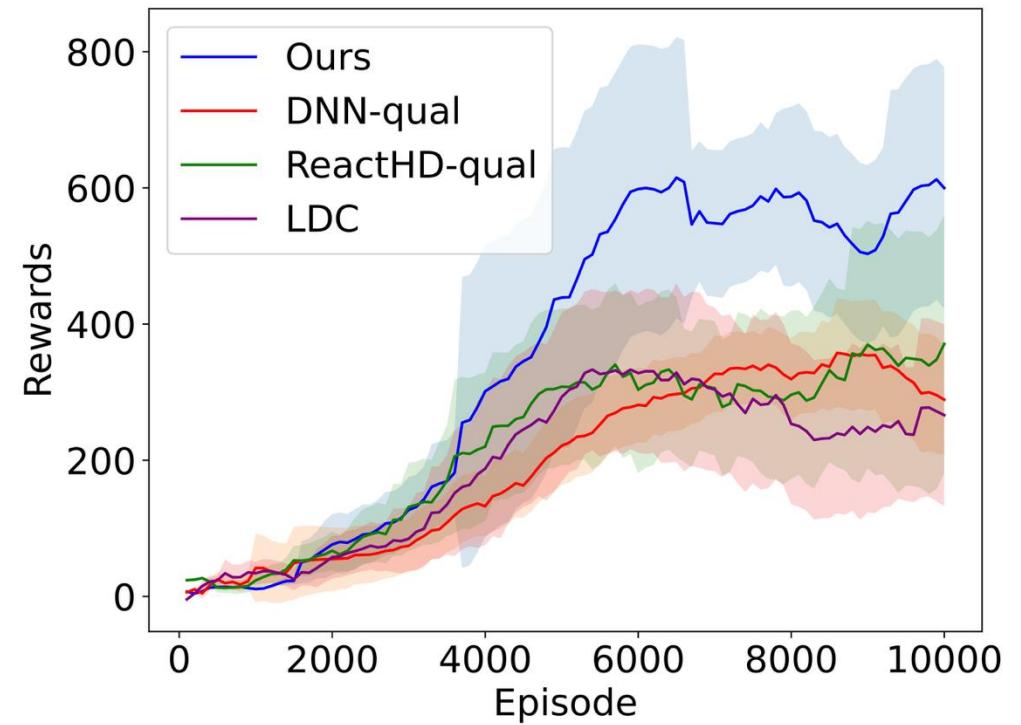
Model	Memory (kB)	Clock Cycle (k)	Energy (mJ)
DNN	263.8	2.9	3.4
ReactHD	19.5	8.4	9.9
NavHD	10.2	0.9	1.1

900 clock cycles in our MCU (64 MHz) takes \sim 14 us.

CPU-Only Experiments

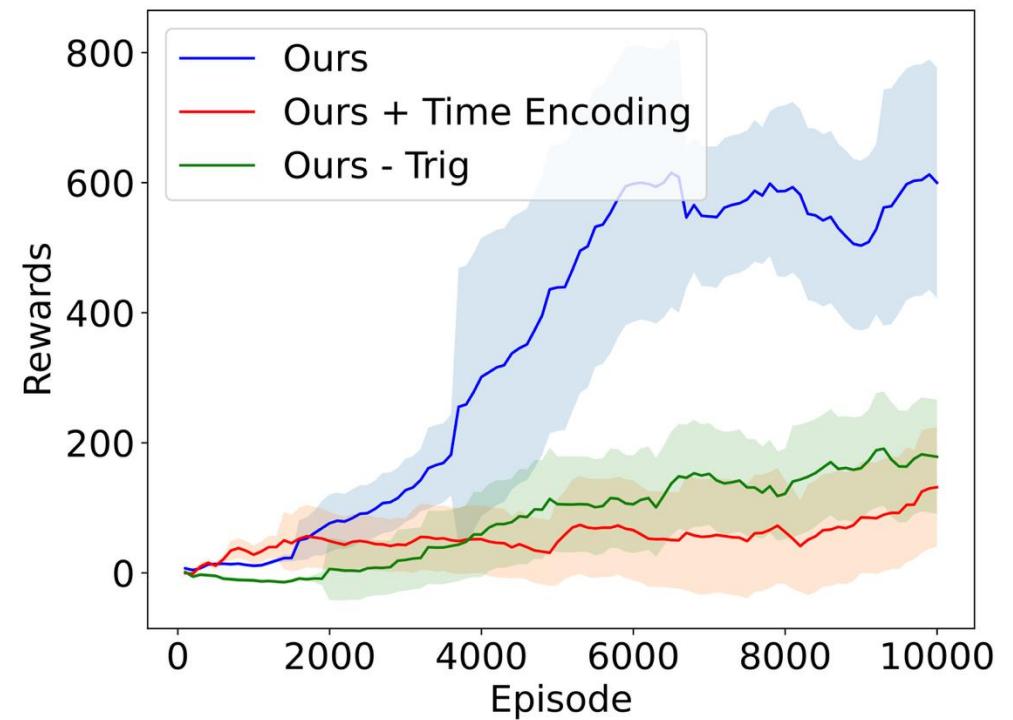
Models that don't fit in embedded hardware.

- **DNN-qual:** additional hidden layer of size 512.
- **ReactHD-qual:** uses hypervector length 10,000.
- **LDC:** state-of-the-art HD classifier + NavHD Q-learning



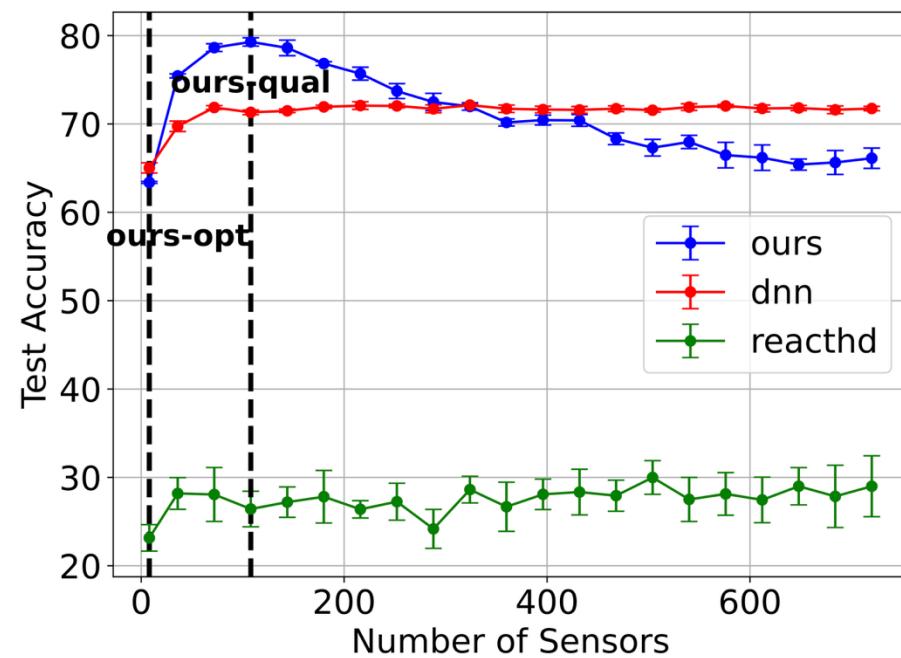
Encoder Ablation Study

- Explicit time encoding:
$$\phi(\mathbf{s}_t) = \mathbf{h}_t \oplus \rho^1(\mathbf{h}_{t-1}) \oplus \dots \oplus \rho^L(\mathbf{h}_{t-L}).$$
- Without activation function:
$$\phi(\mathbf{s}_t) = \mathbf{B} \cdot \mathbf{s}_t$$

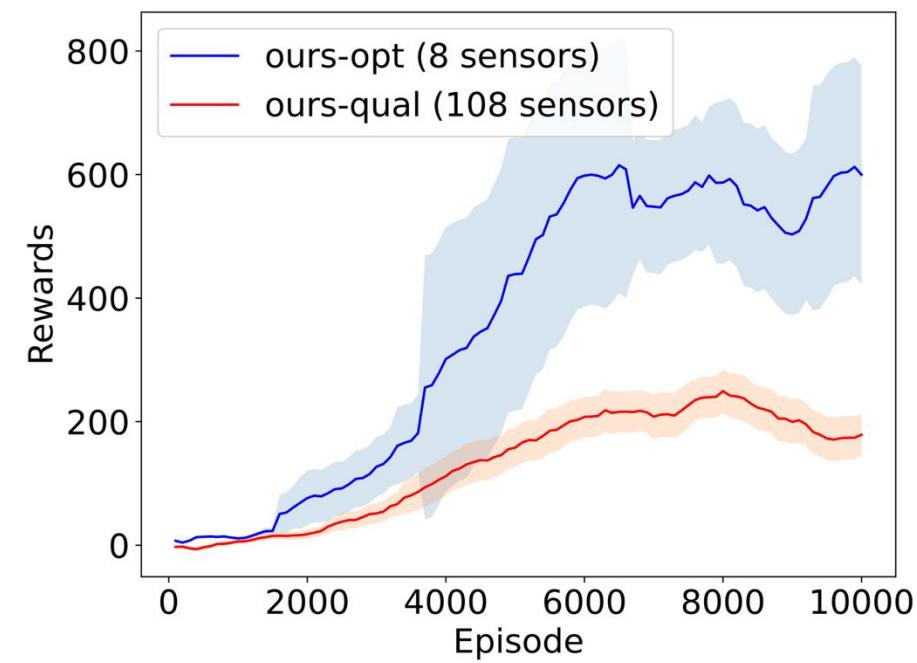


Sensor Count

Ours-qual (108 sensors), ours-opt (8 sensors).



(a) Imitation Learning



(b) Q-Learning

Conclusion & Takeaway

- NavHD outperforms both DNN and prior HD-based RL models in both accuracy and resource efficiency.
- NavHD uses ~10KB and can be deployed on extremely resource-limited hardware. If needed, model can be trained onboard.
- We found a sweet spot at 8 proximity sensors that gives us comparable accuracy to LiDAR while using ~100x less power.