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Background: Micro-Robotics

* Small form factor: explore areas inaccessible to larger robots
and humans (e.g. under canopy, earthquake aftermath)

* Low-cost hardware: valuable when at risk of losing robots (e.g.
remote field survey, search & rescue) or need in a large quantity



https://www.tamimi.com/law-update-articles/how-medical-drones-can-save-lives/
https://www.wired.com/2014/08/largest-robot-swarm-ever/
https://www.earthsense.co/terrasentia

Can micro-robots intelligently navigate?

Typical brain of these robots:

* ARM Cortex M-series core
* Flat memory: flash <1MB, RAM <500KB
e Clock <200MHz

* Power consumption <6mW




Today’s micro-robotic navigation

* Rely on cheap low-power sensors
* Run lightweight processing pipeline onboard
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Towards lightweight intelligence

* Deep neural networks (DNNs) are widely used in navigation (e.g.

object avoidance, path planning, SLAM) but require substantial
hardware resources.

* Adapting DNNSs for resource-limited hardware is an active area of
research.
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Lin etal. "On-device training under 256kb memory." NeuRIPS, 2022.



Hyperdimensional Comptuing

* Brain-inspired computing paradigm that represents information
using hypervectors.

* Known to be lightweight, error-resilient, hardware-friendly.

Model MNIST Acc (%) Flash (KB) RAM (KB) Latency (s)
HyperCam* 93.60 63.00 22.25 0.26
HyperCam** 90.36 52.62 22.25 0.08
xgBoost 76.86 365.55 77.09 0.01
MobileNet V3 98.69 1640.00 302.87 3.29
MCUNet V3 98.97 1340.00 502.91 46.71

Leeetal. "HyperCam: Low-Power Onboard Computer Vision for loT Cameras.” MobiCom, 2025.



HD-Based Q-Learning

Uses an HD encoder to map input state into hypervector and an
HD-based regression to predict Q-value Q (h;, a).
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Figure 1: Overview of QHD reinforcement learning.

Ni et al. “Efficient Off-Policy Reinforcement Learning via Brain-Inspired Computing.” GLSVLSI, 2023.



NavHD

* A differentiable HDC-based sense-actuate model designed for
training on common navigation tasks.

* OQutperforms DNN and previous HD methods in Q-learning and
zero-shot real-world experiments.

* Achieves highest resource efficiency: 10.2 KB for model storage,
900 clock cycles perinference, 1.1 mJ of energy per frame.
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Encoder

Given encoder ¢p: R —» R",

input sensors s; € R% in d directions is encoded into h; = ¢(s,).

Using a learned scaling matrix B € R™*% with B;; ~ N(O, o) and a
learned offset vector b € R™ with b; ~ Uniform(0,2m), h, is

d(s;) =cos(B:-s;+b)©®sin(B-s;)

The resulting h; is bounded within [-1, 1].



Action Prediction

Given model memory C = (c4, €5, ..., C) consisting of k action
hypervectors,

sim(hg, ¢,) = h{ - ¢,

Next action is determined by
y. = argmax;sim(h,, c;)



NavHD Characteristics

* Differentiable: Including encoder and similarity function. Can be
trained using backpropagation.

* Exchangeable: All parameters are i.i.d. random variables at
Initialization. Loss function is based on hypervector distances,
which are symmetric. Gradient-based training preserves
symmetry.



NavHD Q-Learning

Estimate Q-values using Q(s;, a) = sim(¢(s;), c,). Using Bellman
equation, the target Q-value is:

Ve =1 +y(1 — done,) maé}X Q'(St+1,a’)
Then loss is computed as

[; = HuberLoss(Q(s;, a;; G, B, b), y;)

NavHD uses Double DQN and experience replay to enhance
training stability.



Hardware Implementation

/4 ’%‘ \ e i\
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TABLE II: System power consumption.




Evaluation



Object Avoidance Task

Input: observation (point cloud)
Output: action (4-class forward differential drive)




Learning Quality

* DNN: four-layer with hidden size 256, 128, 64.
* ReactHD: existing HD-based RL work. n=5,000.
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(a) Hardware-optimized models in simulation (b) Real world experiments



Resource Usage

TABLE IV: Resource usage on the target hardware.

Model Memory (kB) Clock Cycle (k) Energy (mJ)
DNN 263.8 2.9 34
ReactHD 19.5 8.4 9.9
NavHD 10.2 0.9 1.1

900 clock cyles in our MCU (64 MHz) takes ~14 us.



CPU-Only Experiments

Models that don’t fitin
embedded hardware. 8001 — Ours

» DNN-qual: additional hidden — fesetinam
layer of size 512.
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Encoder Ablation Study

* Explicit time encoding:
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Sensor Count

Ours-qual (108 sensors), ours-opt (8 sensors).
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Conclusion & Takeaway

* NavHD outperforms both DNN and prior HD-based RL models in
both accuracy and resource efficiency.

* NavHD uses ~10KB and can be deployed on extremely resource-
limited hardware. If needed, model can be trained onboard.

* We found a sweet spot at 8 proximity sensors that gives us
comparable accuracy to LIDAR while using ~100x less power.
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