HyperCam: Low-Power Onboard Computer
Vision for loT Cameras

Chae Young Lee', Luke (Pu) Yi', Maxwell Fite?,
Tejus Rao?, Sara Achour’2, Zerina Kapetanovic?

1 Department of Computer Science, Stanford University
2 Department of Electrical Engineering, Stanford University

f
) stanford,

SYSTEMS LAB

Today’s sensing systems

Supply Chain Healthcare Agriculture
= 9=:\ O
[@ F<I>K
| <>

These sensing systems rely on huge amounts of data to perform tasks and deliver insights

@ Images = RF E[]oi]”ﬂ Audio & Temperature @ Moisture

Offloading data can be challenging

Eae Infrequent
éa Collection
—1 Endpoint
| Device Gatewa?
Ground Station
o r'm“w (s)
(({I a I:‘)) —_— Satellite
> _
Eﬂ Low Bandwidth
" Connection
Power (mﬁm}

Constrained

Extremely energy-efficient devices

Underwater Wireless

BeetleCam’ WISPCam? Camera?®

U —

[1] lyer, Vikram, et al. "Wireless steerable vision for live insects and insect-scale robots." Science robotics 5.44 (2020): eabb0839.
[2] Naderiparizi, Saman, et al. "WISPCam: A battery-free RFID camera." 2015 IEEE International Conference on RFID (RFID). |[EEE, 2015.
[3] Afzal, Sayed Saad, et al. "Battery-free wireless imaging of underwater environments." Nature communications 13.1 (2022): 5546.

Some challenges

Battery-free
Wireless Camera

R

Image Transfer
Delays

Can we enable onboard computer vision on
resource-constrained loT cameras?

HyperCam in a nutshell

Onboard ML classifier built on hyperdimensional
computing principles.

Microcontroller

“Person B®

e Comparable accuracy as DNNs but 55-398x @® T
faster and 12-33x more lightweight than Koy [Ehperveciore)] | shace

inference

DNNs. B Peri:na [a.:,n })) 3‘:.?,.:

e Proposes a novel hyperdimensional encoder eneode | compare o
L. . [8,~31,8] lookup table
that optimizes memory and time usage. hypervector

Lee et al,, “HyperCam: Low-Power Onboard Computer Vision for loT Cameras,” MobiCom, 2025.

Hyperdimensional Computing (HDC)

Motivated by the observation that human brain operates on high-dimensional
representation of data.

A paradigm of computing in hyperspace using hypervectors.

h, = [0,1,1,0,1,.0c0u0e.... ,1,0,1]
h, = [1,1,0,0,1,.0c0uc.... ,1,1,1]
h, = [0,0,1,1,0,....00.... ,1,0,0] Pentti Kanerva

P. Kanerva, “Hyperdimensional Computing: An Introduction to Computing in Distributed Representation
with High-Dimensional Random Vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139-159, 2009.

Hyperdimensional Computing (HDC)

o Basis vector generation o Binding o Bundling

o NY Brooklyn cold sweet happy
® @ @

RNG
: <NY, Brooklyn> {cold, sweet, happy}

w = =

Codebook

Codebook

With HDC, we can build machine learning classifiers that can
work with images on the edge.

Inference - Query Resuitx
Codebook 4

——— . Min
_:‘:"Q\ I i i
- &1) (& 5
Query HV |
= Hypervector ~~~~"~"~~""~""~-7-"-~"-----7-=-
@ Encoder ' ' '
OnlineHD
Wireless loT Camera * e

Train Data

Model Memnd

Training

Inference

Encoder

Train Data

W

S

Trainer

—* B L -
-l-a'1

Query Resultx

Min

5 5,

| OnlineHD |,

Model Memory

executed on commodity hardware

Inference

[Min

Inference) : Query Results
Codebook 4

Encoder

| OnlineHD |,
Trainer

Train Data

Model Memnd

executed on ultra-low power microcontroller

Where is the performance bottleneck?

Wireless loT Camera

Inference

Train Data

Hypervector
Encoder

Query Resultx

, Min
| i i i
* E’l 62 ﬁn
Query HV
. OnlineHD)
Trainer

Model Memnd

Wireless loT Camera

Inference

Train Data

The Encoder

Encoder

. OnlineHD

Trainer

Query Resultx

Min

Model Memnd

The challenge is with encoding

Image encoding scales at O(whn), where inference only at O(n).

On STM32US585AI MCU, existing image encoding method takes ~1 minute to
encode 120x160 grayscale image.

Our innovation reduces this to 0.05s.

HyperCam Image Encoding

HyperCam employs HD expression rewrites to reduce resource usage

of encoding operation.
h

hoimg = > > R(i) © C(j) © V(Imgli - w + j])

i=1 i=1

h w \
hoimg = Y > p'[R(0)] © p*[C(0)] © V(Img[i - w + j])
e > semantics-preserving
h w
hﬂ,m = Zp‘ WHIX(0)] © V(Img[i-w+ j]) y,
i=1 j=1
255
hoimg = > IPix@]- V@ 0| > p"[X(0)]
z=0 i, jePix(z)

HyperCam Image Encoding

HyperCam deploys a novel sparse bundling operation that approximates
bundling of independent vectors. Sparse bundling is 500x faster than normal

bundling. 255

hvimg = Z |Pix(z)| - V(z) ©|SparseBundle(Pix(z))

z=0

Each bundling operation reduced to ~20 (instead of 10,000) vector updates.

Computational Savings

Naive | Rewrite 1 | Rewrite 2 | Rewrite 3 | HyperCam

Codebook 536 258 258 258 258
Bind 38400 38400 19200 19200 19200
Bundle 19200 19200 19200 19456 256
SparseBundle 0 0 0 0 19200

Table 1: Comparison of encoding methods based on the size of the codebook and the number of bind, bundle,
and sparse bundle operations. Each bundling operation involves 10000 bit-wise addition, whereas each sparse bundling
operation involves 20.

HyperCam gains huge computational and memory savings
at the expense of degraded accuracy

Evaluation

4 Datasets

e MNIST, Fashion MNIST: 28x28 60,000 images in 10 classes
e Face Detection & Identification: 120x160 5000 images in 7 person classes
and 1 non-person class

3 Types of Models

e HDC: Vanilla HDC, OnlineHD (SOTA trainer at the time), Rewrite 2
e Traditional ML Models: SVM, xgBoost Tree
e Tiny ML: MobileNet, MicroNet, MCUNet-Small, MCUNet-Large

Evaluation

Test accuracy evaluated on software

Resource usage evaluated on hardware

Himax HM01B0

STM32U585

nrf52840

B-U585I-10T02A

Evaluation against HDC and traditional ML models

Accuracy (%)

100

80t

60

40 ¢

20

Classification Accuracy

F—a— MNIST

Fashiom MNIST

—a— Face Detection
—#— Face |dentification

)
& ¢

0l

&
& i
/ Q\""'.

Count sketch

W

&

&

Model

&"‘5
%"*d} ™

Bloom filter

-

Evaluation against HDC and traditional ML models

100 Classification Accuracy

60

L]

40 ¢

Accuracy (%)

20 —a— MNIST

Fashiom MNIST
—a— Face Detection
—#— Face |dentification

. o I " I ¥ - “-rl
\Q@\e\ ‘*ﬂﬁ*ﬁ (‘(}f{‘\ &'ﬁ@ g@ ':;ﬁd:?

: S 2 +

& o ¥ & ™~

Count sketch Model Bloom filter

Accuracy (%)

Evaluation against tiny ML models

100}

S0

8or

J0F

60

S0t

0

Accuracy vs. Efficiency of Flash Memory

$,
LPS 4 *
i e
s
=
m
»®
%
HyperCam
w M
000 0.005 0.020

1 / Flash Memory (1/KB)

Accuracy (%)

100

o

BOT

10}

60

30

X Rewrite 2
HyperCam*
» HyperCam**
» MicroNets
Accuracy vs. Efficiency of Latency > MobileNet V3
& - MCUNet V3*
°
: X MCUNet V3**
s ©
%]
0. -
o
»
HyperCam
-
0 4 3 8 10 12

1/ Latency (1/s)

Resource Usage

Encoder
Count @ Bind & Sum
Sketch © Binning
Initialization
I Majority Vote
Bloom Prediction
Filter

I T T T T

0 40 80 120 160
Time (ms)

| 200 240

Resource Usage

STM32U585Al Flash Memory (2MB)

Free
810 KB

Other
198 KB
TF Micro
102 KB
Graph
83 KB

Weights
807 KB

MCUNetV3

Free
1634 KB

Weights
366 KB

XGBoost

Free
1937 KB

Weights
63 KB

Count Sketch

Free
1947 KB

Weights
53 KB

Bloom Filter

Conclusion

e \We propose HyperCam, a fast and lightweight ML classifier based on
hyperdimensional computing.

e HyperCam optimizes HD encoding for images using sparse bundling, resulting
in less than 2% accuracy drop.

e HyperCam delivers latency of 0.08-0.27s while using 42.91-63.00KB flash
memory and 22.25KB RAM at peak.

Teaser: learned bloom filter beats DNNs in accuracy.

	Slide 1: HyperCam: Low-Power Onboard Computer Vision for IoT Cameras
	Slide 2: Today’s sensing systems
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Can we enable onboard computer vision on resource-constrained IoT cameras?
	Slide 7: HyperCam in a nutshell
	Slide 8: Hyperdimensional Computing (HDC)
	Slide 9: Hyperdimensional Computing (HDC)
	Slide 10: With HDC, we can build machine learning classifiers that can work with images on the edge.
	Slide 11: Training
	Slide 12: Inference
	Slide 13: Where is the performance bottleneck?
	Slide 14: The Encoder
	Slide 15: The challenge is with encoding
	Slide 16: HyperCam Image Encoding
	Slide 17: HyperCam Image Encoding
	Slide 18: Computational Savings
	Slide 19: Evaluation
	Slide 20: Evaluation
	Slide 21: Evaluation against HDC and traditional ML models
	Slide 22: Evaluation against HDC and traditional ML models
	Slide 23: Evaluation against tiny ML models
	Slide 24: Resource Usage
	Slide 25: Resource Usage
	Slide 26: Conclusion

