

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras

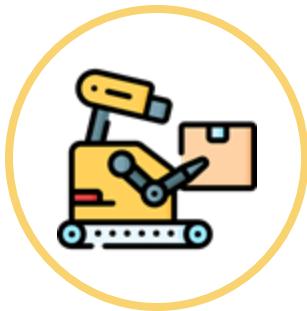
Chae Young Lee¹, Luke (Pu) Yi¹, Maxwell Fite²,
Tejas Rao², Sara Achour^{1,2}, Zerina Kapetanovic²

1 Department of Computer Science, Stanford University

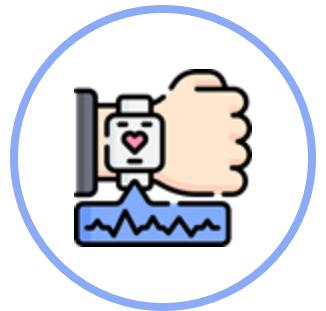
2 Department of Electrical Engineering, Stanford University

Today's sensing systems

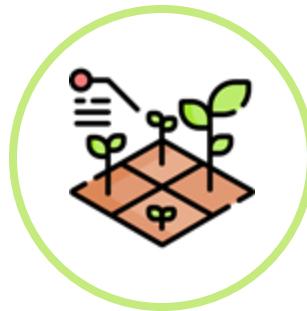
Supply Chain



Healthcare



Agriculture



These sensing systems rely on huge amounts of data to perform tasks and deliver insights

Images

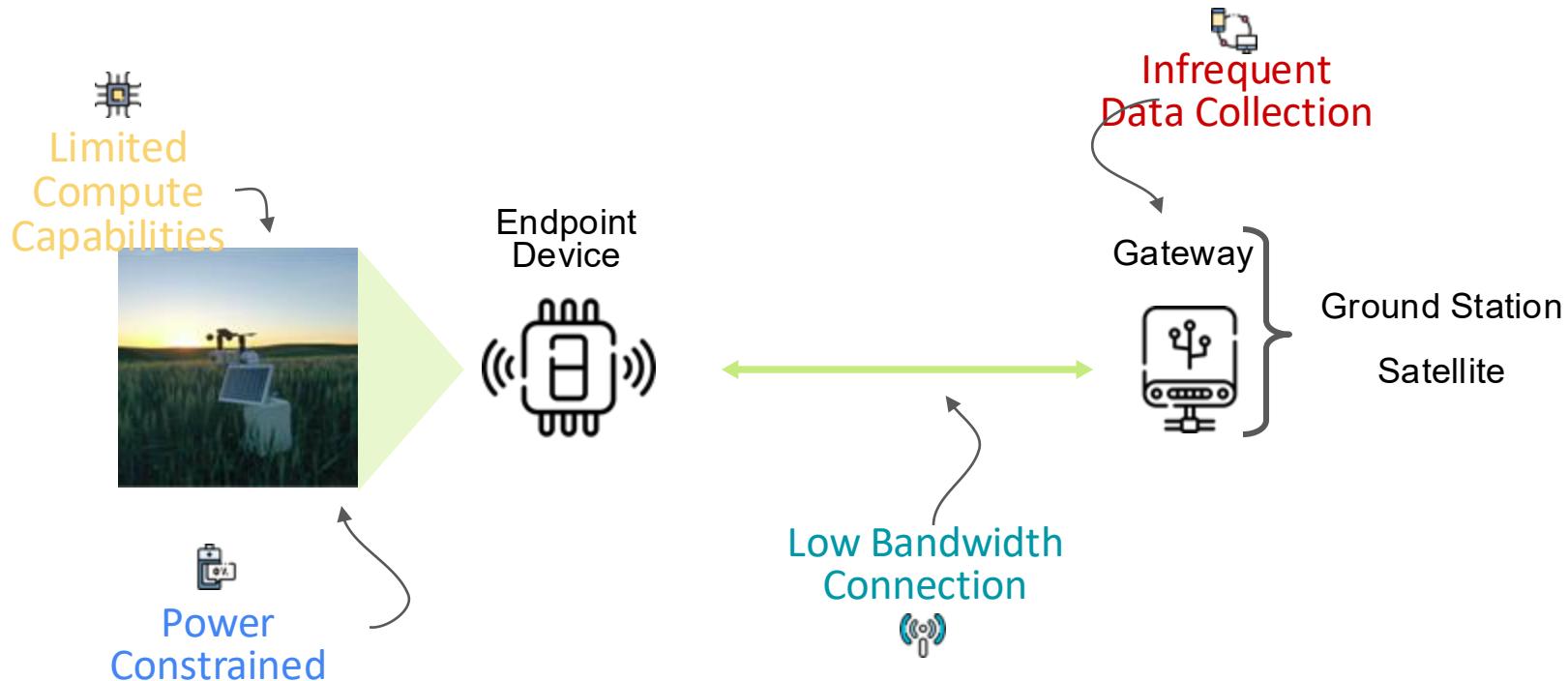
RF

Audio

Temperature

Moisture

Offloading data can be challenging



Extremely energy-efficient devices

BeetleCam¹

WISPCam²

Underwater Wireless Camera³

[1] Iyer, Vikram, et al. "Wireless steerable vision for live insects and insect-scale robots." *Science robotics* 5.44 (2020): eabb0839.

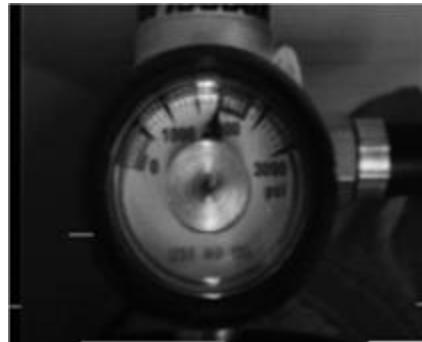
[2] Naderiparizi, Saman, et al. "WISPCam: A battery-free RFID camera." *2015 IEEE International Conference on RFID (RFID)*. IEEE, 2015.

[3] Afzal, Sayed Saad, et al. "Battery-free wireless imaging of underwater environments." *Nature communications* 13.1 (2022): 5546.

Some challenges

Battery-free
Wireless Camera

Image Transfer
Delays



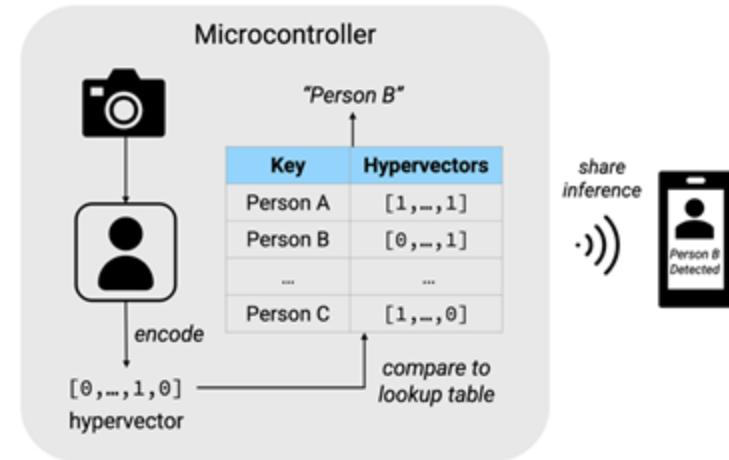
Missing Pixels 😢

Can we enable onboard computer vision on
resource-constrained IoT cameras?

HyperCam in a nutshell

Onboard ML classifier built on hyperdimensional computing principles.

- Comparable accuracy as DNNs but **55-398x faster** and **12-33x more lightweight** than DNNs.
- Proposes a novel hyperdimensional encoder that optimizes memory and time usage.



Hyperdimensional Computing (HDC)

Motivated by the observation that human brain operates on **high-dimensional** representation of data.

A paradigm of computing in **hyperspace** using **hypervectors**.

$$\mathbf{h}_a = [0, 1, 1, 0, 1, \dots, 1, 0, 1]$$

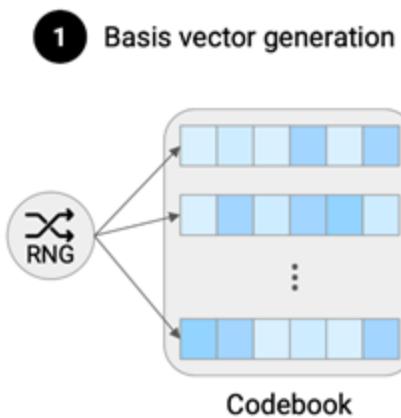
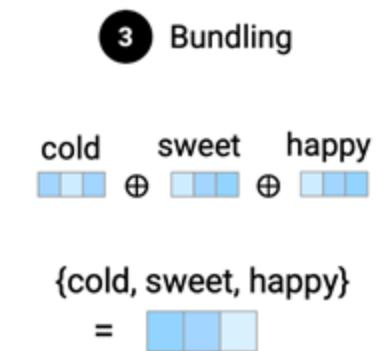
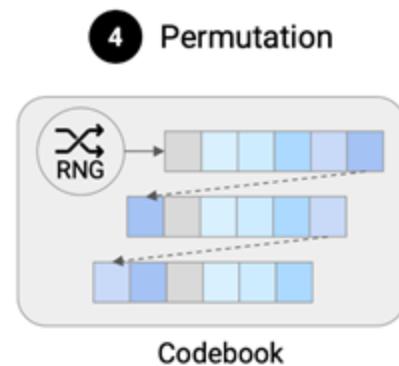
$$\mathbf{h}_b = [1, 1, 0, 0, 1, \dots, 1, 1, 1]$$

:

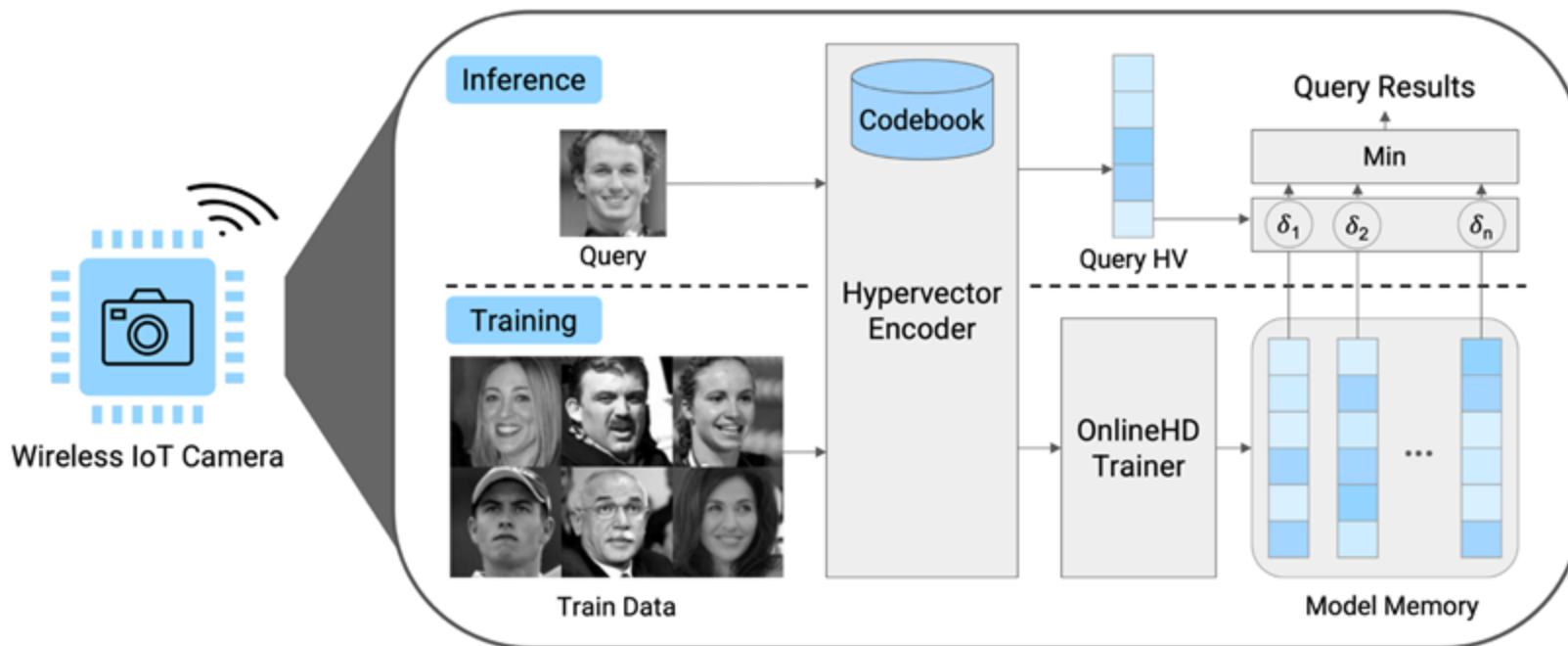
$$\mathbf{h}_z = [0, 0, 1, 1, 0, \dots, 1, 0, 0]$$

Penti Kanerva

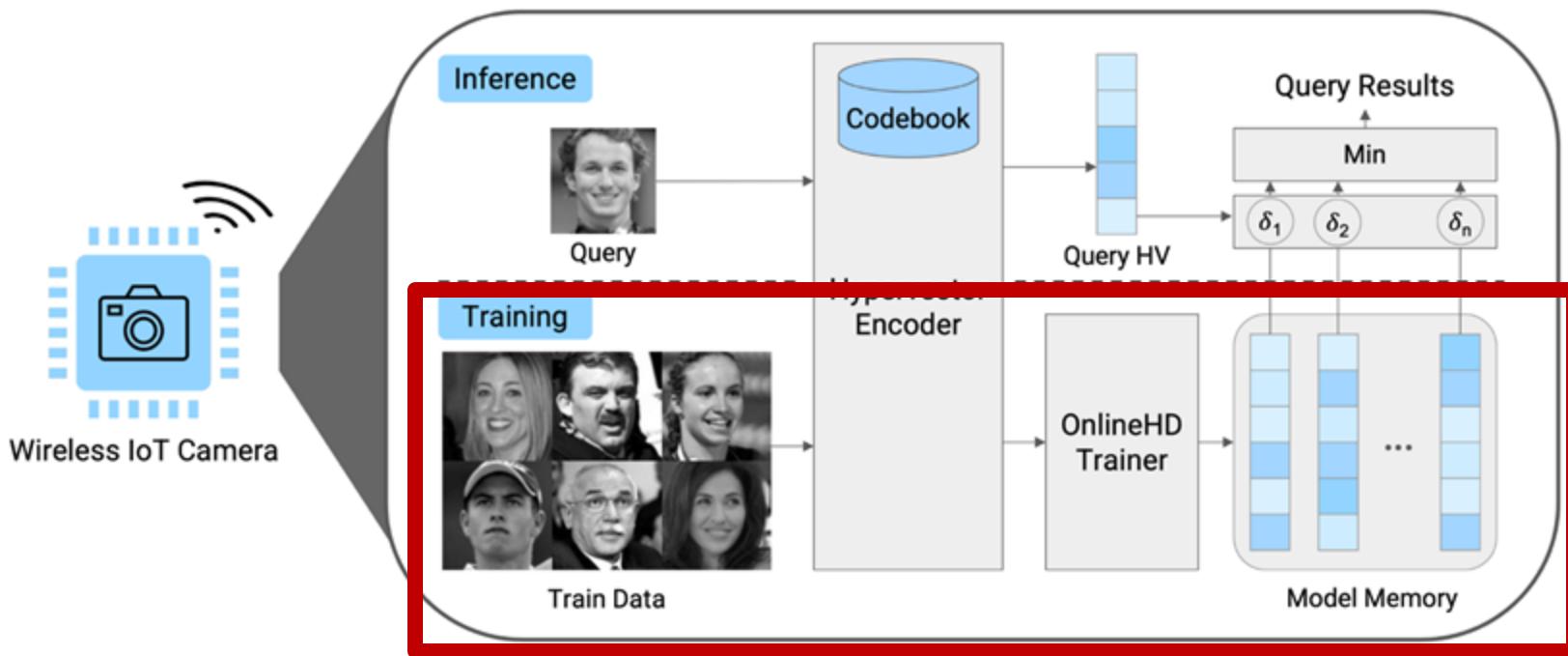
Hyperdimensional Computing (HDC)



With HDC, we can build machine learning classifiers that can work with images on the edge.

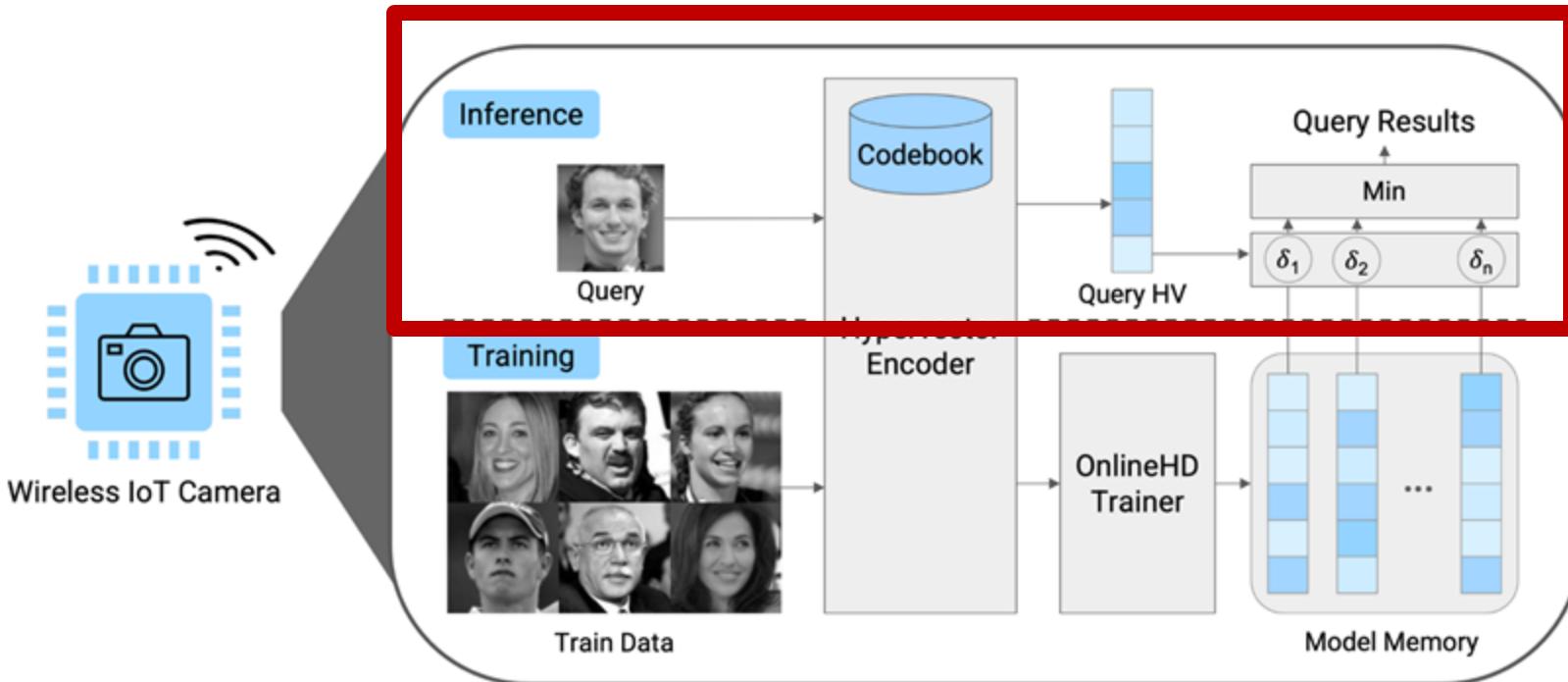


Training



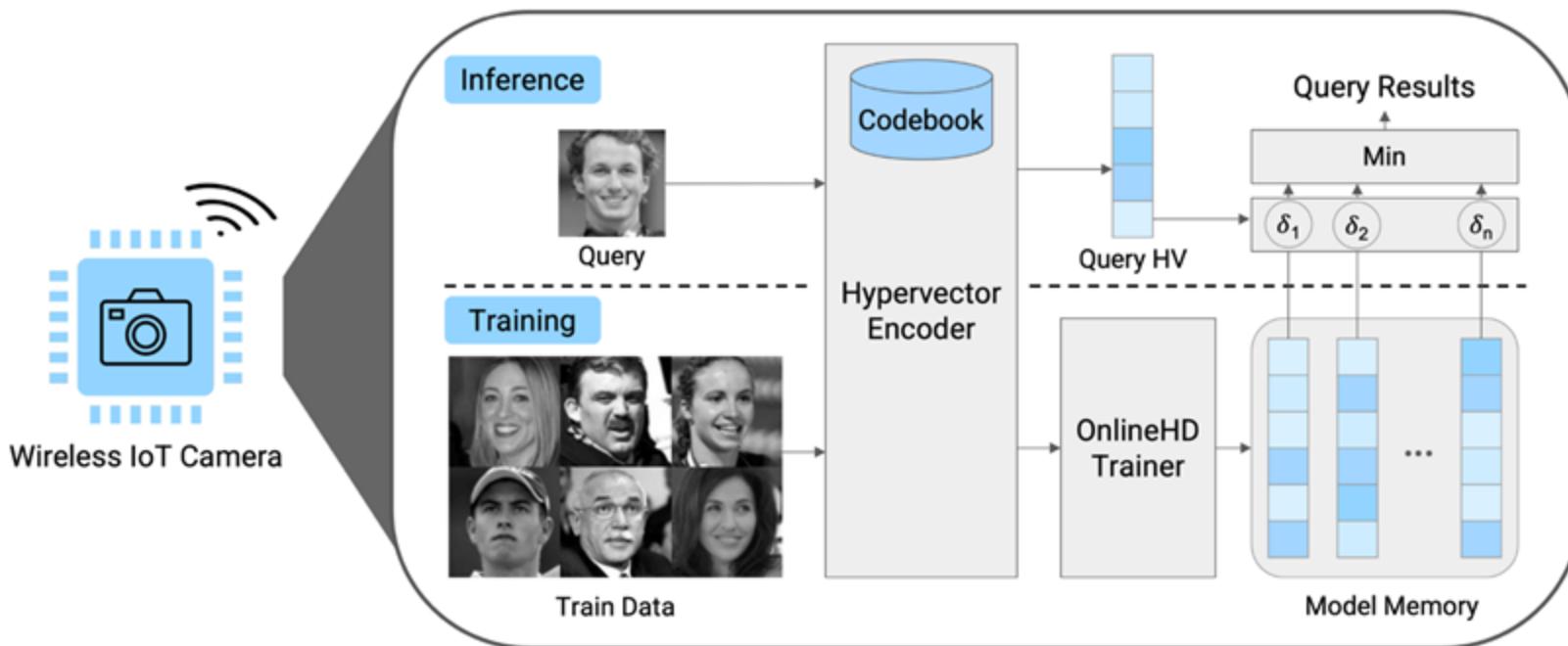
executed on commodity hardware

Inference

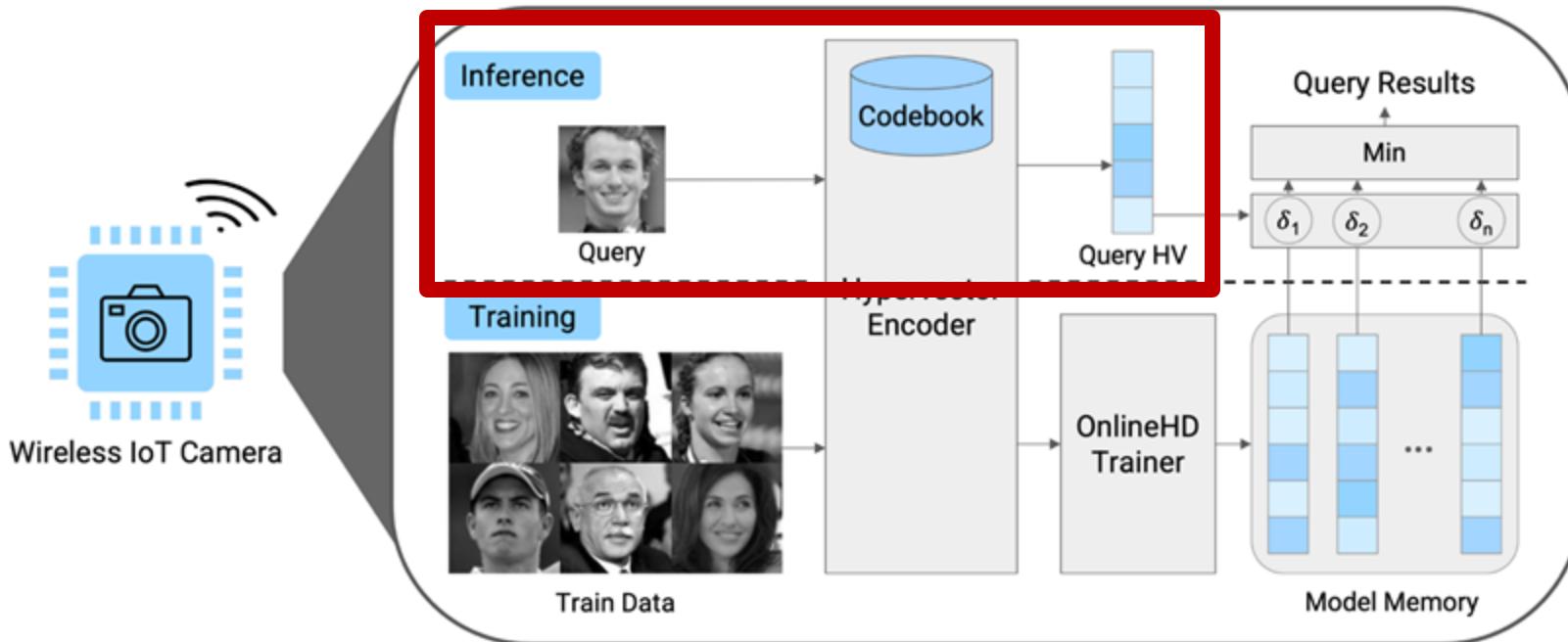


executed on ultra-low power microcontroller

Where is the performance bottleneck?



The Encoder



The challenge is with **encoding**

Image encoding scales at $O(whn)$, where inference only at $O(n)$.

On STM32U585AI MCU, existing image encoding method takes **~1 minute** to encode 120x160 grayscale image.

Our innovation reduces this to **0.05s**.

HyperCam Image Encoding

HyperCam employs HD expression rewrites to reduce resource usage of encoding operation.

$$hv_{img} = \sum_{i=1}^h \sum_{j=1}^w R(i) \odot C(j) \odot V(Img[i \cdot w + j])$$

Rewrite 1 $hv_{img} = \sum_{i=1}^h \sum_{j=1}^w p^i[R(0)] \odot p^j[C(0)] \odot V(Img[i \cdot w + j])$

Rewrite 2 $hv_{img} = \sum_{i=1}^h \sum_{j=1}^w p^{i \cdot w + j}[X(0)] \odot V(Img[i \cdot w + j])$

Rewrite 3 $hv_{img} = \sum_{z=0}^{255} |Pix(z)| \cdot V(z) \odot \left[\sum_{i,j \in Pix(z)} p^{i \cdot w + j}[X(0)] \right]$

} semantics-preserving

HyperCam Image Encoding

HyperCam deploys a novel **sparse bundling operation** that approximates bundling of independent vectors. **Sparse bundling is 500x faster than normal bundling.**

$$hv_{img} = \sum_{z=0}^{255} |Pix(z)| \cdot V(z) \odot \boxed{SparseBundle(Pix(z))}$$

Each bundling operation reduced to ~20 (instead of 10,000) vector updates.

Computational Savings

	Naive	Rewrite 1	Rewrite 2	Rewrite 3	HyperCam
Codebook	536	258	258	258	258
Bind	38400	38400	19200	19200	19200
Bundle	19200	19200	19200	19456	256
SparseBundle	0	0	0	0	19200

Table 1: Comparison of encoding methods based on the size of the codebook and the number of bind, bundle, and sparse bundle operations. Each bundling operation involves 10000 bit-wise addition, whereas each sparse bundling operation involves 20.

HyperCam gains huge computational and memory savings at the expense of degraded accuracy

Evaluation

4 Datasets

- MNIST, Fashion MNIST: 28x28 60,000 images in 10 classes
- Face Detection & Identification: 120x160 5000 images in 7 person classes and 1 non-person class

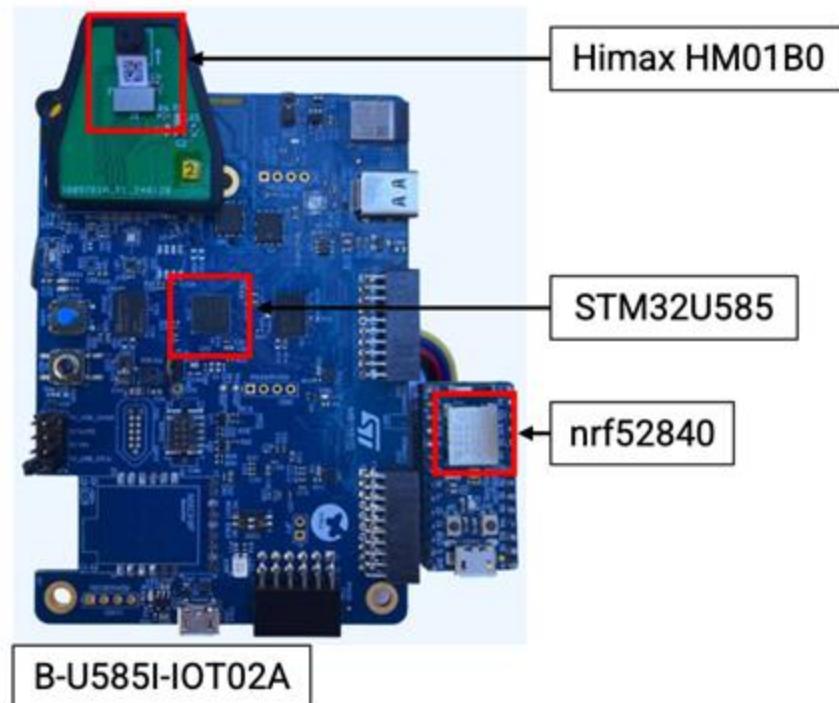
3 Types of Models

- HDC: Vanilla HDC, OnlineHD (SOTA trainer at the time), Rewrite 2
- Traditional ML Models: SVM, xgBoost Tree
- Tiny ML: MobileNet, MicroNet, MCUNet-Small, MCUNet-Large

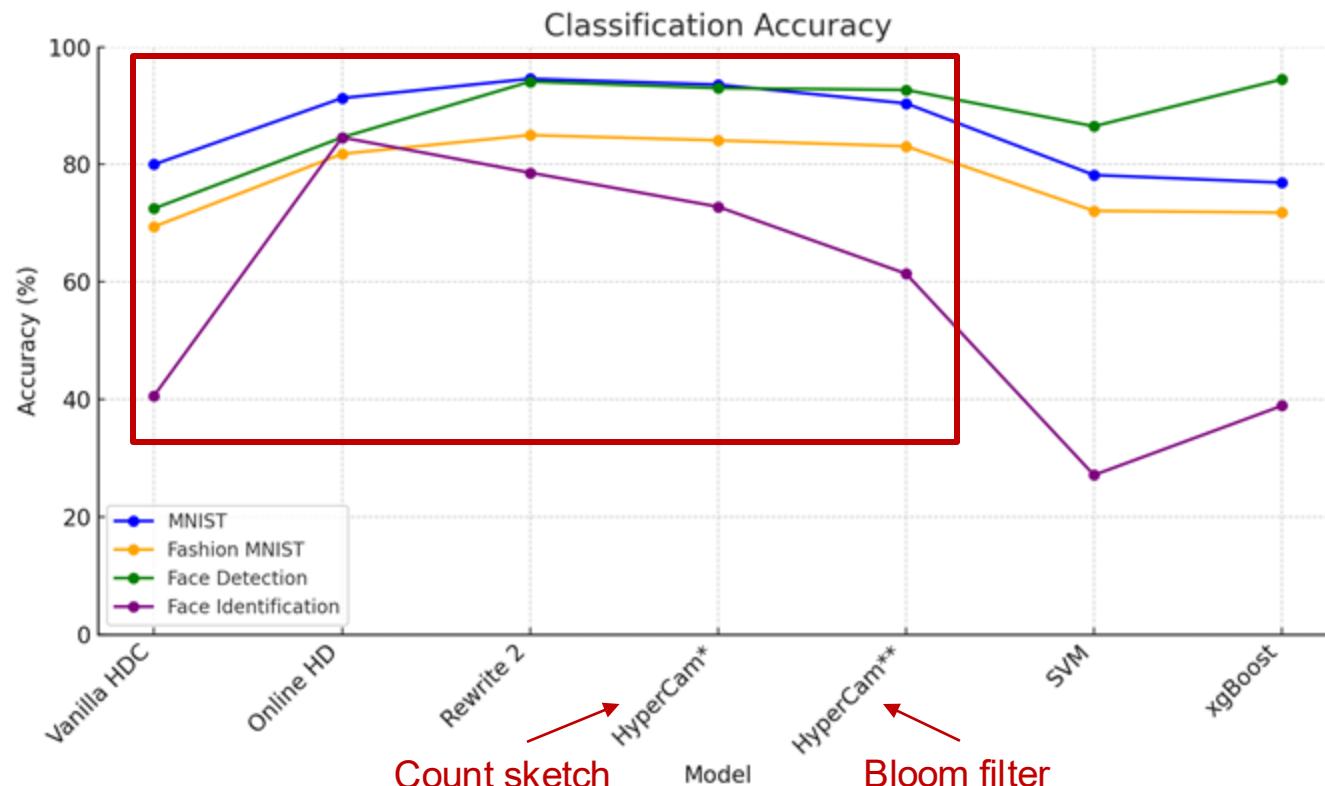
Evaluation

Test accuracy evaluated on software

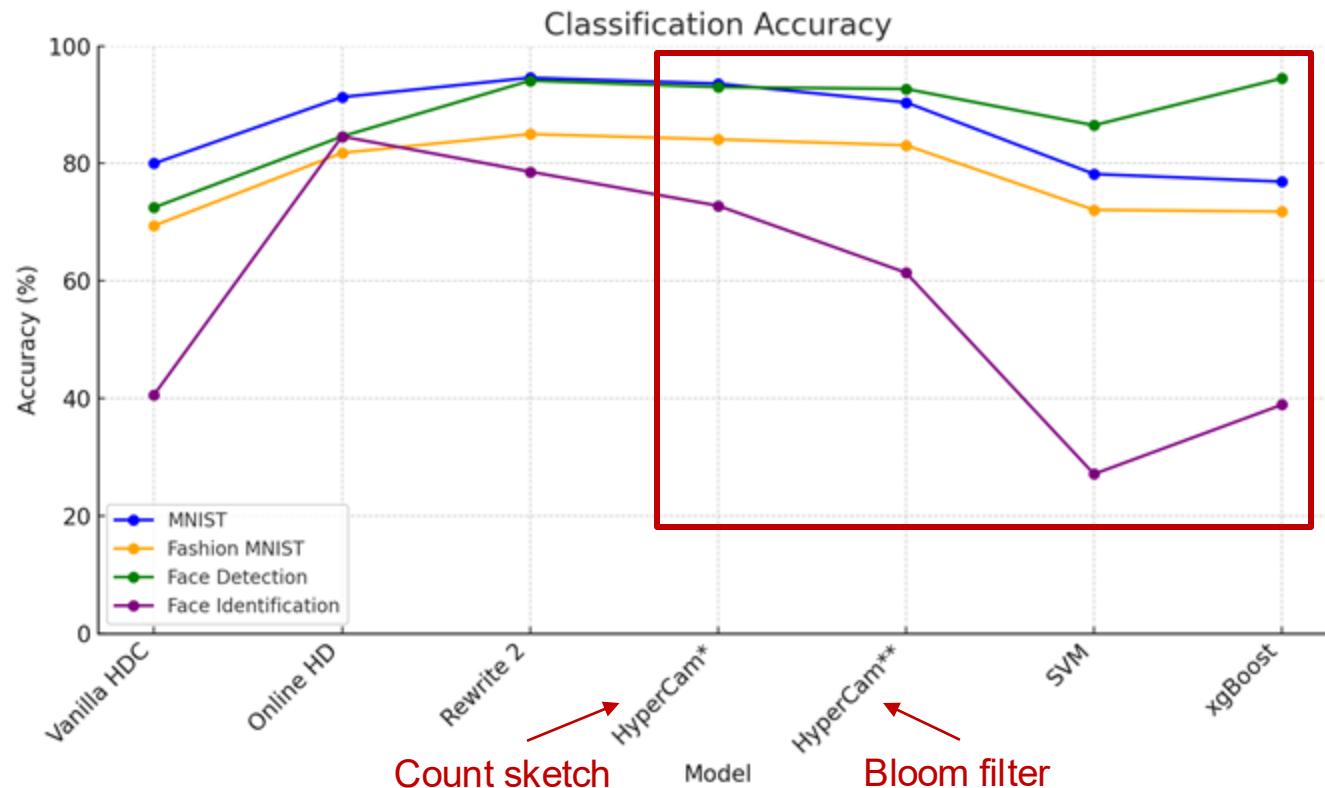
Resource usage evaluated on hardware



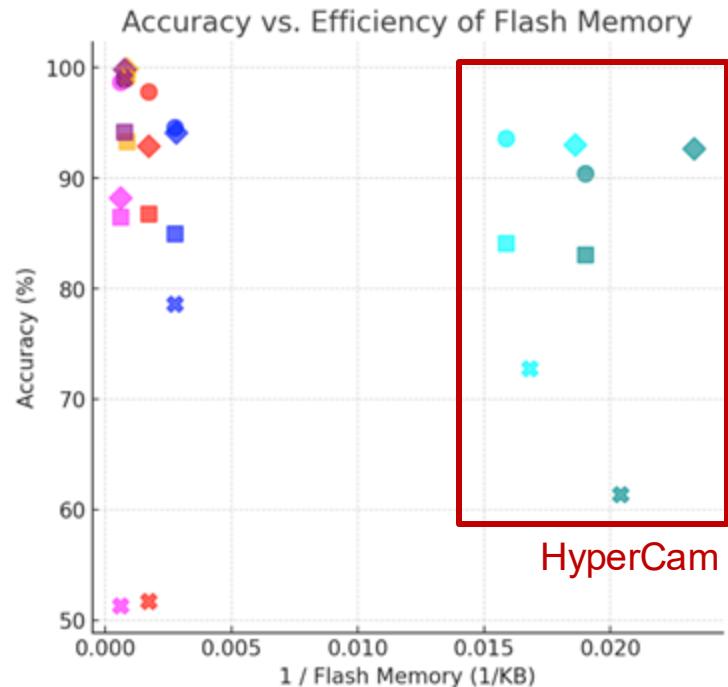
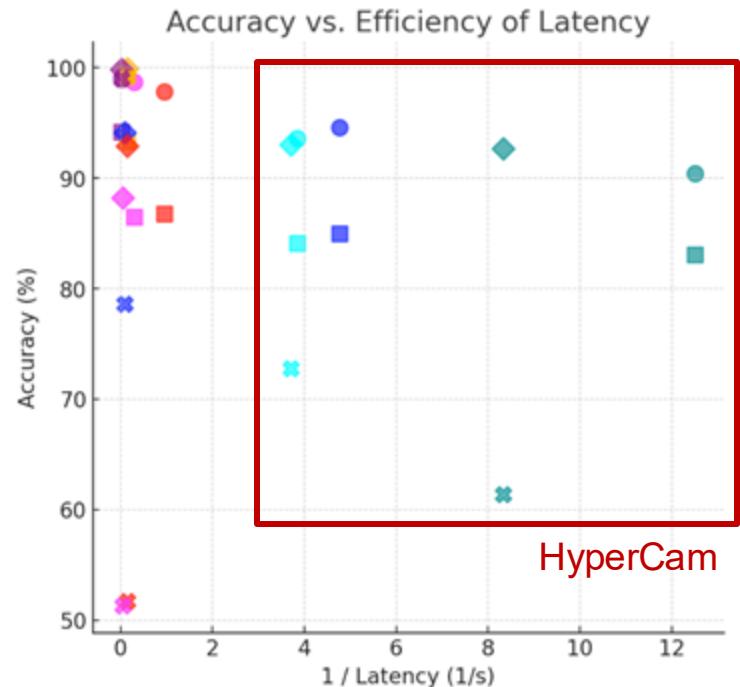
Evaluation against HDC and traditional ML models



Evaluation against HDC and traditional ML models

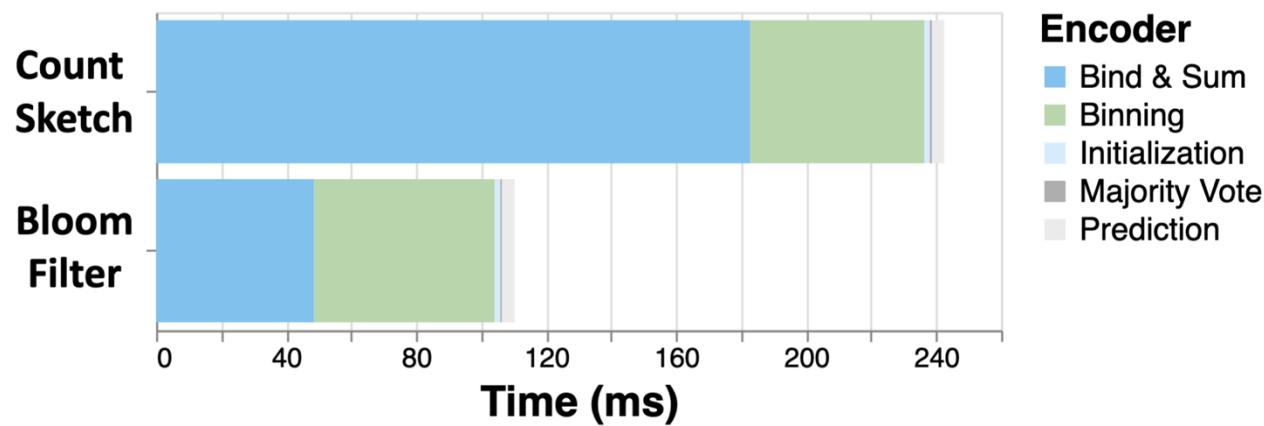


Evaluation against tiny ML models



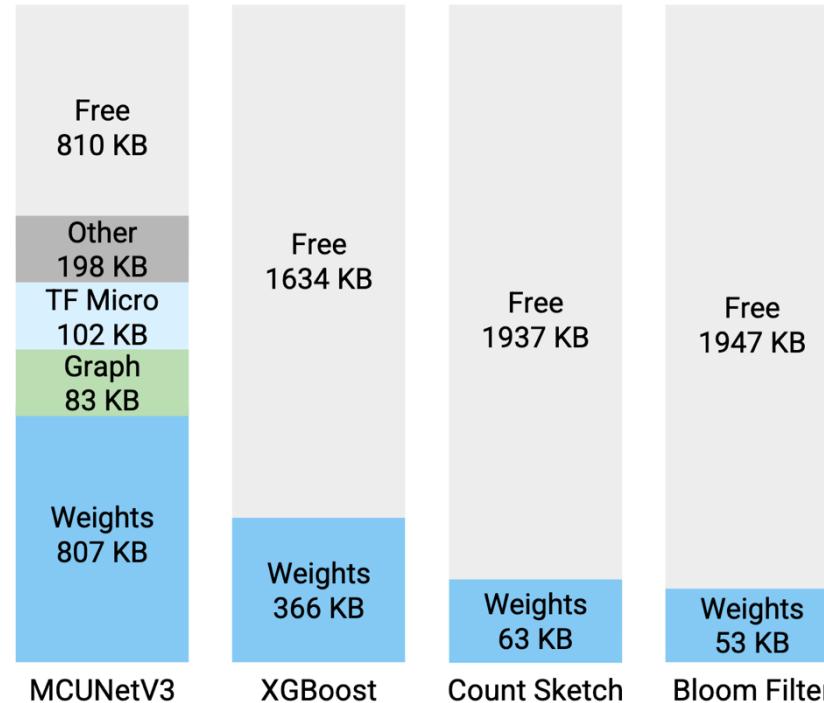
- ✗ Rewrite 2
 - ✗ HyperCam*
 - ✗ HyperCam**
 - ✗ MicroNets
 - ✗ MobileNet V3
 - ✗ MCUNet V3*
 - ✗ MCUNet V3**

Resource Usage



Resource Usage

STM32U585AI Flash Memory (2MB)



Conclusion

- We propose HyperCam, a fast and lightweight ML classifier based on hyperdimensional computing.
- HyperCam optimizes HD encoding for images using sparse bundling, resulting in less than 2% accuracy drop.
- HyperCam delivers latency of 0.08-0.27s while using 42.91-63.00KB flash memory and 22.25KB RAM at peak.

Teaser: learned bloom filter beats DNNs in accuracy.