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Today’s sensing systems
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These sensing systems rely on huge amounts of data to perform tasks and deliver insights
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Offloading data can be challenging
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Extremely energy-efficient devices
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Some challenges
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Can we enable onboard computer vision on
resource-constrained loT cameras?



HyperCam in a nutshell

Onboard ML classifier built on hyperdimensional
computing principles.
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Hyperdimensional Computing (HDC)

Motivated by the observation that human brain operates on high-dimensional
representation of data.

A paradigm of computing in hyperspace using hypervectors.
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Hyperdimensional Computing (HDC)

o Basis vector generation o Binding o Bundling
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With HDC, we can build machine learning classifiers that can
work with images on the edge.
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Where is the performance bottleneck?
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Wireless loT Camera
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The challenge is with encoding

Image encoding scales at O(whn), where inference only at O(n).

On STM32US585AI MCU, existing image encoding method takes ~1 minute to
encode 120x160 grayscale image.

Our innovation reduces this to 0.05s.



HyperCam Image Encoding

HyperCam employs HD expression rewrites to reduce resource usage

of encoding operation.
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HyperCam Image Encoding

HyperCam deploys a novel sparse bundling operation that approximates
bundling of independent vectors. Sparse bundling is 500x faster than normal

bundling. 255

hvimg = Z |Pix(z)| - V(z) ©|SparseBundle(Pix(z))

z=0

Each bundling operation reduced to ~20 (instead of 10,000) vector updates.



Computational Savings

Naive | Rewrite 1 | Rewrite 2 | Rewrite 3 | HyperCam

Codebook 536 258 258 258 258
Bind 38400 38400 19200 19200 19200
Bundle 19200 19200 19200 19456 256
SparseBundle 0 0 0 0 19200

Table 1: Comparison of encoding methods based on the size of the codebook and the number of bind, bundle,
and sparse bundle operations. Each bundling operation involves 10000 bit-wise addition, whereas each sparse bundling
operation involves 20.

HyperCam gains huge computational and memory savings
at the expense of degraded accuracy



Evaluation

4 Datasets

e MNIST, Fashion MNIST: 28x28 60,000 images in 10 classes
e Face Detection & Identification: 120x160 5000 images in 7 person classes
and 1 non-person class

3 Types of Models

e HDC: Vanilla HDC, OnlineHD (SOTA trainer at the time), Rewrite 2
e Traditional ML Models: SVM, xgBoost Tree
e Tiny ML: MobileNet, MicroNet, MCUNet-Small, MCUNet-Large



Evaluation

Test accuracy evaluated on software

Resource usage evaluated on hardware
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Evaluation against HDC and traditional ML models
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Evaluation against HDC and traditional ML models
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Accuracy (%)

Evaluation against tiny ML models
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Resource Usage
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Resource Usage
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Conclusion

e \We propose HyperCam, a fast and lightweight ML classifier based on
hyperdimensional computing.

e HyperCam optimizes HD encoding for images using sparse bundling, resulting
in less than 2% accuracy drop.

e HyperCam delivers latency of 0.08-0.27s while using 42.91-63.00KB flash
memory and 22.25KB RAM at peak.

Teaser: learned bloom filter beats DNNs in accuracy.
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