
HyperCam: Low-Power Onboard Computer Vision for
IoT Cameras

Chae Young Lee, Pu (Luke) Yi, Maxwell Fite, Tejus Rao,

Sara Achour, Zerina Kapetanovic

Stanford University

Stanford, USA

{chae,lukeyi,mfite,tejus,sachour,zerina}@stanford.edu

ABSTRACT
We present HyperCam, an energy-efficient image classifi-

cation pipeline that enables computer vision tasks onboard

low-power IoT camera systems. HyperCam leverages hyper-

dimensional computing to perform training and inference

efficiently on low-power microcontrollers. We implement

a low-power wireless camera platform using off-the-shelf

hardware and demonstrate that HyperCam can achieve an

accuracy of 93.60%, 84.06%, 92.98%, and 72.79% for MNIST,

Fashion-MNIST, Face Detection, and Face Identification tasks,

respectively, while significantly outperforming other clas-

sifiers in resource efficiency. Specifically, it delivers infer-

ence latency of 0.08-0.27s while using 42.91-63.00KB flash

memory and 22.25KB RAM at peak. Among other machine

learning classifiers such as SVM, xgBoost, MicroNets, Mo-

bileNetV3, and MCUNetV3, HyperCam is the only classifier

that achieves competitive accuracy while maintaining com-

petitive memory footprint and inference latency that meets

the resource requirements of low-power camera systems.

CCS CONCEPTS
• Computing methodologies → Machine Learning; •
Hardware→ Power and energy; • Computer systems
organization→ Embedded systems.

KEYWORDS
Wireless Cameras, Hyperdimensional Computing, TinyML,

Internet-of-Things

ACM Reference Format:
Chae Young Lee, Pu (Luke) Yi, Maxwell Fite, Tejus Rao,, Sara Achour,

Zerina Kapetanovic. 2025. HyperCam: Low-Power Onboard Com-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1129-9/25/11

https://doi.org/10.1145/3680207.3723490

HypervectorsKey

[1,…,1]Person A

[0,…,1]Person B

……

[1,…,0]Person C

Person B
Detected

[0,…,1,0]

encode
compare to
lookup table

share
inference

hypervector

Microcontroller

“Person B”

Figure 1: HDC for image classification. HyperCam uses

an HD classifier to perform face detection and identification

tasks onboard low-power wireless camera platforms.

puter Vision for IoT Cameras. In The 31st Annual International
Conference on Mobile Computing and Networking (ACM MobiCom
’25), November 3–7, 2025, Hong Kong, Hong Kong. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3680207.3723490

1 INTRODUCTION
Image sensors are now everywhere, found in smartphones,

laptops, gaming consoles, and vehicles. Paired with advances

in machine learning (ML), they enable object detection and

classification for practical applications in areas such as health-

care, manufacturing, or transportation. However, MLmodels,

especially deep neural networks (DNNs), require substantial

computing power andmemory, limiting the adoption of these

techniques to Internet-of-Things (IoT). As a result, many IoT

cameras offload images to the cloud or gateway servers with

more computing resources [21, 34, 41, 42]. This approach,

however, is not well-suited for low-power wireless cameras.

Transmitting a single image can take a long time, consuming

substantial energy in the process. For instance, battery-free

wireless cameras are promising solutions for many IoT appli-

cations, but transferring a single 176x144 grayscale image can

take upward of 3 seconds depending on the communication

distance [35]. They require numerous packet transmissions,

which increase overall power consumption, and suffer from

frequent packet losses, resulting in degraded image quailty.

https://doi.org/10.1145/3680207.3723490
https://doi.org/10.1145/3680207.3723490

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

Given these limitations, performing onboard computation

can be advantageous, allowing devices to transmit only the

most relevant data. Another issue is privacy, as offloading

images to the cloud can expose sensitive content, such as

pictures of people or endangered species [13, 37].

An emerging alternative is onboard or embedded ML tech-

niques, where computation occurs directly on sensor nodes.

These systems can provide actionable insights in environ-

ments lacking reliable power and Internet connectivity. For

example, in data-driven agriculture, embedded ML can an-

alyze image data to assess crop yields or detect pests and

plant diseases [41]. It can also support environmental and

wildlife monitoring through camera traps or field survey

robots [1, 2]. In these scenarios, there is often a lack of In-

ternet connectivity or a low-bandwidth connection, where

transmitting summaries of insights is more favorable than

entire images. Most existing embedded ML systems rely on

DNNs, which struggle with the tight constraints of microcon-

trollers (MCUs). Adapting these models involves techniques

like quantization and pruning tomeet memory and energy re-

quirements. While these methods make deployment feasible,

they frequently come at the cost of reduced accuracy [4, 20].

On the other hand, many advancements have been made in

ML accelerators, but these introduce additional power be-

yond that of the hosting microcontroller, often in hundreds

of microwatts and several watts [5, 8, 14, 27]. Additionally,

they impose constraints on the model architecture and sup-

ported computational operations, or require model co-design,

limiting flexibility in deployment.

This paper presents HyperCam, an image processing pipeline

designed for resource-constrained camera systems. As shown

in Fig. 1, HyperCam processes images locally, classifies them

in real-time using an onboard model, and transmits the re-

sults wirelessly to a nearby smartphone. At its core, Hyper-

Cam uses hyperdimensional computing (HDC), a compu-

tational paradigm based on structured data types and bit-

wise operations [25]. Compared to DNNs, HDC is inherently

hardware-friendly, and energy-efficient [17, 28]. However,

most existing HDC works target time-series data, and im-

age processing with HDC introduces unique challenges in

memory and latency optimization. As shown in Fig. 2, MCUs

typically have limited, flat memory hierarchies, and meeting

these constraints requires careful model design. Additionally,

optimizing latency is critical not only to meet real-time re-

quirements but also to minimize the overall power consump-

tion of the system. In image processing, the HD computation

load increases proportionally to the image size. For example,

a baseline HDC approach can take one minute to classify a

120 × 160 grayscale image.

HyperCam solves these challenges using novel and highly

efficient HD encoding methods and aggressively optimizing

performance in terms of memory and latency. Specifically,

Cortex-M33

8KB - Cache

786KB - SRAM

2MB - Flash

Figure 2: Memory layout of STM32U585AI.

it features a lightweight encoder that dynamically maps im-

ages into HD space, eliminating the need for pre-stored map-

pings as other HD classifiers. The encoder also uses a sparse

binary bundling based on Bloom Filter and Count Sketch,

reducing the number of encoding operations by two orders

of magnitude. Integrated into an ARM Cortex M-33 micro-

processor, the most accurate version of HyperCam is 21.08%

more accurate than MicroNet and 21.51% more accurate than

MobileNet-V3-Small in the 7-class face identification task. It

is also 55-398 times faster and 12-33 times more lightweight

than these baseline DNNs. The following are key contribu-

tions made in this work.

• We introduce HyperCam, a novel HD image classifier that

deploys highly efficient novel data encodings to perform

inference on the sensor node. HyperCam is far more ac-

curate, lightweight, and fast than previous HDC methods

and DNN baselines.

• We develop a prototype of a low-power wireless camera

platform to evaluate HyperCam.

• We show that HyperCam can perform binary and mul-

ticlass classifications in real time using captured image

frames. The most accurate version of HyperCam achieves

an accuracy of 92.98% and 72.79% for face detection and

identification, respectively, using less than 60 kilobytes of

memory and achieving a latency of 0.27 seconds.

• We open source the HyperCam code to help promote re-

producibility and advance onboard computing methods.

2 HYPERDIMENSIONAL COMPUTING
BACKGROUND

Hyperdimensional Computing (HDC), or Vector Symbolic

Architectures (VSA), is a brain-inspired computing paradigm

that represents information in a high-dimensional space.

This framework encodes data as hypervectors, vectors typi-
cally consisting of thousands of dimensions. Randomly gen-

erated hypervectors called the basis hypervectors represent
discrete data units such as symbols and numbers. Applying

HDC operators such as binding, bundling, and permutation

on these basis hypervectors constructs hypervector repre-

sentations of more complex data structures (e.g., sequences,

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

3 Bundling

RNG …

Codebook

1 Basis vector generation 2 Binding

NY Brooklyn
⨀

<NY, Brooklyn>

=

4 Permutation

Codebook

{cold, sweet, happy}
=

cold sweet
⨁

happy
⨁

Figure 3: Key operations of BSC. (1) Basis vectors are generated for every letter. (2) Binding of data creates a record. (3)
Bundling of words creates a set. (4) Permutation is applied to create hypervectors on-the-fly.

trees, and images). Information can be retrieved from hyper-

vectors by computing the distances between hypervectors.

HDC models vary widely in terms of their hypervector rep-

resentations, operators, and distance metrics choices. Hy-

perCam uses the Binary Spatter Code (BSC) approach [23],

where each element of a hypervector is binary. Operations

done on binary hypervectors are simple, energy-efficient,

and thus, the best choice for resource-constrained hardware.

In the following sections, along with Fig. 3, BSC-HDC oper-

ations are explained in more detail.

2.1 Binary Spatter Code
2.1.1 Basis vector generation. In BSC, each unique symbol

is represented as a binary hypervector called the basis hy-

pervector. Each vector element is a bit, randomly generated

with a 𝑝 = 0.5 Bernoulli. The hyperdimensionality of these

vectors ensures that randomly generated vectors are nearly

orthogonal. In other words, any two basis hypervectors are

far apart, usually with a Hamming distance of about 0.5.

These basis hypervectors, also called codes, are stored in a

dictionary data type called the codebook.

2.1.2 Binding. The binding operator (⊙) combines basis

hypervectors and creates a hypervector dissimilar to the

input. In BSC, binding is implemented as an exclusive OR

(XOR). Binding is used to construct larger data structures

such as composite symbols, key-value pairs, and positional

encoding from basis hypervectors. For example, binding the

two hypervectors that represent the words cold and water
results in a single hypervector for cold water. Similarly,

binding the hypervectors for the key and the value creates a

hypervector for the key-value pair.

2.1.3 Bundling. The bundling operator (⊕) aggregates mul-

tiple hypervectors and outputs a hypervector similar to the

input. In BSC, bundling is executed through an element-wise

majority vote. Given two or more input hypervectors, the

number of zeros and ones are counted at each index, and the

output hypervector chooses the majority value at that index.

Bundling is used to create sets of symbols or data instances.

For example, an image hypervector is created by bundling

the hypervectors of its pixels. Similarly, a hypervector for a

database record is created by bundling the hypervectors of

its key-value pairs.

2.1.4 Permutation. The permutation operator (𝑝) is imple-

mented as a circular shift, which creates a dissimilar hyper-

vector far apart from the input. Because of this characteristic,

permutation is used to create new basis hypervectors as an

alternative to random generation. Additionally, permutation

is used to encode the position data of sequences. For example,

a bigram can be encoded by binding the permuted hypervec-

tors of the characters. That is, binding occurs between the

hypervector of the first character and the permuted hyper-

vector of the second character. Similarly, the dimension of

an image array can be represented using permutation. For

2-dimensional images, binding occurs between the hyper-

vector of the row index and the permuted hypervector of the

column index.

2.1.5 Distance metric. While binding, bundling, and per-

mutation operators encode raw data into hypervectors, dis-

tance metrics are used to retrieve information from the hy-

perdimensional space. The lower the distance between two

hypervectors, the more similar they are. In BSC, distance

measurement is implemented using the Hamming distance,

which counts the number of differing bits and normalizes the

count by the length of the hypervector. The distance metric

is often used to identify the class of the query hypervector.

Other times, it decodes the hypervector to its raw data form

(e.g., sequences, images). For example, the identity of the

key in a hypervector for a key-value pair can be determined

by computing the distance between the hypervector and all

possible key hypervectors.

3 HYPERCAM DESIGN
Using BSC-HDC operations, HyperCam processes computer

vision tasks at the endpoint device (e.g., wireless IoT camera).

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

Query

Train Data

OnlineHD
Trainer

Min

Query Results

…

Model Memory

Wireless IoT Camera

𝛿n𝛿1 𝛿2

Training

Inference

Hypervector
Encoder

Codebook

Query HV

Figure 4: HyperCam overview. The HyperCam classifier runs onboard a low-power wireless camera platform and has three

key components: image encoder, training algorithm, and inference algorithm.

When the camera captures an image, it is converted into a

hypervector, and the classifier determines its class based on

the Hamming distances. In addition, HyperCam can send

the classification result to an IoT gateway via Bluetooth, al-

lowing remote monitoring and interaction. This approach of

transmitting the classification data, as opposed to entire raw

images, significantly reduces communication overhead and

mitigates the risk of transmission errors. The architecture of

the HyperCam classifier, as shown in Fig.4, has three major

components: an image encoder, a training algorithm, and an

inference algorithm.

Image Encoder. Both inference and training require that

images be first encoded as hypervectors. This translation is

done by performing an HD computation over basis hyper-

vectors that capture pixel position and value information.

The MCU stores codebooks that contain these basis hyper-

vectors. A critical challenge in applying HD classifiers to

image classification tasks is managing the performance and

memory overhead associated with encoding image data as

hypervectors. HyperCam deploys a novel image encoding

algorithm (Section 4) that exploits the structure of HD com-

putations to drastically reduce thememory usage and latency

of the encoding procedure. This encoding algorithm uses a

novel sparse bundling algorithm (Section 4.3) to accelerate

the bundling of sets of elements.

Training. Training the HyperCam’s HD classifier occurs

offline on a commodity computer. In this phase, training

data are first encoded to hypervectors through the image en-

coder. Then, these encoded hypervectors are grouped based

on their class labels. The class hypervector is construed by

bundling together the hypervectors of all data instances that

belong to that class. The table of class hypervectors is called

the item memory. While HD classifiers are typically trained

using a one-shot algorithm, HyperCam uses the OnlineHD

adaptive training algorithm [15]. OnlineHD provides an ef-

fective few-pass learning approachwhere classifier hypervec-

tors are refined based on the misclassifications observed on

each training iteration. OnlineHD targets MAP-HDC, which

works with real-valued vectors. HyperCam works with a

modified version of OnlineHD that works with binary hy-

pervectors. The adapted algorithm binarizes the real-valued

classifier vectors after each training iteration and uses the

binarized item memory to find misclassifications and update

the real-valued model.

Inference. During execution, the MCU encodes each input

frame to a hypervector. This hypervector, called the query

hypervector, is compared to all the class hypervectors in the

item memory using the Hamming distances. The class with

the smallest distance to this query is the predicted category

of the input. This inference computation is highly computa-

tionally efficient, involving only simple Hamming distance

calculation.

4 HYPERCAM IMAGE ENCODING
HyperCam’s image encoding uses HD expression optimiza-

tions and a novel sparse bundling operator to reduce the

encoding overheads dramatically. Section 4.1 presents the

naïve image encoding HyperCam’s encoding is based on,

Section 4.2 presents the rewrites applied to reduce memory

and computation requirements, and Section 4.3 presents the

novel sparse bundling method HyperCam uses to expedite

image encoding.

Table 1 presents the computation and memory require-

ments of the unoptimized, naïve encoding compared to the

optimized encoding employed by HyperCam. The Hyper-

Cam encoding is obtained by applying four HD expression

rewrites (Rewrite 1-4) that progressively reduce the space

and computational requirements of the encoder. HyperCam

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

Codebook Bind Bundle Sparse Bundle
Size Memory (KB) # Ops Time (ms) # Ops Time (ms) # Ops Time (ms)

Naive 536 654 38400 2400 19200 2400 0 0

Rewrite 1 258 315 38400 2400 19200 2400 0 0

Rewrite 2 258 315 19200 1200 19200 2400 0 0

Rewrite 3 258 315 256 16 19456 2448 0 0

HyperCam 258 315 256 16 256 48 19200 2

Table 1: Comparison of encoding methods based on the size of the codebook and the number of bind, bundle,
and sparse bundle operations. Each bundling operation involves 10000 bit-wise addition, whereas each sparse bundling

operation involves 20. HyperCam’s codebook size is further reducing during implementation as described in Section 5.1.

employs a novel sparse bundling algorithm that approxi-

mates HDC bundling while requiring 0.2% of the operations.

With these algorithmic encoding optimizations, HyperCam’s

encoding algorithm uses 52% less codebook memory, 50%

less binding operations, and 98% less bundling operations.

The 19200 sparse bundling operations in the final encoding

are computationally equivalent to 38 normal HD bundling

operations.

4.1 Naïve HD Image Encoding
This section describes a naïve pixel-based HD image encod-

ing algorithm for grayscale images. HyperCam works with

a heavily optimized encoding derived from this naïve encod-

ing. In the following encoding formulations, 𝑛,𝑤 , and ℎ refer

to hypervector size, image width, and height. HyperCam

supports encoding 8-bit grayscale images, where each pixel

value 𝐼𝑚𝑔[𝑖, 𝑗] (or 𝐼𝑚𝑔[𝑖𝑤 + 𝑗] in 1D format) is represented

as an integer between 0 and 255.

Pixel Position Codebook. Every pixel in a grayscale image

has a unique position defined by its row and column indices.

To encode this spatial information, we create two codebooks

with randomly generated binary hypervectors. The pixel row

codebook 𝑅(𝑖) maps the pixel rows 𝑖 ∈ 1 · · ·ℎ, while the pixel
column codebook 𝐶 (𝑗) maps the pixel columns 𝑗 ∈ 1 · · ·𝑤 .

Pixel Value Codebook. The pixel value codebook𝑉 (𝑥) maps

an 8-bit grayscale value 𝑥 ∈ 0 · · · 255 to a hypervector. To en-
sure that similar pixel values have similar hypervectors, we

use a level-based encoding technique [36]. In this level-based

codebook, 𝑉 (0) is instantiated to a zero vector of length 𝑛

representing a black pixel value. The basis hypervectors for

values 1, · · · , 255 are constructed by sequentially setting ran-
dom selections of zero-valued bits to one.

Pixel Encoding. To encode a single pixel located at (𝑖, 𝑗), we
combine the spatial and intensity information. This is done

by binding the hypervectors for the row 𝑅(𝑖), column 𝐶 (𝑗),
and pixel value 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗]):

ℎ𝑣𝑝𝑖𝑥,𝑖, 𝑗 = 𝑅(𝑖) ⊙ 𝐶 (𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗])

Image Encoding. Once all pixel hypervectors are created,
we aggregate them into a single hypervector that represents

the entire image by bundling them:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑅(𝑖) ⊙ 𝐶 (𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗])

Space and Time Complexity. Given 𝑛 = 10000 bits, this

encoding method needs to store𝑤 +ℎ + 256 codebook hyper-
vectors. It requires 𝑤ℎ pixel bundling operations and 2𝑤ℎ

binding operations per image, each of which is a 𝑛-bit hyper-

vector operation. For the 120 × 160 grayscale images used

in this implementation, naïve encoding would require 536

codebook hypervectors totaling 670 kilobytes of memory,

38400 binding operations, and 19200 bundling operations.

Therefore, even for small images, this encoding algorithm

scales poorly.

4.2 HyperCam HD Image Encoding
Based on the naïve encoding method presented in Section 4.1,

the properties of HD computations are exploited to rewrite

the image encoding and optimize computation and memory

usage. Sections 4.2.1-4.2.4 present theHD expression rewrites

applied to reduce the image encoder’s memory footprint and

computational requirements. The rewrites presented in 4.2.1-

4.2.2 preserve the computational properties of the HD en-

coding and therefore do not affect classification accuracy.

The factoring and sparse bundling rewrites in 4.2.3-4.2.4 are

semantics-breaking and change the computational proper-

ties of the HD encoding, therefore affecting classification

accuracy. HyperCam’s sparse bundling optimization uses a

novel lossy filter-based sparse bundling operator, which is

presented in Section 4.3.

4.2.1 Rewrite 1: Permutation-based Codebooks. HyperCam
uses the permutation operator (Section 2.1.4) to encode row

and column indices, replacing the need for separate entries

for each position in the row and column codebooks. Instead

of storing 𝑅(𝑖) and𝐶 (𝑗) for all indices, the zero-index hyper-
vectors 𝑅(0) and 𝐶 (0) are repeatedly permuted to represent

different rows and columns:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑝𝑖 [𝑅(0)] ⊙ 𝑝 𝑗 [𝐶 (0)] ⊙ 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗])

Since the hypervectors in the pixel position codebook are

generated independently and randomly, permuting one code

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

effectively produces another independent code. In other

words, any code and its permuted code have a high expected

distance. This optimization reduces the number of codebook

hypervectors from𝑤+ℎ+256 to ⌈𝑤
𝑛
⌉+⌈ℎ

𝑛
⌉+256 hypervectors,

cutting memory usage from 670 KB to 322 KB.

4.2.2 Rewrite 2: Row and Column Index Coalescing. In the

na"ive encoding, row and column hypervectors are bound

together to encode pixel positions. This binding step can be

eliminated by introducing a new codebook 𝑋 , which directly

represents 1D pixel positions (𝑘 = 𝑖𝑤 + 𝑗):

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑋 (𝑖𝑤 + 𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗])

This rewrite can be applied because the binding operator

produces a hypervector that is dissimilar to its input hyper-

vectors, and the input hypervectors are already independent.

Replacing the 2D position encoding (𝑖, 𝑗) with a 1D pixel

index 𝑘 preserves the behavior of the HD encoding while

reducing unnecessary binding operations. The permutation

from rewrite 1 can then be applied to reduce the codebook

size from to ⌈𝑤ℎ
𝑛
⌉ entries:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑝𝑖 ·𝑤+𝑗 [𝑋 (0)] ⊙ 𝑉 (𝐼𝑚𝑔[𝑖𝑤 + 𝑗])

4.2.3 Rewrite 3: Value Hypervector Factoring. Critically, the
number of bundling operations must be reduced to encode

the image efficiently. The sparse bundling operator efficiently

approximates bundling operations over permutations of a

single hypervector. First, the value hypervector binding op-

erations are factored from the bundling operation:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0

𝑉 (𝑧) ⊙


∑︁
𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)

𝑝𝑖𝑤+𝑗 [𝑋 (0)]


𝑃𝑖𝑥 (𝑧) returns all pixel positions 𝑖, 𝑗 where each pixel 𝐼𝑚𝑔[𝑖𝑤+
𝑗] has the value 𝑧. Note that the HD operation ⊕ is not asso-

ciative since some information is lost during the quantization

step in bundling. Thus, this rewrite changes the distance

properties of the encoded hypervectors. Specifically, this

rewrite loses information about the relative prevalence of

different pixel values in the image. For example, if an image

contains one gray pixel and many white pixels, the white

and gray pixels would be equally important in this factored

encoding. This information is re-introduced into the encod-

ing using a weighted bundling: more prevalent pixel values

are bundled multiple times.

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙


∑︁
𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)

𝑝𝑖𝑤+𝑗 [𝑋 (0)]


Here, values that occur more frequently in the image are

heavily weighted in the encoding, recouping some informa-

tion lost in the factored operation. This weighted bundling

operation is equivalent to an HD bundling operation, where

each hypervector is bundled multiple times:

255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) | · [𝑉 (𝑧) · · ·] =
255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) |∑︁
𝑘

[𝑉 (𝑧) · · ·]

Therefore, the weighted bundling operation can easily be

fused with a normal bundling operation by scaling the binary

hypervector during the sum-threshold computation.

4.2.4 Rewrite 4: Sparse Bundling. After applying the factor-
ing rewrite, each pixel bundling sub-computation (blue text)

can then be efficiently approximated using a novel sparse

bundling operator introduced in Section 4.3:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙


∑︁
𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)

𝑝𝑖𝑤+𝑗 [𝑋 (0)]


The sparse bundling operation approximates the standard

HD bundling and replaces bundling operations over per-

muted hypervectors. It is designed to preserve the property

of bundling that similar sets of pixels are embedded into

hypervectors that are close to each other. It also processes

a set of elements (in this case, pixel positions) and returns

a hypervector that approximates the distance properties of

the standard bundled set of elements:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙ 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒 (𝑃𝑖𝑥 (𝑧)) (1)

The sparse bundling operator works with a density parame-

ter 𝑑 , where 𝑑 ≪ 𝑛, and performs𝑂 (𝑑) operations to bundle
two hypervectors. Using a sparse bundling operation reduces

the number of operations required to bundle each vector

from 𝑂 (𝑛) to 𝑂 (𝑑). HyperCam uses 𝑑 = 20, thus reducing

the number of operations per bundling operator from 10000

to 20 operations. 𝑑 is determined experimentally, where for

𝑑 < 20, HyperCam experiences sharp drop of accuracy. Once

sparse bundling is applied to construct each pixel set hy-

pervector, HyperCam applies 256 weighted HD bundling

operations to construct the final hypervector representation

of the image.

4.3 Sparse Bundling
HyperCam deploys a novel sparse bundling algorithm that

uses Bloom Filter [6] and Count Sketch [7] to approximately

bundle large numbers of hypervectors together at low la-

tency. Bloom Filters and Count Sketches are probabilistic

data structures adept at representing sets of elements. Both

data structures work with numeric vectors and are updated

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

by randomly sampling and updating bits. They can be viewed

as a sub-class of HDC/VSA as they also compute in superpo-

sition [9, 24, 26].

Given a set of integers 𝑠 ∈ 𝑆 , the sparse bundling algorithm
returns a binary hypervector that approximates bundling

together the basis hypervectors that represent each element:

𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒 (𝑆) ≈
∑︁
𝑠∈𝑆

𝑝𝑠 [ℎ𝑣]

The sparse bundling operation approximates an HD bundling

operation over permutations (𝑝𝑠) of some hypervector ℎ𝑣 .

The algorithm is parametrized with a hypervector size 𝑛

and density parameter 𝑑 and offers both Bloom Filter and

Count Sketch backends. The Bloom Filter backend is more

computationally efficient but less accurate than the Count

Sketch backend. Each sparse bundling operation requires 𝑑

operations, significantly reducing the number of operations

per bundling task when 𝑑 << 𝑛.

4.3.1 Algorithm Description. This section describes Alg. 1.

Given a set of integer values 𝑆 to bundle, the 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒

operator instantiates a new sum hypervector (Line 23), uses

Algorithm 1 Sparse Bundling Algorithm

1: bool 𝑏𝑙𝑜𝑜𝑚 = 𝑓 𝑎𝑙𝑠𝑒 ; //use a bloom filter or count-sketch

2: uint 𝑛 = 10000; // hypervector size

3: uint 𝑑 = 20; // density - the number of hashes per bundle

4: // random set of size 𝑑 from values {0, 1, · · · , 𝑛 − 1}
5: uint8[d] 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← rand(0,n,size=d,replace=False);

6: // random vector with values {−1, 1}
7: int8[d] 𝐶𝑆 ← rand([-1,1],size=d);

8: function SparseBundleElem(hv,𝑠)

9: for 𝑗 in 0...𝑑 − 1 do
10: k = (indices[j]+𝑠) % n

11: if bloom then
12: hv[k] = 1

13: else
14: hv[k] = hv[k] + CS[j]

15: function NewSparseHV

16: int8[n] hv = zeroes(n);

17: return hv;

18: function FinalizeHV(hv)

19: if ¬ bloom then
20: for 𝑖 in 0..𝑛 do
21: hv[i] = 1 ? hv[i] >= 0 : 0

22: procedure SparseBundle(S)
23: hv = NewSparseHV()
24: for 𝑠 ∈ 𝑆 do
25: SparseBundleElem(hv,s)

26: FinalizeHV(hv);
27: return hv;

the sparse bundling operator to add each value to the sum

hypervector (Lines 24-25), and then finalizes the sum hyper-

vector (Line 26) to obtain a binary hypervector that approx-

imates the bundled result. The 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒𝐸𝑙𝑒𝑚 routine

updates the sum hypervector to bundle an integer element.

Instantiation and Finalization. The sum hypervector

is instantiated to an 𝑛-dimensional signed integer vector

comprised of zeroes. On finalization, each element is bina-

rized by thresholding the value with zero to produce an n-

dimensional binary vector. Finalization is only required for

sum hypervectors in the Count Sketch backend; the Bloom

Filter backend directly produces binary vectors.

Bundling[Lines 8-14] The algorithm updates the sum hy-

pervector ℎ𝑣 to include the integer 𝑠 by computing 𝑑 random

indices from the integer value and then updating the values

in these indices. For the Bloom Filter backend, each update

sets the hypervector value to one. For the Count Sketch back-

end, the bundle hypervector value is randomly incremented

or decremented. HyperCam precomputes the random indices,

along with the random increment and decrement operations,

and stores the values in the Count Sketch (CS) array.

5 HYPERCAM IMPLEMENTATION
This section describes the implementation of HyperCam.

Section 5.1 presents the implementation of the image en-

coding algorithm and further engineering efforts to port the

model onboard. Section 5.2 describes the collection of the

image dataset used to evaluate HyperCam. Lastly, Section 5.3

describes HyperCam’s low-power hardware platform.

5.1 Image Encoding Algorithm
Alg. 2 presents the algorithm for computing the optimized

image encoding presented in Equation 1. First, a single pass

is taken over the input image, during which the position

hypervectors are bundled using either a Count-Sketch-based

or Bloom-Filter-based bundling operation. The binary hyper-

vectors produced by the sparse bundling operation are then

bound with the value hypervectors and bundled to form the

final image hypervector, as described in Equation 1. Each

bundled vector is bound with the corresponding value hy-

pervector from the codebook, resulting in 256 hypervectors.

These hypervectors are then bundled together, using weights

equivalent to the number of pixels in each bin. Moreover,

since each hypervector contains only 𝑑 non-zero elements,

the vector summation in the binning process computes 𝑑

integer elements instead of 𝑛.

To further reduce image encoding time and eliminate value

codebook, value hypervectors are generated on-the-fly in-

stead of pre-storing them. As described in Section 4.1, the

value codebook uses level-based encoding, where random

selections of bits in 𝑉 (0) are flipped. For a value 𝑣 , 𝑉 (𝑣) is

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

Algorithm 2 Image Encoding with Sparse Bundling

function encodeImage(Img: image)

int[256][n] hvs;
uint[256] cnts;
uint8[n] imgHV;

for 𝑣 in 0..256 do
sumHVs[v] = NewSparseHV()

cnts[v] = 0

for 𝑘 in 0..𝑤 · ℎ do
v = Img[k]

SparseBundleElem(sumHVs[v], k)

cnts[v] += 1

for 𝑣 in 0..255 do
for 𝑖 in 0 · · ·𝑛 − 1 do

imgHV[i] += cnts[v] · (sumHVs[v][i] 𝑥𝑜𝑟 get-

ValueCB(v,i))

for 𝑖 in 0 · · ·𝑛 − 1 do
imgHV[i] = 1 ? imgHV[i] > |wh|/2 : 0;

return imgHV;

generated by flipping 𝑣 · ⌊𝑛/256⌋ bits. The order in which

bits are flipped must be the same at every generation for en-

coding consistency. Thus, this ordering of bit flips (which are

indices of the 𝑛-length array) is stored in the microcontroller.

Additionally, the generation of value hypervectors does not

create overhead in computation because it integrates into

the binding operation, which already iterates over the vector.

Complexity. These implementation-level optimizations re-

duce the codebook size from 256 + 2 to 2 hypervectors. The

above algorithm requires 256 bundling operations, 256 bind-

ing operations, and 19200 sparse bundling operations. Each

sparse bundling operation uses approximately 500 times

fewer operations than standard HDC bundling.

5.2 Data Collection
In IoT deployments, collecting data from real-world scenarios

is crucial for aligning with actual conditions. IoT systems are

sensitive to environmental changes, sensor noise, and operat-

ing conditions (e.g., lighting and object placement), affecting

performance. We demonstrate an IoT deployment scenario

by collecting a custom classification dataset and training a

model. Specifically, we took 4,215 160x120 grayscale images

using the Himax HM01B0 camera mounted on the Ardu-

cam HM01B0 Monochrome SPI Module. An assortment of

backgrounds and people was imaged to diversify the input

dataset. Images of people were taken such that their faces

were captured at different angles and positions. Approxi-

mately 500 images per person were collected from various

background scenes such as a hallway, office space, white-

board, etc. Objects and backgrounds not involving people

Figure 5: Sample images in the collected dataset.

Himax HM01B0

nrf52840

STM32U585

B-U585I-IOT02A

Figure 6: Low-power wireless camera platform.

were also collected as negative samples for face detection.

There are 4,215 images across seven person classes and one

non-person class as shown in Fig. 5.

5.3 Hardware
A low-power camera hardware platform was designed to

evaluate the performance of HyperCamon resource-constrained

hardware. An evaluation board for the STM32UF855AI mi-

crocontroller (MCU) was used as the central computing de-

vice [39, 40]. The MCU has an Arm Cortex-M33 processor,

2MB of flash memory, and 736KB of SRAM. The evaluation

board contains several sensors, extra memory, and redundant

peripheral interfaces for the evaluation of HyperCam. Thus,

all non-critical components operating on the same power

supply rails as the MCU were removed from the board to

reduce power consumption. The Himax HM01B0 image sen-

sor in QQVGA mode is used to capture 160x120 resolution

grayscale images [16]. A custom printed circuit board (PCB)

is implemented to interface the MCU with the image sensor,

which connects the 2.8V supply from the evaluation board

to the camera. Moreover, it connects I2C and 8-bit parallel

QQVGA communications between the MCU and image sen-

sor. A 24MHz crystal oscillator drives the image sensor’s

internal clock. Lastly, the MCU’s Digital Camera Interface

(DCMI) and Direct Memory Access (DMA) peripherals are

used to transfer image data from the camera into the MCU’s

memory.

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

A nRF52840 BLE module is integrated into the camera

hardware and wirelessly transmits data packets to a nearby

base station [38]. A 3.7V 4400mAh Lithium Ion battery pow-

ers the entire hardware platform. Two linear regulators on

the evaluation board provide 3.3V and 2.8V to the MCU and

camera, respectively. A 3.3V linear regulator also supplies the

BLEmodule. Some power losses were incurred in these linear

regulators during the active state, which can be reduced by

custom power management design.

The camera platform is designed so that components are

set to standby in their minimum-sleep modes and are acti-

vated by an event trigger (e.g., motion detection or manual

button press). When triggered, the MCU wakes the cam-

era module to capture and store an image, performs image

classification, and transmits the classification outcome to

a smartphone application. After completing each task, the

camera platform returns to sleep mode. Figure 6 shows the

prototype implementation of the hardware platform.

6 EVALUATION
HyperCam is compared with baseline machine learning clas-

sifiers in an identical embedded hardware environment.

6.1 Experimental Setup
6.1.1 Classifier Tasks. HyperCam is evaluated on four image

classification datasets: MNIST, Fashion MNIST, Face Detec-

tion, and Face Identification. MNIST and Fashion MNIST

are widely used benchmark datasets for evaluating machine

learning classifiers, each containing 60,000 28x28 grayscale

images [29, 43]. Face Detection and Identification tasks use

the dataset described in Section 5.2, which consists of 1 non-

person class and 7 person classes. Face Detection is binary

classification distinguishing between the non-person class

and the person class, while Face Identification classifies 7

person classes. All class sizes were balanced.

6.1.2 Classifiers. Several machine learning algorithms are

selected as a baseline to compare against HyperCam. Both

HyperCam and the baseline models are trained offline on

a standard laptop, where their test accuracies are assessed.

The trained models are then exported as C header files and

loaded onto STM32U585AI for performance evaluation. All

models use integer representations to fit the hardware and

ensure compatibility with other MCU families. Except for

the HDC models, which are inherently integer models, all

other ML models were trained using floating-point numbers

and then quantized post-training to integer values.

HDC. Five HDC models are chosen for comparison. Vanil-

laHDC is the most basic form of an HD classifier explained in

Section 4.1. OnlineHD is VanillaHDCusing theOnlineHD [15]

trainer. Rewrite2 uses the encoding method described in Sec-

tion 4.2.2. HyperCam
∗
uses the Count Sketch backend and

HyperCam
∗∗

uses the Bloom Filter backend. Here, all hyper-

vectors have a length of 𝑛 = 10, 000.

LightweightML. SVM and XGBoost are chosen to represent

lightweight ML models. They are trained using Python’s

sklearn and xgboost libraries and are ported to a C header

file using the micromlgen library.

Neural Networks. MicroNets, MobileNetV3, and two sizes

of MCUNetV3 are chosen for this category. MCUNet V3*

(mcunet-in1) is the smallest, and the MCUNet V3** (mcunet-

in3) is the largest one that fits the MCU. After training, they

are trained from pre-trained weights and are quantized to

8-bit integer numbers. Once converted to C header files, the

TensorFlow Lite Micro and the CMSIS-NN libraries are used

to run them on the ARM Cortex M-33 environment.

6.1.3 Evaluation Metrics. These metrics were used:

Accuracy. Data is split in an 8:2 ratio between the training

and testing datasets. The model is trained with the training

dataset, and accuracy is measured using the test dataset.

Flash Memory. The flash memory footprint of the model

is measured in kilobytes. For ML models, this includes the

model weights, parameters, and the library code required

for execution. For HDC models, this includes the model’s

codebook and the item memory.

RAM. The peak RAM footprint of the model is measured in

kilobytes. This includes the model activations, input, output

tensors, and library code for ML models. For HDC models,

this includes hypervectors allocated for encoding. When en-

coding is done, HDC uses only one hypervector to represent

a data instance for inference.

Latency. The latency of the classifier is the time it takes to

process one frame of image. This involves the time it takes to

encode an image and predict its class using the item memory.

All latency is measured on STM32U585AI and is in seconds.

6.2 Classifier Evaluation
Table 2 compares HyperCam’s HD classifier to the baseline

classifiers in terms of accuracy, flash memory size, peak RAM

size, and latency during one pass of inference.

Among HD classifiers, VanillaHDC and OnlineHD, while

demonstrating reasonable accuracy (80.03% and 91.34% on

MNIST, respectively), are not suitable for deployment on

resource-constrained devices due to their large flash mem-

ory footprint. The Rewrite2 encoding method, proposed as

part of HyperCam, significantly reduces the flash memory

consumption to 365.02 KB for the largest task while maintain-

ing a competitive accuracy of 94.60% on MNIST and 84.06%

on Fashion MNIST. The final version of HyperCam further

improves this by achieving the lowest flash memory foot-

print of all ML classifiers: 63.00 KB (HyperCam
∗
) and 52.62

KB (HyperCam
∗∗
) for the largest task. For a more compet-

itive memory footprint and latency, HyperCam sacrifices

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

Table 2: Comparison of Image Classifiers. HyperCam is compared with different image classifiers in terms of accuracy (%),

flash memory usage (KB), peak RAM memory usage (KB), and latency (s) on 4 benchmark tasks.

Type
MNIST Fashion MNIST Face Detection Face Identification

Acc Flash RAM Latency Acc Flash RAM Latency Acc Flash RAM Latency Acc Flash RAM Latency

HDC

VanillaHDC 80.03 - - - 69.39 - - - 72.54 - - - 40.60 - - -

OnlineHD 91.34 - - - 81.83 - - - 84.62 - - - 84.62 - - -

Rewrite 2 94.60 365.02 22.09 0.21 84.99 365.02 22.09 0.21 94.09 356.50 22.09 11.56 78.63 362.60 22.09 11.56

HyperCam
∗

93.60 63.00 22.25 0.26 84.06 63.00 22.25 0.26 92.98 53.83 22.25 0.27 72.79 59.52 22.25 0.27

HyperCam
∗∗

90.36 52.62 22.25 0.08 83.10 52.62 22.25 0.08 92.73 42.91 22.25 0.12 61.40 49.00 22.25 0.12

Lightweight
ML

SVM 78.24 - - - 72.06 - - - 86.45 - - - 27.07 - - -

xgBoost 76.86 365.55 77.09 0.01 71.76 352.76 77.09 0.01 94.46 134.92 77.09 0.01 38.88 193.24 77.09 0.01

Neural
Networks

MicroNets 97.82 582.16 302.87 1.05 86.84 582.16 302.87 1.05 92.86 581.12 502.87 6.64 51.71 581.76 502.87 6.64

MobileNet V3 98.69 1640.00 302.87 3.29 86.48 1640.00 302.87 3.29 88.18 1640.00 502.87 18.53 51.28 1640.00 502.87 18.55

MCUNet V3
∗

99.34 1190.00 302.91 6.70 93.3 1190.00 302.91 6.70 99.88 1190.00 302.91 6.70 99.15 1190.00 302.91 6.70

MCUNet V3
∗∗

98.97 1340.00 502.91 46.71 94.20 1340.00 302.91 46.71 99.88 1340.00 502.91 46.71 99.01 1340.00 502.91 46.71

accuracy from Rewrite2 but only with a small margin (1.00%

reduction in MNIST and 0.93% in Fashion MNIST). Further-

more, HyperCam
∗∗

achieves the lowest latency across all

HDC and neural network classifiers: 0.08 seconds on MNIST

and 0.12 seconds on Face Detection and Identification.

When compared to lightweight machine learning models

like SVM and xgBoost, HyperCam demonstrates superior

performance in both accuracy and memory efficiency. For ex-

ample, both versions of HyperCam achieve higher accuracy

than SVM across all classification tasks, while xgBoost only

outperforms HyperCam in the Face Detection task by a small

margin of 1.48%. In the Face Identification task, SVM and

xgBoost experience a significant drop in accuracy (27.07%

and 38.88%, respectively). By contrast, all HD classifiers, in-

cluding HyperCam, exhibit a more graceful decline in perfor-

mance, maintaining much higher accuracy levels (72.79% for

HyperCam
∗
). Additionally, in terms of memory consumption,

both SVM and xgBoost require significantly more memory

thanHyperCam. Even after being quantized to integer values,

SVM could not fit in the MCU’s flash memory.

Neural network models, particularly those using 8-bit inte-

ger quantization, such as MicroNets and MobileNetV3, offer

the highest accuracy levels (e.g., 98.69% on MNIST for Mo-

bileNetV3) but at the cost of substantially higher memory

usage and latency. For example, in terms of flash memory

consumption, MicroNets requires over 500 KB of flash mem-

ory while MobileNetV3 and MCUNetV3 all use more than 1

MB of flash memory. On the other hand, HyperCam’s most

memory-efficient version (count-sketch) requires only 63 KB

of flash memory and 22.25 KB of RAM. MCUNetV3 exhibits

the highest accuracy among all models, with near-perfect

performance (e.g., 99.34% on MNIST and 99.88% on Face

Detection). However, the trade-off comes in the form of sub-

stantially higher latency. The smallest MCUNetV3 model has

a latency of 6.7 seconds, while the larger version takes up

to 46.71 seconds. In contrast, HyperCam maintains latencies

under 0.3 seconds across all datasets.

Memory Analysis. A breakdown of the flash memory is

shown in Fig. 7. For neural networks represented byMCUNetV3,

memory is consumed by the TF Micro library and the model

data (graph, weights, and parameters). On the other hand,

in HyperCam, no library code is needed as it exclusively

uses hardware-native operations such as addition, exclusive

or, and comparison. Instead, HyperCam’s HD classifier only

requires hypervectors stored as byte arrays. This aspect min-

imizes memory requirements and eases the process of adding

new classifiers; each class addition consumes 𝑛 bits. In con-

trast, a new model in DNN comes with a model graph (about

Free
810 KB

Weights
807 KB

TF Micro
102 KB

Other
198 KB

Graph
83 KB

Free
1634 KB

Free
1937 KB

Free
1947 KB

Weights
366 KB Weights

63 KB
Weights
53 KB

MCUNetV3 XGBoost Count Sketch Bloom Filter

STM32U585AI Flash Memory (2MB)

Figure 7: Breakdown of flash memory.

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

0 40 80 120 160 200 240
Time (ms)

Count Sketch

Bloom Filter

Bind & Sum
Binning
Initialization
Majority Vote
Prediction

Encoder
Count
Sketch

Bloom
Filter

Figure 8: Latency Profiling of HyperCam.

Component Active Current Sleep Current Voltage
STM32U585I 10.9 mA 74.9 𝜇A 3.3V

Himax HM01B0 2.5 mA 1.3 mA 2.8V

nRF52840 Express 7.2 mA 1.4 mA 3.8V

Table 3: HyperCam Component Power Consumption.

100 KB) and weights that can be anywhere from hundreds

of bytes to megabytes.

Latency Analysis. Fig. 8 shows the latency profiling of Hy-

perCam when using Count Sketch and Bloom Filter. Observe

that Bloom Filter outperforms Count Sketch for bind & sum,
improving overall latency. For the count-sketch method, the

major processing time of bind & sum is not binding and

summing themselves but quantizing integer values to binary

for binding. This process is omitted from the Bloom Filter

backend, greatly reducing latency. Additionally, in both cases,

bundling does not appear in Fig. 8 because it occurs in two

stages: summation as part of bind & sum and majority
vote. That is, the result of binding is summed to the output

element-wise and later evaluated for the majority.

6.3 Power Analysis
The power consumption of the wireless camera platform was

evaluated using a Joulescope JS220 with 0.5 nA resolution,

equivalent to 34 bits of dynamic range [22]. The average

quiescent currents of the remaining components, the 3.3V

STM32U585I and 2.8V Himax HM01B0 camera regulator are

outlined in Table 3. Next, the system’s total power consump-

tion was evaluated during image capture, processing, and

data transmission as shown in Fig. 9. The system was di-

vided into key components during the power consumption

measurement (MCU, camera, BLE module). The remaining

B-U585I-IOT02A power can be derived by subtracting the

power from the system’s primary devices. When an event

trigger occurs, the image sensor is activated, and the power

consumption jumps to an average of 128 mW for image pro-

cessing for 250 ms. Lastly, a data packet is transmitted to a

base station over BLE for 200 ms. This equates to an aver-

age power consumption of 102 mW during active mode for

450 ms. Note that further power optimization could be done

by replacing the evaluation board’s regulators with more

efficient switching or LDO regulators.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

80

90

100

110

120

130

Po
w

er
 (m

W
)

Figure 9: System Power Consumption. (1) camera plat-

form in sleep mode (2) camera initialization, image capture,

and inference, (3) data transmission, and (4) system returns

to sleep mode.

7 RELATEDWORK
There has been recent work in energy-efficient cameras and

machine learning to exploit the resource-constrained envi-

ronments presented by IoT devices. Several paradigms gov-

ern the current space, including work to ease the load of

transmitting image data and onboard computing.

Onboard Computing. There have been two lines of efforts

to enable IoT devices onboard computing. The first is the

TinyML paradigm, where lightweight DNNs are developed

for resource-constrained platforms. It uses frameworks such

as TensorFlow Lite for Microcontrollers (TFLM) to quantize

and prune weights to alleviate performance overhead, en-

abling various levels of hardware acceleration and model

deployment [10, 33]. Works such as [3, 30] use extensive

network architecture search (NAS) to find an optimized neu-

ral network architecture for available memory resources. In

[32], convolutional neural networks enable tiny on-device

training with considerable memory limitations. Here, in-

ference is performed, and over time, classifier weights are

updated to improve performance with new input sensor data.

These models provide concrete baselines for HyperCam’s

performance, as compared in Section 6.2.

On the other hand, there have been works exploring the

use of hyperdimensional computing for onboard machine

learning. However, hyperdimensional computing primarily

focuses on time-series data, which does not have the same

overhead as image processing [25]. An exception to this is

[18], where HDC is used to enable emotion and face de-

tection. This work uses histograms of gradients (HoGs) to

extract the features of the image, which involves calculating

the gradients of the pixels and binning them by angles. This

front-end feature extractor not only introduces more com-

putation load but also fails to resolve the inherent encoding

complexity in HD image processing.

Energy-efficientWireless Cameras. The advancements in

low-power processors and image sensors have led to several

works that focus on developing low-power wireless camera

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

System Active Power Resolution Frame Rate Communication Onboard Inference
BackCam [21] 9.7 mW 160×120 1 fps backscatter ×
WISPCam [35] 6 mW 176×144 0.001 fps backscatter ×
NeuriCam [42] 85 mW 640×480/740p 15 fps BLE ×
MCUNet [31] N/A 224×224 N/A N/A ✓
HyperCam 128 mW 160×120 8 fps BLE ✓

Table 4: IoT Camera Platforms. A comparison of HyperCam to existing camera platforms.

platforms for computer vision applications. In [35], a battery-

free RFID camera is presented and evaluated for machine

vision applications such as face detection. Here, subsam-

pled images are transmitted to a base station that runs a

face detection algorithm. If a face is detected, coordinates

of windows within the image frame are transmitted back

to WISPCam to retrieve higher-resolution images. In [21],

a low-power wireless camera platform is presented to sup-

port real-time vision applications where images are sent to

a base station to perform image processing and face classifi-

cation. Here, image compression is performed to help mini-

mize overall latency and, in turn, reduce power consumption.

More recently, [42] presents a deep-learning-based system

for video capture from a low-power wireless camera plat-

form. Similar to the aforementioned related work, the neural

network processing runs at an edge server or in the cloud.

Compared to prior work, HyperCam focuses on enabling

onboard computer vision for energy-constrained wireless

camera platforms rather than offloading image processing

and classification to the edge or cloud. More closely related

to HyperCam is [30], which deploys a lightweight inference

engine on an MCU system for onboard image processing.

Table 4 compares HyperCam to similar IoT camera platforms.

Other work includes [1, 19], which present ultra-low-power

implementations of wireless camera platforms for extremely

challenging environments such as underwater imaging and

placing wireless cameras on insects.

8 CONCLUSION AND DISCUSSION
We introduce HyperCam, a HDC-based onboard image clas-

sification pipeline. We propose novel HD image encoding

methods including sparse binary vectors and on-the-fly code-

book generations, which significantly reduce the number of

operations and memory footprint. As a result, our system

requires only about 60 KB of flash memory and 20 KB of

RAM, achieving a latency of approximately 0.1 s while main-

taining comparable accuracy across multiple classification

tasks. A key advantage of HyperCam is its scalability and

compatibility across a wide range of hardware platforms.

Unlike most ML models that rely heavily on floating-point

operations and require specialized hardware support, such

as Neural Processing Units (NPUs) and Floating Point Units

(FPUs), HyperCam only uses bits and bit operations. More-

over, HyperCam does not require any additional libraries, ma-

chine learning engines, Neural Architecture Search (NAS), or

hardware-specific optimizations to reproduce results. Thus,

HyperCam can be easily ported to other MCU families. We

highlight several future research directions:

Onboard Training. Data-driven models must continuously

adapt to new data in real-world deployments. This is essential

as deployment data can differ greatly from training distri-

butions, and new categories may emerge. Onboard training

enables this adaptation, and HDC simplifies the process by

allowing easy updates to class hypervectors, bundling new

image hypervectors as needed.

Cloud. Currently, HyperCam connects to a gateway to trans-

mit and display predictions. If the gateway links to the cloud,

remote users can access and monitor results. The cloud can

also store bundled image hypervectors as a model summary,

enabling model refinement and future updates.

Multi-modal Sensors. Modern IoT devices integrate multi-

ple sensors, and combining their data can enhance accuracy

and decision speed without relying on arbitrary fusion algo-

rithms. HD classifiers seamlessly handle multi-modal data

by encoding different sensor inputs into hypervectors.

Diverse Applications. HyperCam supports a range of com-

puter vision tasks, particularly for IoT camera systems in re-

mote, low-power environments such as farms and underwa-

ter monitoring [1, 41]. An energy-efficient onboard classifier

enables applications like pest detection, crop yield prediction,

and wildlife monitoring. Large-scale deployment remains an

area for future exploration.

Advancements in HDC. Existing HDC classifiers struggle

with complex datasets featuring numerous classes or high-

resolution images due to their limited expressiveness and

sensitivity to noise [11, 12, 15]. HyperCam is designed to re-

duce the computational overhead of existing HDC classifiers

while maintaining accuracy, but it similarly faces challenges

with difficult classification tasks. Future advancements in

HDC—such as enhanced training algorithms and richer hy-

pervector representations—could improve performance on

complex tasks, while HyperCam can be integrated into these

developments to retain computational efficiency.

HyperCam: Low-Power Onboard Computer Vision for IoT Cameras ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong

REFERENCES
[1] Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Mario Doumet,

Unsoo Ha, Reza Ghaffarivardavagh, and Fadel Adib. 2022. Battery-free

wireless imaging of underwater environments. Nature Communications
13 (2022), 5546. https://doi.org/10.1038/s41467-022-33223-x

[2] Jorge A Ahumada, Eric Fegraus, Tanya Birch, Nicole Flores, Roland

Kays, Timothy G O’Brien, Jonathan Palmer, Stephanie Schuttler, Jen-

nifer Y Zhao, Walter Jetz, and et al. 2020. Wildlife Insights: A Platform

to Maximize the Potential of Camera Trap and Other Passive Sensor

Wildlife Data for the Planet. Environmental Conservation 47, 1 (2020),

1–6. https://doi.org/10.1017/S0376892919000298

[3] Colby R. Banbury, Chuteng Zhou, Igor Fedorov, RamonMatas Navarro,

Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mat-

tina, and Paul N. Whatmough. 2020. MicroNets: Neural Network

Architectures for Deploying TinyML Applications on Commodity

Microcontrollers. CoRR abs/2010.11267 (2020). arXiv:2010.11267

https://arxiv.org/abs/2010.11267

[4] Ron Banner, ItayHubara, EladHoffer, andDaniel Soudry. 2018. Scalable

methods for 8-bit training of neural networks. In Proceedings of the
32nd International Conference on Neural Information Processing Systems
(Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,

USA, 5151–5159.

[5] G. Benelli, G. Meoni, and L. Fanucci. 2018. A low power keyword

spotting algorithm for memory constrained embedded systems. In

2018 IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). 267–272. https://doi.org/10.1109/VLSI-SoC.2018.8644728

[6] Burton H Bloom. 1970. Space/time trade-offs in hash coding with

allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Find-

ing frequent items in data streams. In International Colloquium on
Automata, Languages, and Programming. Springer, 693–703.

[8] K. Choi and G. E. Sobelman. 2022. An efficient CNN accelerator for

low-cost edge systems. ACM Transactions on Embedded Computing
Systems 21, 4 (Aug. 2022), 1–20. https://doi.org/10.1145/3539224

[9] Kenneth L Clarkson, Shashanka Ubaru, and Elizabeth Yang. 2023.

Capacity analysis of vector symbolic architectures. arXiv preprint
arXiv:2301.10352 (2023).

[10] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries,

Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang,

et al. 2021. Tensorflow lite micro: Embedded machine learning for

tinyml systems. Proceedings of Machine Learning and Systems 3 (2021),
800–811.

[11] Shijin Duan, Yejia Liu, Shaolei Ren, and Xiaolin Xu. 2022. LeHDC:

learning-based hyperdimensional computing classifier. In Proceedings
of the 59th ACM/IEEE Design Automation Conference (San Francisco,

California) (DAC ’22). Association for Computing Machinery, New

York, NY, USA, 1111–1116. https://doi.org/10.1145/3489517.3530593

[12] Shijin Duan, Xiaolin Xu, and Shaolei Ren. 2022. A Brain-Inspired

Low-Dimensional Computing Classifier for Inference on Tiny Devices.

arXiv:2203.04894 [cs.LG] https://arxiv.org/abs/2203.04894

[13] Marcello Franchini, Stan Rullman, and Bernat Claramunt-López. 2022.

A questionnaire-based investigation to explore the social and legal im-

plications derived from the use of camera traps for wildlife monitoring

and conservation. European Journal of Wildlife Research 68, 4 (2022),

44.

[14] M. Giordano, P. Mayer, and M. Magno. 2020. A Battery-Free Long-

Range Wireless Smart Camera for Face Detection. In Proceedings of the
8th International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems (Virtual Event, Japan) (ENSsys ’20). Association for

Computing Machinery, New York, NY, USA, 29–35. https://doi.org/

10.1145/3417308.3430273

[15] Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and

Mohsen Imani. 2021. OnlineHD: Robust, Efficient, and Single-Pass

Online Learning Using Hyperdimensional System. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 56–61.
https://doi.org/10.23919/DATE51398.2021.9474107

[16] Himax. 2024. HM01B0 Ultralow Power CIS. https:

//www.himax.com.tw/products/cmos-image-sensor/always-on-

vision-sensors/hm01b0/

[17] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M

Rabaey. 2017. Exploring hyperdimensional associative memory. In

2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 445–456. https://doi.org/10.1109/HPCA.

2017.28

[18] Mohsen Imani, Ali Zakeri, Hanning Chen, TaeHyun Kim, Prathyush

Poduval, Hyunsei Lee, Yeseong Kim, Elaheh Sadredini, and Farhad

Imani. 2022. Neural computation for robust and holographic face

detection. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (San Francisco, California) (DAC ’22). Association for Com-

puting Machinery, New York, NY, USA, 31–36. https://doi.org/10.

1145/3489517.3530653

[19] Vikram Iyer, Ali Najafi, Johannes James, Sawyer Fuller, and Shyamnath

Gollakota. 2020. Wireless steerable vision for live insects and insect-

scale robots. Science robotics 5, 44 (2020), eabb0839.
[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew

Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2017. Quantizing deep convolutional networks for efficient inference:

A whitepaper. arXiv preprint arXiv:1712.05877 (2017).

[21] Colleen Josephson, Lei Yang, Pengyu Zhang, and Sachin Katti. 2019.

Wireless computer vision using commodity radios. In Proceedings of
the 18th International Conference on Information Processing in Sensor
Networks. 229–240.

[22] Joulescope. 2024. Joulescope JS220: Precision Energy Ana-

lyzer. https://www.joulescope.com/products/js220-joulescope-

precision-energy-analyzer

[23] Pentti Kanerva. 1997. Fully distributed representation. PAT 1, 5 (1997),

10000.

[24] Denis Kleyko, Mike Davies, Edward Paxon Frady, Pentti Kanerva,

Spencer J Kent, Bruno A Olshausen, Evgeny Osipov, Jan M Rabaey,

Dmitri A Rachkovskij, Abbas Rahimi, et al. 2022. Vector symbolic

architectures as a computing framework for emerging hardware. Proc.
IEEE 110, 10 (2022), 1538–1571.

[25] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi. 2022. A Survey

on Hyperdimensional Computing Aka Vector Symbolic Architectures,

Part I: Models and Data Transformations. ACM Comput. Surv. 55, 6,
Article 130 (dec 2022), 40 pages. https://doi.org/10.1145/3538531

[26] Denis Kleyko, Abbas Rahimi, Ross W Gayler, and Evgeny Osipov. 2020.

Autoscaling bloom filter: controlling trade-off between true and false

positives. Neural Computing and Applications 32 (2020), 3675–3684.
[27] Adithya Krishna, Srikanth Rohit Nudurupati, DG Chandana, Pritesh

Dwivedi, André van Schaik, Mahesh Mehendale, and Chetan Singh

Thakur. 2024. Raman: A re-configurable and sparse tinyML accelerator

for inference on edge. IEEE Internet of Things Journal (2024).
[28] Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca

Benini, Abu Sebastian, and Abbas Rahimi. 2023. In-memory factoriza-

tion of holographic perceptual representations. Nature Nanotechnology
18, 5 (2023), 479–485.

[29] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 1998. The

MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/

mnist/.

[30] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song

Han. 2020. MCUNet: tiny deep learning on IoT devices. In Proceedings
of the 34th International Conference on Neural Information Processing

https://doi.org/10.1038/s41467-022-33223-x
https://doi.org/10.1017/S0376892919000298
https://arxiv.org/abs/2010.11267
https://arxiv.org/abs/2010.11267
https://doi.org/10.1109/VLSI-SoC.2018.8644728
https://doi.org/10.1145/3539224
https://doi.org/10.1145/3489517.3530593
https://arxiv.org/abs/2203.04894
https://arxiv.org/abs/2203.04894
https://doi.org/10.1145/3417308.3430273
https://doi.org/10.1145/3417308.3430273
https://doi.org/10.23919/DATE51398.2021.9474107
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://doi.org/10.1109/HPCA.2017.28
https://doi.org/10.1109/HPCA.2017.28
https://doi.org/10.1145/3489517.3530653
https://doi.org/10.1145/3489517.3530653
https://www.joulescope.com/products/js220-joulescope-precision-energy-analyzer
https://www.joulescope.com/products/js220-joulescope-precision-energy-analyzer
https://doi.org/10.1145/3538531
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

ACM MobiCom ’25, November 3–7, 2025, Hong Kong, Hong Kong Chae Young Lee, Pu Yi, Maxwell Fite, Tejus Rao, Sara Achour, Zerina Kapetanovic

Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc.,

Red Hook, NY, USA, Article 982, 12 pages.

[31] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020.

Mcunet: Tiny deep learning on iot devices. Advances in Neural Infor-
mation Processing Systems 33 (2020), 11711–11722.

[32] Ji Lin, Ligeng Zhu,Wei-Ming Chen,Wei-ChenWang, Chuang Gan, and

Song Han. 2022. On-device training under 256kb memory. Advances
in Neural Information Processing Systems 35 (2022), 22941–22954.

[33] Erez Manor and Shlomo Greenberg. 2022. Custom hardware inference

accelerator for tensorflow lite for microcontrollers. IEEE Access 10
(2022), 73484–73493.

[34] Saman Naderiparizi, Zerina Kapetanovic, and Joshua R. Smith. 2016.

WISPCam: An RF-Powered Smart Camera for Machine Vision Appli-

cations. In Proceedings of the 4th International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems (Stanford, CA, USA)
(ENSsys ’16). Association for Computing Machinery, New York, NY,

USA, 19–22. https://doi.org/10.1145/2996884.2996888

[35] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin

Ransford, and Joshua R Smith. 2015. WISPCam: A battery-free RFID

camera. In 2015 IEEE International Conference on RFID (RFID). IEEE,
166–173.

[36] Dmitriy A Rachkovskiy, Sergey V Slipchenko, Ernst M Kussul, and

Tatyana N Baidyk. 2005. Sparse binary distributed encoding of scalars.

Journal of Automation and Information Sciences 37, 6 (2005).
[37] Chris Sandbrook, Rogelio Luque-Lora, and William M Adams. 2018.

Human bycatch: Conservation surveillance and the social implications

of camera traps. Conservation and Society 16, 4 (2018), 493–504.

[38] Nordic Semiconductor. 2024. nRF52840. https://www.nordicsemi.

com/products/nrf52840

[39] STMicroelectronics. 2024. Discovery Kit for IoT Node with STM32U5

Series. https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

[40] STMicroelectronics. 2024. STM32U585AI. https://www.st.com/

en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=

DB4410

[41] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer

Chandra, Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan,

and Sean Stratman. 2017. {FarmBeats}: an {IoT} platform for {Data-
Driven} agriculture. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 515–529.

[42] B. Veluri, C. Pernu, A. Saffari, J. Smith, M. Taylor, and S. Gollakota.

2023. NeuriCam: Key-Frame Video Super-Resolution and Colorization

for IoT Cameras. 1–17.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A

Novel Image Dataset for Benchmarking Machine Learning Algorithms.

arXiv preprint arXiv:1708.07747 (2017). https://arxiv.org/abs/1708.

07747

https://doi.org/10.1145/2996884.2996888
https://www.nordicsemi.com/products/nrf52840
https://www.nordicsemi.com/products/nrf52840
https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747

	Abstract
	1 Introduction
	2 Hyperdimensional Computing Background
	2.1 Binary Spatter Code

	3 HyperCam Design
	4 HyperCam Image Encoding
	4.1 Naïve HD Image Encoding
	4.2 HyperCam HD Image Encoding
	4.3 Sparse Bundling

	5 HyperCam Implementation
	5.1 Image Encoding Algorithm
	5.2 Data Collection
	5.3 Hardware

	6 Evaluation
	6.1 Experimental Setup
	6.2 Classifier Evaluation
	6.3 Power Analysis

	7 Related Work
	8 Conclusion and Discussion
	References

