HyperCam: Low-Power Onboard Computer Vision for
loT Cameras

Chae Young Lee, Pu (Luke) Yi, Maxwell Fite, Tejus Rao,
Sara Achour, Zerina Kapetanovic

Stanford University
Stanford, USA
{chae,lukeyi,mfite,tejus,sachour,zerina}@stanford.edu

ABSTRACT

We present HyperCam, an energy-efficient image classifi-
cation pipeline that enables computer vision tasks onboard
low-power IoT camera systems. HyperCam leverages hyper-
dimensional computing to perform training and inference
efficiently on low-power microcontrollers. We implement
a low-power wireless camera platform using off-the-shelf
hardware and demonstrate that HyperCam can achieve an
accuracy of 93.60%, 84.06%, 92.98%, and 72.79% for MNIST,
Fashion-MNIST, Face Detection, and Face Identification tasks,
respectively, while significantly outperforming other clas-
sifiers in resource efficiency. Specifically, it delivers infer-
ence latency of 0.08-0.27s while using 42.91-63.00KB flash
memory and 22.25KB RAM at peak. Among other machine
learning classifiers such as SVM, xgBoost, MicroNets, Mo-
bileNetV3, and MCUNetV3, HyperCam is the only classifier
that achieves competitive accuracy while maintaining com-
petitive memory footprint and inference latency that meets
the resource requirements of low-power camera systems.
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Figure 1: HDC for image classification. HyperCam uses
an HD classifier to perform face detection and identification
tasks onboard low-power wireless camera platforms.
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1 INTRODUCTION

Image sensors are now everywhere, found in smartphones,
laptops, gaming consoles, and vehicles. Paired with advances
in machine learning (ML), they enable object detection and
classification for practical applications in areas such as health-
care, manufacturing, or transportation. However, ML models,
especially deep neural networks (DNNs), require substantial
computing power and memory, limiting the adoption of these
techniques to Internet-of-Things (IoT). As a result, many IoT
cameras offload images to the cloud or gateway servers with
more computing resources [21, 34, 41, 42]. This approach,
however, is not well-suited for low-power wireless cameras.
Transmitting a single image can take a long time, consuming
substantial energy in the process. For instance, battery-free
wireless cameras are promising solutions for many IoT appli-
cations, but transferring a single 176x144 grayscale image can
take upward of 3 seconds depending on the communication
distance [35]. They require numerous packet transmissions,
which increase overall power consumption, and suffer from
frequent packet losses, resulting in degraded image quailty.
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Given these limitations, performing onboard computation
can be advantageous, allowing devices to transmit only the
most relevant data. Another issue is privacy, as offloading
images to the cloud can expose sensitive content, such as
pictures of people or endangered species [13, 37].

An emerging alternative is onboard or embedded ML tech-
niques, where computation occurs directly on sensor nodes.
These systems can provide actionable insights in environ-
ments lacking reliable power and Internet connectivity. For
example, in data-driven agriculture, embedded ML can an-
alyze image data to assess crop yields or detect pests and
plant diseases [41]. It can also support environmental and
wildlife monitoring through camera traps or field survey
robots [1, 2]. In these scenarios, there is often a lack of In-
ternet connectivity or a low-bandwidth connection, where
transmitting summaries of insights is more favorable than
entire images. Most existing embedded ML systems rely on
DNNs, which struggle with the tight constraints of microcon-
trollers (MCUs). Adapting these models involves techniques
like quantization and pruning to meet memory and energy re-
quirements. While these methods make deployment feasible,
they frequently come at the cost of reduced accuracy [4, 20].
On the other hand, many advancements have been made in
ML accelerators, but these introduce additional power be-
yond that of the hosting microcontroller, often in hundreds
of microwatts and several watts [5, 8, 14, 27]. Additionally,
they impose constraints on the model architecture and sup-
ported computational operations, or require model co-design,
limiting flexibility in deployment.

This paper presents HyperCam, an image processing pipeline

designed for resource-constrained camera systems. As shown
in Fig. 1, HyperCam processes images locally, classifies them
in real-time using an onboard model, and transmits the re-
sults wirelessly to a nearby smartphone. At its core, Hyper-
Cam uses hyperdimensional computing (HDC), a compu-
tational paradigm based on structured data types and bit-
wise operations [25]. Compared to DNNs, HDC is inherently
hardware-friendly, and energy-efficient [17, 28]. However,
most existing HDC works target time-series data, and im-
age processing with HDC introduces unique challenges in
memory and latency optimization. As shown in Fig. 2, MCUs
typically have limited, flat memory hierarchies, and meeting
these constraints requires careful model design. Additionally,
optimizing latency is critical not only to meet real-time re-
quirements but also to minimize the overall power consump-
tion of the system. In image processing, the HD computation
load increases proportionally to the image size. For example,
a baseline HDC approach can take one minute to classify a
120 X 160 grayscale image.

HyperCam solves these challenges using novel and highly
efficient HD encoding methods and aggressively optimizing
performance in terms of memory and latency. Specifically,
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Figure 2: Memory layout of STM32U585A1.

it features a lightweight encoder that dynamically maps im-
ages into HD space, eliminating the need for pre-stored map-
pings as other HD classifiers. The encoder also uses a sparse
binary bundling based on Bloom Filter and Count Sketch,
reducing the number of encoding operations by two orders
of magnitude. Integrated into an ARM Cortex M-33 micro-
processor, the most accurate version of HyperCam is 21.08%
more accurate than MicroNet and 21.51% more accurate than
MobileNet-V3-Small in the 7-class face identification task. It
is also 55-398 times faster and 12-33 times more lightweight
than these baseline DNNs. The following are key contribu-
tions made in this work.

e We introduce HyperCam, a novel HD image classifier that
deploys highly efficient novel data encodings to perform
inference on the sensor node. HyperCam is far more ac-
curate, lightweight, and fast than previous HDC methods
and DNN baselines.

o We develop a prototype of a low-power wireless camera
platform to evaluate HyperCam.

o We show that HyperCam can perform binary and mul-
ticlass classifications in real time using captured image
frames. The most accurate version of HyperCam achieves
an accuracy of 92.98% and 72.79% for face detection and
identification, respectively, using less than 60 kilobytes of
memory and achieving a latency of 0.27 seconds.

e We open source the HyperCam code to help promote re-
producibility and advance onboard computing methods.

2 HYPERDIMENSIONAL COMPUTING
BACKGROUND

Hyperdimensional Computing (HDC), or Vector Symbolic
Architectures (VSA), is a brain-inspired computing paradigm
that represents information in a high-dimensional space.
This framework encodes data as hypervectors, vectors typi-
cally consisting of thousands of dimensions. Randomly gen-
erated hypervectors called the basis hypervectors represent
discrete data units such as symbols and numbers. Applying
HDC operators such as binding, bundling, and permutation
on these basis hypervectors constructs hypervector repre-
sentations of more complex data structures (e.g., sequences,
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Figure 3: Key operations of BSC. (1) Basis vectors are generated for every letter. (2) Binding of data creates a record. (3)
Bundling of words creates a set. (4) Permutation is applied to create hypervectors on-the-fly.

trees, and images). Information can be retrieved from hyper-
vectors by computing the distances between hypervectors.
HDC models vary widely in terms of their hypervector rep-
resentations, operators, and distance metrics choices. Hy-
perCam uses the Binary Spatter Code (BSC) approach [23],
where each element of a hypervector is binary. Operations
done on binary hypervectors are simple, energy-efficient,
and thus, the best choice for resource-constrained hardware.
In the following sections, along with Fig. 3, BSC-HDC oper-
ations are explained in more detail.

2.1 Binary Spatter Code

2.1.1 Basis vector generation. In BSC, each unique symbol
is represented as a binary hypervector called the basis hy-
pervector. Each vector element is a bit, randomly generated
with a p = 0.5 Bernoulli. The hyperdimensionality of these
vectors ensures that randomly generated vectors are nearly
orthogonal. In other words, any two basis hypervectors are
far apart, usually with a Hamming distance of about 0.5.
These basis hypervectors, also called codes, are stored in a
dictionary data type called the codebook.

2.1.2 Binding. The binding operator (©) combines basis
hypervectors and creates a hypervector dissimilar to the
input. In BSC, binding is implemented as an exclusive OR
(XOR). Binding is used to construct larger data structures
such as composite symbols, key-value pairs, and positional
encoding from basis hypervectors. For example, binding the
two hypervectors that represent the words cold and water
results in a single hypervector for cold water. Similarly,
binding the hypervectors for the key and the value creates a
hypervector for the key-value pair.

2.1.3 Bundling. The bundling operator (&) aggregates mul-
tiple hypervectors and outputs a hypervector similar to the
input. In BSC, bundling is executed through an element-wise
majority vote. Given two or more input hypervectors, the
number of zeros and ones are counted at each index, and the
output hypervector chooses the majority value at that index.

Bundling is used to create sets of symbols or data instances.
For example, an image hypervector is created by bundling
the hypervectors of its pixels. Similarly, a hypervector for a
database record is created by bundling the hypervectors of
its key-value pairs.

2.1.4 Permutation. The permutation operator (p) is imple-
mented as a circular shift, which creates a dissimilar hyper-
vector far apart from the input. Because of this characteristic,
permutation is used to create new basis hypervectors as an
alternative to random generation. Additionally, permutation
is used to encode the position data of sequences. For example,
a bigram can be encoded by binding the permuted hypervec-
tors of the characters. That is, binding occurs between the
hypervector of the first character and the permuted hyper-
vector of the second character. Similarly, the dimension of
an image array can be represented using permutation. For
2-dimensional images, binding occurs between the hyper-
vector of the row index and the permuted hypervector of the
column index.

2.1.5 Distance metric. While binding, bundling, and per-
mutation operators encode raw data into hypervectors, dis-
tance metrics are used to retrieve information from the hy-
perdimensional space. The lower the distance between two
hypervectors, the more similar they are. In BSC, distance
measurement is implemented using the Hamming distance,
which counts the number of differing bits and normalizes the
count by the length of the hypervector. The distance metric
is often used to identify the class of the query hypervector.
Other times, it decodes the hypervector to its raw data form
(e.g., sequences, images). For example, the identity of the
key in a hypervector for a key-value pair can be determined
by computing the distance between the hypervector and all
possible key hypervectors.

3 HYPERCAM DESIGN

Using BSC-HDC operations, HyperCam processes computer
vision tasks at the endpoint device (e.g., wireless IoT camera).
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Figure 4: HyperCam overview. The HyperCam classifier runs onboard a low-power wireless camera platform and has three
key components: image encoder, training algorithm, and inference algorithm.

When the camera captures an image, it is converted into a
hypervector, and the classifier determines its class based on
the Hamming distances. In addition, HyperCam can send
the classification result to an IoT gateway via Bluetooth, al-
lowing remote monitoring and interaction. This approach of
transmitting the classification data, as opposed to entire raw
images, significantly reduces communication overhead and
mitigates the risk of transmission errors. The architecture of
the HyperCam classifier, as shown in Fig.4, has three major
components: an image encoder, a training algorithm, and an
inference algorithm.

Image Encoder. Both inference and training require that
images be first encoded as hypervectors. This translation is
done by performing an HD computation over basis hyper-
vectors that capture pixel position and value information.
The MCU stores codebooks that contain these basis hyper-
vectors. A critical challenge in applying HD classifiers to
image classification tasks is managing the performance and
memory overhead associated with encoding image data as
hypervectors. HyperCam deploys a novel image encoding
algorithm (Section 4) that exploits the structure of HD com-
putations to drastically reduce the memory usage and latency
of the encoding procedure. This encoding algorithm uses a
novel sparse bundling algorithm (Section 4.3) to accelerate
the bundling of sets of elements.

Training. Training the HyperCam’s HD classifier occurs
offline on a commodity computer. In this phase, training
data are first encoded to hypervectors through the image en-
coder. Then, these encoded hypervectors are grouped based
on their class labels. The class hypervector is construed by
bundling together the hypervectors of all data instances that
belong to that class. The table of class hypervectors is called
the item memory. While HD classifiers are typically trained
using a one-shot algorithm, HyperCam uses the OnlineHD

adaptive training algorithm [15]. OnlineHD provides an ef-
fective few-pass learning approach where classifier hypervec-
tors are refined based on the misclassifications observed on
each training iteration. OnlineHD targets MAP-HDC, which
works with real-valued vectors. HyperCam works with a
modified version of OnlineHD that works with binary hy-
pervectors. The adapted algorithm binarizes the real-valued
classifier vectors after each training iteration and uses the
binarized item memory to find misclassifications and update
the real-valued model.

Inference. During execution, the MCU encodes each input
frame to a hypervector. This hypervector, called the query
hypervector, is compared to all the class hypervectors in the
item memory using the Hamming distances. The class with
the smallest distance to this query is the predicted category
of the input. This inference computation is highly computa-
tionally efficient, involving only simple Hamming distance
calculation.

4 HYPERCAM IMAGE ENCODING

HyperCam’s image encoding uses HD expression optimiza-
tions and a novel sparse bundling operator to reduce the
encoding overheads dramatically. Section 4.1 presents the
naive image encoding HyperCam’s encoding is based on,
Section 4.2 presents the rewrites applied to reduce memory
and computation requirements, and Section 4.3 presents the
novel sparse bundling method HyperCam uses to expedite
image encoding.

Table 1 presents the computation and memory require-
ments of the unoptimized, naive encoding compared to the
optimized encoding employed by HyperCam. The Hyper-
Cam encoding is obtained by applying four HD expression
rewrites (Rewrite 1-4) that progressively reduce the space
and computational requirements of the encoder. HyperCam
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Codebook Bind Bundle Sparse Bundle
Size Memory (KB) | # Ops Time (ms) | # Ops Time (ms) | # Ops Time (ms)
Naive 536 654 | 38400 2400 | 19200 2400 0 0
Rewrite 1 258 315 | 38400 2400 | 19200 2400 0 0
Rewrite 2 258 315 | 19200 1200 | 19200 2400 0 0
Rewrite 3 258 315 256 16 | 19456 2448 0 0
HyperCam | 258 315 256 16 256 48 | 19200 2

Table 1: Comparison of encoding methods based on the size of the codebook and the number of bind, bundle,
and sparse bundle operations. Each bundling operation involves 10000 bit-wise addition, whereas each sparse bundling
operation involves 20. HyperCam’s codebook size is further reducing during implementation as described in Section 5.1.

employs a novel sparse bundling algorithm that approxi-
mates HDC bundling while requiring 0.2% of the operations.
With these algorithmic encoding optimizations, HyperCam’s
encoding algorithm uses 52% less codebook memory, 50%
less binding operations, and 98% less bundling operations.
The 19200 sparse bundling operations in the final encoding
are computationally equivalent to 38 normal HD bundling
operations.

4.1 Naive HD Image Encoding

This section describes a naive pixel-based HD image encod-
ing algorithm for grayscale images. HyperCam works with
a heavily optimized encoding derived from this naive encod-
ing. In the following encoding formulations, n, w, and h refer
to hypervector size, image width, and height. HyperCam
supports encoding 8-bit grayscale images, where each pixel
value Img[i, j] (or Img[iw + j] in 1D format) is represented
as an integer between 0 and 255.

Pixel Position Codebook. Every pixel in a grayscale image
has a unique position defined by its row and column indices.
To encode this spatial information, we create two codebooks
with randomly generated binary hypervectors. The pixel row
codebook R(i) maps the pixel rows i € 1 - - h, while the pixel
column codebook C(j) maps the pixel columns j € 1---w.

Pixel Value Codebook. The pixel value codebook V (x) maps
an 8-bit grayscale value x € 0- - - 255 to a hypervector. To en-
sure that similar pixel values have similar hypervectors, we
use a level-based encoding technique [36]. In this level-based
codebook, V(0) is instantiated to a zero vector of length n
representing a black pixel value. The basis hypervectors for
values 1, - - - , 255 are constructed by sequentially setting ran-
dom selections of zero-valued bits to one.

Pixel Encoding. To encode a single pixel located at (i, j), we
combine the spatial and intensity information. This is done
by binding the hypervectors for the row R(i), column C(j),
and pixel value V(Img[iw + j]):

hvpixi; = R(i) © C(j) © V(Img[iw + j])

Image Encoding. Once all pixel hypervectors are created,
we aggregate them into a single hypervector that represents
the entire image by bundling them:

h w
himg = Z; Z‘ R(i) © C(j) © V(Img[iw + j])
=1 j=

Space and Time Complexity. Given n = 10000 bits, this
encoding method needs to store w + h+ 256 codebook hyper-
vectors. It requires wh pixel bundling operations and 2wh
binding operations per image, each of which is a n-bit hyper-
vector operation. For the 120 X 160 grayscale images used
in this implementation, naive encoding would require 536
codebook hypervectors totaling 670 kilobytes of memory,
38400 binding operations, and 19200 bundling operations.
Therefore, even for small images, this encoding algorithm
scales poorly.

4.2 HyperCam HD Image Encoding

Based on the naive encoding method presented in Section 4.1,
the properties of HD computations are exploited to rewrite
the image encoding and optimize computation and memory
usage. Sections 4.2.1-4.2.4 present the HD expression rewrites
applied to reduce the image encoder’s memory footprint and
computational requirements. The rewrites presented in 4.2.1-
4.2.2 preserve the computational properties of the HD en-
coding and therefore do not affect classification accuracy.
The factoring and sparse bundling rewrites in 4.2.3-4.2.4 are
semantics-breaking and change the computational proper-
ties of the HD encoding, therefore affecting classification
accuracy. HyperCam’s sparse bundling optimization uses a
novel lossy filter-based sparse bundling operator, which is
presented in Section 4.3.

4.2.1 Rewrite 1: Permutation-based Codebooks. HyperCam
uses the permutation operator (Section 2.1.4) to encode row
and column indices, replacing the need for separate entries
for each position in the row and column codebooks. Instead
of storing R(i) and C(j) for all indices, the zero-index hyper-
vectors R(0) and C(0) are repeatedly permuted to represent
different rows and columns:

hoimg = Y > p'[R(0)] © p/[C(0)] © V(Imgliw + j])
i=1 j=1
Since the hypervectors in the pixel position codebook are
generated independently and randomly, permuting one code
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effectively produces another independent code. In other
words, any code and its permuted code have a high expected
distance. This optimization reduces the number of codebook
hypervectors from w+h+256 to [ ]+ f%'| +256 hypervectors,
cutting memory usage from 670 KB to 322 KB.

4.2.2  Rewrite 2: Row and Column Index Coalescing. In the
na'"ive encoding, row and column hypervectors are bound
together to encode pixel positions. This binding step can be
eliminated by introducing a new codebook X, which directly
represents 1D pixel positions (k = iw + j):
h w
hoimg = Z ZX(iw +j) © V(Imgliw + j])

i=1 j=1

This rewrite can be applied because the binding operator
produces a hypervector that is dissimilar to its input hyper-
vectors, and the input hypervectors are already independent.
Replacing the 2D position encoding (i, j) with a 1D pixel
index k preserves the behavior of the HD encoding while
reducing unnecessary binding operations. The permutation
from rewrite 1 can then be applied to reduce the codebook
size from to fWTh] entries:

houng = ), 30" [X(0)] © V(Img[iw + j])

h
=1 j=1

12
4.2.3 Rewrite 3: Value Hypervector Factoring. Critically, the
number of bundling operations must be reduced to encode
the image efficiently. The sparse bundling operator efficiently
approximates bundling operations over permutations of a

single hypervector. First, the value hypervector binding op-
erations are factored from the bundling operation:

255
hoimg = Y V(0| D p™IX(0)]
z=0

i,j€Pix(z)

Pix(z) returns all pixel positions i, j where each pixel Img[iw+
Jj] has the value z. Note that the HD operation & is not asso-
ciative since some information is lost during the quantization
step in bundling. Thus, this rewrite changes the distance
properties of the encoded hypervectors. Specifically, this
rewrite loses information about the relative prevalence of
different pixel values in the image. For example, if an image
contains one gray pixel and many white pixels, the white
and gray pixels would be equally important in this factored
encoding. This information is re-introduced into the encod-
ing using a weighted bundling: more prevalent pixel values
are bundled multiple times.

255
hoimg = ) IPix(2) - V() 0 | > p™[X(0)]
z=0

i,j€Pix(z)
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Here, values that occur more frequently in the image are
heavily weighted in the encoding, recouping some informa-
tion lost in the factored operation. This weighted bundling
operation is equivalent to an HD bundling operation, where
each hypervector is bundled multiple times:

255 255 |Pix(z)|

D IPix()| V() 1= D0 > V(2]
z=0 z=0 k

Therefore, the weighted bundling operation can easily be
fused with a normal bundling operation by scaling the binary
hypervector during the sum-threshold computation.

4.2.4 Rewrite 4: Sparse Bundling. After applying the factor-
ing rewrite, each pixel bundling sub-computation (blue text)
can then be efficiently approximated using a novel sparse
bundling operator introduced in Section 4.3:

255
hoimg = ), IPix(2)| -V 0 | > p™[X(0)]
z=0

i,j€Pix(z)

The sparse bundling operation approximates the standard
HD bundling and replaces bundling operations over per-
muted hypervectors. It is designed to preserve the property
of bundling that similar sets of pixels are embedded into
hypervectors that are close to each other. It also processes
a set of elements (in this case, pixel positions) and returns
a hypervector that approximates the distance properties of
the standard bundled set of elements:

255
hvimg = Z |Pix(z)| - V(z) © SparseBundle(Pix(z)) (1)
z=0
The sparse bundling operator works with a density parame-
ter d, where d < n, and performs O(d) operations to bundle
two hypervectors. Using a sparse bundling operation reduces
the number of operations required to bundle each vector
from O(n) to O(d). HyperCam uses d = 20, thus reducing
the number of operations per bundling operator from 10000
to 20 operations. d is determined experimentally, where for
d < 20, HyperCam experiences sharp drop of accuracy. Once
sparse bundling is applied to construct each pixel set hy-
pervector, HyperCam applies 256 weighted HD bundling
operations to construct the final hypervector representation
of the image.

4.3 Sparse Bundling

HyperCam deploys a novel sparse bundling algorithm that
uses Bloom Filter [6] and Count Sketch [7] to approximately
bundle large numbers of hypervectors together at low la-
tency. Bloom Filters and Count Sketches are probabilistic
data structures adept at representing sets of elements. Both
data structures work with numeric vectors and are updated
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by randomly sampling and updating bits. They can be viewed
as a sub-class of HDC/VSA as they also compute in superpo-
sition [9, 24, 26].

Given a set of integers s € S, the sparse bundling algorithm
returns a binary hypervector that approximates bundling
together the basis hypervectors that represent each element:

SparseBundle(S) ~ Zps[hv]
SES

The sparse bundling operation approximates an HD bundling
operation over permutations (p®) of some hypervector hv.
The algorithm is parametrized with a hypervector size n
and density parameter d and offers both Bloom Filter and
Count Sketch backends. The Bloom Filter backend is more
computationally efficient but less accurate than the Count
Sketch backend. Each sparse bundling operation requires d
operations, significantly reducing the number of operations
per bundling task when d << n.

4.3.1 Algorithm Description. This section describes Alg. 1.
Given a set of integer values S to bundle, the SparseBundle
operator instantiates a new sum hypervector (Line 23), uses

Algorithm 1 Sparse Bundling Algorithm

1: bool bloom = false; //use a bloom filter or count-sketch
2: uint n = 10000; // hypervector size

3. uint d = 20; // density - the number of hashes per bundle
4: // random set of size d from values {0,1,--- ,n—1}
5. uint8[d] indices «— rand(0,n,size=d,replace=False);
6: // random vector with values {—1, 1}

7: int8[d] CS « rand([-1,1],size=d);

8: function SPARSEBUNDLEELEM(hv,s)

9: for jin0..d —1do
10: k = (indices[j]+s) % n
11: if bloom then

12: hv[k] =1

13: else
14: hv[k] = hv[k] + CS[j]

15: function NEWSPARSEHV

16: int8[n] hv = zeroes(n);

17: return hv;

18: function FiNaLIZEHV (hv)

19: if - bloom then
20: foriin0..n do
21: hv[i]=1?hv[i] >=0:0
22: procedure SPARSEBUNDLE(S)
23: hv = NewSparseHW()
24: fors e Sdo
25: SparseBundleElem(hv,s)
26: FinalizeHV(hv);
27 return hv;
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the sparse bundling operator to add each value to the sum
hypervector (Lines 24-25), and then finalizes the sum hyper-
vector (Line 26) to obtain a binary hypervector that approx-
imates the bundled result. The SparseBundleElem routine
updates the sum hypervector to bundle an integer element.
Instantiation and Finalization. The sum hypervector
is instantiated to an n-dimensional signed integer vector
comprised of zeroes. On finalization, each element is bina-
rized by thresholding the value with zero to produce an n-
dimensional binary vector. Finalization is only required for
sum hypervectors in the Count Sketch backend; the Bloom
Filter backend directly produces binary vectors.
Bundling[Lines 8-14] The algorithm updates the sum hy-
pervector ho to include the integer s by computing d random
indices from the integer value and then updating the values
in these indices. For the Bloom Filter backend, each update
sets the hypervector value to one. For the Count Sketch back-
end, the bundle hypervector value is randomly incremented
or decremented. HyperCam precomputes the random indices,
along with the random increment and decrement operations,
and stores the values in the Count Sketch (CS) array.

5 HYPERCAM IMPLEMENTATION

This section describes the implementation of HyperCam.
Section 5.1 presents the implementation of the image en-
coding algorithm and further engineering efforts to port the
model onboard. Section 5.2 describes the collection of the
image dataset used to evaluate HyperCam. Lastly, Section 5.3
describes HyperCam’s low-power hardware platform.

5.1 Image Encoding Algorithm

Alg. 2 presents the algorithm for computing the optimized
image encoding presented in Equation 1. First, a single pass
is taken over the input image, during which the position
hypervectors are bundled using either a Count-Sketch-based
or Bloom-Filter-based bundling operation. The binary hyper-
vectors produced by the sparse bundling operation are then
bound with the value hypervectors and bundled to form the
final image hypervector, as described in Equation 1. Each
bundled vector is bound with the corresponding value hy-
pervector from the codebook, resulting in 256 hypervectors.
These hypervectors are then bundled together, using weights
equivalent to the number of pixels in each bin. Moreover,
since each hypervector contains only d non-zero elements,
the vector summation in the binning process computes d
integer elements instead of n.

To further reduce image encoding time and eliminate value
codebook, value hypervectors are generated on-the-fly in-
stead of pre-storing them. As described in Section 4.1, the
value codebook uses level-based encoding, where random
selections of bits in V(0) are flipped. For a value v, V() is
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Algorithm 2 Image Encoding with Sparse Bundling

function ENCODEIMAGE(Img: image)
int[256][n] hvs;
uint[256] cnts;
uint8[n] imgHV;
for v in 0..256 do
sumHVs[v] = NewSparseHV()
cnts[v] =0
for kin 0..w - hdo
v = Img[k]
SparseBundleElem(sumHVs[v], k)
cnts[v] +=1
for v in 0..255 do
foriin0---n—1do
imgHV[i] += cnts[v] - (sumHVs[v][i] xor get-
ValueCB(v,i))
foriin0---n—1do
imgHV[i] = 1 ? imgHV[i] > |[wh|/2 : 0;

return imgHV;

generated by flipping v - |n/256] bits. The order in which
bits are flipped must be the same at every generation for en-
coding consistency. Thus, this ordering of bit flips (which are
indices of the n-length array) is stored in the microcontroller.
Additionally, the generation of value hypervectors does not
create overhead in computation because it integrates into
the binding operation, which already iterates over the vector.
Complexity. These implementation-level optimizations re-
duce the codebook size from 256 + 2 to 2 hypervectors. The
above algorithm requires 256 bundling operations, 256 bind-
ing operations, and 19200 sparse bundling operations. Each
sparse bundling operation uses approximately 500 times
fewer operations than standard HDC bundling.

5.2 Data Collection

InIoT deployments, collecting data from real-world scenarios
is crucial for aligning with actual conditions. IoT systems are
sensitive to environmental changes, sensor noise, and operat-
ing conditions (e.g., lighting and object placement), affecting
performance. We demonstrate an IoT deployment scenario
by collecting a custom classification dataset and training a
model. Specifically, we took 4,215 160x120 grayscale images
using the Himax HM01B0 camera mounted on the Ardu-
cam HM01B0 Monochrome SPI Module. An assortment of
backgrounds and people was imaged to diversify the input
dataset. Images of people were taken such that their faces
were captured at different angles and positions. Approxi-
mately 500 images per person were collected from various
background scenes such as a hallway, office space, white-
board, etc. Objects and backgrounds not involving people
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Figure 6: Low-power wireless camera platform.

were also collected as negative samples for face detection.
There are 4,215 images across seven person classes and one
non-person class as shown in Fig. 5.

5.3 Hardware

A low-power camera hardware platform was designed to

evaluate the performance of HyperCam on resource-constrained

hardware. An evaluation board for the STM32UF855AI mi-
crocontroller (MCU) was used as the central computing de-
vice [39, 40]. The MCU has an Arm Cortex-M33 processor,
2MB of flash memory, and 736KB of SRAM. The evaluation
board contains several sensors, extra memory, and redundant
peripheral interfaces for the evaluation of HyperCam. Thus,
all non-critical components operating on the same power
supply rails as the MCU were removed from the board to
reduce power consumption. The Himax HM01B0 image sen-
sor in QQVGA mode is used to capture 160x120 resolution
grayscale images [16]. A custom printed circuit board (PCB)
is implemented to interface the MCU with the image sensor,
which connects the 2.8V supply from the evaluation board
to the camera. Moreover, it connects I2C and 8-bit parallel
QQVGA communications between the MCU and image sen-
sor. A 24MHz crystal oscillator drives the image sensor’s
internal clock. Lastly, the MCU’s Digital Camera Interface
(DCMI) and Direct Memory Access (DMA) peripherals are
used to transfer image data from the camera into the MCU’s
memory.
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A nRF52840 BLE module is integrated into the camera
hardware and wirelessly transmits data packets to a nearby
base station [38]. A 3.7V 4400mAh Lithium Ion battery pow-
ers the entire hardware platform. Two linear regulators on
the evaluation board provide 3.3V and 2.8V to the MCU and
camera, respectively. A 3.3V linear regulator also supplies the
BLE module. Some power losses were incurred in these linear
regulators during the active state, which can be reduced by
custom power management design.

The camera platform is designed so that components are
set to standby in their minimum-sleep modes and are acti-
vated by an event trigger (e.g., motion detection or manual
button press). When triggered, the MCU wakes the cam-
era module to capture and store an image, performs image
classification, and transmits the classification outcome to
a smartphone application. After completing each task, the
camera platform returns to sleep mode. Figure 6 shows the
prototype implementation of the hardware platform.

6 EVALUATION

HyperCam is compared with baseline machine learning clas-
sifiers in an identical embedded hardware environment.

6.1 Experimental Setup

6.1.1  Classifier Tasks. HyperCam is evaluated on four image
classification datasets: MNIST, Fashion MNIST, Face Detec-
tion, and Face Identification. MNIST and Fashion MNIST
are widely used benchmark datasets for evaluating machine
learning classifiers, each containing 60,000 28x28 grayscale
images [29, 43]. Face Detection and Identification tasks use
the dataset described in Section 5.2, which consists of 1 non-
person class and 7 person classes. Face Detection is binary
classification distinguishing between the non-person class
and the person class, while Face Identification classifies 7
person classes. All class sizes were balanced.

6.1.2 Classifiers. Several machine learning algorithms are
selected as a baseline to compare against HyperCam. Both
HyperCam and the baseline models are trained offline on
a standard laptop, where their test accuracies are assessed.
The trained models are then exported as C header files and
loaded onto STM32U585AI for performance evaluation. All
models use integer representations to fit the hardware and
ensure compatibility with other MCU families. Except for
the HDC models, which are inherently integer models, all
other ML models were trained using floating-point numbers
and then quantized post-training to integer values.

HDC. Five HDC models are chosen for comparison. Vanil-
laHDC is the most basic form of an HD classifier explained in
Section 4.1. OnlineHD is VanillaHDC using the OnlineHD [15]
trainer. Rewrite2 uses the encoding method described in Sec-
tion 4.2.2. HyperCam™ uses the Count Sketch backend and
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HyperCam™ uses the Bloom Filter backend. Here, all hyper-
vectors have a length of n = 10, 000.

Lightweight ML. SVM and XGBoost are chosen to represent
lightweight ML models. They are trained using Python’s
sklearn and xgboost libraries and are ported to a C header
file using the micromlgen library.

Neural Networks. MicroNets, MobileNetV3, and two sizes
of MCUNetV3 are chosen for this category. MCUNet V3*
(mcunet-in1) is the smallest, and the MCUNet V3** (mcunet-
in3) is the largest one that fits the MCU. After training, they
are trained from pre-trained weights and are quantized to
8-bit integer numbers. Once converted to C header files, the
TensorFlow Lite Micro and the CMSIS-NN libraries are used
to run them on the ARM Cortex M-33 environment.

6.1.3  Evaluation Metrics. These metrics were used:
Accuracy. Data is split in an 8:2 ratio between the training
and testing datasets. The model is trained with the training
dataset, and accuracy is measured using the test dataset.
Flash Memory. The flash memory footprint of the model
is measured in kilobytes. For ML models, this includes the
model weights, parameters, and the library code required
for execution. For HDC models, this includes the model’s
codebook and the item memory.

RAM. The peak RAM footprint of the model is measured in
kilobytes. This includes the model activations, input, output
tensors, and library code for ML models. For HDC models,
this includes hypervectors allocated for encoding. When en-
coding is done, HDC uses only one hypervector to represent
a data instance for inference.

Latency. The latency of the classifier is the time it takes to
process one frame of image. This involves the time it takes to
encode an image and predict its class using the item memory.
All latency is measured on STM32U585A1 and is in seconds.

6.2 Classifier Evaluation

Table 2 compares HyperCam’s HD classifier to the baseline
classifiers in terms of accuracy, flash memory size, peak RAM
size, and latency during one pass of inference.

Among HD classifiers, VanillaHDC and OnlineHD, while
demonstrating reasonable accuracy (80.03% and 91.34% on
MNIST, respectively), are not suitable for deployment on
resource-constrained devices due to their large flash mem-
ory footprint. The Rewrite2 encoding method, proposed as
part of HyperCam, significantly reduces the flash memory
consumption to 365.02 KB for the largest task while maintain-
ing a competitive accuracy of 94.60% on MNIST and 84.06%
on Fashion MNIST. The final version of HyperCam further
improves this by achieving the lowest flash memory foot-
print of all ML classifiers: 63.00 KB (HyperCam®) and 52.62
KB (HyperCam™) for the largest task. For a more compet-
itive memory footprint and latency, HyperCam sacrifices
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Table 2: Comparison of Image Classifiers. HyperCam is compared with different image classifiers in terms of accuracy (%),
flash memory usage (KB), peak RAM memory usage (KB), and latency (s) on 4 benchmark tasks.

T MNIST Fashion MNIST Face Detection Face Identification
Pe Acc Flash RAM Latency | Acc Flash RAM Latency | Acc Flash RAM Latency | Acc Flash RAM Latency
VanillaHDC | 80.03 - - -169.39 -|72.54 - - - 140.60 -
OnlineHD 9134 - - -|81.83 - | 84.62 - - - | 84.62 -
HDC | Rewrite 2 94.60 365.02 22.09 0218499 365.02 22.09 0.21]94.09 35650 22.09 1156 |78.63 36260 2209 1156
HyperCam* |93.60  63.00 22.25 0.26|84.06  63.00 22.25 0.26|92.98  53.83 22.25 0.27|7279 5952 2225 0.27
HyperCam™ |90.36 5262 2225 0088310 5262 22.25 0.08|92.73 4291 22.25 0.12[61.40  49.00 22.25 0.12
Lightweight | SVM 78.24 - - -1 72.06 - 186.45 - - -|27.07 -
ML xgBoost 76.86 36555 77.09 0.01|71.76 35276 77.09 0.01|94.46 13492 77.09 0.01[38.88 193.24 77.09 0.01
MicroNets ~ |97.82  582.16 302.87 1.05|86.84 58216 302.87 1.05|92.86 581.12 502.87 6.64[51.71 581.76 502.87 6.64
Neural | MobileNet V3 | 98.69 1640.00 302.87 3298648 1640.00 302.87 329 |88.18 1640.00 502.87  18.53|51.28 1640.00 502.87  18.55
Networks | c(Net v3* | 99.34 1190.00 302.91 6.70| 933 1190.00 302.91 6.70 | 99.88 1190.00 302.91 670 [99.15 1190.00 302.91 6.70
MCUNet V3** | 98.97 1340.00 502.91  46.71|94.20 1340.00 302.91  46.71|99.88 1340.00 50291  46.71|99.01 1340.00 50291  46.71

accuracy from Rewrite2 but only with a small margin (1.00%
reduction in MNIST and 0.93% in Fashion MNIST). Further-
more, HyperCam™ achieves the lowest latency across all
HDC and neural network classifiers: 0.08 seconds on MNIST
and 0.12 seconds on Face Detection and Identification.

When compared to lightweight machine learning models
like SVM and xgBoost, HyperCam demonstrates superior
performance in both accuracy and memory efficiency. For ex-
ample, both versions of HyperCam achieve higher accuracy
than SVM across all classification tasks, while xgBoost only
outperforms HyperCam in the Face Detection task by a small
margin of 1.48%. In the Face Identification task, SVM and
xgBoost experience a significant drop in accuracy (27.07%
and 38.88%, respectively). By contrast, all HD classifiers, in-
cluding HyperCam, exhibit a more graceful decline in perfor-
mance, maintaining much higher accuracy levels (72.79% for
HyperCam®). Additionally, in terms of memory consumption,
both SVM and xgBoost require significantly more memory
than HyperCam. Even after being quantized to integer values,
SVM could not fit in the MCU’s flash memory.

Neural network models, particularly those using 8-bit inte-
ger quantization, such as MicroNets and MobileNetV3, offer
the highest accuracy levels (e.g., 98.69% on MNIST for Mo-
bileNetV3) but at the cost of substantially higher memory
usage and latency. For example, in terms of flash memory
consumption, MicroNets requires over 500 KB of flash mem-
ory while MobileNetV3 and MCUNetV3 all use more than 1
MB of flash memory. On the other hand, HyperCam’s most
memory-efficient version (count-sketch) requires only 63 KB
of flash memory and 22.25 KB of RAM. MCUNetV3 exhibits
the highest accuracy among all models, with near-perfect
performance (e.g., 99.34% on MNIST and 99.88% on Face

Detection). However, the trade-off comes in the form of sub-
stantially higher latency. The smallest MCUNetV3 model has
a latency of 6.7 seconds, while the larger version takes up
to 46.71 seconds. In contrast, HyperCam maintains latencies
under 0.3 seconds across all datasets.

Memory Analysis. A breakdown of the flash memory is
shown in Fig. 7. For neural networks represented by MCUNetV3,
memory is consumed by the TF Micro library and the model
data (graph, weights, and parameters). On the other hand,
in HyperCam, no library code is needed as it exclusively
uses hardware-native operations such as addition, exclusive
or, and comparison. Instead, HyperCam’s HD classifier only
requires hypervectors stored as byte arrays. This aspect min-
imizes memory requirements and eases the process of adding
new classifiers; each class addition consumes n bits. In con-
trast, a new model in DNN comes with a model graph (about

STM32U585Al Flash Memory (2MB)

Free
810 KB
Other Free
1981KB 1634 KB
TF Micro Free Free
102 KB 1937 KB 1947 KB
Graph
83 KB
Weights
807 KB
Weights
366 KB Weights Weights
63 KB 53 KB
MCUNetV3 XGBoost Count Sketch ~ Bloom Filter

Figure 7: Breakdown of flash memory.



HyperCam: Low-Power Onboard Computer Vision for loT Cameras

Encoder

Count | Bind & Sum
Sketch Binning

! Initialization

Majority Vote

Bloom | Prediction
Filter

o 40 | 8 | 120 = 160 200 240

Time (ms)

Figure 8: Latency Profiling of HyperCam.

Component Active Current | Sleep Current | Voltage
STM32U5851 10.9 mA 74.9 uA 3.3V
Himax HM01B0 2.5 mA 1.3 mA 2.8V
nRF52840 Express 7.2 mA 1.4 mA 3.8V

Table 3: HyperCam Component Power Consumption.

100 KB) and weights that can be anywhere from hundreds
of bytes to megabytes.

Latency Analysis. Fig. 8 shows the latency profiling of Hy-
perCam when using Count Sketch and Bloom Filter. Observe
that Bloom Filter outperforms Count Sketch for bind & sum,
improving overall latency. For the count-sketch method, the
major processing time of bind & sum is not binding and
summing themselves but quantizing integer values to binary
for binding. This process is omitted from the Bloom Filter
backend, greatly reducing latency. Additionally, in both cases,
bundling does not appear in Fig. 8 because it occurs in two
stages: summation as part of bind & sum and majority
vote. That is, the result of binding is summed to the output
element-wise and later evaluated for the majority.

6.3 Power Analysis

The power consumption of the wireless camera platform was
evaluated using a Joulescope JS220 with 0.5 nA resolution,
equivalent to 34 bits of dynamic range [22]. The average
quiescent currents of the remaining components, the 3.3V
STM32U5851 and 2.8V Himax HM01B0 camera regulator are
outlined in Table 3. Next, the system’s total power consump-
tion was evaluated during image capture, processing, and
data transmission as shown in Fig. 9. The system was di-
vided into key components during the power consumption
measurement (MCU, camera, BLE module). The remaining
B-U585I-I0T02A power can be derived by subtracting the
power from the system’s primary devices. When an event
trigger occurs, the image sensor is activated, and the power
consumption jumps to an average of 128 mW for image pro-
cessing for 250 ms. Lastly, a data packet is transmitted to a
base station over BLE for 200 ms. This equates to an aver-
age power consumption of 102 mW during active mode for
450 ms. Note that further power optimization could be done
by replacing the evaluation board’s regulators with more
efficient switching or LDO regulators.
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Figure 9: System Power Consumption. (1) camera plat-
form in sleep mode (2) camera initialization, image capture,
and inference, (3) data transmission, and (4) system returns
to sleep mode.

7 RELATED WORK

There has been recent work in energy-efficient cameras and
machine learning to exploit the resource-constrained envi-
ronments presented by IoT devices. Several paradigms gov-
ern the current space, including work to ease the load of
transmitting image data and onboard computing.

Onboard Computing. There have been two lines of efforts
to enable IoT devices onboard computing. The first is the
TinyML paradigm, where lightweight DNNs are developed
for resource-constrained platforms. It uses frameworks such
as TensorFlow Lite for Microcontrollers (TFLM) to quantize
and prune weights to alleviate performance overhead, en-
abling various levels of hardware acceleration and model
deployment [10, 33]. Works such as [3, 30] use extensive
network architecture search (NAS) to find an optimized neu-
ral network architecture for available memory resources. In
[32], convolutional neural networks enable tiny on-device
training with considerable memory limitations. Here, in-
ference is performed, and over time, classifier weights are
updated to improve performance with new input sensor data.
These models provide concrete baselines for HyperCam’s
performance, as compared in Section 6.2.

On the other hand, there have been works exploring the
use of hyperdimensional computing for onboard machine
learning. However, hyperdimensional computing primarily
focuses on time-series data, which does not have the same
overhead as image processing [25]. An exception to this is
[18], where HDC is used to enable emotion and face de-
tection. This work uses histograms of gradients (HoGs) to
extract the features of the image, which involves calculating
the gradients of the pixels and binning them by angles. This
front-end feature extractor not only introduces more com-
putation load but also fails to resolve the inherent encoding
complexity in HD image processing.

Energy-efficient Wireless Cameras. The advancements in
low-power processors and image sensors have led to several
works that focus on developing low-power wireless camera
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System Active Power | Resolution | Frame Rate | Communication | Onboard Inference
BackCam [21] 9.7 mW 160x120 1 fps backscatter X
WISPCam [35] 6 mW 176x144 0.001 fps backscatter X
NeuriCam [42] 85 mW 640x480/740p 15 fps BLE X
MCUNet [31] N/A 224224 N/A N/A v
HyperCam 128 mW 160x120 8 fps BLE v

Table 4: IoT Camera Platforms. A comparison of HyperCam to existing camera platforms.

platforms for computer vision applications. In [35], a battery-
free RFID camera is presented and evaluated for machine
vision applications such as face detection. Here, subsam-
pled images are transmitted to a base station that runs a
face detection algorithm. If a face is detected, coordinates
of windows within the image frame are transmitted back
to WISPCam to retrieve higher-resolution images. In [21],
a low-power wireless camera platform is presented to sup-
port real-time vision applications where images are sent to
a base station to perform image processing and face classifi-
cation. Here, image compression is performed to help mini-
mize overall latency and, in turn, reduce power consumption.
More recently, [42] presents a deep-learning-based system
for video capture from a low-power wireless camera plat-
form. Similar to the aforementioned related work, the neural
network processing runs at an edge server or in the cloud.
Compared to prior work, HyperCam focuses on enabling
onboard computer vision for energy-constrained wireless
camera platforms rather than offloading image processing
and classification to the edge or cloud. More closely related
to HyperCam is [30], which deploys a lightweight inference
engine on an MCU system for onboard image processing.
Table 4 compares HyperCam to similar IoT camera platforms.
Other work includes [1, 19], which present ultra-low-power
implementations of wireless camera platforms for extremely
challenging environments such as underwater imaging and
placing wireless cameras on insects.

8 CONCLUSION AND DISCUSSION

We introduce HyperCam, a HDC-based onboard image clas-
sification pipeline. We propose novel HD image encoding
methods including sparse binary vectors and on-the-fly code-
book generations, which significantly reduce the number of
operations and memory footprint. As a result, our system
requires only about 60 KB of flash memory and 20 KB of
RAM, achieving a latency of approximately 0.1 s while main-
taining comparable accuracy across multiple classification
tasks. A key advantage of HyperCam is its scalability and
compatibility across a wide range of hardware platforms.
Unlike most ML models that rely heavily on floating-point
operations and require specialized hardware support, such
as Neural Processing Units (NPUs) and Floating Point Units

(FPUs), HyperCam only uses bits and bit operations. More-
over, HyperCam does not require any additional libraries, ma-
chine learning engines, Neural Architecture Search (NAS), or
hardware-specific optimizations to reproduce results. Thus,
HyperCam can be easily ported to other MCU families. We
highlight several future research directions:

Onboard Training. Data-driven models must continuously
adapt to new data in real-world deployments. This is essential
as deployment data can differ greatly from training distri-
butions, and new categories may emerge. Onboard training
enables this adaptation, and HDC simplifies the process by
allowing easy updates to class hypervectors, bundling new
image hypervectors as needed.

Cloud. Currently, HyperCam connects to a gateway to trans-
mit and display predictions. If the gateway links to the cloud,
remote users can access and monitor results. The cloud can
also store bundled image hypervectors as a model summary,
enabling model refinement and future updates.
Multi-modal Sensors. Modern IoT devices integrate multi-
ple sensors, and combining their data can enhance accuracy
and decision speed without relying on arbitrary fusion algo-
rithms. HD classifiers seamlessly handle multi-modal data
by encoding different sensor inputs into hypervectors.
Diverse Applications. HyperCam supports a range of com-
puter vision tasks, particularly for IoT camera systems in re-
mote, low-power environments such as farms and underwa-
ter monitoring [1, 41]. An energy-efficient onboard classifier
enables applications like pest detection, crop yield prediction,
and wildlife monitoring. Large-scale deployment remains an
area for future exploration.

Advancements in HDC. Existing HDC classifiers struggle
with complex datasets featuring numerous classes or high-
resolution images due to their limited expressiveness and
sensitivity to noise [11, 12, 15]. HyperCam is designed to re-
duce the computational overhead of existing HDC classifiers
while maintaining accuracy, but it similarly faces challenges
with difficult classification tasks. Future advancements in
HDC—such as enhanced training algorithms and richer hy-
pervector representations—could improve performance on
complex tasks, while HyperCam can be integrated into these
developments to retain computational efficiency.
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