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ABSTRACT
Wireless cameras can greatly benefit from onboard machine
learning; however, conventional neural networks are typi-
cally power-hungry and require substantial computational
resources. Brain-inspired hyperdimensional computing (HDC)
is emerging as a promising alternative that is both energy-
efficient and hardware-friendly. We demonstrate an ultra-
low-power image classification pipeline based on HDC that
runs entirely onboard wireless camera systems using about
50 KB of flash memory and 0.12-0.27 seconds for inference.

CCS CONCEPTS
• Computing methodologies → Machine Learning; •
Computer systems organization→ Embedded systems.
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1 INTRODUCTION
Coupled with advances in computer vision, wireless cameras
are increasingly deployed for a wide range of practical appli-
cations such as agricultural monitoring, wildlife observation,
and industrial safety [1, 2, 8]. These applications often rely
on deep neural networks (DNNs), which require substantial
computational resources and memory. However, wireless
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Figure 1: Onboard face detection using HDC.

cameras are typically battery-powered and equipped with
low-power microcontrollers that lack the capacity to run
such models efficiently. As a result, many systems rely on
cloud offloading, incurring latency, energy, and privacy con-
cerns [4, 7, 9]. These drawbacks motivate onboard computer
vision approaches, and developing DNNs that run onboard
microcontrollers is an active area of research.
Hyperdimensional computing (HDC) emerges as a com-

pelling alternative for low-resource hardware. By represent-
ing data with high-dimensional binary vectors and using bit-
wise operations, HDC achieves a hardware-friendly, energy-
efficient form of computation [3, 5]. However, most existing
HDC work has focused on time-series data rather than im-
agery, and naïve HDC methods can introduce substantial
memory and latency overhead when encoding and classify-
ing images. These challenges become especially pronounced
on microcontrollers with highly constrained flat memory
hierarchies and tight power budgets.
In this work, we demonstrate a real-time, low-power im-

age classification pipeline that uses novel HDC encoding
techniques to enable onboard classification on wireless cam-
eras. It features two versions of a lightweight encoder in-
troduced in [6] capable of producing and manipulating hy-
pervectors without requiring large precomputed mappings,
thus significantly reducing both model size and runtime la-
tency. As shown in Figure 1, our system demonstrates face
detection using its onboard camera and transmits inference
results to a nearby smartphone using Bluetooth.
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2 HDC-BASED FACE DETECTION SYSTEM
& DEMO

We present a low-power wireless camera platform that per-
forms onboard face detection with an optimized hyperdi-
mensional (HD) classifier [6]. The core component of this
classifier is a lightweight encoding pipeline featuring two
encoder variants: a Bloom Filter encoder, designed for faster,
more memory-efficient inference, and a Count Sketch en-
coder, which offers higher accuracy at the cost of slightly
increased resource usage. The system supports both binary
face detection (presence vs. absence) and multi-class face
identification (recognizing specific individuals), although we
limit the demonstration to the binary detection case for pub-
lic audiences. The performance of HD and baseline classifiers
on binary face detection task is compared in Table 1.

Model Accuracy Memory Latency
MobileNet V3 88.18% 1640.00 KB 18.53 s
MCUNet V3 99.88% 1190.00 KB 6.70 s
HDC (Count Sketch) 92.98% 53.83 KB 0.27 s
HDC (Bloom filter) 92.73% 42.91 KB 0.12 s
Table 1: Performance on binary face detection.

As shown in Figure 3a, the low-power wireless camera
platform uses the evaluation board for the STM32U585micro-
controller, which has one ARM Cortex M-33 microprocessor,
2 MB of flash memory, and 736 KB of RAM. All non-critical
components in the evaluation board were removed to save
power. The Himax HM01B0 image sensor is used to capture
160x120 grayscale images. A custom printed circuit board
is implemented to interface the microcontroller with the
image sensor. In addition, we use the nRF52840 Bluetooth
module to transmit data packets to a nearby base station.

Component Active Current Sleep Current Voltage
STM32U585I 10.9 mA 74.9 𝜇A 3.3V
Himax HM01B0 2.5 mA 1.3 mA 2.8V
nRF52840 Express 7.2 mA 1.4 mA 3.8V

Table 2: Power consumption per component.
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Figure 2: System power consumption. (1) camera plat-
form in sleep mode (2) camera initialization, image capture,
and inference, (3) data transmission, and (4) system returns
to sleep mode.
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Figure 3: Demonstration setup.
The power consumption of the hardware is shown in Table 2
and Figure 2.
During the demonstration, our camera system is con-

nected to a laptop that displays the captured image frame
alongside the HD classifier’s performance metrics in real
time, as shown in Figure 3b. For comparison, we also show
results from 2 baseline ML classifiers. Key metrics include
the detection result, inference latency, and memory usage.
The results should closely match those in Table 1.
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