
C S 1 0 7 R E A D E R

S TA N F O R D C O M P U T E R S C I E N C E D E PA R T M E N T

Copyright © 2024

published by stanford computer science department

tufte-latex.googlecode.com

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, ei-
ther express or implied. See the License for the specific language governing permissions and limitations
under the License.

First printing, February 2024

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

3

Contents

Unix, the Command Line, gcc, and Makefiles 13

Number Formats Used in CS 107 19

C Primer 26

gdb 46

Bits and Bytes 54

C-Strings and the C String Library 73

Pointers, Generic functions with void *, and Pointers to Functions 80

IEEE Floating Point 93

x86-64 Assembly Language 107

Managing the Heap 136

Bibliography 144

Index 145

4

List of Figures

1 test_void_star.c Simple test programs can often answer questions
about syntax, or language usage, and we encourage students to write
short test programs for just such a purpose. 10

2 A typical Linux terminal window. 14

3 The C Programming Language by Brian Kernighan and Dennis Ritchie
(also known as “K&R”) is the definitive text on C and should be in
every C programmer’s library. 26

4 Possible memory layout for swap2 36

5 Possible memory layout for swap2 with double dereferencing 37

6 Memory address for an array of 4-byte ints 56

7 The number 0x01234567 stored in Big Endian Format, at address
0x100 57

8 The number 0x01234567 stored in Little Endian Format, at address
0x100 58

9 The AND truth table. 58

10 The OR truth table. 58

11 The XOR truth table. 58

12 The NOT truth table. 58

13 The two’s complement circle for a signed 4-bit number 62

14 The two’s complement circle for an unsigned 4-bit number 62

15 An explicit cast between signed and unsigned ints. 64

16 An implicit cast between signed and unsigned ints. 64

17 A cast in C does not change the underlying bit pattern for integers
of the same bit width. 65

18 printf’s format string performs a cast on its values. 66

19 Example program demonstrating the sizeof operator. Note the dif-
ference between the size reported for an array and a pointer to the
array. 68

20 Example program demonstrating the loss of information when con-
verting from a larger integer type to a smaller integer type. 70

21 There is no loss of precision when converting from a smaller in-
teger type to a larger integer type. 71

22 The following is one way to determine if addition of two unsigned
ints will overflow 71

23 The following is one way to determine if addition of two signed
ints will overflow 71

5

24 A C string pointer and the associated memory 75

25 An array of longs in memory 81

26 Possible memory layout for nums array and numsptr 82

27 The command line arguments array 91

28 The command line arguments array after being sorted by the sum
of the character values of each argument string (except the program
name): pear, peach, apple, banana, orange, nectarine. 92

29 Single precision (32-bit) IEEE floating point format 96

30 32-bit FLT_MAX and FLT_MIN values 105

31 The sixteen x86-64 integer registers 112

32 The Linux address space (not to scale) 115

33 A push followed by a pop. Notice that after the push %rax, the stack
pointer has been decremented by 8, and after the pop %rdx, the stack
pointer has been incremented by 8. Also note that the value on the
stack after the pop has not been cleared. 116

34 The stack frame structure 129

35 Empty 96-byte heap 139

36 Heap after a = malloc(16); 139

37 Heap after b = malloc(8); 140

38 Heap after c = malloc(24); 140

39 Heap after d = malloc(16); 140

40 Heap after free(a); 140

41 Heap after free(c); 140

42 Heap after e = malloc(8); 140

43 Heap after b = realloc(b,24); 141

44 Heap after e = realloc(e,24); 141

45 Heap after f = malloc(24); 141

46 Empty, 96-byte Implicit Heap 142

47 Implicit Heap after a call to a = malloc(16); 142

48 Implicit Heap after a call to b = malloc(8); 142

49 Implicit Heap after a call to c = malloc(24); 142

50 Implicit Heap after a call to free(a); 143

51 Implicit Heap after a call to free(a); 143

52 The result after coalescing. 143

6

List of Tables

1 Hexadecimal to binary conversion for 0 - 7 22

2 Hexadecimal to binary conversion for 8 - 15 23

3 Common printf specifiers 29

4 C Data Sizes on the Myth Computers 57

5 Ranges for integer data types on the Myth machines 61

6 C expressions that have both unsigned and signed integers perform
the calculation assuming all values are unsigned. 66

7 Four and eight bit signed two’s complement representation. 69

8 Intel Data Types 110

9 The common conditional suffixes for set / j / cmov 121

10 Stack Trace Example 130

11 Arguments for the stackargs function. 131

12 Stack at beginning of heap trace (values are uninitialized) 138

13 Stack after a = malloc(16) 138

14 Stack after b = malloc(8) 138

15 Stack after c = malloc(24) 138

16 Stack after d = malloc(16) 139

17 Stack after e = malloc(8) 139

18 Stack after f = malloc(24) 139

7

List of URLs
http://stanford.edu/~cgregg/107-Reader/107-Reader-code.zip

...................... p. 11

http://web.stanford.edu/class/cs107/ p. 9

http://www.apache.org/licenses/LICENSE-2.0 p. 2

http://www.cplusplus.com/reference/cstdio/printf/ ... p. 28

http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.

htm p. 107

https://books.google.com/books?id=KfM2rgEACAAJ pp. 9, 129,

144

https://books.google.com/books?id=Yi5FI5QcdmYC . pp. 9, 144

https://cdecl.org p. 44

https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html

...................... p. 99

https://en.wikipedia.org p. 11

https://en.wikipedia.org/wiki/C_(programming_language) .. p.

13

https://en.wikipedia.org/wiki/C_standard_library p. 29

https://en.wikipedia.org/wiki/Dennis_Ritchie p. 13

https://en.wikipedia.org/wiki/Donald_Knuth p. 13

https://en.wikipedia.org/wiki/Free_Software_Foundation .. p.

14

https://en.wikipedia.org/wiki/Git p. 16

https://en.wikipedia.org/wiki/Gratis_versus_libre ... p. 14

https://en.wikipedia.org/wiki/IEEE_754 p. 93

https://en.wikipedia.org/wiki/IEEE_754#Roundings_to_nearest

...................... p. 98

https://en.wikipedia.org/wiki/Ken_Thompson p. 13

https://en.wikipedia.org/wiki/Linus_Torvalds p. 13

https://en.wikipedia.org/wiki/Make_(software) p. 15

https://en.wikipedia.org/wiki/Setun p. 19

https://en.wikipedia.org/wiki/TeX p. 13

https://en.wikipedia.org/wiki/The_Art_of_Computer_

Programming p. 13

https://en.wikipedia.org/wiki/Two%27s_complement p. 62

https://en.wikipedia.org/wiki/Unicode p. 73

https://en.wikipedia.org/wiki/Unix p. 13

https://en.wikipedia.org/wiki/Unix_philosophy p. 14

https://en.wikipedia.org/wiki/William_Kahan p. 95

https://en.wikipedia.org/wiki/X86 p. 107

https://github.com p. 16

https://randomascii.wordpress.com/2012/02/25/comparing-

floating-point-numbers-2012-edition/ p. 103

https://software.intel.com/en-us/articles/intel-sdm p. 107

https://stackoverflow.com/a/1641963/561677 p. 32

https://stackoverflow.com/a/8029624/561677 p. 137

https://stallman.org p. 14

http://stanford.edu/~cgregg/107-Reader/107-Reader-code.zip
http://web.stanford.edu/class/cs107/
http://www.apache.org/licenses/LICENSE-2.0
http://www.cplusplus.com/reference/cstdio/printf/
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=Yi5FI5QcdmYC
https://cdecl.org
https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html
https://en.wikipedia.org
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Gratis_versus_libre
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754#Roundings_to_nearest
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Setun
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix_philosophy
https://en.wikipedia.org/wiki/William_Kahan
https://en.wikipedia.org/wiki/X86
https://github.com
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://software.intel.com/en-us/articles/intel-sdm
https://stackoverflow.com/a/1641963/561677
https://stackoverflow.com/a/8029624/561677
https://stallman.org

8

https://stanford.edu/~cgregg/107-Reader/float/convert.html

.................. pp. 95, 97, 98

https://wikimediafoundation.org/wiki/Ways_to_Give ... p. 11

https://www.bell-labs.com/usr/dmr/www/chist.pdf pp. 82, 144

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_

ReflectionsonTrustingTrust.pdf p. 13

https://www.h-schmidt.net/FloatConverter/IEEE754.html p. 98

https://www.strchr.com/x86_machine_code_statistics . p. 111

https://www.tutorialspoint.com/cprogramming/c_preprocessors.

htm .. p. 27

https://www.wired.com/2011/10/thedennisritchieeffect/ p. 13

mailto:cgregg@stanford.edu p. 11

https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://wikimediafoundation.org/wiki/Ways_to_Give
https://www.bell-labs.com/usr/dmr/www/chist.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.strchr.com/x86_machine_code_statistics
https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm
https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm
https://www.wired.com/2011/10/thedennisritchieeffect/
mailto:cgregg@stanford.edu

9

Introduction

This course reader is meant to be a guide for Stanford stu-
dents as they progress through CS 107, Computer Organization &
Systems, which serves as the first systems course in the Stanford
Computer Science Curriculum. The guide is not intended to replace
the outstanding course textbooks, Computer Systems, A Programmers
Perspective, 3rd Edition by Randy Bryant and David O’Hallaron1 1 R.E. Bryant and D.R. O’Hallaron.

Computer Systems : A Programmer’s
Perspective. Pearson, 2015. ISBN
9781292101767. URL https://books.
google.com/books?id=KfM2rgEACAAJ

and (the ultimate classic) The C Programming Language by Brian
Kernighan and David Ritchie2, nor is it intended to replace at-

2 B.W. Kernighan and D. Ritchie. The
C Programming Language. Pearson
Education, 1988. ISBN 9780133086218.
URL https://books.google.com/
books?id=Yi5FI5QcdmYC

tending lectures, participating in labs, and completing the course
assignments. The only way to really learn the material in CS 107 is
by doing the labs and assignments, and the only way to do the labs
and assignments is to use the course materials (this guide included)
as scaffolding.

The material in this guide follows the outline of the course,
though it should not be considered a definitive guide to the class.
Some material covered in class may not be in the guide, and vice-
versa. During a particular quarter, the course website, at

http://web.stanford.edu/class/cs107/

holds up-to-date information about the course, and this guide
should be used as an additional reference.

CS 107 is not a trivial course, as many current and former
Stanford Computer Science students can attest. The introductory
courses, CS 106A, CS 106B, and CS 106X, provide a computer sci-
ence kiddie pool where students learn how to swim, under the
guidance of a flotilla of Section Leader lifeguards who are avail-
able in numbers that allow frequent one-on-one guidance. In CS
107, students jump into the ocean, with a few Course Assistant
Coast Guardspeople who can provide limited assistance when stu-
dents are in dire need. In other words, many of the safety nets that
students get used to in the introductory courses are not available
in CS 107, and we expect students to be better self-learners when
they become stuck on a programming problem. This guide can
be a good resource, as can the textbook, Piazza, and office hours.
Additionally, students should consider doing Internet searches as
well, although answers found through Google or Stack Overflow
(for example) will not always yield answers that are appropriate for

https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=Yi5FI5QcdmYC
https://books.google.com/books?id=Yi5FI5QcdmYC
http://web.stanford.edu/class/cs107/

10

the course material. That said, searching online for the meaning of
error messages, or for syntax questions is encouraged.

A frequent source of questions about the course material come
in a form that could easily be tested by the student with a bit of C
code. For example, a student might ask, “I know that pointer arith-
metic cannot be done on void* pointers. So... if we have two void* point-
ers, void* x and void* y, can we find the difference between their ad-
dresses by doing y - x or would that count as pointer arithmetic?” This
is a great question! However, it is also a question that can be tested
with a little bit of C code, as shown in Figure 1. The student who
can produce C code to answer questions such as this one have truly
learned to swim in the programming ocean!

// file: piazza_question.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

int m = 0;

int n = 1;

void *x = &m;

void *y = &n;

printf("x - y: %lu\n",x - y);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall -Wfloat-equal -Wtype-limits \

-Wpointer-arith -Wlogical-op -Wshadow \

-fno-diagnostics-show-option void_star_test.c \

-o void_star_test

void_star_test.c: In function `main':
void_star_test.c:12:29: warning: pointer of type `void *'

used in subtraction

printf("x - y: %lun",x - y);

^

Figure 1: test_void_star.c Simple test
programs can often answer questions
about syntax, or language usage, and
we encourage students to write short
test programs for just such a purpose.

In this course reader I have attempted to produce a detailed
overview of what we expect students to be able to do by the end
of the course. I have included practice problems that should serve
as models of the type of questions that you might see on a CS 107

exam, in a lab, or on a homework assignment. If you can do all of
the problems at the end of each chapter, you will be well on your
way to a good grade on exams, and you will have a head start on
the assignments.

11

Running the Code in the Reader

Throughout this reader, there are many examples of full (though
small) programs that you can run, test, and play around with. We
strongly encourage you to try all the programs, and to modify them
to test your own understanding of how the programs are run.

The code for the assignments is located here:
http://stanford.edu/~cgregg/107-Reader/107-Reader-code.zip

If you are on a Myth machine and want to use the code, type the
following (without the $, which is the prompt):

$ cd

$ wget http://stanford.edu/~cgregg/107-Reader/107-Reader-code.zip

$ unzip 107-Reader-code.zip

$ cd code

$ make

All of the programs will be compiled (there will be a few warn-
ings). All code examples in the text have the file name as the first
line of the code, so you should be able to quickly determine which
file to run.

The code should work on any Linux system with gcc and make

installed3, and on a Mac with XCode and the “command line tools” 3 To install the tools on Ubuntu,
try the following: sudo apt-get
install gcc make build-essential
linux-headers-$(uname -r).

installed4. The easiest way to install and run the tools on a Win-

4 To install XCode, open the App store
and search for XCode. You most likely
won’t have to download anything else,
although the first time you try to make
a file, you might be prompted to install
the command line tools

dows 10 or higher machine is to enable “Bash” and then install gcc
and make5

5 A web search for “install gcc win-
dows 10 bash” should direct you to
some helpful guides.

Once you unzip the file, all the programs can be compiled with
the make command.

Links in the Text and Footnotes

This reader has multiple Internet links to extra information, in both
the main text, and primarily in the footnotes. The links provide
a combination of online reference material, further information,
and general information. Many of the links are from Wikipedia,
which is a triumph of 21st Century knowledge and information,
and completely free.6 6 which means that you should donate

to Wikipedia if you use it! My general
rule for donating to Wikipedia: one
cent per visit. If you find yourself
visiting Wikipedia ten times a day,
pony up the $36.5 once a year when
you see that “donate now!” link!

Contact Information

Please forward any typos or other comments on the text to
cgregg@stanford.edu, and I hope you have a terrific experience
learning about the lower depths of your computer!

http://stanford.edu/~cgregg/107-Reader/107-Reader-code.zip
https://en.wikipedia.org
https://wikimediafoundation.org/wiki/Ways_to_Give
https://wikimediafoundation.org/wiki/Ways_to_Give
mailto:cgregg@stanford.edu

cs 107 reader 13

Unix, the Command Line, gcc, and Makefiles

In your introductory CS courses, you may have learned to
program using an Integrated Development Environment (IDE) such
as Eclipse or Qt Creator. As their name implies, IDEs provide a full
toolset to write, build, compile, run, and debug your programs.
This is a terrific environment for beginning programmers to start
learning the “art of computer programming” (as coined by Donald
Knuth7). However, IDEs also hide the mechanics of turning text 7 Don Knuth, Professor Emeritus of

The Art of Computer Programming at
Stanford, is a legendary computer
scientist one of the world’s foremost
algorithmists. He is the author of a
magnum opus, The Art of Computer
Programming. He is also the creator of
TEX, the typesetting engine that this
reader was typeset in.

code (e.g., written in C or Java) into the binary representation that
we will study in CS 107. Instead of using an IDE to create your pro-
grams, you will use a number of tools provided through the Linux
terminal, and together they will take you from program creation
in C to compilation (via make and gcc) to debugging via gdb and
running your program on the command line. If all of those terms are
foreign to you, you are not alone – many students who take CS 107

have never used the terminal, nor have they directly used any of the
tools used to turn their programs into runnable applications.

In order to get up to speed using the Linux terminal, you should
see the course website, which has a number of tutorial videos that
describe how to set up your computer to log into the Myth com-
puters at Stanford. If you are going through this reader and not at
Stanford, unfortunately you won’t have access to the Myth comput-
ers, but much of the online material can be used on a generic Linux
command line. If you don’t have a computer that natively runs
Linux as its operating system, I suggest installing a virtual machine
for Linux.8 Once you install a virtual machine, you should install 8 An online search for “how to install a

Linux VM” will lead to many results.the latest version of gcc and gdb, which will enable you to follow
most of the examples in the reader.

Unix and Linux

Unix is an operating system that dates from the early 1970s and
was originally created primarily by Ken Thompson9 and Dennis 9 Thompson’s Reflections on Trusting

Trust is a terrifying look at why
you can never completely trust your
compiler

Ritchie10 at Bell Labs. It was the first operating system that was

10 See this Wired Magazine tribute
about Dennis Ritchie to understand
why he deserves more name recogni-
tion

written to be portable, and it was completely written in the C pro-
gramming language11, also created by Dennis Ritchie. In the early

11 Except for the machine specific parts,
which were written in Assembly Lan-
guage for each particular computer.
But, the bulk of the operating system
was written in C

1990s, Linus Torvalds began an open-source version of Unix that he
called Linux, and Linux has become a standard, free, open source
operating system used on millions of computers around the world.

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://www.wired.com/2011/10/thedennisritchieeffect/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Linus_Torvalds

cs 107 reader 14

Figure 2 shows an example of the Linux terminal, which is the
interface that you will use in CS 107 to edit, compile, run, and
debug your programs. Once you have worked out how to log into
the Myth machines (again, see the course website), the next critical
event is to choose an editor. There are multiple choices, but vim
and emacs are two popular choices. Whichever editor you end up
choosing, you should learn as many keyboard shortcuts as you can:
the faster you are able to navigate around your programs, the easier
it will be to concentrate on the coding itself.

Figure 2: A typical Linux terminal
window.

The Unix Philosophy

The Unix creators had a simple philosophy12: command-line pro-
12 as described by Ken Thompson.grams should be simple and should do one thing well. For exam-

ple, the cat program has one job, and that is to read a file and print
the file to the terminal. It is a simple program, and it does the job
well. We will spend a lot of time in CS 107 writing programs that
do one thing well – sometimes you may think we abuse the notion
of simple (because the programs we write can be complex to write),
but all of the programs you write for class will do a single thing.13 13 Possibly in different ways. For

example, you will write a sorting
program that will sort based on
options, such as reverse-ordering, or
based on the length of a line.

Compiling programs using gcc

CS 107 is taught primarily in the C programming language, and
the compiler we will use to turn our C programs into binary code
is the Gnu Compiler Collection, otherwise known as gcc14. Gcc has 14 gcc was initially created by Richard

Stallman, a unique character in com-
puter science, and the founder of the
Free Software Foundation. All of the
software we will use in CS 107 is both
“free as in speech and free as in beer”

many options for compiling our code, and it can compile code to
binary (machine) code that can be run directly, or into assembly code,
which can then be compiled into binary code. For the first half
of the course, we will be compiling with the -O0 optimization flag,
which will produce code that is able to be debugged easily in the
gdb debugger (more on the debugger later). Once we begin dis-
cussing assembly code, we will compile with the -Og optimization
flag, which will make less verbose assembly code to look at.

Specifically, we will be compiling our code in the following
way:15 15 Only type the code in bold. The

dollar sign at the beginning of the line
is the command-line prompt$ gcc -g -O0 -std=gnu99 -Wall -Wfloat-equal -Wtype-limits \

-Wpointer-arith -Wlogical-op -Wshadow \

-fno-diagnostics-show-option program_name.c \

-o program_name

The following briefly describes the options we use (and a back-
slash means that the line is continued onto the next line, so the
entire text above is technically one long line):

gcc] The name of the gcc program

-g Include debugging information (necessary when using gdb for
debugging)

https://en.wikipedia.org/wiki/Unix_philosophy
https://stallman.org
https://stallman.org
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Gratis_versus_libre

cs 107 reader 15

-O0 The optimization level (no optimization, good for debugging)

-std=gnu99 Use the gnu99 C standard, which allows (among other
things) the ability to define for loop variables inside the loop
declaration, e.g., for (int i=0; i < 10; i++)

-Wall, -W... Warning options, to provide useful warnings when
compiling code.

-fno-diagnostics-show-option Suppress showing which warning
option triggered a particular warning

program_name.c The C program name that we are compiling.

-o program_name The output program name that can be run by
typing ./program_name

Compiling programs using make

As the previous section describes, there are a lot of options to com-
piling a program using gcc! There are additional options to compile
multiple files into one executable, too, and this will depend on the
programs you are writing.

Instead of typing the entire gcc line every time you want to com-
pile your program, we will provide you a text file called “Makefile”
that has all of the necessary commands to properly compile all
of your code for the projects. To compile your projects using a
Makefile, simply run the following command16: 16 make is another GNU program that

automates building programs.

$ make

That’s it! Make also performs another helpful function: if any
of your source programs have changed, running make again re-
builds the projects, automatically, and only re-builds the necessary
programs.

A Makefile can contain instructions to build multiple programs,
and many of the CS 107 assignments have multiple programs in
them. If you only want to build a particular program, you can do
so by telling make to build just one. For example, assignment 1 has
four programs, called code, sat, automata, and utf8. To just build
sat (for instance), you would type:

$ make sat

In order to remove the programs and re-compile all of them, you
type:

$ make clean

$ make

https://en.wikipedia.org/wiki/Make_(software)

cs 107 reader 16

Using git

You will work on all of your projects for CS 107 in your local direc-
tory on the Stanford computer network. However, your code will
be copied from a different directory, also located on the network.
Specifically, for each assignment, you will run a command similar
to the following (which is the command for assignment 0):

$ git clone /afs/ir/class/cs107/repos/assign0/{$USER} assign0

This command runs a program called git17, which is a version 17 git is distinct from GitHub; the
former is the program that provides
the versioning tools, and the latter
is a website that provides repository
storage and sharing.

control system that is designed to keep versions of your code so
that you can always go back to previous versions. One thing that
git does that might be important as you go through the course is
that it can, in essence, keep backups for you. Any time you change
the text in a file, you can commit that file into the repository, and
then you can go back to that version whenever you want. If you
want even more backup security, you can push your changes to the
master repository where the initial cloned version resides. In fact,
whenever you run sanitycheck (see the next section for details),
this is what that program does.

The following example demonstrates how you might use git for
assignment 1. Assume you change the utf8.c program, and want
to save the current state as a backup. You would run the following
commands: You might get warning message that

“warning: push.default is unset;” To
stop the warning, type the following:
git config –global push.default
simple

$ git commit -m "Added code to test on 1-byte examples" utf8.c

$ git push

The first command commits the utf8.c file to your local reposi-
tory, with a message (-m) that says what the change accomplished18 18 Good commit messages are impor-

tant for finding old versions!The second command pushes the change to the master reposi-
tory, where it originally came from. All previous commits are stored,
as well.

Let’s say that you made another change and committed it, but
it turns out that you deleted an important function, accidentally. If
you need to go back to a previous commit temporarily, you can do
so as follows:

$ git log

commit d0fcf945876592e2bb74e26f31fcad7ffb850451

Author: Chris Gregg <tofergregg@gmail.com>

Date: Fri Dec 15 14:38:27 2017 -0800

Took out unneeded function

commit fb8f84f57672b0b9ded5cd4dd737141650cf7aea

Author: Chris Gregg <tofergregg@gmail.com>

Date: Fri Dec 15 14:33:34 2017 -0800

Added code to test on 1-byte examples

https://en.wikipedia.org/wiki/Git
https://github.com

cs 107 reader 17

...

$ git checkout fb8f84f57672b0b9ded5cd4dd737141650cf7aea

M code.c

Note: checking out 'fb8f84f57672b0b9ded5cd4dd737141650cf7aea'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at fb8f84f... Added code to test on 1-byte examples

The big long number from the commit log (fb8f84f57672b0b9ded5cd4dd737141650cf7aea)
is used to uniquely identify that version. Now that you have
checked out that version, you can go look at it, and copy anything
you need from that file to a temporary file. Then, you can go back
to the latest version and fix your error:

$ git checkout master

Previous HEAD position was fb8f84f... Added code to test on 1-byte examples

Switched to branch 'master'

Your branch is ahead of 'origin/master' by 2 commits.

(use "git push" to publish your local commits)

Testing and using sanitycheck

A critical task you must do while writing your programs is com-
piling, running, and testing your code regularly, and often. The
definition of often does not mean “when you are done with the
program” – it means every time you make a change to your code.
Some programmers compile after every block of code they write, and
this is a very good idea. A good strategy is to write a block of code,
compile it, and then fix all warnings and errors. Then you compile
again. You can catch errors quickly, and you know exactly where in
the code the error is happening. In CS 107, we frown upon19 code 19 i.e., take off points

that has warnings, and your code should always compile cleanly
with no errors or warnings. You are not allowed to even submit
code with compilation errors, in fact.

Learning how to test your code properly takes time. In CS
107, for each assignment we provide you with a program called
sanitycheck that runs some rudimentary tests on your code. When
you run sanitycheck, you get a list of tests and whether your code
passed or failed each test. When we grade your code, we run an
additional set of tests in a similar manner, and those tests are com-
prehensive and are designed to find any corner cases in your code.

cs 107 reader 18

To run sanitycheck on your code, type the following from a
project directory:

cgregg@myth32:~/cs107/assign1$ tools/sanitycheck

Will run default sanity check for assign1 in current directory

.ir.stanford.edu/users/c/g/cgregg/cs107/assign1.

+++ Test A-Make on .ir.stanford.edu/users/c/g/cgregg/cs107/assign1

Descr: verify project builds cleanly using 'make'

Command: make

OK: Clean build

+++ Test B-SatRange on .ir.stanford.edu/users/c/g/cgregg/cs107/assign1

Descr: min and max value of range for 12-bit signed

Command: ./sat 12

MISMATCH: Submission output does not match sample

Sample output:

12-bit signed integer range

min: -2048 0xfffffffffffff800

max: 2047 0x00000000000007ff

Your output:

12-bit signed integer range

min: -2048 0xfffffffffffff800

max: 2048 0x0000000000000800

+++ Test C-SatAdd on .ir.stanford.edu/users/c/g/cgregg/cs107/assign1

Descr: test saturating addition oveflow case

Command: ./sat 8 127 45

MISMATCH: Submission output does not match sample

Sample output: 127 + 45 = 127

Your output: 127 + 45 = 128

... (more follows)

For this example, there was a mismatch with Test B-SatRange,
and you can see the expected output and your output.

You can also create your own (somewhat rudimentary) tests us-
ing sanitycheck, too. Each assignment comes with a custom_tests

file that you can modify to add your own tests. For example, the
default assignment 1 custom_tests file is:

sat 16 -32768 -32768

automata 90

utf8 0x20AC

You run your custom tests as follows:

$ tools/sanitycheck custom_tests

It is hard to overstate the importance of testing your code for
CS 107. Students who learn to test their code early and often have
fewer problems writing good code, and they ultimately do better in
the course.

cs 107 reader 19

Number Formats Used in CS 107

Today’s computers are, at the lowest level, binary machines20, 20 There have been computers based in
a ternary format, as welland all numbers in a computer are represented in base 2 notation,

which consists entirely of the digits 0 and 1. Humans are gener-
ally used to base 10, which has eight additional digits: 2, 3, 4, 5, 6,
7, 8, and 9. Additionally, base 16 is also used when representing
numbers in a computer, because 16 is a multiple of 2, and therefore
it is easy to convert between base 2 and base 16. Base 16 has the
following digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, and f.

Therefore, in CS 107, you must be extremely familiar with all
three bases that are used to represent numbers, and you must be
able to convert between them quickly (or be familiar with online
conversion tools). We will describe what you need to know in this
chapter, and you would be well-advised to learn the details as soon
as you can.

Base 10

Let’s start by reminding ourselves about the number system we use
every day. The other two bases we will discuss are analogous, but it
might help to think a bit deeper about base 10 before we move onto
the other bases.

Base 10 numbers have the digits 0-9, and counting proceeds
by adding one digit at at time, until the digits are exhausted, at
which point you add a power of 10, and then repeat from 0 again.
That is a fancy way of saying that when you get to 9, you continue
counting at 10:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ..., 97, 98, 99, 100, 101, ..., 998, 999, 1000, ...

A base 10 number with three digits, d2d1d0 is actually repre-
sented as follows:

d2 × 102 + d1 × 101 + d0 × 100

So, for example, the number 425 is:

4× 102 + 2× 101 + 5× 100 = 400 + 20 + 5 = 425

When adding two base 10 numbers together, we carry numbers
greater than 9 to the next higher power-of-10 position:

https://en.wikipedia.org/wiki/Setun

cs 107 reader 20

1 1

178
+ 456

634

When subtracting two base 10 numbers, we borrow when we are
trying to subtract a digit from a smaller digit, treating the subtrac-
tion as the 10 + dsmaller − dlarger, and reducing the digit that was
carried from by one:

2 14

6�3�4
− 416

218

Two definitions you should become familiar with are least signifi-
cant digit and most significant digit:

Least significant digit: The digit farthest to the right of a number.

Most significant digit: The digit farthest to the left of a number.

The least significant digit is the digit that matters the least in a
number. In the number 456, the 6 represents just 6, and the 4 repre-
sents 400, so the 6 is least significant and the 4 is most significant.

Base 2 (binary)

Base 2, or binary notation, has only the digits 0 and 1. Just like
counting in base 10, when the digits are exhausted, you must start
with a new 1:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, ...

As you can see, binary numbers can get long quickly, as there are
only two digits to write with!

Base 2 notation is comprised of powers of 2 (instead of powers of
10), so a base 2 number with four digits, b3b2b1b0 is represented as
follows:

b3 × 23 + b2 × 22 + b1 × 21 + b0 × 20

For example, 1101b is: To differentiate between binary and
decimal representations, we use b and
d following each number1× 23 + 1× 22 + 0× 21 + 1× 20 = 8 + 4 + 0 + 1 = 13d

In other words, 1101 binary is 13 decimal, and this is the method
we use to determine a base 10 number if we have a base 2 number.

To convert a base 10 number into base 2, we must perform a
series of divisions, taking the remainder each time, and growing the
binary number from least significant digit to most significant digit,
until the division produces zero. For example, to convert 1234d to
binary:

cs 107 reader 21

1234d/2 = 617, remainder 0 the least significant digit is 0

617d/2 = 308, remainder 1 the next digit to the left is 1

308d/2 = 154, remainder 0 the next digit to the left is 0

154d/2 = 77, remainder 0 the next digit to the left is 0

77d/2 = 38, remainder 1 the next digit to the left is 1

38d/2 = 19, remainder 0 the next digit to the left is 0

19d/2 = 9, remainder 1 the next digit to the left is 1

9d/2 = 4, remainder 1 the next digit to the left is 1

4d/2 = 2, remainder 0 the next digit to the left is 0

2d/2 = 1, remainder 0 the next digit to the left is 0

1d/2 = 0, remainder 1 the next digit to the left is 1

Therefore, the final result is

1234d = 10011010010b

We won’t expect you to convert from decimal to binary regularly,
but you should be able to do it. To convert 10011010010b to decimal
(it is only necessary to calculate bits that are 1)

10011010010b = 210 + 27 + 26 + 24 + 21 = 1024+ 128+ 64+ 16+ 2 = 1234d

Because we will use them often, you should simply memorize
the first ten powers of 2:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

When adding two binary numbers together, there are many more
carries than in decimal addition, because every time 1 is added to 1,
there is a carry. Also, remember that 1 + 1 = 10, and 1 + 1 + 1 = 11:

11

1011
+ 1011

10110

When subtracting two binary numbers, the borrow happens any
time a 1 is subtracted from a 0:

10

�1�0110
− 1010

1100

Base 16 (hexadecimal)

Base 16 may at first seem like an odd choice for a base for comput-
ing. It has more digits than decimal, and computers are fundamen-
tally binary. However, one of the downsides of binary is that binary

cs 107 reader 22

numbers are long and difficult for humans to cognitively process.21 21 i.e., they are hard to read!

Hexadecimal (hex) numbers, on the other hand, are four times
shorter than their equivalent binary representations, and although
reading a number with letters for some of the digits does take some
time to get used to, reading hex numbers becomes second nature
with practice. Additionally, and the underlying reason why we of-
ten use hexadecimal notation is because the conversion from binary
to hexadecimal, and back again, is extremely easy (as we shall see
in a few paragraphs).

A hexadecimal number (represented with 0x preceding the num-
ber, e.g., 0x4a) has sixteen digits: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, and f.
The letters a-f represent the numbers 10-15. When counting, a 1 is
added after the last digit is f:

0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,11,12,13,...,fc, fd, fe, ff, 100, 101,...

Because both the base for both binary and hexadecimal formats
are divisible by 2, the conversion between them is straightforward.
Every four binary digits (or bits) is equivalent to one hexadecimal
digit. Tables 1 and 2 show the conversion from hex digit to binary
(and decimal). You should memorize the binary representations for
each hex digit. One trick is to memorize A (1010), C (1100), and F

(1111), and the others are easy to figure out.

Hex digit 0 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 7

Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Table 1: Hexadecimal to binary conversion for 0 - 7

cs 107 reader 23

Hex digit 8 9 A B C D E F

Decimal value 8 9 10 11 12 13 14 15

Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Table 2: Hexadecimal to binary conversion for 8 - 15

Translating between binary and hexadecimal is trivial if you
know the digits. For example:

0x135af2 = 0001 0011 0101 1010 1111 0010b

Each hex digit converts directly to a 4-digit binary number:

0x1 = 0001

0x3 = 0011

0x5 = 0101

0xa = 1010

0xf = 1111

0x2 = 0010

Translating between hexadecimal and binary is just as easy. For
example:

0101 1111 0111 1100 1111 0010b = 0x5f7cf2

Translating from hex to decimal is similar to converting from
binary to decimal. A 4-digit hexadecimal number in the form
x3x2x1x0 is equal to:

x3 × 163 + x2 × 162 + x1 × 161 + x0 × 160

For example:

0x1ea5 = 1× 163 + 14× 162 + 10× 161 + 5× 160 = 7845d

To translate from decimal to hexadecimal, you perform a series
of divisions by 16 with remainders, which is similar to the decimal
to binary translation. You will not have to perform those transla-
tions by hand in CS 107, and it is reasonable to use a computer to
do so.22 22 You can perform the conversion

on the command line as follows (this
assumes you have Python installed):
$ python -c "print bin(1234)"
0b10011010010
$ python -c "print

hex(0b1010101)"
0x55
$ python -c "print 0xabcd1234"
2882343476
$ python -c "print bin(0xa1b2)"
0b1010000110110010

Using man ascii

The man command in Linux is one of the most helpful commands
for quickly finding something out about another command, or a
library function. If you need to quickly determine the ASCII charac-
ter values in decimal or hex, or if you need to quickly determine the
decimal or hex conversion for numbers less than 255, you can do so
with the man ascii command:

cs 107 reader 24

ASCII(7) Linux Programmer's Manual ASCII(7)

NAME

ascii - ASCII character set encoded in octal, decimal, and hexadecimal

DESCRIPTION

ASCII is the American Standard Code for Information Interchange.

It is a 7-bit code. Many 8-bit codes (such as ISO 8859-1, the

Linux default character set) contain ASCII as their lower half.

The international counterpart of ASCII is known as ISO 646.

The following table contains the 128 ASCII characters.

Oct Dec Hex Char Oct Dec Hex Char

000 0 00 NUL '\0' 100 64 40 @

001 1 01 SOH (start of heading) 101 65 41 A

002 2 02 STX (start of text) 102 66 42 B

003 3 03 ETX (end of text) 103 67 43 C

004 4 04 EOT (end of transmission) 104 68 44 D

005 5 05 ENQ (enquiry) 105 69 45 E

006 6 06 ACK (acknowledge) 106 70 46 F

007 7 07 BEL '\a' (bell) 107 71 47 G

010 8 08 BS '\b' (backspace) 110 72 48 H

011 9 09 HT '\t' (horizontal tab) 111 73 49 I

012 10 0A LF '\n' (new line) 112 74 4A J

013 11 0B VT '\v' (vertical tab) 113 75 4B K

014 12 0C FF '\f' (form feed) 114 76 4C L

015 13 0D CR '\r' (carriage ret) 115 77 4D M

016 14 0E SO (shift out) 116 78 4E N

017 15 0F SI (shift in) 117 79 4F O

020 16 10 DLE (data link escape) 120 80 50 P

021 17 11 DC1 (device control 1) 121 81 51 Q

022 18 12 DC2 (device control 2) 122 82 52 R

023 19 13 DC3 (device control 3) 123 83 53 S

024 20 14 DC4 (device control 4) 124 84 54 T

025 21 15 NAK (negative ack.) 125 85 55 U

026 22 16 SYN (synchronous idle) 126 86 56 V

Oct Dec Hex Char Oct Dec Hex Char

027 23 17 ETB (end of trans. blk) 127 87 57 W

030 24 18 CAN (cancel) 130 88 58 X

031 25 19 EM (end of medium) 131 89 59 Y

032 26 1A SUB (substitute) 132 90 5A Z

033 27 1B ESC (escape) 133 91 5B [

034 28 1C FS (file separator) 134 92 5C \ '\\'

035 29 1D GS (group separator) 135 93 5D]

036 30 1E RS (record separator) 136 94 5E ^

cs 107 reader 25

037 31 1F US (unit separator) 137 95 5F _

040 32 20 SPACE 140 96 60 `
041 33 21 ! 141 97 61 a

042 34 22 " 142 98 62 b

043 35 23 # 143 99 63 c

044 36 24 $ 144 100 64 d

045 37 25 % 145 101 65 e

046 38 26 & 146 102 66 f

047 39 27 ` 147 103 67 g

050 40 28 (150 104 68 h

051 41 29) 151 105 69 i

052 42 2A * 152 106 6A j

053 43 2B + 153 107 6B k

054 44 2C , 154 108 6C l

055 45 2D - 155 109 6D m

056 46 2E . 156 110 6E n

057 47 2F / 157 111 6F o

060 48 30 0 160 112 70 p

061 49 31 1 161 113 71 q

062 50 32 2 162 114 72 r

063 51 33 3 163 115 73 s

064 52 34 4 164 116 74 t

065 53 35 5 165 117 75 u

066 54 36 6 166 118 76 v

067 55 37 7 167 119 77 w

070 56 38 8 170 120 78 x

071 57 39 9 171 121 79 y

072 58 3A : 172 122 7A z

073 59 3B ; 173 123 7B {

074 60 3C < 174 124 7C |

075 61 3D = 175 125 7D }

076 62 3E > 176 126 7E ~

077 63 3F ? 177 127 7F DEL

cs 107 reader 26

C Primer

Figure 3: The C Programming Language
by Brian Kernighan and Dennis
Ritchie (also known as “K&R”) is the
definitive text on C and should be in
every C programmer’s library.

As you begin CS 107, we expect that you have had a good intro-
duction to programming course, and a good follow-on course that
covers typical data structures content for a second programming
course. At Stanford, CS 106A and CS 106B are excellent prepa-
ration for CS 107 and they are taught in Java and C++, which are
both based on C syntax, and both have similar function structure,
loop constructs, variable naming and scoping. The transition to C

after coding in Java and/or C++ is relatively straightforward, and
you should quickly feel at home. If your background is in a lan-
guage like Python, Ruby, R, PHP, or a functional language like Lisp or
Haskell, you may need more time to assimilate to C.

Whatever your background, C does come with its own intricacies,
some of which are historical in nature, and some of which might
be, to some, a bit dated. You will write a great deal of of pointer-
based code that provides very little safety, and this is just how C

rolls. C does not have any notion of classes, and memory manage-
ment is neither garbage collected like in Java, nor object-based
like in C++. But, C is actually a language that is simple enough that
you can become an expert in the language – once you learn a few
crucial details, C becomes a language that allows you to do ex-
actly what you want, and fast, though sometimes at the expense of
“ease.”

As discussed in Unix, the Command Line, gcc, and Makefiles, C was
invented in the 1970s by Dennis Ritchie as a systems language that
could be used to write low-level, portable code that could be run on
any computer with a C compiler. Ritche and Ken Thompson wrote
Unix in C, and the popularity of Unix cemented C into a key role in
systems programming ever since.

This chapter is designed to provide an introduction to program-
ming in C -vs- other C-syntax based languages – we primarily want
to show you some of the nuances in C that you will need to get
used to as you start CS 107. C++ actually shares many of the fea-
tures described in the chapter (and Java shares some, as well), but
in CS 106B we generally focus on other C++ features than the ones
discussed here. The chapter isn’t in any particular order, and can be
used as a reference to some of the syntax as you begin CS 107.

cs 107 reader 27

C Basics

If you are comfortable with either Java or C++, C will be familiar,
although if you haven’t used pointers before, you will need to learn
about them. The following annotated C program describes many of
the typical parts of a C program:

Comments come in two forms. Mul-
tiline comments start with “/*” and
end with “*/”, and cannot be nested.
Single-line comments start with “//”
and only go to the end of a line.

These are the two typical library
include statements, for input/output
and the C standard library.

The “#define” syntax defines a con-
stant that the C Preprocessor replaces
in your code before compilation.

Function prototypes declare functions
before they are defined. A function
must be declared before it can be used
in C, and we normally put function
declarations at the top of a file so we
can use them from any function below.

All C programs begin at the main
function, which must return an int.
See below for more information about
the argc and argv command line
arguments.

C arrays can be declared with the
“[]” notation and an initial comma
separated list of values. The compiler
will determine the size of the array
accordingly.

The size_t type is an unsigned integer
type that holds the size of an object
(like an array).

See Bits and Bytes for information
about sizeof. This is the standard way
to determine the number of elements
in a fixed-size array. This does not work
for arrays that are created via malloc.

See below for details about printf,
which is the standard way to print to
the terminal in C.
The “ternary operator” is a shorthand
if/else statement. The syntax is:
a ? x : y

and can be read as “if a then x else y”.

/* file: personhours.c

* Calculates persondays worked for an array

* of jobs and an array of people per job

*/

#include <stdio.h>

#include <stdlib.h>

#define WORKDAYSPERYEAR 250

#define WORKHOURSPERDAY 8

void scalearray(int *input ,const int *scale ,

size_t nelems);

void converttohours(int *input , size_t nelems);

int workyearstohours(int days);

int main(int argc , char *argv [])

{

// jobdays initially holds

// the number of days worked per job

int jobdays [] = {1, 5, 7, 2, 4, 8, 3};

// workersperday holds the number of workers

// who worked each day on a job

int workersperday [] = {2, 5, 7, 1, 9, 4, 5};

size_t arrsz = sizeof(jobdays) /

sizeof(jobdays [0]);

converttohours(jobdays ,arrsz);

scalearray(jobdays ,workersperday ,arrsz);

for (int i=0; i < arrsz; i++) {

printf("%d",jobdays[i]);

i == arrsz -1 ? printf("\n") : printf(", ");

}

return 0;

}

https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm

cs 107 reader 28

Functions must be declared with a
return type, although that type can be
void if nothing will be returned. See
below for information about const.

for loops may declare the loop vari-
able inside the declaration, with gcc
flag -std=gnu99.

Array elements can be accessed using
the [index] notation. Note that any
pointer can act as an array in this way.
Also note that arrays and pointers
do not carry information about the
number of elements, and you need
to pass along this information as a
parameter (in this case, nelems).

Array elements can also be accessed
using pointer arithmetic with derefer-
encing.

Function names in C are gen-
erally either squished together
(as in workyearstohours or with
underscores as separators, e.g.,
workyears_to_hours. You should
get used to both. camelCase is not
generally preferred.

/* multiply each element in input by the

* corresponding scaling element in scale

*/

void scalearray(int *input ,const int *scale ,

size_t nelems)

{

for (size_t i=0; i < nelems; i++) {

input[i] *= scale[i];

}

}

/* convert workdays array to hours */

void converttohours(int *input , size_t nelems)

{

for (size_t i=0; i < nelems; i++) {

(input+i) = workyearstohours ((input+i));

}

}

/* convert a workday into a number of hours */

int workyearstohours(int days)

{

return days * WORKDAYSPERYEAR *

WORKHOURSPERDAY;

}

The printf statement

The printf statement is the preferred way in C to output text to
the screen or to standard out (stdout). The printf function has the
following function declaration:

int printf(const char *format , ...);

The first parameter is the format string, which contains the string
that will be printed, along with optional embedded format specifiers,
which start with the “%” character. For every format specifier, there
is an additional parameter that provides the value to be format-
ted.23 Most often, the return value for printf is ignored, but the 23 for a comprehensive list, see this

reference.return value is the number of characters that were printed. For
example,

int x = 5;

char c = 'A';

char *str = "some words";

printf("x: %d, a character: %c, a string: %s\n",x,c,str);

Special characters in the format string are prepended with a
backslash, “\”. The most common special character is the newline

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/

cs 107 reader 29

character, \n, which prints a newline (similar to “cout « endl;” in
C++).

The output from the above printf statement is:

x: 5, a character: A, a string: some words

Table 3: Common printf specifiers
Spec. Output Example

d or i Signed integer -5
u Unsigned integer 12

x Unsigned hex int 9f02

f Floating point 123.45

g Alt. floating point 1.23E+02

c Character a
s String text
p Pointer addr b8000000

%% Prints a single % %

Table 3 shows the common printf specifiers we will use in CS
107.

The print specifier can also have a length sub-specifier, which
modifies the length of the data type. For example, if you want to
print out an unsigned long, you need to use the %lu format speci-
fier, which will expect an unsigned long variable in the parameter
list. E.g.,

unsigned long x = 5000000000;

printf("x: %lu\n",x);

Output:

5000000000

Gcc will give a warning if you attempt to specify an incorrect
length for the parameter you pass in. E.g.,

int x = 50;

printf("x: %lu\n",x);

$ gcc -g -O0 -std=gnu99 printf_ex.c -o printf_ex

printf_ex.c: In function 'main':

printf_ex.c:7:5: warning: format '%lu' expects argument of type 'long unsigned int',

but argument 2 has type 'int' [-Wformat=]

printf("x: %lu\n",x);

^

The Standard Library

C comes with a robust standard library that has hundreds of func-
tions available to C programmers. The two most common libraries
are stdlib and stdio, and they will be included in all of our pro-
grams. Other common libraries include string, math, assert, errno,
limits, and stdbool.24 We will focus on the string library (string.h 24 See a complete list on Wikipedia.

in a later chapter. For CS 107, we will have assignments where you
will write some standard library functions, and you should be fa-
miliar with a number of the libraries.

All of the standard library function specifications are available in
the Linux reference manual, which you can access via the man com-
mand. For example, to look up the atoi function, which converts a
string to an integer, you type:

$ man atoi

which brings up the manual entry for the function from the
stdlib library. All the standard library functions are in section 3

https://en.wikipedia.org/wiki/C_standard_library

cs 107 reader 30

of the Linux reference manual, although sometimes there are also
Linux command line functions listed, as well. For example, typing
man printf will bring up the manual page for the Linux command
line printf, and if you want the C library printf, you must type
man 3 printf to bring up the version from the standard library.

For CS 107, you should generally utilize the standard library
as often as possible. Unless we specifically ask you to program
a particular library function25, you should always use a library 25 For example, you will write a version

of cat, a version of ls, and a version of
which.

function for the task you are trying to accomplish, if one exists.
Many students have tried to re-write standard library functions
unsuccessfully, and it isn’t worth the time26 to try and write them 26 or the potential for missed points

because you wrote them incorrectly!on your own. The standard library functions are fast, efficient, and
well-tuned, as they are used by millions of programs daily.

The command line arguments, argv and argc

One way to provide your C program data is through command line
arguments. For example, your program might accept three words as
input, and you could type them into the command line when you
start the program:

$./alphabetize dog hamster cat

cat dog hamster

The command line arguments are available to C programs
through two variables, argc and argv, and are parameters to main:27 27 There is a third parameter we will

use in assignment 2, called envp,
which provides access to the Linux
environment variables.

int main(int argc , char *argv []);

or, alternatively (and exactly equivalent):

int main(int argc , char **argv);

int argc : This parameter holds the number of parameters, includ-
ing the program name. For our eample above, argc would have the
value 4, because there are four arguments: ./alphabatize, dog,
hamster, and cat.

char *argv[] : This paramter holds an array of C string pointers. It
is equivalent to char **argv. Each string can be accessed using
bracket notation, e.g., argv[1] or pointer arithmetic and derefer-
ence notation, e.g., *(argv + 1).

The following is a full example using the command line argu-
ments:

// file: argument_list.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char *argv [])

{

for (int i=0; i < argc; i++) {

cs 107 reader 31

printf("Argument %d: %s\n",i,argv[i]);

}

return 0;

}

$./argument_list dog hamster cat

Argument 0: ./argument_list

Argument 1: dog

Argument 2: hamster

Argument 3: cat

C Arrays and C Strings

Arrays in C are simple, although they have some caveats to be
aware of. Arrays are a contiguous block of memory with a fixed
length. A programmer can access elements in an array using ei-
ther bracket notation (e.g., arr[2]) or by dereferencing an offset
from the beginning of the array (e.g., *(arr + 2)). Although arrays
sometimes behave like pointers (see below), they are distinct and
should not be confused with pointers. The following program is an
example of an array declaration and accessing the array elements:

// file: array.c

#include <stdio.h>

#include <stdlib.h>

void sizeof_test(int arr[]) {

printf("sizeof(arr) in function: %lu\n", sizeof(arr));

}

int main()

{

int arr[] = {1,3,4,2,7,9};

printf("%d\n",arr [2]); // prints 4

printf("%d\n" ,*(arr+5)); // prints 9

// set the value of the third element

arr[2] = 42;

printf("%d\n",arr [2]); // prints 42

printf("sizeof(arr) in main: %lu\n",sizeof(arr));

sizeof_test(arr);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall array.c -o array

$./array

cs 107 reader 32

4

9

42

sizeof(arr) in main: 24

sizeof(arr) in function: 8

In the program above, arr is an array, but critically, not a pointer.
When accessing the array elements by either the bracket notation or
by dereferencing an offset, the array name is converted to a pointer
to the first element of the array to do the calculation28, however, so 28 See this StackOverflow post for more

information.it does behave like a pointer in many circumstances.
When applied to arrays, the sizeof operator returns the num-

ber of bytes of the entire array. For the array in the example above
inside main, sizeof(arr) returned 24 because each int is 4-bytes
long29 In the sizeof_test function, the array parameter is con- 29 see Chapter Bits and Bytes for in-

formation about the size of C data
types.

verted into a pointer to the first element in the array, and therefore
sizeof(arr) returns the size of a pointer in bytes, which is 8 bytes
on the Myth machines.

C does not provide any array bounds checking. You as the pro-
grammer must ensure that you do not try to read or write past ei-
ther end of an array, lest you cause a memory error. As seen above,
when passing arrays into a function, you must also explicitly pass
the number of elements if the function needs that information.

Often, we will declare an array of a particular size, without ini-
tializing the values:

char buffer [256]; // a 256 byte buffer

The scope for the array is within the function (or block) that it is
declared in, and it has space for exactly 256 bytes of memory.

Arrays in C are not hard to understand, but you do need to be
careful to work with them properly.

C strings are simply arrays of chars, with a truncating 0 byte.30 30 This is called “null-terminating”
a string. Don’t confuse this with the
NULL pointer. Although NULL has the
value 0, its type is void *, and not
char.

Unlike Java and C++, C strings are not objects, and do not have
any built-in functionality. They are simply char arrays. C strings
can be declared directly in two different ways, but there are key
differences. The following program demonstrates both methods:

// file: c_string_decl.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

char cstr1[] = "A string";

char *cstr2 = "Another string";

printf("cstr1: %s\n",cstr1);

printf("cstr2: %s\n",cstr2);

return 0;

}

https://stackoverflow.com/a/1641963/561677

cs 107 reader 33

$ gcc -g -O0 -std=gnu99 c_string_decl.c -o c_string_decl

$./c_string_decl

cstr1: A string

cstr2: Another string

Both declarations of strings work, but cstr1 is an array, and
cstr2 is a pointer to an array. The difference is subtle, but there is
another issue that is more insidious: cstr1 is placed in memory
onto the stack (which we will discuss in Chapter Pointers, the Stack,
and the Heap, and Pointers to Functions), and we are able to read and
write to the string characters. On the other hand, the string that
cstr2 points to gets placed into read only memory and we are only
allowed to read from the contents pointed to by cstr2. The proper
declaration for cstr2 should have been:

const char *cstr2 = "Another string";

If, in the original program, we had attempted this:

// change the first characters to lowercase

cstr1 [0] = 'a';

cstr2 [0] = 'a';

The program would have crashed with a segmentation fault when
attempting to change the value of cstr2 (but changing the value of
cstr1 is fine). To be clear: the compiler would not have caught this
error, and it would not have produced a warning, either.

Because Cstrings are terminated with a 0 byte, any time you use
a string in a function that expects a string, you must ensure that
the last byte in the string is a 0. In C, there are (at least) two ways to
directly set the last character to NULL:

char buffer [5];

buffer [4] = '\0';

buffer [4] = 0;

The first case, ’\0’ is generally preferred, as it is a proper char
type. The second, 0, will work, as well (without warning), but 0 on
its own has a type of int.

Note that we have set buffer’s index 4 to 0, because as a 5-integer
buffer the indices go from 0-4. This means that a string buffer
of length 5 can only hold 4 meaningful string characters. The string
“hello” needs a buffer of length 6 to be a proper Cstring. Forgetting
this causes many off-by-one errors with strings!

Pointers and void *

If you took CS 106B, you have worked with pointers before. If you
only have Java experience, you may not have seen pointers before.
A pointer is, simply, a variable that holds a memory address. On
the Myth machines, all pointers are 8 bytes (64 bits) long. Although
under the hood all pointers are identical, C enforces a type on point-
ers so the compiler can calculate the element offsets for arrays.31 31 This has an added benefit of provid-

ing some type safety when compiling,
and the compiler can warn you when
you use a pointer of the incorrect type.

cs 107 reader 34

Take, for instance, the following code:

// file: array_offsets.c

#include <stdlib.h>

#include <stdio.h>

void print_array(int *arr , size_t nelems)

{

for (size_t i=0; i < nelems; i++) {

printf("%d",arr[i]);

i == nelems - 1 ? printf("\n") :

printf(", ");

}

}

int main()

{

int values [] = {1,3,5,2,4,6};

print_array(values ,sizeof(values) /

sizeof(values [0]));

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall array_offsets.c -o array_offsets

$./array_offsets

1, 3, 5, 2, 4, 6

In the function, print_array, the compiler knows that each ele-
ment in the array is an int, and it can calculate where in memory
the next element is when executing arr[i].32 32 We will discuss the details in fu-

ture chapters, but an int is a 4-byte
value, and memory addresses refer
to one-byte locations. Therefore, each
int in arr takes up four memory loca-
tions, and the compiler needs to know
that fact. If we had instead, declared
values to be of type long *, each ele-
ment would take up 8 bytes, because a
long is an 8-byte data type. See Table 4

for more information.

We can access the address of all variables in C with the address-of
operator, “&”. We say that this address of a value is a reference to
that value.33 For example:

33 Do not confuse C references with
C++ references! C references are simply
pointers.

int x = 12;

int *xptr = &x; // xptr now points to x

As we have seen above, we can get to the value stored by a
pointer by dereferencing the pointer with the “*” operator:

int y = *xptr; // y now holds the value 12

When we have a pointer to a value, we can modify the original
value in the location at that pointer. This makes functions such as
swap possible:

// file: swap.c

#include <stdio.h>

#include <stdlib.h>

void swap(int *x, int *y)

{

int tmp = *x;

cs 107 reader 35

*x = *y;

*y = tmp;

}

int main()

{

int a = 5;

int b = 12;

printf("a: %d, b: %d\n",a,b);

swap(&a,&b);

printf("a: %d, b: %d\n",a,b);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall swap.c -o swap

$./swap

a: 5, b: 12

a: 12, b: 5

We will spend a lot of time during CS 107 looking at one further
level of indirection, the pointer to a pointer. A pointer to a pointer
is also a memory address, and it holds a pointer type. Take the
following swap2 program:

// file: swap2.c

#include <stdio.h>

#include <stdlib.h>

void swap2(int **x, int **y)

{

int *tmp = *x;

*x = *y;

*y = tmp;

}

int main()

{

int arr[] = {5, 12};

int *aptr = &arr [0];

int *bptr = &arr [1];

printf("a: %d, b: %d\n",*aptr ,*bptr);

swap2(&aptr ,&bptr);

printf("a: %d, b: %d\n",*aptr ,*bptr);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall swap.c -o swap

$./swap

cs 107 reader 36

a: 5, b: 12

a: 12, b: 5

It is helpful to draw pictures for the situation covered in swap2.
This is a critical understanding point in CS 107 – if you are at all in
doubt about pointers or pointers-to-pointers, draw a picture! Figure
4 shows a possible memory layout for swap2; the addresses are
made up for the purpose of this example. The arrows graphically
show the pointer references, but often it is instructive to see the
numbers, just to make it more concrete. Recall from above that
pointers are 8 bytes, and ints are 4 bytes. Also note that once in
swap2, the function no longer has access to the variables from main.

Address Value

0x1004 12

0x1000 5 (arr)

Memory

Address Value

0x2024
0x1004
(bptr)0x2020

0x201c

0x2018

0x2014
0x1000
(aptr)0x2010

Figure 4a: Before the swap, in main

Address Value

0x1004 12

0x1000 5

Memory

Address Value

0x2024

0x10040x2020

0x201c

0x2018

0x2014

0x10000x2010

Address Value

0x300c 0x2020
(y)

0x3008

0x3004 0x2010
(x)

0x3000

Figure 4b: Before the swap, in swap2

Address Value

0x1004 12

0x1000 5

Memory

Address Value

0x2024

0x10000x2020

0x201c

0x2018

0x2014

0x10040x2010

Figure 4c: After the swap, in swap2

Address Value

0x300c 0x2020
(y)

0x3008

0x3004 0x2010
(x)

0x3000

Address Value

0x1004 12

0x1000 5 (arr)

Memory

Address Value

0x2024
0x1000
(pbtr)0x2020

0x201c

0x2018

0x2014
0x1004
(aptr)0x2010

Figure 4d: After the swap, in main

Figure 4: Possible memory layout for
swap2If our swap function actually did want to swap the two values in

the original array and still had a pointer to a pointer passed in as a

cs 107 reader 37

parameter, it would be possible by double dereferencing the pointer:

void swap2(int **x, int **y)

{

int tmp = **x;

**x = **y;

**y = tmp;

}

Note that a double-dereferenced int ** is an int.
In this case, the diagram would look like Figure 5, where the

original array elements were swapped.

Address Value

0x1004 12

0x1000 5 (arr)

Memory

Address Value

0x2024
0x1004
(bptr)0x2020

0x201c

0x2018

0x2014
0x1000
(aptr)0x2010

Figure 5a: Before the swap, in main

Address Value

0x1004 12

0x1000 5

Memory

Address Value

0x2024

0x10040x2020

0x201c

0x2018

0x2014

0x10000x2010

Address Value

0x300c 0x2020
(y)

0x3008

0x3004 0x2010
(x)

0x3000

Figure 5b: Before the swap, in swap2

Address Value

0x1004 5

0x1000 12

Memory

Address Value

0x2024

0x10040x2020

0x201c

0x2018

0x2014

0x10000x2010

Figure 5c: After the swap, in swap2

Address Value

0x300c 0x2020
(y)

0x3008

0x3004 0x2010
(x)

0x3000

Address Value

0x1004 5

0x1000 12 (arr)

Memory

Address Value

0x2024
0x1004
(aptr)0x2020

0x201c

0x2018

0x2014
0x1000
(bptr)0x2010

Figure 5d: After the swap, in main

Figure 5: Possible memory layout for
swap2 with double dereferencingThe one type of pointer that is significantly different than other

pointers is the “void *” pointer. A void * pointer does not have

cs 107 reader 38

any type information associated with the data it points to. This
necessarily means that when faced with a void * pointer, the com-
piler must be told to intrepret the pointer as a particular type.34 34 But not necessarily the exact under-

lying type!This means that you must cast void * pointers to some type. Often,
we will not have enough information about the type to tell exactly
what it is, so we have to rely on simply walking through the bytes
one-by-one. In order to walk an array one byte at a time, the com-
piler must be told to interpret the pointer as pointing to a 1-byte
data type. The only 1-byte data type we have in C is the char type,
so we you will frequently see casts to char * pointers, even though
the underlying data has nothing at all to do with “characters,” and
are simply bytes of another data type. For example, the following
(annotated) program prints out the raw bytes (in hex) of any array,
which is passed in as a void * array. Notice that we must have the
length of the array in bytes:

We are casting arr to an
unsigned char * because an
unsigned char is a 1-byte length data
type, and we want the byte it returns
to be an unsigned value between 0 and
255. We have to dereference the byte
from the array after we do the pointer
arithmetic.

We ignore the first argument, which
is the program name, so we only need
space for argc-1 values, which are
longs in this case.

Convert each argument from a string
to a long.

Pass in the total number of bytes,
which is the size of the array times the
size of a long.

// file: rawbytes.c

#include <stdio.h>

#include <stdlib.h>

void printbytes(const void *arr , size_t size)

{

for (size_t i = 0; i < size; i++) {

printf("%x" ,*((unsigned char *)arr + i));

i == size -1 ? printf("\n") : printf(", ");

}

}

int main(int argc , char **argv)

{

// create buffer to hold longs

long buffer[argc -1];

// convert command line args to longs

for (int i=1; i < argc; i++) {

buffer[i-1] = atol(argv[i]);

}

// print the raw bytes

printbytes(buffer , (argc -1) * sizeof(long));

return 0;

}

$ gcc -g -O0 -std=gnu99 rawbytes.c -o rawbytes

$./rawbytes 1234 9876 1111 42

d2, 4, 0, 0, 0, 0, 0, 0, 94, 26, 0, 0, 0, 0, 0, 0, 57, 4,

0, 0, 0, 0, 0, 0, 2a, 0, 0, 0, 0, 0, 0, 0

There is a good deal more to pointers that we will cover in Point-
ers, the Stack, and the Heap, and Pointers to Functions!

cs 107 reader 39

The memcpy and memmove Functions

As we go through CS 107, we will quickly reach a point where we
need to copy raw bytes around in memory. There are two func-
tions that accomplish this, memcpy and memmove. Both copy the bytes
(rather than “moving”) them, but the difference is that memcpy is
not guaranteed to work on overlapping memory. In other words, if
you are copying part of an array to another part of the same array,
and the bytes overlap, you must use memmove instead of memcpy. You
should spend some time understanding how both functions work
by looking at their respective man pages35, but we will go over the 35 man memcpy and man memmove

details here. The function prototypes are as follows:

void *memcpy(void *dest , const void *src , size_t n);

void *memmove(void *dest , const void *src , size_t n);

Both functions expect a void * pointer to the destination address
(dest) to copy the data, a const void * address of the location
copying from (the source, src), and the number of bytes to copy.

Much like the example code above, neither function knows the
underlying type of the source or destination pointers, but it moves
the bytes one at a time.

C structs and the typedef statement

Although C does not have objects and is not an object oriented
programming language, it does have the ability to package data
together in the form of a struct. C structs allow you to define a
contiguous region of memory that will hold other variables based
on their types. To declare a struct, we use the following form:

struct tag {

type a;

type b;

...

};

You may have learned about structs in C++, but the C struct has
simpler functionality36. To declare a variable of a struct type in C, 36 structs in C++ are true objects, with

the ability to include functions as well
as data.

we use the following form:

struct tag varname;

This is different from C++, where the struct modifier is not
needed. You may optionally typedef a shortcut for the struct,
and this can be the same name as the struct tag:

typedef struct tag {

int a;

char b;

long c;

} tag;

cs 107 reader 40

...

tag var; // declare var to be of type struct tag

To access a struct variable’s fields, you use dot notation (e.g.,
var.a), and to access a pointer to a struct variable’s fields, you
use arrow notation (e.g., var->a). Here is a complete example to
demonstrate how to use structs:

// file: fraction.c

#include <stdio.h>

#include <stdlib.h>

struct fraction {

int numerator;

int denominator;

};

struct fraction multiply(struct fraction *a, struct fraction *b);

void printfrac(struct fraction *f);

int gcd(int a, int b);

int main(int argc , char **argv)

{

struct fraction f1 = {1,2}; // 1/2

struct fraction f2 = {2,3}; // 2/3

printfrac (&f1);

printfrac (&f2);

struct fraction f3 = multiply (&f1 ,&f2);

printfrac (&f3);

return 0;

}

struct fraction multiply(struct fraction *a, struct fraction *b)

{

struct fraction f;

f.numerator = a->numerator * b->numerator;

f.denominator = a->denominator * b->denominator;

// reduce

int fgcd = gcd(f.numerator ,f.denominator);

f.numerator /= fgcd;

f.denominator /= fgcd;

return f;

}

void printfrac(struct fraction *f)

{

cs 107 reader 41

printf("%d/%d\n",f->numerator ,f->denominator);

}

int gcd(int a, int b)

{

if (a==0) return b;

return gcd(b%a,a);

}

$ gcc -g -O0 -std=gnu99 fraction.c -o fraction

$./fraction

1/2

2/3

1/3

C Memory Management: malloc, free, calloc, and realloc

As we have seen earlier, one method for creating an array is by
declaring local storage:

int values [] = {1,3,5,2,4,6};

There are some downsides to this approach:

1. The memory allocated only remains in scope during the function
or block where it is declared. This precludes creating an array in
a function and returning a pointer to it.

2. The memory is declared on the stack, and there is limited stack
memory, meaning that the arrays cannot be too large.

A more robust method for creating an array is by dynamically
allocating memory, using the following functions:

malloc : request an array of bytes from the operating system.

free : return bytes previously requested back to the operating
system.

calloc : request an array of memory and set the values to zero.

realloc : change the size of a previously requested array

Dynamic memory is allocated from the heap37, and a program 37 more on that in Pointers, the Stack,
and the Heap, and Pointers to Functionshas access to that memory for the duration of the program, if de-

sired. Heap allocated memory does not suffer from the same size
restrictions as memory from the stack, so it also allows you to re-
quest large blocks of memory.

It is good practice to free memory that is no longer needed, to
avoid memory leaks. The operating system will reclaim any unfreed
memory when a program ends, but you should ensure that your
program frees all of its memory before the program ends38 38 And you will lose points in CS

107 for not freeing memory. We will
discuss the use of valgrind to find
memory errors and leaks as the course
progresses.

The details for all of the dynamic memory allocation functions
are located on malloc’s man page39, but here are the function signa-

39 man malloc

tures:

cs 107 reader 42

void *malloc(size_t size);

void *calloc(size_t nmemb , size_t size);

void free(void *ptr);

void *realloc(void *ptr , size_t size);

Notes:

1. malloc’s only parameter is the number of bytes requested, and it
returns a void * pointer to the memory allocated (and NULL if it
cannot allocate the requested number of bytes).

2. calloc’s two parameters, when multipled together, give the total
number of bytes requested.

3. free must be given a previously allocated pointer, or NULL. Once
freed, a program is not allowed to access the memory region
again, even though the pointer value has not been changed.

4. realloc is given a previously allocated pointer (or NULL), and a
new size, and returns a pointer to the (potentially) new block (it
returns the same pointer if it can do an in-place size change). If
it cannot resize the block of memory, it will return NULL, and the
original pointer will be unchanged, allowing the program to clean
up if it can. realloc also frees the old pointer during a size
change when a new block is needed.

The following program is an example that uses the dynamic
memory functions, and demonstrates how to use the valgrind

program to check for memory leaks and/or errors:

// file: dynamic_memory.c

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

int main(int argc , char **argv)

{

int num_ints = atoi(argv [1]);

int *values = malloc(num_ints * sizeof(int));

assert(values);

// fill with even numbers

for (int i=0; i < num_ints; i++) {

values[i] = i * 2;

}

for (int i=0; i < num_ints; i++) {

printf("%d",values[i]);

i == num_ints - 1 ? printf("\n") : printf(", ");

}

// double the size

cs 107 reader 43

int *new_values = realloc(values ,num_ints * 2 * sizeof(int));

assert(new_values);

values = new_values;

num_ints *= 2;

// fill with more even numbers

for (int i=num_ints / 2; i < num_ints; i++) {

values[i] = i * 2;

}

for (int i=0; i < num_ints; i++) {

printf("%d",values[i]);

i == num_ints - 1 ? printf("\n") : printf(", ");

}

// clean up

free(values);

return 0;

}

$ gcc -g -O0 -std=gnu99 dynamic_memory.c -o dynamic_memory

$./dynamic_memory

0, 2, 4, 6, 8, 10, 12, 14, 16, 18

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38

$ valgrind ./dynamic_memory 10

==1797== Memcheck, a memory error detector

==1797== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.

==1797== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info

==1797== Command: ./dynamic_memory 10

==1797==

0, 2, 4, 6, 8, 10, 12, 14, 16, 18

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38

==1797==

==1797== HEAP SUMMARY:

==1797== in use at exit: 0 bytes in 0 blocks

==1797== total heap usage: 2 allocs, 2 frees, 120 bytes allocated

==1797==

==1797== All heap blocks were freed -- no leaks are possible

==1797==

==1797== For counts of detected and suppressed errors, rerun with: -v

==1797== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Using the assert Function

In the program above, we used the assert function to ensure
that the memory allocation functions were able to allocate the re-
quested number of bytes. The assert function has a single expres-
sion parameter, and if that expression is false, the program aborts

cs 107 reader 44

(crashes) with a diagnostic message. Because the program crashes
when an assert fails, it is best used as a debugging tool instead of
an error checking tool. In CS 107, you should use asserts instead
of proper error checking, mainly to save time for concentrating on
other details of your program.

Using cdecl

Sometimes, it is difficult to tell what a particular type declaration
actually means. For example, how does const apply in the follow-
ing declarations?

const char **x;

char *const *y;

char **const z;

There is a handy tool on the Myth computers called cdecl that
will decode type declarations for you:40 40 And there is a cdecl website as well.

$ cdecl explain const char **x

declare x as pointer to pointer to const char

$ cdecl explain char *const *y

declare y as pointer to const pointer to char

$ cdecl explain char **const z

declare z as const pointer to pointer to char

In the first case, the chars themselves may not be changed, in the
second case, the pointer to char may not be changed, and in the fi-
nal case, the pointer to pointer to the char may not be changed. The
cdecl program can come in handy when you start to get confused
by type declarations!

Boolean Values

Most languages have a built-in boolean type, which provide the
common true and false boolean values. C actually does not have
built-in boolean values, and in C, an integer 0 is considered false

and any integer not equal to zero is considered true. In the version
of C that we are using41, there is a boolean library you can use to 41 gnu C99

provide the bool type, stdbool.h:

#include <stdbool.h>

bool a = true;

Final Thoughts

Believe it or not, C is a relatively lightweight language, and al-
though there are nuances, the language can be learned thoroughly.
Once you have a good grasp of the language, and are comfortable

https://cdecl.org

cs 107 reader 45

using the man pages to look up library functions, you will be ready
to excel in CS 107.

cs 107 reader 46

gdb

Probably the most important tool you will use during CS 107

is the command line debugger, gdb. Gdb allows you to step through
your code line-by-line, investigate variables while your program is
running, set breakpoints to stop your code at particular lines, look
at the assembly code that gcc generates, and many more functions
that will help you write and debug your code. It is imperative that
you become proficient at gdb early during CS 107!

For the next part of this chapter, we will use the following buggy
example program to demonstrate the use of gdb:

// file: digits_buggy.c

#include <stdio.h>

#include <stdlib.h>

// returns the number of digits in a base -10

number

int numdigits(int n)

{

int count = 0;

while ((n /= 10) != 0){

count ++;

}

return count;

}

// calculates 10^exp

int powerof10(int exp)

{

int result = 1;

for (int i=0; i < exp; i++) {

result *= 10;

}

return result;

}

// returns the digit from d at position tensplace

// e.g., digit_place (5678 ,2) returns 6 because

// 6 is at the 10^2, or 100s place in 5678

cs 107 reader 47

int digit_place(int d, int tensplace)

{

int p10 = powerof10(tensplace);

return d / (p10 * 10) % p10;

}

int main(int argc , char **argv)

{

char *digit_str [] =

{"zero","one","two","three",

"four","five","six","seven",

"eight","nine"};

int number = atoi(argv [1]); // command line

arg

int ndigits = numdigits(number);

for (int i=ndigits -1; i >= 0; i--) {

int digit = digit_place(number ,i);

printf("%s ",digit_str[digit]);

}

printf("\n");

return 0;

}

We can compile our program as follows:

$ gcc -g -O0 -std=gnu99 -Wall digits_buggy.c -o digits_buggy

The program is supposed to take a number as an argument to
the program, and print out the english version of all the digits. For
example, this is what we would like:

$./digits_buggy 8675309

eight six seven five three zero nine

But, what we actually get is:

$./digits_buggy 8675309

Segmentation fault (core dumped)

Obviously, the most expedient method to debug the code would
probably be to look at it, and find the bugs! But, this isn’t always
easy, and we have tools such as gdb to help with the process.

Below is a sample gdb run that demonstrates many of the com-
mands you should become familiar with. When a command is
used, it is defined in the right margin.

cs 107 reader 48

The run command starts the program.
It can take command line arguments
just as if you were running the pro-
gram on the command line.

The where command provides a stack
trace. Assuming that the bug is in your
code (and not a library function – a
good assumption!), you can look for
the first instance down the stack trace
where your function appears. In this
case, the error seems to be coming
from line 45 of the program, even
though it technically crashed during
the printf call.

The up command follows the stack
trace up one level (to the previous
function) and allows you to investigate
the variables and program state at that
point. In this case, we need to type up
twice to get to the main function.

The p (abbreviated from print) com-
mand prints variables, constants, etc.
To print a hexadecimal digit, type
p/x variable.

The list command lists your C code
around the line that is in process. If
you continue to type l, further lines of
code will print.

$ gdb digits_buggy

The target architecture is assumed to be i386:x86-64

Reading symbols from digits_buggy...done.

(gdb) run 8675309

Starting program:

/afs/.ir.stanford.edu/users/c/g/cgregg/cs107

/reader/digits_buggy 8675309

Program received signal SIGSEGV, Segmentation fault.

0x00007ffff7a5c943 in _IO_vfprintf_internal

(s=<optimized out>, format=<optimized out>,

ap=ap@entry=0x7fffffffe888) at vfprintf.c:1661

1661 vfprintf.c: No such file or directory.

(gdb) where

#0 0x00007ffff7a5c943 in _IO_vfprintf_internal

(s=<optimized out>, format=<optimized out>,

ap=ap@entry=0x7fffffffe888) at vfprintf.c:1661

#1 0x00007ffff7a653d9 in __printf (format=<optimized out>)

at printf.c:33

#2 0x0000000000400720 in main (argc=2, argv=0x7fffffffeab8)

at digits_buggy.c:45

(gdb) up

#1 0x00007ffff7a653d9 in __printf (format=<optimized out>)

at printf.c:33

33 printf.c: No such file or directory.

(gdb) up

#2 0x0000000000400720 in main (argc=2, argv=0x7fffffffeab8)

at digits_buggy.c:45

45 printf("%s ",digit_str[digit]);

(gdb) p digit

$1 = 86

(gdb) p digit_str[digit]

$2 = 0xb <error: Cannot access memory at address 0xb>

(gdb) list

40

41 int number = atoi(argv[1]); // from command line

42 int ndigits = numdigits(number);

43 for (int i=ndigits-1; i >= 0; i--) {

44 int digit = digit_place(number,i);

45 printf("%s ",digit_str[digit]);

cs 107 reader 49

We are investigating the number and i
variables.

The call command will run a function.
Here, we are confirming that the
digit_place function is giving us an
incorrect result (it should be 5 instead
of 86).
The break command tells gdb to
stop running at a particular line; in
this case, line 44. We have also told
gdb to stop when i is equal to 4, so
we can continue at that point (the
condition is optional). When we run
the program again, it uses the last
command line arguments, and it starts
the program over. Then, it breaks on
the line or function where we have set
a breakpoint.

The program stopped at line 44 when
i was equal to 4, before that line runs,
and we use the step command to run
the next line in the program, which
steps into the digit_place function. We
use the next command to run the next
line but to run the entire function (in
this case, the powerof10 function).

Now we can start to analyze the bug.
We print out the d and p10 variables,
and see that they are what we expect.

When we print out the details of the
line that is about to be returned, we
realize that this is incorrect. We then
(hopefully!) recognize that we have the
modulus (%) and division swapped,
so we print out the expression with
the operators in the correct position,
and see that we get the correct answer,
which is the 7 extracted from 8675309.
We have found a bug, and we can quit
gdb to go fix it.

46 }

47 printf("\n");

48

49 return 0;

(gdb) p number

$3 = 8675309

(gdb) p i

$4 = 4

(gdb) call digit_place(number,i)

$10 = 86

(gdb) break 44 if i==4

Breakpoint 1 at 0x4006f2: file digits_buggy.c, line 44.

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107

/reader/gdb/digits_buggy 8675309

Breakpoint 1, main (argc=2, argv=0x7fffffffeaa8)

at digits_buggy.c:44

44 int digit = digit_place(number,i);

(gdb) p i

$3 = 4

(gdb) step

digit_place (d=8675309, tensplace=4) at digits_buggy.c:30

30 int p10 = powerof10(tensplace);

(gdb) next

32 return d / (p10 * 10) % p10;

(gdb) p d

$4 = 8675309

(gdb) p p10

$5 = 10000

(gdb) p d / (p10 * 10) % p10

$6 = 86

(gdb) p d % (p10 * 10) / p10

$7 = 7

(gdb) quit

A debugging session is active.

Inferior 1 [process 14432] will be killed.

Quit anyway? (y or n) y

cs 107 reader 50

After we fix the bug in the digit_place function, we re-run the
program:

$./digits_buggy 8675309

six seven five three zero nine

This is better! But, we are missing the eight that we are expect-
ing. Back to gdb!

If we run the program from gdb, we
find see that it is missing the first digit
(eight).

We list the program (l) to determine
where to break.

We decide to break on line 45 to
investigate some more.

$ gdb digits_buggy

The target architecture is assumed to be i386:x86-64

Reading symbols from digits_buggy...done.

(gdb) run 8675309

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107

/reader/gdb/digits_buggy 8675309

six seven five three zero nine

[Inferior 1 (process 22983) exited normally]

(gdb) l

29 {

30 int p10 = powerof10(tensplace);

31

32 //return d / (p10 * 10) % p10; // fix: swap mod and div

33 return d % (p10 * 10) / p10;

34 }

35

36 int main(int argc, char **argv)

37 {

38 char *digit_str[] = {"zero","one","two","three",

(gdb)

39 "four","five","six","seven",

40 "eight","nine"};

41

42 int number = atoi(argv[1]); // from command line

43 int ndigits = numdigits(number);

44 for (int i=ndigits-1; i >= 0; i--) {

45 int digit = digit_place(number,i);

46 printf("%s ",digit_str[digit]);

47 }

48 printf("\n");

(gdb) break 45

Breakpoint 1 at 0x4006f2: file digits_buggy.c, line 45.

(gdb) run

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107

/reader/gdb/digits_buggy 8675309

cs 107 reader 51

Hmm...ndigits should be 7, not 6.

We will put a breakpoint on the
numdigits function, to investigate that
function. The info break command
tells us what breakpoints we already
have set.

We delete the first breakpoint we set
because we don’t need it any more,
and we re-run the program.

The display count command will show
the count variable value after each
gdb command. In this case, count is a
non-initialized value, because we have
stopped on line 9, before it has been
initialized to 0. The n command (next)
runs line 9, and stops on line 10, where
we l (list) the code. Note that at this
point, count has been initialized to 0.

We break on line 13 to investigate the
count at that line.

Breakpoint 1, main (argc=2, argv=0x7fffffffea98)

at digits_buggy.c:45

45 int digit = digit_place(number,i);

(gdb) p i

$1 = 5

(gdb) p ndigits

$3 = 6

(gdb) break numdigits

Breakpoint 2 at 0x4005c4: file digits_buggy.c, line 9.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000004006f2 in main

at digits_buggy.c:45

breakpoint already hit 1 time

2 breakpoint keep y 0x00000000004005c4 in numdigits

at digits_buggy.c:9

(gdb) delete 1

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107

/reader/gdb/digits_buggy 8675309

Breakpoint 2, numdigits (n=8675309) at digits_buggy.c:9

9 int count = 0;

(gdb) display count

3: count = 32767

(gdb) n

10 while ((n /= 10) != 0){

3: count = 0

(gdb) l

5

6 // returns the number of digits in a base-10 number

7 int numdigits(int n)

8 {

9 int count = 0;

10 while ((n /= 10) != 0){

11 count++;

12 }

13 return count;

14 }

(gdb) break 13

cs 107 reader 52

The continue command continues
program execution at the current line
(and only stops at breakpoints).

The program breaks at line 13 (as
we directed it to do), and we find
that we have an off-by-one problem
with count, after the while loop. We
realize that there must be an error in
the while loop, and we find that we
should have initialized count to 1.

Breakpoint 7 at 0x4005f2: file digits_onefix.c, line 13.

(gdb) continue

Continuing.

Breakpoint 7, numdigits (n=0) at digits_onefix.c:13

13 return count;

3: count = 6

(gdb)

Other Important gdb Commands

The commands in the above gdb traces are probably the most useful
commands, and you will use almost all of the them frequently. The
list below has other commands that you will want to know when
debugging C code, as well.

break 12 if x == 42 This is a conditional breakpoint to break
on line 12 when the variable x is equal to 42. This command is
useful if you need to stop the program in the middle of a loop,
when a variable reaches a certain value, so you can investigate
the program in that state.

help This is an obvious command, but it is useful to give you in-
formation about other commands in gdb. For example, the next
command we will look at is the x command, and we can find
help on it:

(gdb) help x

Examine memory: x/FMT ADDRESS.

ADDRESS is an expression for the memory address to examine.

FMT is a repeat count followed by a format letter and a size letter.

Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),

t(binary), f(float), a(address), i(instruction), c(char), s(string)

and z(hex, zero padded on the left).

Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).

The specified number of objects of the specified size are printed

according to the format.

Defaults for format and size letters are those previously used.

Default count is 1. Default address is following last thing printed

with this command or "print".

x/16bx 0x4007eb The x command prints out a range of mem-
ory. The form here will print out a range of bytes at a partic-
ular memory location in hexadecimal format, e.g., the follow-
ing prints out sixteen hexadecimal bytes at memory address
0x4007eb:

(gdb) x/16bx 0x4007eb

0x4007eb: 0x65 0x69 0x67 0x68 0x74 0x00 0x6e 0x69

cs 107 reader 53

0x4007f3: 0x6e 0x65 0x00 0x25 0x73 0x20 0x00 0x00

The x command is also useful if you want to print out the mem-
ory contents of a variable. For example, let’s say we had the fol-
lowing function, which simply increments the value of the int that
xptr points to:

void add1(int *xptr)

{

(*xptr)++;

}

In gdb, you could investigate xptr in a number of different ways:

Dereference the pointer and print it.

Print one 4-byte integer at the address
of the pointer.

Print four bytes at the address. This
may look strange! In the Bits and Bytes
chapter, we will see why. Let’s print
the hexadecimal value for 1234. If we
print the four bytes in hexadecimal,
and then print the memory at xptr as
hex bytes, we can see some similarity,
although the bytes seem to be in re-
verse order. Read ahead in the Bits and
Bytes chapter for more information!

Breakpoint 1, add1 (xptr=0x7fffffffe9b0) at arrays.c:6

(gdb) p *xptr

$1 = 1234

(gdb) x/1d xptr

0x7fffffffe9a0: 1234

(gdb) x/4b xptr

0x7fffffffe9a0: -46 4 0 0

(gdb) p/x 1234

$2 = 0x4d2

(gdb) x/4bx xptr

0x7fffffffe9a0: 0xd2 0x04 0x00 0x00

(gdb)

cs 107 reader 54

Bits and Bytes

At the lowest level, computers are good at determining the
difference between “on” and “off”. They are built using billions
of transistors, each of which can either conduct electrical current,
or not, based on other transistors connected in a circuit. Together,
these fundamental building blocks contribute to a a computer’s
ability to perform calculations, and logical and numerical calcula-
tion is the basis for computation.

We call a single on or off representation a bit, and numerically a
bit is either a 0 (off) or a 1 (on), representing one state (either off or
on). However, having one bit (and a single state) is not particularly
helpful! In order to have more states, we simply add more bits. As
discussed in Numerical Formats Used in CS 107, the binary number
format is represented by 0s and 1s, and therefore it is the perfect
base to represent a series of bits.

If we have two bits, we have the following four representations:

00

01

10

11

Three bits gives us eight representations: 000, 001, 010, 011, 100, 101, 110, 111.
It follows that adding an extra bit produces two times more states,
and therefore for n bits, we have 2n states available to us.

As you can see, we are actually just counting, assigning each
state a different number. In this way, we can encode anything we
want with bits. We can encode text characters in the ASCII format,
for instance. The character value for “A” is 65d, or 01000001b42 We 42 (See Tables 1 and 2 for the decimal

and hexadecimal ASCII character
values.

encode images, music, and video numerically, and therefore, using
bits.

In this chapter, we will discuss how computers represent and
perform calculations on integers43, and the imporant role bits play 43 We will tackle non-integers, or

floating point numbers in a later chapterin those calculations. We will also delve into the way C handles in-
tegers, including how the lanugage performs calculations, converts
between different integer data types, and prints out integers.

cs 107 reader 55

Unsigned and Signed Integers

There are two forms of integers that we will use in CS 107:

Unsigned Integers: these are the positive integers, and zero.

Signed Integers: these are the negative and positive integers, and
zero.

Because computers use a fixed number of bits to represent in-
tegers, we have a fixed number of values for a particular num-
ber representation. For example, the C int data type uses 32 bits
to represent a number44, and therefore we can represent 232 (or 44 on the Myth machines. The int data

type can have a different number of
bits depending on the machine being
used

4, 294, 967, 296) different numbers. If we want to represent both neg-
atives and positives, half the numbers in our range will be negative,
and the other half will be positive (plus another value for zero).
This describes the signed integers, and indeed int is a signed rep-
resentation, able to represent numbers in the range −2, 147, 483, 648
through 2, 147, 483, 647.45 45 We will soon see why this is the

exact range!But, if we know that we only want to represent positive num-
bers (e.g., length, or weight), we can double our range by using an
unsigned number format. The unsigned int data type also uses 32

bits to represent integers, but because they are only positives (and
zero), the range is from 0 to 4, 294, 967, 295.

The fixed range for an integer data type leads to interesting
issues. Take, for example, the following program:

// file: multtest.c

#include <stdio.h>

#include <stdlib.h>

int main() {

int a = 200;

int b = 300;

int c = 400;

int d = 500;

int answer = a * b * c * d;

printf("%d\n",answer);

return 0;

}

When we compile and run the program, we get the following
output:

$./multtest

-884901888

Why did we get a negative result? The answer is that we just did
not have enough bits to represent the number we were trying to
calculate:

cs 107 reader 56

200× 300× 400× 500 = 12, 000, 000, 000

The maximum int value we can represent is 2, 147, 483, 647, so
the number we were trying to calculate overflowed our representa-
tion, and cannot be represented by an int. We will cover overlow
directly later in the chapter.

Information Storage

Most of CS 107 concentrates on the C programming language, and
in C, all integers can be thought of as blocks of 8 bits, which we
call a byte. We will discuss how we manipulate integers on a bit-
by-bit level, but the C language does not allow us to consider an
individual bit on its own.46 46 The reason is more because the

underlying hardware only represents
numbers at the byte level, so C does
not need to represent numbers more
granularly than the byte level.

A computer’s memory system is simply a large array of bytes.
Each address in memory represents a byte. Figure 6 demonstrates
this concept for the range of addresses from 200d to 236d decimal
(0xc8 to 0xec hex).

7 2 8 3 14 99 -6 3 45 11
200d 204d 208d 212d 216d 220d 224d 228d 232d 236d
0xc8 0xcc 0xd0 0xd4 0xd8 0xdc 0xe0 0xe4 0xe8 0xec

values (ints):

address (decimal):

address (hex):

Figure 6: Memory address for an array
of 4-byte ints

You cannot address a particular bit, and you must address at the
byte level.

How much memory can our computers address? The limit hap-
pens to be the underlying word size of the computer, and the Myth
computers have a word size of 64 bits.47 In other words, an address 47 They are 64-bit machines.

is allocated a 64-bit value, and because each byte is addressable, the
Myth machines could reference up to 264 bytes of memory, which
is a lot of memory. The Linux operating system imposes a memory
limit of 248 bytes, which is still a tremendous amount of memory.48 48 A high-end computer these days

might have 64 Gigabytes (GB) of
memory, or 68, 719, 476, 736 bytes of
memory (“Giga” in this case referring
to 230 bytes). Linux is capable of
addressing over four thousand times
more memory than 64GB. It will be
a long time before Linux needs to
modify the 248 byte limit.

Because a byte is made up of 8 bits, the range of a byte is 00000000

to 11111111. As discussed in Numerical Formats Used in CS 107, it is
more convenient to represnt bytes in hexadecimal, and the hexadec-
imal range for a byte is 0x00 to 0xff.

As discussed above, the Myth computers represent ints with 32

bits. Table 4 shows the other representations used by gcc on the
Myth computers.

cs 107 reader 57

C Declaration Bytes
Signed Unsigned

char unsigned char 1

short unsigned short 2

int unsigned int 4

long unsigned long 8

int32_t uint32_t 4

int64_t uint64_t 8

char * 8

float 4

double 8

Table 4: C Data Sizes on the Myth Computers

Byte Storage in Memory (Little Endian and Big Endian)

We saw in Figure 6 that a four-byte int has a single address that
refers to the entire integer. Gcc keeps track of these addresses, and
we often don’t need to know more than this fact to refer to ints in
our C variables. However, there are times when you will need to
analyze or manipulate data types at the byte level, so it is imporant
to understand how the data is layed out in memory.

A four byte int is stored in consecutive bytes in memory, but we
actually have a choice on ordering those bytes. For example, we can
represent a 4-byte int as an 8-digit hexadecimal number (two hex
digits represent one byte):

0x01234567

We can separate out the bytes:

0x 01 23 45 67

There are two natural orderings for storing those bytes into
memory:

Big Endian: the order in memory is from the “big end” of the num-
ber (i.e., the most significant byte) at the lowest memory location,
to the “little end” of the number (i.e., the least significant byte)
at the highest memory location. Writing out our number from
above, big endian format would look like Figure 7:

byte: 01 23 45 67
address: 0x100 0x101 0x102 0x103

Figure 7: The number 0x01234567
stored in Big Endian Format, at ad-
dress 0x100

cs 107 reader 58

Little Endian: the order in memory is from the little end of the
number at the lowest memory location, to the big end of the
number at the highest memory location. Writing out our number
from above, little endian format would look like Figure 8, and
this is the form in which integers on the Myth computers are
stored in:

byte: 67 45 23 01
address: 0x100 0x101 0x102 0x103

Figure 8: The number 0x01234567
stored in Little Endian Format, at
address 0x100

To be clear: the endianness of a number is simply the order of the
individual bytes in memory. Big endian numbers have the most
significant byte first in memory, and little endian numbers have the
least significant byte in memory first. What endianness is not, is
a complete reversal of the binary bits of a number, but rather the
ordering of the bytes in memory. The Intel/AMD x86 computers we
use in class are little-endian, although we will rarely need to worry
about it.49

49 At the end of the quarter, you may
have to think about the endianness
of numbers when you are closely
analyzing memory for your final
project.

Boolean Algebra

Because computers store values in binary, we often perform oper-
ations on numbers that involve boolean algebra, or arithmetic that
performs operations directly on the individual bits in a number.

Boolean algebra is defined over a 2-element set, 0 and 1, where 0

represents false, and 1 represents true. The following C operations
are defined, and can be used to apply the boolean functions on two
numbers (one in the case of the NOT (~) operator):50

50 Be careful when writing your C
programs to diffierentiate the bitwise
boolean operators from the logical
boolean operators. Gcc does not always
produce a warning when logical AND,
&&, is substituted for bitwise AND, &,
and this can lead to difficult-to-track-
down bugs.

Bitwise AND, &, example: z = x & y The & operator produces a 1 bit
when both operand bits are 1, and a 0 otherwise. Figure 9 shows
the AND truth table.

Figure 9: The AND truth table.
INPUT OUTPUT

A B A & B
0 0 0

0 1 0

1 0 0

1 1 1

Bitwise OR, |, example: z = x | y The | operator produces a 1 bit
when either of the operand bits are 1, and a 0 if both operand
bits are 0. Figure 10 shows the truth table for OR.

Figure 10: The OR truth table.
INPUT OUTPUT

A B A | B
0 0 0

0 1 1

1 0 1

1 1 1

Bitwise XOR (Exclusive OR), ˆ, example: z = x ˆ y The ˆ operator
produces a 1 bit when only one of the operand bits is 1, and a 0

otherwise. Figure 11 shows the truth table for XOR.

Figure 11: The XOR truth table.
INPUT OUTPUT

A B A ˆ B
0 0 0

0 1 1

1 0 1

1 1 0

Bitwise NOT, ~, example: z = ~x The ~ operator inverts a bit, so a
0 becomes a 1, and a 1 becomes a 0. Figure 12 shows the truth
table for NOT.

Figure 12: The NOT truth table.
INPUT OUTPUT

A ~A
0 1

1 0

The bitwise operators apply to all the bits on a number at once.
For example:

cs 107 reader 59

10011001
&10100111

10000001

The AND operator is applied to the corresponding bits in both
numbers to produce the resulting number.

Bit Masking

An important result of being able to perform bitwise boolean op-
erations on numbers is the ability to mask an integer variable, to
access only particular bits of the number. For example:

int x = 0x89ABCDEF;

int y = x & 0xFF; // y now holds the value 0xEF ,

// which is the low -order byte

of x

Let’s break down what is happening in the code. Here are the
values of x and 0xFF in binary:

x == 0b10001001101010111100110111101111

0xFF == 0b00000000000000000000000011111111

When the AND operator is appied, the only bits that remain are
the lowest eight bits, and we have “masked” x to get the lower eight
bits alone.

Example: write an expression that sets the most significant byte
of a 4-byte integer, n to all ones, and all other bytes of the number
left unchanged E.g.

0x87654321 → 0xFF654321

One possible solution would be:

x | 0xFF000000

Example: write an expression that complements all but the most
significant byte of a 4-byte integer, n, with the most significant byte
unchanged. E.g.

0x87654321 → 0x879abcde

One possible solution would be:

x ^ ~0xFF000000

Shift Operations

C provides operations to shift bit patterns to the left or right. The
<< operator moves the bits to the left, replacing the lower order
bits with zeros and dropping any values that would be bigger than
the type can hold:

x « k will shift x to the left by k number of bits.
Examples for an 8-bit binary number:

cs 107 reader 60

00100111 << 2 returns 10011100

01101011 << 4 returns 10110000

10011101 << 4 returns 11010000

There are actually two flavors of right shift, which work differ-
ently depending on the value and type of the number you are shift-
ing.

A logical right shift moves the values to the right, replacing the
upper bits with zeros.

An arithmetic right shift moves the values to the right, replacing
the upper bits with a copy of the most significant bit.51 51 This may seem weird! But, we will

see why this is useful soon!Example logical shift for an 8-bit binary number:

00100111 >> 2 returns 00001001

10100111 >> 2 returns 00101001

01101011 >> 4 returns 00000110

10011101 >> 4 returns 00001001

Example arithmetic shift for an 8-bit binary number:

00100111 >> 2 returns 00001001

10100111 >> 2 returns 11101001

01101011 >> 4 returns 00000110

10011101 >> 4 returns 11111001

There are two important things you need to consider when using
the shift operators:

1. The C standard does not precisely define whether a right shift
for signed integers is logical or arithmetic. Almost all compilers
and computer hardware uses arithmetic shifts for signed inte-
gers, and you can most likely assume this. All unsigned integers
will always use a logical right shift (more on this later!)

2. Operator precedence can be tricky! Example:

1«2 + 3«4 means this: 1 « (2 + 3) « 4, because addition and
subtraction have a higher precedence than shifts!

Always parenthesize to be sure:

(1«2) + (3«4)

Integer Representations in C

The C language has different data types to represent both signed
and unsigned integers.52 C also has rules that properly convert 52 In fact, C and C++ are is somewhat

odd in this regard – most languages
stick to signed integers only.

between one integer data type and another when moving data be-
tween variable types and when performing arithmetic on different
integer data types. Table 5 shows the integer data type ranges for
the Myth (64-bit) machines.

Unsigned integers in C are simply represented by their true bi-
nary representation. For example, an eight-bit unsigned integer (in
C, this would be declared as an unsigned char fourteen would be

cs 107 reader 61

C data type MIN MAX Bytes

char -128 127 1

unsigned char 0 255 1

short -32,768 32,767 2

unsigned short 0 65,535 2

int, int32_t -2,147,483,648 2,147,483,647 4

unsigned int, uint32_t 0 4,294,967,295 4

long, int64_t -9,223,372,036,854,775,808 9,223,372,036,854,775,807 8

unsigned long, uint64_t 0 18,446,744,073,709,551,615 8

Table 5: Ranges for integer data types
on the Myth machines

00001110, which is the true binary representation for 14d. The range
for an unsigned integer is 0 → 2w − 1, where w is the number of
bits in our integer. For example, a 32-bit int can represent numbers
from 0 to 232 − 1, or 0 to 4, 294, 967, 295.

Signed integers are treated differently than unsigned integers. In
particular, we don’t specifically have a “negate” sign, as we do in
regular mathematics, and we assign a bit to represent whether the
number is positive (0) or negative (1). While this sign bit is sufficient
to determine whether a number is signed or not, this leads to some
irregularities. For example, let’s say we have an 4-bit number, and
we reserve the most significant bit as the sign bit. We can represent
sixteen (or 24) total numbers, and we might simply assume that the
lower three bits are the magnitude of the number:

0 001 = 1 1 001 = -1

0 010 = 2 1 010 = -2

0 011 = 3 1 011 = -3

0 100 = 4 1 100 = -4

0 101 = 5 1 101 = -5

0 110 = 6 1 110 = -6

0 111 = 7 1 111 = -7

We have successfully represented fourteen of our sixteen possible
representations, but what about the remaining two numbers?

0 000 = ? 1 000 = ?

It seems that we are left with two representations for zero: posi-
tive zero and negative zero. For integers, this does not make sense,
and we would rather have a single zero representation.53 Addi- 53 In the Floating Point chapter, we

will see that we do have two zero
representations for non-integers.

tionally, and perhaps more imporantly, performing calculations on
positive and negative numbers in the representation above is not
particularly easy, because there is an inherent need to subtract with
numbers that are negative.

Instead of the method outlined above, signed integers in a
computer are represented in a format called Two’s complement.
The two’s complement of an n-bit number is defined to be the
complement of the number with respect to 2n. For example, the
four bit number 0110 has a two’s complement of 1010 because

cs 107 reader 62

0110 + 1010 = 10000.54 As can be seen, to calculate the two’s com- 54 The Wikipedia article on two’s
complement is excellent.plement of a number, you must know how many bits the number

holds.
The standard method for calcluating the two’s complement of a

number is to invert all the bits55, and then add 1. For the example 55 called the one’s complement, or simply
the bitwise NOT operation.above:

~0110 = 1001

1001 + 1 = 1010

The process is reversible. To find the two’s complement of 1010:

~1010 = 0101

0101 + 1 = 0110

If a number overflows to the left past the bit length, we just ignore
the bits that overflowed. For example, to find the two’s complement
of the four-bit number, 0000:

~0000 = 1111

1111 + 1 = �10000

Interestingly, there is a second number whose two’s complement
is itself:

~1000 = 0111

0111 + 1 = 1000

We will soon see why this is the case!

The Two’s Complement Circle

Figure 13: The two’s complement circle
for a signed 4-bit number

0 1

2

4

3

5

7

6

-7 -8

-3

-6

-5

-1

-2

-4

0000 0001

0011

0010

0110

0100

0101

1001 0111
1000

1100

1011

1010

1101

1111
1110

Figure 14: The two’s complement circle
for an unsigned 4-bit number

0 1

2

4

3

5

7

6

9 8

13

10

11

15

14

12

0000 0001

0011

0010

0110

0100

0101

1001 0111
1000

1100

1011

1010

1101

1111
1110

Figure 13 shows the “two’s complement circle” for a 4-bit signed
integer. The figure shows the correspondence between the decimal
and binary numbers in the 4-bit range. There are a few key ideas to
take away from the diagram:

1. Positive numbers are simply the binary equivalent of their value.

2. Negative one is comprised of all 1s, which is equal to the binary
value 2n − 1, where n is the number of bits in the integer (in this
case, n = 4). Negative two is the binary eqivalent of 2n − 2, and
the pattern continues as the negative numbers get smaller.

3. The largest positive number is 2n−1 − 1. The number has a 0 as
its most significant bit (denoting that it is a positive number),
and the rest of the bits are 1s.

4. The smallest negative number is −2n−1. This accounts for the
fact that because of 0, there is one more negative than positive.

5. Overflow happens at the bottom of the circle. If we try to add
two positive numbers together that are bigger than 2n−1, the
number will become negative, and be incorrect mathematically.

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

cs 107 reader 63

Likewise, if we add two negative numbers together and the
result will be less than −2n, the result will become positive and
overflow.

6. It is not possible to add a positive and a negative number to-
gether and overflow in signed arithmetic.

Figure 14 shows the two’s complement circle for a 4-bit unsigned
integer. Note the differences between this signed and unsigned
circle:

1. All numbers are the binary equivalent of their value.

2. The largest number is 2n − 1, where n is the number of bits in
the number.

3. Overflow happens at the top of the circle. If we try to add two
positive numbers together that are bigger than 2n − 1, the num-
ber will wrap around in a clockwise direction, and be incorrect
mathematically. If we subtract two numbers and the result will
be less than zero, the result will wrap around in a counterclock-
wise direction, and the result will be incorrect mathematically.56 56 But correct in a modular sense.

It is important to understand the number circle for both signed
and unsigned integers, particularly when considering the overflow
points, and the maximum and minimum values. Although Figures
13 and 14 are drawn for 4-bit numbers, they can be extrapolated to
any bit length, and the properties remain the same.

Two’s Complement Number Properties

So far, you may be asking yourself what the big deal is with two’s
complement numbers. It turns out that the use of two’s comple-
ment to store signed integers leads to a number of interesting and
helpful properties:

1. There is only one representation for 0. As we saw earlier, a sim-
ple sign-bit representation leads to having two zeros, and two’s
complement avoids this.

2. The most-significant bit is interpreted as a sign bit. It is nice that
this property remains when using two’s complement.

3. Addition with all numbers is simply addition. This is an amaz-
ing development: to add two two’s complement numbers to-
gether, you simply add them, and throw away any overflow bits.
The answer will be correct, as long as the correct mathematical
result would not overflow. For example, performing the addition
of −3 + 7 for our 4-bit numbers, we should get an answer of 4:

1101 −3
+0111 7

�10100 4

and indeed, we do!

cs 107 reader 64

4. To subtract two numbers, we first perform a two’s complement
conversion on the number we are subtracting away, and then we
add them. For example, 3− 5: Convert 5 from 0101 to its two’s
complement:

~0101 = 1010
1010 + 1 = 1011 (−5)

Add the original number and the converted number:

0011 3
+1011 −5

1110 −2
From a hardware perspective, the ben-
efit of two’s complement artithmetic
is that there is no need for separate
subtraction hardware, and performing
a two’s complement conversion is a
simple hardare circuit.

5. Multiplication is also a matter of ignoring the fact that one or
both numbers is negative, and simply throwing away overflow
bits.57 For example: −2× 3:

57 One caveat: multiplication is much
more likely to produce actual overflow
mathematically. But as long as the
product fits into the number of bits
in the format, the multiplaction is
straighforward.

1110 −2
×0011 3

1110
1110

0000
0000
��0101010 −6

As another example, −1×−2:

1111 −1
×1110 −2

0000
1111

1111
1111

���10010010 2

One thing to note about two’s complement notation is that the
bits we are looking at are still powers of two, with the leading bit
being a (possibly) negated power of two. For example, let’s look at
the bit representations for −5 for a 4-bit number:

−5 = 1 0 1 1
= 1×−23 +0× 22 +1× 21 +1× 20

Casting Between Signed and Unsigned Integers

In C, we can cast between different number types either explic-
itly, or implicitly. Figure 15 demonstrates an explicit cast, using
parenthesized type notation for the cast. Figure 16 demonstrates an
implicit cast, where the compiler performs the cast for us.

Figure 15: An explicit cast between
signed and unsigned ints.

int tx, ty;
unsigned ux, uy;
...
tx = (int) ux;
uy = (unsigned) ty;

Figure 16: An implicit cast between
signed and unsigned ints.

int tx, ty;
unsigned ux, uy;
...
tx = ux; // cast to signed
uy = ty; // cast to unsigned

When casting, the underlying bits do not change. In other
words, casting between an unsigned integer and a signed integer

cs 107 reader 65

of the same bit-width does not undergo any conversion. Casting
does not perform an absolute value function on a negative signed
number when converting to a signed number, either. For exam-
ple, figure 17 shows the output when implicitly casting an 8-bit
unsigned char to a signed char in C. −5 as a signed char has the
same bit values as 251 as an unsigned char, which is 11111011.

// file: cast.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

char tx;

unsigned char ux;

tx = -5;

ux = tx;

printf("tx: %d\n",tx);

printf("ux: %u\n",ux);

return 0;

}

$ gcc -g -O0 -std=gnu99 cast.c -o cast

$./cast

tx: -5

ux: 251

Figure 17: A cast in C does not change
the underlying bit pattern for integers
of the same bit width.

C’s printf command has three different ways to print an inte-
ger58: 58 And there are multiple format-string

modifications that can be made to
augment these three.%d : signed int

%u : unsigned int

%x : hexadecmial formatted int

Unless there is an extra width-specifier in the format string,
printf will treat the number according to the format string. Figure
18 demonstrates this with 32-bit ints.

Comparison Between Signed and Unsigned Integers

Often, we want to compare integers to each other. When a C expres-
sion has combinations of signed and unsigned integers, you have
to be careful – if an operation is performed that has both a signed
and an unsigned value, C implicitly casts the signed argument
to unsigned to perform the operation, assuming both integers are
non-negative. Table 6 shows the results of such operations.

cs 107 reader 66

// file: cast_printf.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

int d = -1;

unsigned int u = 1<<31;

printf("d = %d = %u = %x\n", d, d, d);

printf("u = %d = %u = %x\n", u, u, u);

return 0;

}

$ gcc -g -O0 -std=gnu99 cast_printf.c -o cast_printf

$./cast_printf

d = -1 = 4294967295 = ffffffff

u = -2147483648 = 2147483648 = 80000000

Figure 18: printf’s format string
performs a cast on its values.

Expression Type Evaluation

0 == 0U Unsigned 1

TRUE Signed 1

-1 < 0U Unsigned 0

2147483647 > -2147483647 - 1 Signed 1

2147483647U > -2147483647 - 1 Unsigned 0

2147483647 > (int)2147483648U Signed 1

(unsigned)-1 > -2 Unsigned 1

Table 6: C expressions that have both
unsigned and signed integers perform
the calculation assuming all values are
unsigned.

cs 107 reader 67

The sizeof Operator

As we have seen, integer data types are limited by the number of
bits that they hold. In C, we use the sizeof operator to determine
the size of a variable. The sizeof operator is a compile time expres-
sion, which means that although it looks like a function, the result
is always determined before the program runs, and the compiler
replaces the result as a constant into your code.59 Figure 19 shows 59 This happens behind the scenes, but

you should understand how it works
so you don’t get caught off-guard
when it happens.

an example program that prints out the number of bytes of each
of the variables in the program, and the output is from the Myth
machines.

Pay close attention to the output of the sizeof operator for ar-
rays and pointers. For statically-defined arrays, sizeof prints out
the number of bytes used by the entire array. In figure 19, the 5-
element int array is 20 bytes long, becuase each int is 4-bytes.
Although arrays can act as pointers60, the compiler can report the 60 But they are distinct! We will see this

in the chapter on low level C.actual length. For a pointer, the compiler reports the number of
bytes that the pointer itself occupies, which is 8-bytes on the Myth
machines.

Expanding the Bit Representation of an Integer

Sometimes we want to convert between two integers having differ-
ent sizes. E.g., we want to convert a short to an int, or an int to a
long. We might not be able to convert from a bigger data type to a
smaller data type without losing some information by virtue of the
fact that there are fewer bits in a smaller data type, but we do want
to always be able to convert from a smaller data type to a bigger
data type without losing any information.

Conversion is straightforward for unsigned values: simply add
leading zeros to the representation. This zero extension is analogous
to the zero-extension when performing a logical right-shift:

unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

Note that there is an implicit cast, from a 16-bit unsigned short

to a 32-bit unsigned int. As with the casting we saw earlier, the
low-order bits that are shared between the two values do not
change based on the cast. However, the upper bits of the larger
number do change to all zeros.

For signed values, we want the number to remain the same, just
with more bits. In this case, we perform a sign extension by repeat-
ing the sign of the value for the new digits, in an analogous fashion
to the way arithmetic right shift works. Recall that negative signed
numbers start with all 1s for −1. Table 7 shows a few 4-bit and 8-bit
numbers and their respective two’s complement representations.

cs 107 reader 68

// file: sizeof.c

#include <stdio.h>

#include <stdlib.h>

int main() {

int iarray [] = {5, 4, 3, 2, 1};

char *iarr = (char *) iarray;

printf("sizeof(char): %d\n", (int) sizeof(char));

printf("sizeof(short): %d\n", (int) sizeof(short));

printf("sizeof(int): %d\n", (int) sizeof(int));

printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));

printf("sizeof(long): %d\n", (int) sizeof(long));

printf("sizeof(long long): %d\n", (int) sizeof(long long));

printf("sizeof(size_t): %d\n", (int) sizeof(size_t));

printf("sizeof(void *): %d\n", (int) sizeof(void *));

printf("sizeof(iarray): %d\n", (int) sizeof(iarray));

printf("sizeof(iarr): %d\n", (int) sizeof(iarr));

return 0;

}

$ gcc -g -O0 -std=gnu99 sizeof.c -o sizeof

$./sizeof

sizeof(char): 1

sizeof(short): 2

sizeof(int): 4

sizeof(unsigned int): 4

sizeof(long): 8

sizeof(long long): 8

sizeof(size_t): 8

sizeof(void *): 8

sizeof(iarray): 20

sizeof(iarr): 8

Figure 19: Example program demon-
strating the sizeof operator. Note the
difference between the size reported
for an array and a pointer to the array.

cs 107 reader 69

Notice that the only difference between the negative numbers in
both 8-bit and 16-bit representations is the leading 1s in the upper
bits of the 16-bit representation.

Unsigned Integer Two’s Complement Representation

Decimal value 8-bit value 16-bit value

5 00000101 0000000000000101

82 01010010 0000000001010010

127 01111111 0000000011111111

-5 11111011 1111111111111011

-82 10101110 1111111110101110

-127 10000001 1111111110000001

Table 7: Four and eight bit signed
two’s complement representation.

E.g., for positive numbers:

short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

and for negative numbers:

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Now that we have discussed signed and unsigned integer types
in C, we can see why there are two types of right shifts in C. Un-
signed numbers are always logically right-shifted when we use the
» operator, and signed numbers are always arithmetically right-
shifted when we use the » operator.

Truncating Numbers

In the previous section, we converted numbers from a smaller type
to a larger type, and we were able to do this without a loss of in-
formation. Negative numbers regain their value by sign-extension,
and positive values retain their value by zero-extension. But what
if we want to convert from a larger type into a smaller type, e.g.,
from a 32-bit int to a 16-bit short? If the magnitude of the num-
ber in the larger type contains more bits than the smaller type can
hold, we will necessarily lose information. For example, let’s look
at converting a 32-bit signed int with the value 53191 into a signed
short:

53191 = 0000 0000 0000 0000 1100 1111 1100 0111

When we convert to a 16-bit short, we truncate the number by
removing the upper 16-bits, and we are left with:

cs 107 reader 70

1100 1111 1100 0111

In the short form, the number is negative, because the most
significant bit is a 1, and the number is now −12345. We have lost
the information relating to the positive sign, and we have also lost
information about the actual value of the number. Figure 20 shows
the result in C.

// file: cast_lost_precision.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

int x = 53191; // 53191

short sx = (short) x; // -12345

int y = sx;

printf("x: %d\n",x);

printf("sx: %d\n",sx);

printf("y: %d\n",y);

return 0;

}

$ gcc -g -O0 -std=gnu99 cast_lost_precision.c -o cast_lost_precision

$./cast_lost_precision

x: 53191

sx: -12345

y: -12345

Figure 20: Example program demon-
strating the loss of information when
converting from a larger integer type
to a smaller integer type.

This is actually another form of overflow. We have altered the
value of the number, and you must be careful to avoid overflows,
or to write code that checks for this type of overflow when neces-
sary.61 61 To check for this kind of overflow,

you might compare the original num-
ber to the maximum of the smaller
type, or you might reason about the
sign of the number – for instance, if
the sign changes, this would indicate
overflow.

The truncation works fine if there isn’t going to be any loss of
information. Figure 21 demonstrates this. The 32-bit and 16-bit
values after truncation both represent −3:

x: 1111 1111 1111 1111 1111 1111 1111 1101

sx: 1111 1111 1111 1101

We can also lose information when we convert unsigned num-
bers due to truncation. For example, take the following snippet of
code:

unsigned int x = 128000;

unsigned short sx = (short) x;

the 32-bit unsigned int representation in x of 128, 000 is:

0000 0000 0000 0001 1111 0100 0000 0000

cs 107 reader 71

// file: cast_no_lost_precision.c

#include <stdio.h>

#include <stdlib.h>

int main()

{

int x = -3;

short sx = (short) x;

int y = sx;

printf("x: %d\n",x);

printf("sx: %d\n",sx);

printf("y: %d\n",y);

return 0;

}

$ gcc -g -O0 -std=gnu99 cast_no_lost_precision.c -o cast_no_lost_precision

$./cast_no_lost_precision

x: -3

sx: -3

y: -3

Figure 21: There is no loss of precision
when converting from a smaller
integer type to a larger integer type.

and the truncated unsigned short representation of sx is:

1111 0100 0000 0000

The value of sx is 62, 464, which has lost the information about
the most significant bit in the 32-bit version.

When integer operations overflow in C, the runtime does not pro-
duce an error. According to the C specification, unsigned integers
will overflow in a defined behavior (as we saw on the number cir-
cle), although you should be wary of using calculations that could
potentially overflow, and you should be careful with your code if
that is a possibility. Figure 22 demonstrates one way to determine if
addition on two unsigned ints will overflow.

Figure 22: The following is one way to
determine if addition of two unsigned
ints will overflow

#include <limits.h>
unsigned int a = <something >;
unsigned int x = <something >;
if (a > UINT_MAX - x)

/* 'a + x' would
overflow */;

According to the C specification, signed integers produce undefined
behavior when they overflow. On most machines, the overflow will
behave as we saw in the number circle, however, the compiler is
free to ignore this and can assume that numbers will not overflow.
So, you should write your programs to be careful not to overflow
with signed numbers, or to check if that will be the case. Figure 23

demonstrates one way to check for overflow addition.

Figure 23: The following is one way
to determine if addition of two signed
ints will overflow

#include <limits.h>
int a = <something >;
int x = <something >;
if ((x > 0) && (a > INT_MAX

- x))
/* 'a + x' would

overflow */;
if ((x < 0) && (a < INT_MIN

- x))
/* 'a + x' would

underflow */;

Final Thoughts

Having an excellent grasp of how integers are stored and manip-
ulated in a computer is fundamental to understanding how C han-
dles integers in programs. The two’s complement format does take

cs 107 reader 72

some time to become comfortable with, but it is worth the effort.
Understanding the number wheels will enable you to reason out
what will happen at overflow and underflow points in your code,
as well.

Bits and Bytes Practice Problems

cs 107 reader 73

C-Strings and the C String Library

C Strings are simply a sequence of characters (chars), followed
by a terminating 0. The char data type represents a fundamental
type in C, as a char is 1-byte in length62, and the byte is the min- 62 And defined by C to be 1-byte. There

is no need to ever apply sizeof on a
char.

imal addressable unit on our machines. A char may be signed or
unsigned by default63

63 C does not specify, and this is up
to the compiler. Interestingly, most
implementations (including gcc) define
char to be signed.

The ASCII character set only defines characters for 0-127 (0x00-0x7f
hex). The eighth (most significant) bit was historically used for par-
ity checking, or error detection when transmitting characters, but
ASCII is only defined for the low seven bits. There is no standard
character representation for char values greater than 127.

There is a standard called Unicode64 that is much more robust 64 See https://en.wikipedia.org/
wiki/Unicodethan 7-bit ASCII, and it includes over one hundred thousand char-

acters covering hundreds of languages, scripts, and symbol sets.
However, C has no built-in support for Unicode, and we will limit
ourselves in CS 107 to ASCII chars.

The ctype Library

One of standard libraries for C is ctype, which includes many func-
tions that take an int as a parameter (representing a character65), 65 The functions’ parameter is not

an 8-bit char, but a 32-bit int. This
is because we want to be able to
represent all 256 chars, but also have
the ability to determine if the number
is “EOF” (end of file), which is not a
character in that range.

and either test something about the character (e.g, if it is a digit,
or punctuation) or to perform an operation on the character (e.g.,
convert the character to uppercase). The following is a list of ctype
functions we will concern ourselves with:66

66 The full list can be seen with a
combination of man isalpha and man
tolower

isalpha : returns non-zero (true) if the character is alphabetic.

isdigit : returns non-zero if the character is a digit (0-9).

isalnum : returns non-zero if the character is alphabetic or a digit.

islower : returns non-zero if the character is lowercase.

isupper : returns non-zero if the character is uppercase.

isspace : returns non-zero if the character is whitespace.

isxdigit : returns non-zero if the character is a hex digit (0- f).

tolower : converts the character to lowercase, if possible, and re-
turns the lowercase char as an int. If it is not possible, the be-
haviour is undefined.

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode

cs 107 reader 74

toupper : converts the character to uppercase, if possible, and re-
turns the uppercase char as an int. If it is not possible, the be-
haviour is undefined.

The following is an example of a program that uses some of the
functions above:

// file: ctypedemo.c

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

int main(int argc , char **argv)

{

char *string = argv [1];

// count alpha characters , digits ,

// whitespace , and punctuation

int alphacount = 0;

int digitcount = 0;

int spacecount = 0;

int punctcount = 0;

int total = 0;

int i = 0;

while (string[i] != 0) {

if (isalpha(string[i])) alphacount ++;

if (isdigit(string[i])) digitcount ++;

if (isspace(string[i])) spacecount ++;

if (ispunct(string[i])) punctcount ++;

total ++;

i++;

}

printf("Alphabetic characters: %d\n",alphacount);

printf("Digits: %d\n",digitcount);

printf("Spaces: %d\n",spacecount);

printf("Punctuation: %d\n",punctcount);

printf("Total characters: %d\n",total);

// convert to uppercase

while (* string) {

if (isalpha (* string)) {

printf("%c",toupper (* string));

} else {

printf("%c",*string);

}

string ++;

}

printf("\n");

return 0;

}

cs 107 reader 75

$ gcc -g -O0 -std=gnu99 -Wall ctypedemo.c -o ctypedemo

$./ctypedemo "The Earth has a radius of 6,353km."

Alphabetic characters: 22

Digits: 4

Spaces: 6

Punctuation: 2

Total characters: 34

THE EARTH HAS A RADIUS OF 6,353KM.

C Strings in Memory

A C string is referenced by a pointer to its first character67, as seen 67 Or by an array variable, which is
converted to a pointer when we need
to access the elements

in Figure 24. We have drawn the string vertically, with the lower
memory on the bottom, as this is the way we will depict memory
for most of the class. Because a string is an array, regular pointer
arithmetic can be used to traverse the string, as seen in the example
above. A properly null-terminated string has 0 as its last byte, so a
loop traversing the string can stop based on the null value.

Figure 24: A C string pointer and the
associated memory

char *str = "apple";

str

0x100

Address Value

0x105 \0

0x104 e

0x103 l

0x102 p

0x101 p

0x100 a

Because C strings are referenced by a pointer, it is generally
meaningless to compare two strings via their pointers. E.g., in the
following program, the comparison is between the addresses of the
first byte of each string, not the value of the char at the respective
locations:

// file: pointer_compare.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

char *s1 = argv [1];

char *s2 = argv [2];

// the following two lines do not compare

// the two strings!

if (s1 < s2) printf("%s is less than %s\n",s1,s2);

if (s1 == s2) printf("%s is equal to %s\n",s1,s2);

if (s1 > s2) printf("%s is greater than %s\n",s1,s2);

printf("%s address: %p\n",s1,s1);

printf("%s address: %p\n",s2,s2);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall pointer_compare.c -o pointer_compare

$./pointer_compare cat dog

cat is less than dog

cat address: 0x7ffeef0e9962

dog address: 0x7ffeef0e9966

cs 107 reader 76

$./pointer_compare dog cat

dog is less than cat

dog address: 0x7ffeeb6b7962

cat address: 0x7ffeeb6b7966

Assigning one string pointer to another string pointer does not
make a copy of the original string. Instead, both pointers point to
the same string. In the following example, because the two pointers
point to the same string, changing a character via either pointer
changes the same string:

// file: string_pointers.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

if (argc < 2) {

printf("usage\n\t%s string\n",argv [0]);

return -1;

}

char *s1 = argv [1];

char *s2 = s1; // not a copy!

s1[0] = 'x';

s2[1] = 'y';

printf("address: %p, string :%s\n",s1,s1);

printf("address: %p, string :%s\n",s2,s2);

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall string_pointers.c -o string_pointers

$./string_pointers cs107

$./string_pointers cs107

address: 0x7ffee837f962, string:xy107

address: 0x7ffee837f962, string:xy107

The string Library

One of the more important libraries we will discuss is the string

library. You must be familiar with all of the following library func-
tions, and you should rely on them for your assignments and on
the exams. Unless explicitly directed to re-write part or all of a
string library function, you should always utilize the functions
from the library in your code. A general overview of the functions
and their declarations can be found with man string, and as al-
ways, man function_name will provide a more detailed reference.

cs 107 reader 77

All strings are expected to be null-terminated. Note: all string
functions have a worst-case complexity of O(n), where n is the
length of the string (or both strings in such cases), including strlen.
The functions must traverse the entire string or strings.

strlen : Calculates and returns the length of the string. Prototype:

size_t strlen(const char *str);

strcmp : Compares two strings, character-by-character, and returns
0 for identical strings, < 0 if s is before t in the alphabet, and
> 0 if s is after t (digits are less than alphabetic characters).
Prototype:

int strcmp(const char *s, const char *t);

strncmp : Performs the same comparison as strcmp except that it
stops after n characters (and does not traverse past null charac-
ters). Prototype:

int strncmp(const char *s, const char *t, size_t n);

strchr : Returns a pointer to the first occurrence of ch in s, or NULL
if the character is not in the string. Prototype:

char *strchr(const char *s, int ch);

strstr : Locate a substring. Returns a pointer to the first occur-
rence of needle in haystack, or NULL if the substring does not
exist. Prototype:

char *strstr(const char *haystack, const char *needle);

strcpy : Copies src to dst, including the null byte. The caller is
responsible for ensuring that there is enough space in dst to hold
the entire copy. The strings may not overlap.68 Prototype: 68 Be careful! strcpy is responsible

for many buffer overruns, which are a
primary attack vector for malicious
programmers.

char *strcpy(char *dst, const char *src);

strncpy : Similar to strcpy, except that at most n bytes will be
copied. If there is no null byte in the first n bytes of src, then dst

will not be null-terminated!69 Prototype: 69 strcpy and strncpy are not re-
placements for memcpy, although they
perform similar functions.char *strncpy(char *dst, const char *src, size_t n);

strcat : Appends src onto the end of dst.70 The null-terminator 70 The cat stands for “concatenate,” or
to link together.in dst is overwritten by the first character in src. The two strings

may not overlap, and the caller is responsible for ensureing that
there is enough space in dst to hold the resulting string.71 Proto- 71 This is another relatively unsafe

function!type:

char *strcat(char *dst, const char *src);

strncat : Similar to strcat but only copies at most n bytes. dst is
always null-terminated, and the caller must be careful to ensure
that this is taken into account. Prototype:

char *strncat(char *dst, const char *src, size_t n);

cs 107 reader 78

strspn : Calculates and returns the length in bytes of the initial
part of s which contains only characters in accept. For example,
strspn("hello","efgh") returns 2 because only the first two
characters in “hello” are in “efgh.” Prototype:

size_t strspn(const char *s, const char *accept);

strcspn : Similar to strspn except that strcspn returns the length
in bytes of the initial part of s which does not contain any char-
acters in reject. For example, strspn("hello","mnop") returns
4 because the first four characters in “hello” are not in “mnop.”
Prototype:

size_t strcspn(const char *s, const char *reject);

strdup : Returns a pointer to a heap-allocated string72 which is a 72 Obtained with malloc.

copy of s. It is the responsibility of the caller to free the pointer
when it is no longer needed. Prototype:

char *strdup(const char *s);

strndup : Like strdup but only copies up to n bytes. The resulting
string will be null-terminated. Prototype:

char *strdup(const char *s, size_t n);

The following program demonstrates the use of some of the
string library functions.

// file: extract_numbers.c

// purpose: print all numbers in the first

// command line argument

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc , char **argv)

{

char *s = argv [1];

const char *digits = "0123456789";

while (*s) {

// count how many digits are at the front of s

size_t prefixDigits = strspn(s,digits);

// copy just the initial digits

char *numstr = strndup(s,prefixDigits);

printf("%s\n",numstr);

// clean up

free(numstr);

// update s

cs 107 reader 79

s += prefixDigits + strcspn(s+prefixDigits ,digits);

}

return 0;

}

$ gcc -g -O0 -std=gnu99 -Wall extract_numbers.c -o extract_numbers

$./extract_numbers 123abc456x7b9

123

456

7

9

Final Thoughts

Strings in C are a simply a string of chars, followed by a 0 byte.
The character and string libraries in C provide a robust set of string
manipulation tools, butit takes practice to understand them. There
are many caveats to using C strings, and you should be careful
to understand the nuances present when using the libraries on C

strings. But, when you do understand the details, using the string
libraries can save you time when writing your programs.

C Strings Practice Problems

cs 107 reader 80

Pointers, Generic functions with void *, and Pointers
to Functions

It is time to dig deeper into C than we did in the C Primer. We
will investigate C pointers in more detail, and we will look at the
differences between stack-allocated memory and heap-allocated
memory. Finally, we will look at how we can pass pointers to func-
tions, which will allow us to make functions that are more generic.

Pointers

As covered in the C Primer, pointers are integers that hold a mem-
ory address. On our 64-bit Myth machines, pointers are 8-byte
unsigned long values, which means that they are, ultimately, just
numbers. Because of this, we can perform pointer arithmetic on
pointers, and access addresses nearby – this is the basis for access-
ing an array’s values.

Every pointer has a type, declared as follows:

type *varname;

where type is any type (e.g., int, char, etc.). When declared as
above, the initial value of the pointer is undefined. Pointers that
have the value 0 are called NULL pointers.

The value of a pointer can be set to the address of another vari-
able by using the “&” character:

int x = 7;

int *xptr = &x; // xptr points to x

To reitierate, the value of xptr in this case is the address of x in
memory, whatever that may be.

If a pointer has a non-NULL value that points to a memory loca-
tion a program can access, the value at that location can be derefer-
enced using the * operator:73 73 Yes, this is an overloaded meaning for

the asterisk character. It can be used
to define a pointer, or to dereference a
pointer (and it can also be used as the
multiplication operator).

printf("%d\n",*xptr); // prints 7

When compiling the above code, gcc knows that xptr points to
an int, and therfore it knows that when it dereferences the value,
it needs to get four bytes from the address pointed to by xptr. This
is a key benefit of having typed pointers: if gcc only knew that

cs 107 reader 81

xptr held an address, but it didn’t know what that address pointed
to, it could not successfully determine how to encode the printf

function parameters.74 74 Well, it probably could use the
printf string as a guide, knowing
that %d expects an int. But, take the
following example:
long z = *xptr;

gcc could assume that xptr pointed to
a long, but that would be incorrect.

The type information that is embedded into the pointer is also
necessary for performing pointer arithmetic on arrays. Take the
following example:

void printarr(long *array , size_t nelems)

{

for (size_t i=0; i < nelems; i++) {

printf("%lu", array[i]);

i == nelems - 1 ? printf("\n") : printf(", ");

}

}

Figure 25 shows the layout of memory – note that each long

takes up 8 bytes of memory. Also note that in hexadecimal, 0x8 +

0x8 is 0x10.

Figure 25: An array of longs in mem-
ory

array
0x100

Address Value

0x128
8

0x120

3

0x118
9

0x110

-4

0x108
2

0x100
5

Another way to express the printf statement from above would
be:

printf("%lu", *(array + i));

}

In order to dereference the proper element in the array, gcc needs
to know that each element in the array has a width of 8 bytes, and
assuming the value of array is 0x100 (as in Figure 25), the calcula-
tion of the address of the ith element of the array is:

array + i * sizeof(long)

which would be 0x100 + i * 8, leading to the addresses seen in
Figure 25.

Pointers -vs- Arrays

Although we covered this in the C Primer, it is worth repeating
the differences between pointer and array variables. Pointers are
variables that have enough space to hold an unsigned long, which
is assumed to be a valid address, or NULL. As variables, they can be
changed to have a different address. E.g., xptr++ increments the
pointer to point to the next element in an array.

Array variables are defined locally as follows:
int nums[10]; //space for 10 ints

The type of nums above is “10-element array of int.” The type
is not “pointer to int.” Array variables cannot be re-assigned to a
different array, and they always point to the same array in memory
for their lifetime. The compiler keeps track of array locations auto-
matically (much like it keeps track of variable locations like int x;

automatically), and there is not an actual pointer associated with an
array declared in this way.

It can be instructive to look at the memory layout for a program
that uses both an array and a pointer the array:

cs 107 reader 82

// file: array_vs_pointer.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

int nums [5];

int nelems_nums = sizeof(nums) / sizeof(int);

for (int i=0; i < nelems_nums; i++) {

// fill with index

nums[i] = i;

}

int *numsptr = nums;

// this is equivalent to:

// int *numsptr = &nums [0]

for (int i=0; i < nelems_nums; i++) {

printf("%d, ",nums[i]); // one way of printing

printf("%d, " ,*(nums + i)); // print again

printf("%d, ",numsptr[i]); // print again

printf("%d", *(numsptr + i)); // print again

i == nelems_nums - 1 ? printf("\n")

: printf(", ");

}

return 0;

}

$ gcc -g -O0 -std=gnu99 array_vs_pointer.c -o array_vs_pointer

$./array_vs_pointer

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4

Figure 26: Possible memory layout for
nums array and numsptr

Address Value

0x120
4

0x11c
3

0x118
2

0x114
1

0x110
0

0x10c

0x108

0x104

0x100
0x110

nums:

numsptr

Figure 26 shows a potential memory layout for the array and
pointer. Notice that the pointer numsptr has a location in memory
dedicated to hold the address, and the array variable nums just
refers to the location of the array, without dedicating a pointer to
hold the value.

Because arrays can be dereferenced and because you can use
bracket notation to refer to the elements of an array, they behave
like a pointer when used that way. In the code above, we have
printed each array element in four different ways.

For more detailed inofrmation on Dennis Ritchie’s reasoning
behind developing arrays the way he did, see the article he wrote
on his process.75 75 Dennis M Ritchie. The development

of the c language. 1993. URL https:
//www.bell-labs.com/usr/dmr/www/
chist.pdfGeneric functions with void *

The beauty of C’s type system as it applies to pointers is that the
compiler has the ability to automatically handle the underlying
data type that a pointer points to. However, this necessitates asso-
ciating a pointer to a particular type, and this results in functions

https://www.bell-labs.com/usr/dmr/www/chist.pdf
https://www.bell-labs.com/usr/dmr/www/chist.pdf
https://www.bell-labs.com/usr/dmr/www/chist.pdf

cs 107 reader 83

that only work on a specific type of data. Take the following pro-
gram, which swaps the beginning and end elements of an array, as
an example:

// file: nongeneric.c

#include <stdio.h>

#include <stdlib.h>

void swap_ends_short(short *arr , size_t nelems)

{

short tmp = *arr;

*arr = *(arr + nelems - 1);

*(arr + nelems - 1) = tmp;

}

void swap_ends_int(int *arr , size_t nelems)

{

int tmp = *arr;

*arr = *(arr + nelems - 1);

*(arr + nelems - 1) = tmp;

}

void swap_ends_long(long *arr , size_t nelems)

{

long tmp = *arr;

*arr = *(arr + nelems - 1);

*(arr + nelems - 1) = tmp;

}

int main(int argc , char **argv)

{

short s_array [] = {1,4,8,2,-3,5};

size_t s_nelems = sizeof(s_array) / sizeof(s_array [0]);

int i_array [] = {10,40,80,20,-30,50};

size_t i_nelems = sizeof(i_array) / sizeof(i_array [0]);

long l_array [] = {100 ,400 ,800 ,200 , -300 ,500};

size_t l_nelems = sizeof(l_array) / sizeof(l_array [0]);

swap_ends_short(s_array ,s_nelems);

swap_ends_int(i_array ,i_nelems);

swap_ends_long(l_array ,l_nelems);

printf("s_array [0]:%d\t",s_array [0]);

printf("s_array [%lu]:%d\n",s_nelems - 1,s_array[s_nelems -1]);

printf("i_array [0]:%d\t",i_array [0]);

printf("i_array [%lu]:%d\n",i_nelems - 1,i_array[i_nelems -1]);

cs 107 reader 84

printf("l_array [0]:%lu\t",l_array [0]);

printf("l_array [%lu]:%lu\n",l_nelems - 1,l_array[l_nelems -1]);

return 0;

}

$ gcc -g -O0 -std=gnu99 nongeneric.c -o nongeneric

$./nongeneric

s_array[0]:5, s_array[5]:1

i_array[0]:50, i_array[5]:10

l_array[0]:500, l_array[5]:100

We had to write three virtually identical functions to perform
the same work, because we have three different types of arrays that
we want to perform the swap on. This is a problem with the type
system, and we would like to only have to write a function once to
accomplish the task. Our goal fits into the category called generic
programming, and while it may be easier to accomplish in other
languages, we can write generic functions in C.

To do so, we are going to utilize the void * pointer, which we
saw briefly in the C Primer. Recall that a void * pointer is a pointer
without an associated type, and it can point to any underlying type.
Because we necessarily lose that information, we will have to pass
along the type information in a generic way in our functions.

With a void * pointer, the missing piece turns out to be, simply,
the width of the type that we are passing in. In other words, as
Figure 25 showed, each element in an array has a width, and we
can perform a calculation to get to the next element if we know the
width. Because we are losing the width information by using a void

* pointer, we will have to perform the calculation manually, without
the help of the compiler.

When we perform the array-offset calculation, we will have to
fool the compiler into providing us with the correct offset in our
pointer. To do this, we cast the void * pointer to a 1-byte represen-
tation, which, in C, is the char * pointer. Now, when we perform
pointer arithmetic on the char * pointer, we can get the address of
the type by manually mulitiplying by the width.

This is best described with an example. The following program
in a generic version of the program above. The key ideas are:

1. The pointer type information in the parameter is now void *.

2. We have added a width parameter, to be able to determine how
far apart each element is in the array. We must calculate and pass
the width information to the function.

3. We cannot simply use an assignment to swap the values, as
the compiler does not know the width of the type on its own,
and assignments (e.g., tmp = arr[0]) is not possible unless the
information is known at compile time. So, instead, we create
a char array that allocates the space we need, in this case, the

cs 107 reader 85

width of one element. We then use the memmove function to move
width number of bytes to perform the swap.

4. We must manually do the pointer calculation, remembering to
cast the pointer to char * (fooling the compiler).

// file: generic.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void swap_ends(void *arr , size_t nelems , int width)

{

// allocate space for the copy

char tmp[width];

// copy the first element to tmp

memmove(tmp ,arr ,width);

// copy the last element to the first

memmove(arr ,(char *)arr + (nelems - 1) * width ,width);

// copy tmp to the last element

memmove ((char *)arr + (nelems - 1) * width ,tmp ,width);

}

int main(int argc , char **argv)

{

short s_array [] = {1,4,8,2,-3,5};

size_t s_nelems = sizeof(s_array) / sizeof(s_array [0]);

int i_array [] = {10,40,80,20,-30,50};

size_t i_nelems = sizeof(i_array) / sizeof(i_array [0]);

long l_array [] = {100 ,400 ,800 ,200 , -300 ,500};

size_t l_nelems = sizeof(l_array) / sizeof(l_array [0]);

swap_ends(s_array ,s_nelems ,sizeof(s_array [0]));

swap_ends(i_array ,i_nelems ,sizeof(i_array [0]));

swap_ends(l_array ,l_nelems ,sizeof(l_array [0]));

printf("s_array [0]:%d,\t",s_array [0]);

printf("s_array [%lu]:%d\n",s_nelems - 1,s_array[s_nelems -1]);

printf("i_array [0]:%d,\t",i_array [0]);

printf("i_array [%lu]:%d\n",i_nelems - 1,i_array[i_nelems -1]);

printf("l_array [0]:%lu ,\t",l_array [0]);

printf("l_array [%lu]:%lu\n",l_nelems - 1,l_array[l_nelems -1]);

cs 107 reader 86

return 0;

}

$ gcc -g -O0 -std=gnu99 generic.c -o generic

$./generic

s_array[0]:5, s_array[5]:1

i_array[0]:50, i_array[5]:10

l_array[0]:500, l_array[5]:100

Generic programming takes some time to understand! Look over
the examples above carefully, and ensure that you are completely
clear on why we needed each change from the non-generic func-
tions to the single generic function.

Pointers to Functions

Looking at the generic example program in the previous section,
you might have some lingering concerns about the necessity of
having to create a char array to store the data for the swap. What
if we had to perform some application where we really did need to
know the type of the data – could we still use a generic function?

Let’s look at the following example:

// file: printf_generic_problem.c

#include <stdio.h>

#include <stdlib.h>

void print_array(void *arr ,size_t nelems ,int width)

{

for (int i=0; i < nelems; i++) {

void *element = (char *)arr + i * width;

printf("%?",element); // what goes in place of the ?

i == nelems - 1 ? printf("\n") : printf(", ");

}

}

int main(int argc , char **argv)

{

int i_array [] = {0,1,2,3,4,5};

size_t i_nelems = sizeof(i_array) / sizeof(i_array [0]);

int l_array [] = {0 ,10 ,20 ,30 ,40 ,50};

size_t l_nelems = sizeof(l_array) / sizeof(l_array [0]);

print_array(i_array ,i_nelems ,sizeof(i_array [0]));

print_array(l_array ,l_nelems ,sizeof(l_array [0]));

return 0;

}

cs 107 reader 87

We have a problem. The printf call in the print_array function
needs a format specifier, which is dependent on the type of data we
have in the array. For standard data types, we might be able to get
away with passing in the correct format specifier, but what if our
array had pointers to a struct, or something else that we wanted to
print in a custom way?

What we really want is to have the print_array function perform
a custom function, based on the type of data, and that is exactly
what a pointer to a function provides. A pointer to a function allows
the generic function to pass its data to a custom function, provided
by the calling function, that will handle the individual array ele-
ment in the way that makes sense to the calling function. In the
case of our example, the calling function can provide a print func-
tion that will do the work, and the print_array function only needs
to know how to provide the function the data, which is going to be
embedded into the type of the function pointer.

The function pointer syntax can be confusing, and it takes prac-
tice to get used to reading the function signature. Here is an exam-
ple, which we will use for our print_array function:

void(*pr_func)(void *)

This is interpreted from the inside out, starting with the pointer
to the function name, which is pr_func. The function takes one
parameter, which is a void *, and the function’s return value is
void. Functions that would meet this definition (which we will use
in our program) is:

void print_int(void *arr);

void print_long(void *arr);

In other words, we will pass in one of the functions above into
our print_array function. We have to write a custom pr_func for
any data type that we want to use in the print_array function. For
example, here is the full print_int function:

void print_int(void *arr)

{

int i = *(int *)arr;

printf("%d",i);

}

A key idea about this function is that because it is custom-built
to take an int *, we know that the void * can be cast to an int *

inside the function. The function signature must use a void *, but
inside the function we know that it will be an int *, and we can
cast it.

The following is the completed program that includes the func-
tion pointer in the print_array function:

// file: printf_generic.c

#include <stdio.h>

#include <stdlib.h>

cs 107 reader 88

void print_array(void *arr ,size_t nelems ,int width ,void(* pr_func)(void *))

{

for (int i=0; i < nelems; i++) {

void *element = (char *)arr + i * width;

pr_func(element);

i == nelems - 1 ? printf("\n") : printf(", ");

}

}

void print_int(void *arr)

{

int i = *(int *)arr;

printf("%d",i);

}

void print_long(void *arr)

{

long l = *(long *)arr;

printf("%lu",l);

}

int main(int argc , char **argv)

{

int i_array [] = {0,1,2,3,4,5};

size_t i_nelems = sizeof(i_array) / sizeof(i_array [0]);

long l_array [] = {0 ,10 ,20 ,30 ,40 ,50};

size_t l_nelems = sizeof(l_array) / sizeof(l_array [0]);

print_array(i_array ,i_nelems ,sizeof(i_array [0]),print_int);

print_array(l_array ,l_nelems ,sizeof(l_array [0]),print_long);

return 0;

}

$ gcc -g -O0 -std=gnu99 printf_generic.c -o printf_generic

$./printf_generic

0, 1, 2, 3, 4, 5

0, 10, 20, 30, 40, 50

The following is an example of how we could use the same func-
tion76 to use a more complicated printing function: 76 with a minor adjustment to the list

format to take out the newline and
comma.// file: printf_coords.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

struct coordinate {

double lat;

cs 107 reader 89

double lon;

};

void print_array(void *arr ,size_t nelems ,int width ,void(* pr_func)(void *))

{

for (int i=0; i < nelems; i++) {

void *element = (char *)arr + i * width;

pr_func(element);

}

}

void print_coord(void *arr)

{

struct coordinate *coord = (struct coordinate *)arr;

int lat_deg = (int)coord ->lat;

double lat_minsec = fabs((coord ->lat - lat_deg) * 60.0);

int lat_min = (int)lat_minsec;

double lat_sec = (lat_minsec - lat_min)* 60.0;

int lon_deg = (int)coord ->lon;

double lon_minsec = fabs((coord ->lon - lon_deg) * 60.0);

int lon_min = (int)lon_minsec;

double lon_sec = (lon_minsec - lon_min)* 60.0;

printf("%f Latitude , %f Longitude =\n",coord ->lat ,coord ->lon);

printf("Latitude: %d deg %d min %f sec\n",lat_deg ,lat_min ,lat_sec);

printf("Longitude: %d deg %d min %f sec\n\n",lon_deg ,lon_min ,lon_sec);

}

int main(int argc , char **argv)

{

struct coordinate coords [] = {{37.4301566 , -122.1756849} ,

{38.8975062 , -77.0388237} ,

{ -82.8627513 ,134.9978113} ,

{51.5287718 , -0.2416818}

};

size_t coords_nelems = sizeof(coords) / sizeof(coords [0]);

print_array(coords ,coords_nelems ,sizeof(coords [0]),print_coord);

return 0;

}

$ gcc -g -O0 -std=gnu99 printf_coords.c -o printf_coords

$./printf_coord

37.430157 Latitude, -122.175685 Longitude =

Latitude: 37 deg 25 min 48.563760 sec

Longitude: -122 deg 10 min 32.465640 sec

cs 107 reader 90

38.897506 Latitude, -77.038824 Longitude =

Latitude: 38 deg 53 min 51.022320 sec

Longitude: -77 deg 2 min 19.765320 sec

-82.862751 Latitude, 134.997811 Longitude =

Latitude: -82 deg 51 min 45.904680 sec

Longitude: 134 deg 59 min 52.120680 sec

51.528772 Latitude, -0.241682 Longitude =

Latitude: 51 deg 31 min 43.578480 sec

Longitude: 0 deg 14 min 30.054480 sec

You must be careful with the arguments and return values for
functions to pointers, and we will show an additional example that
demonstrates this.

A frequent use of functions to pointers is the comparison function.
The standard C comparison function compares to elements, and
returns a negative value if the first element is less than the second
element, zero if the elements are the same, and a positive value if
the first element is larger than the second element. The definition of
“less than,” “equal to,” and “greater than” depends on the things
that are being compared77 One example of a standard library func- 77 although it is normally based on a

numeric property of the elements.tion that accepts a generic comparison funtion is the qsort function,
which (as its name suggests) performs a sort on an array of ele-
ments. The prototype for qsort is:

void qsort(void *base , size_t nmemb , size_t size ,

int (* compar)(const void *, const void *));

The compar argument in qsort is a function pointer that takes
two const void * pointers to compare, and returns an int. The
following program sorts the command line arguments (after the
program name) by the sum of the character values in the names:

qsort passes in a pointer to the pointer
of the two words to compare!

// file: compare_words.c

#include <stdio.h>

#include <stdlib.h>

int compare_words(const void *p, const void *q)

{

int psum = 0;

int qsum = 0;

char *pword = *(char **)p;

while (*pword) psum += *(pword ++);

char *qword = *(char **)q;

while (*qword) qsum += *(qword ++);

return psum - qsum;

}

cs 107 reader 91

int main(int argc , char **argv)

{

qsort(argv+1,argc -1,sizeof(argv [0]),compare_words);

for (int i=1; i < argc; i++) {

printf("%s",argv[i]);

i == argc - 1 ? printf("\n") : printf(", ");

}

return 0;

}

$ gcc -g -O0 -std=gnu99 compare_words.c -o compare_words

$./compare_words apple nectarine banana orange peach pear

pear, peach, apple, banana, orange, nectarine

Students tend to gloss over some of the critical details of this ex-
ample, and it is instructive to take a good look at the various point-
ers and the memory footprint of what is happening here. Figure 27

shows the layout in memory of the command line arguments.

argv

0x100

Address Value

0x130

0xf8a5

0x128
0xf89f

0x120

0xf898

0x118
0xf891

0x110

0xf887

0x108
0xf881

0x100
0xf838

0xf881 a p p l e \0

0xf887 n e c t a r i n e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

7

0xf838 c o m p a r e w o r d s \0

Figure 27: The command line argu-
ments array

The argv variable is a pointer to an array of char * pointers.
Because it is an array, the pointers must be contiguous in memory,
and they are, from address 0x100 through 0x128. Because they are
pointers, they each take up 8 bytes in memory (e.g., argv[0]’s bytes
are from 0x100 - 0x107).

The pointers for each char * do not have to be in any particular
place in memory. Notice that they are not a fixed distance apart.
Because they are command line arguments, each string happens to
be next to each other, but this is not a critical point.

cs 107 reader 92

The qsort function is passed in the value for (argv + 1)78, 78 Because we are ignoring the program
name, argv[0].which (in our diagram) is the value 0x108. As far as qsort is con-

cerned, it simply has an array of some type of pointer, and it will
rearrange those pointers in the array based on the comparison
function. For example, qsort may, at some point, pass the values
0x108 and 0x110 to the comparison function. Those values are still
pointers to char * pointers, although qsort does not know this in-
formation (it simply knows that they are pointers). This is why the
comparison function, compare_words knows that the arguments are
both char ** pointers, because that is what it must receive from
qsort.

The qsort function sorts the array, and by this we mean that it
rearranges the elements in the array itself. This is critical to understand:
qsort never touches the characters in the strings (though the com-
parison function does) – it simply moves the pointers in the array to
correctly sort the elements. Figure 28 shows the result after the sort.

argv

0x100

Address Value

0x130

0xf887

0x128
0xf898

0x120

0xf891

0x118
0xf881

0x110

0xf89f

0x108
0xf8a5

0x100
0xf838

0xf881 a p p l e \0

0xf887 n e c t a r i n e \0

0xf891 b a n a n a \0

0xf898 o r a n g e \0

0xf89f p e a c h \0

0xf8a5 p e a r \0

argc

7

0xf838 c o m p a r e w o r d s \0

Figure 28: The command line argu-
ments array after being sorted by the
sum of the character values of each
argument string (except the program
name): pear, peach, apple, banana,
orange, nectarine.

Final Thoughts

Pointers take time to understand, especially when it comes to point-
ers to pointers, void *, generic functions, and pointers to functions.
It would be well-worth your time to go back over this chapter and
really understand the nuances of the code.

Pointer Practice Problems

cs 107 reader 93

IEEE Floating Point

As we have learned, all data used by a computer is repre-
sented by bits and bytes. Integer types each have a fixed number of
bytes that represent their exact numeric value, characters are rep-
resented by 1-byte ASCII encodings, and strings are simply arrays
of null-terminated characters. For a given integer type, we know
the range79 and we have the exact representations of each integer in 79 INT_MIN to INT_MAX for the int type,

for example.that range.
The real world, however, does not fit perfectly into this completely-

representable model – numbers such as 1
3 and π cannot be simply

broken down into a data type that can exactly represent their val-
ues.80 Additionally, between any two numbers there is an infi- 80 Rational numbers can be exactly

represented with a numerator /
denominator model.

nite number of rational and real numbers, so representing ranges
of numbers exactly is impossible. Therefore, computer designers
are forced to compromise when creating a type to hold real num-
bers, and one of the most successful solutions to the problem is
called The IEEE Standard for Floating Point Arithmetic (IEEE 754, or
IEEE Floating Point)81, which has become a standard that is im- 81 The Wikipedia Page is outstanding.

plemented in most computer hardware today. The IEEE Floating
Point standard was designed to encode the representation of real
numbers into a fixed-width format, and to provide a large range
with a definable precision, precise rounding rules, and special val-
ues such as negative and positive infinity, and special not a number
(NaN) values that denote a calculation that has become not-real82. 82 e.g., division by zero, or the square

root of −1.The IEEE Floating Point format is a clever solution to the problem,
and in this chapter we will take a look at the format, and we will
investigate some of the decisions that were made and the trade-offs
that this implies. We will learn how to convert between a decimal
representation and the binary IEEE Floating Point representation,
and you should become familiar enough with the format to convert
some categories of numbers83 between the two formats. 83 For example, powers of two, and

other small numbers such as 1.25.

Fixed Point Format

When deciding how to represent real numbers in binary form, we
have some choices:

1. We want to represent real numbers in a fixed number of bits.
This means that we aren’t going to be able to represent all real

https://en.wikipedia.org/wiki/IEEE_754

cs 107 reader 94

numbers exactly, nor even all rational numbers exactly. Further-
more, we can’t even represent all rational numbers in a range
exactly (there are infinitely many rational numbers in any fixed
range).

2. We want to represent a large range of numbers.

3. We want to be able to perform calculations on the numbers.

One idea we might consider is called fixed point format. Inte-
gers represent a fixed point format, with the decimal point (or
binary point) located implicitly to the right of the least significant
digit. We also limited ourselves to numbers with factors that were
positive multiples of the base. E.g., the decimal integer 1234 is re-
ally 1234.000 . . . , and the binary equivalent, 10011010010 is really
10011010010.000 If we wanted to, we could have a system for
representing real numbers just move the point to the left some
number of digits, so that we can represent numbers between 0 and
1. Maybe we want to have two decimal digits of precision:

d2d1d0.d−1d−2 = d2× 102 + d1× 101 + d0× 100 + d−1× 10−1 + d−2× 10−2

E.g., we could now represent numbers like 123.45. The range of
those numbers would be between 0 and 999.99, and we have five
decimal digits of precision, to the 100th decimal place. With our
format, however, we cannot represent some numbers exactly, e.g.,
123.456 or 0.33

Arithmetic with fixed point numbers is relatively easy, because
we simply line up the decimal place:

123.45
+ 678.90

802.35

and
100.22

∗ 1.08
80176

000000
1002200
1082376 = 108.2376 = 108.24 (rounded)

Fixed point format has one glaring problem: the range of our
numbers is severely limited. For our 5-digit example above, if we
set the decimal point to the left of the most significant digit, we
could only represent numbers in the range of 0 to 0.99999. Al-
though fixed point format has its place,84 it is too limiting for a 84 It can provide better accuracy in

some cases.general format for real numbers.

Floating Point Format

The way we obtain a worthwhile range for our number format is to
take advantage of the fact that we can scale numbers efficiently by

cs 107 reader 95

multiplying them by a power of the base we are working in. We can
thus decide to represent the numbers as follows:

N = x× 10y (decimal)

or
N = x× 2y (binary)

We will concentrate on the binary representation from now on,
as it is the way we will eventually encode the data. When repre-
senting binary numbers, digits after the binary point are represented
by negative powers of two:

b2b1b0.b−1b−2 = b2 × 22 + b1 × 21 + b0 × 20 + b−1 × 2−1 + b−2 × 2−2

For example, 101.11b is:

1× 22 + 0× 21 + 1× 20 + 1× 2−1 + 1× 2−2

= 4 + 0 + 1 +
1
2
+

1
4
= 5

3
4

We have written an online binary to decimal (and vice-versa)
calculator that you can play with: https://stanford.edu/~cgregg/
107-Reader/float/convert.html. If you type in 101.11 into the
Binary to Decimal converter, you will find that it is 5.75, as we
calculated above.

Just like in decimal format, binary cannot represent numbers
such as 1

3 and 1
6 exactly, nor can binary represent some other num-

bers that can be represented in base 10 exactly, like 1
10 . If you type

0.1 into the Decimal to Binary converter mentioned above, you will
get:

0.0001100110011 . . .

which, as you can see, is a non-terminating rational number
when expressed in binary. Binary notation can exactly represent
numbers in the form

x× 2y

where x and y are integers.
Once we decide to use this format for representing real numbers,

we have entered the realm of floating point formats. In other words,
we will keep track of the values of x and y, and the binary point
will “float” in a particular number. For a large number, the binary
point might be far to the right of the significant digits, and for a
small number the binary point might be far to the left of the signif-
icant digits. In other words, the power 2y scales the location of the
binary point.

The IEEE Floating Point standard was first designed by William
Kahan85, and he had many choices to make while arhitecting the 85 Kahan is known as The father of

Floating Point.format. As we go through the format, we will see some of those
choices, and why they ended up being good ones.86 86 And sometimes confusing ones, too.

https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://en.wikipedia.org/wiki/William_Kahan
https://en.wikipedia.org/wiki/William_Kahan

cs 107 reader 96

The IEEE Floating Point format defines a bit pattern to represent
real numbers in the following form:

V = (−1)s ×M× 2E

where:

• s is a sign bit (0 for positive, 1 for negative, with the sign for
numerical zero as a special case)

• M is the significand87, which represents the fractional binary 87 sometimes called the mantissa (thus
the M designation).number in the range of 1 ≤ M < 2, or in the range of 0 ≤ M < 1

for special cases (which we will discuss).

• E is the exponent, which scales the value by a (possibly negative)
power of 2.

For example, if we have s = 0, M = 1.5, and E = 9:

V = (−1)0 × 1.5× 29 = 768

To encode the bits themselves, IEEE Floating Point defines many
bit-widths, but we will concentrate on the 32-bit format (and briefly
discuss some details about the similar 64-bit format). The bit repre-
sentation of a floating point number is divided into three fields to
encode s, M, and E:

• A single sign bit, s directly encodes the sign.

• A k-bit exponent field (8-bits for the 32-bit format), ek−1 · · · e1e0

encodes the exponent, E (though not directly, as we shall see).

• An n-bit fraction field (23-bits for the 32-bit format), fn−1 · · · f1 f0

encodes the significand, M, and this value depends on whether
or not the exponent field equals zero.

Figure 29 shows the bit representation for a single precision (32-
bit) floating point number in IEEE Floating Point format.

Figure 29: Single precision (32-bit)
IEEE floating point format

31 30 23 22 0

s exp fraction

Single precision

Normalized Floats

The IEEE Floating Point format has three different possible in-
trepetations, depending on the value of the exponent field: normal-
ized, denormalized, and exceptional. Most of our time will be spent
learning about the normalized form, which handles the vast major-
ity of the numbers represented by the format. The denormalized
numbers are a special case for numbers with the very smallest mag-
nitude, and exceptional numbers are numbers such as infinity and
NaN.

A float is considered to have a normalized value if the exponent
is not all 0s, and not all 1s. In a normalized number, the exponent
is encoded as a signed integer88 that is in biased form. The exponent 88 Not a two’s complement number!

It is an 8-bit binary number that is
intrepeted as a signed number, based
on the bias.

has a value of exp − bias, where bias is 2k−1 − 1, and where k is
the number of bits in the exponent. For a 32-bit number, there are

cs 107 reader 97

eight bits in the exponent field, so bias = 28−1 − 1 = 27 − 1 =

127. As an example, if the exp field has a value of 10000001 (129,
decimal), the value of the numerical exponent would be intrepeted
as 129− 127 = 2. The range of exponents for a normalized number
is −126 to 127, because the range of the exp field is between 1 and
254 (because normalized numbers are only defined when the exp
field is not all 0s (00000000) or all 1s (11111111)).89 89 For example, if the exponent of the

real number we wanted to encode
was −126, we would add 127 to bias
the number giving us 00000001 for
the exp field. We could not encode
an exponent of −127 because −127 +
127 = 0, or 00000000, which would not
represent a normalized number.

For normalized numbers, the f raction is interpreted as having
a fractional value f , where 0 ≤ f < 1, and having a value of
0. fn−1 · · · f1 f0, with the binary point to the left of the most signifi-
cant bit. However, this is not yet the significand!

The significand is defined to be M = 1 + f . This is an implied
leading 1 representation, and it is a trick for getting an actual digit
of precision for free. Here is why: for any number that has ones in
it at all, we can always adjust the exponent so that the significand
is in the range of 1 ≤ M < 2. When multiplying by a power of
two (the exponent), this simply shifts the number to the left or to
the right, so we can always adjust the exponent to shift the number
into a form of 1. f . Therefore, because this is always possible, it is
unnecessary to actually encode the 1 into the representation of the
number.90 90 This is an example of where the

designers of the IEEE Floating Point
format did something extremely clever,
at the possible expense of being harder
to understand.

Let’s take a look at an example, which should clear up potential
misconceptions:

31 30 23 0

0 01111110 00000000000000000000000
22

The sign bit, 0 means that the number is positive.
The exp field has the value of 01111110, or 126 decimal, and

it has been biased by 127. Therefore, the exponent value we will
intrepet exp as will be 126− 127 = −1.

The f raction field has a value of all 0s, but we intrepet this as the
binary value of 1.000 · · · .

Therefore, the number represents:

+1.0× 2−1 = 0.5

Let’s look at another example:
31 30 23 0

0 10000100 01010000000000000000000
22

The sign bit, 0 means that the number is positive.
The exp field has the value of 10000100, or 132 decimal, and

it has been biased by 127. Therefore, the exponent value we will
intrepet exp as will be 132− 127 = 5.

The f raction field has a value of 01010000000000000000000, but
we intrepet this as the binary value of 1.01010 · · · : We can check this at the website

from above: https://stanford.edu/
~cgregg/107-Reader/float/convert.
html

1× 20 + 0× 2−1 + 1× 2−2 + 0× 2−3 + 1× 2−4 = 1.3125

Therefore, the number represents:

+1.3125× 25 = 42.0

https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://stanford.edu/~cgregg/107-Reader/float/convert.html

cs 107 reader 98

To put a decimal number into normalized 32-bit floating point
format, we must determine the bits for each of the three parts of the
number. Let’s take the example of converting the decimal number
0.4. If we plug that number into the Decimal to Binary converter at
https://stanford.edu/~cgregg/107-Reader/float/convert.html,
we get the following number:

0.011001100110011001100110011

This is a non-terminating rational number, so we won’t be able
to represent it exactly. Next, we find the most significant 1 in the
number, and then take the following 23 bits after that, in order to
form the significand (in bold, below):

0.011001100110011001100110011

In this case, we have one more tiny step to do: we must round
the number. Notice that the number after the 23

rd digit is a 1. Be-
cause 0.1 in binary is 1

2 , the rest of the number is greater than one
half. Therefore, just like when we round up in decimal when digits
when the digit after the rounding place is 5, we round up when the
number after the 23

rd digit is 1 and there are any more 1s after it
(and we do not round up if the number is 0, or if there is a single
191. In order to round up a number, add 1 to it. So, we have: 91 This is called rounding towards

nearest, ties to even. There are actually
five rounding rules, but they are
beyond the scope of CS 107. See the
Wikipedia page for more information.

0.0110011001100110011001101

The number in bold above will be the 23 bits of the significand.
Next, we have to scale the number so that it falls between 1.0 and

2, which would look like this:

1.10011001100110011001101

Notice that we had to shift the number two binary places to the
right. Therefore, the exponent of two that we will multiply by is go-
ing to be −2. We need to bias this number by 127, so the exponent
will be −2 + 127 = 125, or 01111101, which is the exponent field for
the number.

Finally, we know that the sign bit will be 0 because it is a pos-
itive number. The following depicts the bits in the floating point
representation for 0.4:

31 30 23 0

0 01111101 10011001100110011001101
22

0.4

There are websites to check if you are correct92, or you can write 92 This is an outstanding site: https:
//www.h-schmidt.net/FloatConverter/
IEEE754.html

a quick program and run it in gdb. The gdb command “x/tw &f”
means, print the memory located at the address of f in binary (“t”) and
in word size (“w”, or 4-bytes).

// file: floatingpt.c

#include <stdio.h>

#include <stdlib.h>

https://stanford.edu/~cgregg/107-Reader/float/convert.html
https://en.wikipedia.org/wiki/IEEE_754#Roundings_to_nearest
https://en.wikipedia.org/wiki/IEEE_754#Roundings_to_nearest
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

cs 107 reader 99

int main(int argc , char **argv)

{

float f = 0.4;

printf("%g\n",f);

return 0;

}

$ gcc -g -O0 -std=gnu99 floatingpt.c -o floatingpt

$ gdb floatingpt

The target architecture is assumed to be i386:x86-64

Reading symbols from floatingpt...done.

(gdb) break main

Breakpoint 1 at 0x40053c: file floatingpt.c, line 7.

(gdb) run

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107/

reader/107-Reader-code/floatingpt

Breakpoint 1, main (argc=1, argv=0x7fffffffeaa8) at floatingpt.c:7

7 float f = 0.4;

(gdb) n

8 printf("%g\n",f);

(gdb) x/tw &f

0x7fffffffe9bc: 00111110110011001100110011001101

(gdb)

Denormalized Floats

When the exponent is all zeros, this is called denormalized form. We
interpret the exponent differently: the exponent is now 1 − bias
(or, you can think of the bias now being 1 less, or 126 instead of
127 in the case of 32-bit floats). The significand value is simply the
fraction, without a leading 1. Why do we do this? For one, we now
have a way to represent zero (all 0s for the entire number). All 0s is
+0.0, and a 1 followed by all 0s is −0.0. A nice effect is that just like
integers, when all the bits in a floating point number are zero, the
number means zero.

Second, changing the bias to 126 leads to gradual underflow,
meaning that it allows us to extend the lower range of representable
numbers, and to limit the amount of error with very small num-
bers.93 Here is an example of interpreting a denormalized number: 93 See here for more information

than you may ever want: https:
//docs.oracle.com/cd/E19957-01/
816-2464/ncg_math.html

31 30 23 0

0 00000000 01010000000000000000000
22

The sign bit, 0 means that the number is positive.
The exp field has the value of 00000000, meaning that the num-

ber is denormalized, and has a bias of 126. Therefore, the exponent
value we will intrepet exp as will be 0− 126 = −126.94 94 and all denormalized numbers have

that exponent.The f raction field has a value of 01010000000000000000000, and

https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html
https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html
https://docs.oracle.com/cd/E19957-01/816-2464/ncg_math.html

cs 107 reader 100

we intrepet this as the binary value of 0.01010 · · · :

0× 2−1 + 1× 2−2 + 0× 2−3 + 1× 2−4 = 0.3125

Therefore, the number represents:

+0.3125× 2−126 = 3.67341985× 10−39

The following program and gdb trace demonstrates that we are
correct:

// file: denormalized.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

float f = 3.6734198463196485e-39;

printf("%g\n",f);

return 0;

}

$ gcc -g -O0 -std=gnu99 denormalized.c -o denormalized

$ gdb denormalized

The target architecture is assumed to be i386:x86-64

Reading symbols from denormalized...done.

(gdb) break main

Breakpoint 1 at 0x40053c: file denormalized.c, line 7.

(gdb) run

Starting program: /afs/.ir.stanford.edu/users/c/g/cgregg/cs107/

reader/107-Reader-code/denormalized

Breakpoint 1, main (argc=1, argv=0x7fffffffeaa8) at denormalized.c:7

7 float f = 3.67341985e-39;

(gdb) n

8 printf("%g\n",f);

(gdb) x/tw &f

0x7fffffffe9bc: 00000000001010000000000000000000

(gdb)

Exceptional Floats

When the exponent bits in an IEEE float are all 1s, the number is
considered exceptional. Two interesting exceptional numbers are ∞,
which is 0 11111111 000000000000000000000000 (for a 32-bit float),
and −∞, which is 1 11111111 000000000000000000000000. Positive
infinity can can arise when a floating point number overflows, and
negative infinity can arise when a number underflows (even smaller
than the denormalized values), and other calculations such as 1

0 can
also produce infinity.

The other exceptional numbers95 are either NaNs, or representa- 95 and there are over 8-million of them!

tions that have a special meaning for a particular processor.

cs 107 reader 101

Unrepresentable Numbers

An imporant understanding of floating point numbers is that while
the range is large (roughly 2−126 to 2127 for 32-bit floats, and 2−1022

to 21023 fo 64-bit floats), there are infinitely many real numbers that
cannot be represented by the format. We have already seen that
0.4 decimal cannot be exactly represented. A 32-bit float can, by
definition, only represent 232 values, so most, including many in-
tegers, are not representable in the format. 0.4 is an example of
a non-terminating rational number that cannot be represented in
binary, and irrational numbers such as π and

√
2 also (by defini-

tion) cannot be exactly represented. Another category of number
that fit within the floating point range but cannot be represented
are numbers that “run out of bits” in the significand. Let’s look at
an example. Let’s convert 16, 777, 217 to normalized 32-bit floating
point format.

First, we calculate the binary representation, which is

1000000000000000000000001

Next, we put a binary point to the right of the most significant 1:

1.000000000000000000000001

Next, we count off the 23-bits after the binary point, which will
become our significand (in bold, below):

1.000000000000000000000001

This forms the significand, and it has lost information, so we
cannot represent it exactly.

To finish off the conversion, we calculate the exponent, which
is 24 (because we have to shift left by 24 places to get a number
between 1 and 2), and after biasing, our exponent bits are 24 +

127 = 151, or 10010111. The sign bit is 0 because the number is
positive.

Below are the binary representations of 16, 777, 216, 16, 777, 217,
and 16, 777, 218 – notice that the representations for 16, 777, 216 and
16, 777, 217 are identical:

31 30 23 0

0 10010111 00000000000000000000000
22

16,777,216:
31 30 23 0

0 10010111 00000000000000000000000
22

16,777,217:
31 30 23 0

0 10010111 00000000000000000000001
22

16,777,218:
The following program demonstrates that even if we set a float to

the integer 16, 777, 217, it cannot be represented:

// file: unrepresentable.c

#include <stdio.h>

cs 107 reader 102

#include <stdlib.h>

int main(int argc , char **argv)

{

float f1 = 16777216.0;

float f2 = 16777217.0;

float f3 = 16777218.0;

printf("16 ,777 ,216: %f\n",f1);

printf("16 ,777 ,217: %f\n",f2);

printf("16 ,777 ,218: %f\n",f3);

printf("f1 == f2? %s",f1 == f2 ? "true" : "false");

return 0;

}

$ gcc -g -O0 -std=gnu99 unrepresentable.c -o unrepresentable

$./unrepresentable

16,777,216: 16777216.000000

16,777,217: 16777216.000000

16,777,218: 16777218.000000

f1 == f2? true

Comparing Floating Point Values

As the last example in the previous section demonstrated, com-
paring floating point values can be troublesome, and in fact it is
unwise to compare floating point values directly without using the
idea of an epsilon, which is a value that you determine is within the
error bounds of your calculation. Let’s look at an example:

The “.30g” formatter means print the
floating point value to a precision of 30
decimal places.

// file: double_comparisons.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

double a = 0.1;

double b = 0.2;

double c = 0.3;

double d = a + b;

printf("a (0.1): %.30g\n",a);

printf("b (0.2): %.30g\n",b);

printf("c (0.3): %.30g\n",c);

printf("d (0.3): %.30g\n",d);

printf("c == d? %s\n", c == d ? "true" : "false");

printf("c < d? %s\n", c < d ? "true" : "false");

return 0;

}

cs 107 reader 103

$ gcc -g -O0 -std=gnu99 double_comparisons.c -o double_comparisons

$./double_comparisons

a (0.1): 0.100000000000000005551115123126

b (0.2): 0.200000000000000011102230246252

c (0.3): 0.299999999999999988897769753748

d (0.3): 0.300000000000000044408920985006

c == d? false

c < d? true

What can we do to see if c is equal to d above, with some error
bounds? One option is to choose a value (called the epsilon) that is
known to us to be within the bounds. For example, let’s presume
that for our case above, we want to determine if our result is within
0.1% of the value we think it should be. We could re-write our
program as follows: An outstanding and more de-

tailed description of using ep-
silons to compare floats is here:
https://randomascii.wordpress.
com/2012/02/25/comparing-floating-
point-numbers-2012-edition/

// file: double_comparisons_epsilon.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

const float EPSILON = 0.001; // 1 %

int main(int argc , char **argv)

{

double a = 0.1;

double b = 0.2;

double c = 0.3;

double d = a + b;

printf("a (0.1): %.30g\n",a);

printf("b (0.2): %.30g\n",b);

printf("c (0.3): %.30g\n",c);

printf("d (0.3): %.30g\n",d);

float max_cd_percent = fmax(fabs(c),fabs(d)) * EPSILON;

float diff_cd = fabs(c-d);

printf("c == d? %s\n", (diff_cd <= max_cd_percent) ? "true" : "false");

printf("c < d? %s\n", (diff_cd <= max_cd_percent) ? "false" : "true");

return 0;

}

$ gcc -g -O0 -std=gnu99 double_comparisons_epsilon.c -o double_comparisons_epsilon

$./double_comparisons_epsilon

a (0.1): 0.100000000000000005551115123126

b (0.2): 0.200000000000000011102230246252

c (0.3): 0.299999999999999988897769753748

d (0.3): 0.300000000000000044408920985006

c == d? true

c < d? false

https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

cs 107 reader 104

Floating Point Arithmetic

The following program demonstrates another issue with floating
point calculations: floating point addition is not associative:

// file: float_associativity.c

#include <stdio.h>

#include <stdlib.h>

int main(int argc , char **argv)

{

float a = 3.14;

float b = 1e20;

printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);

printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));

return 0;

}

$ gcc -g -O0 -std=gnu99 float_associativity.c -o float_associativity

$./float_associativity

(3.14 + 1e20) - 1e20 = 0.000000

3.14 + (1e20 - 1e20) = 3.140000

the binary representations of 3.14 and 3× 1020:
31 30 23 22 0

0 10000000 100100011110101110000113.14:
31 30 23 22 0

0 11000001 010110101111000111011001e20:

Notice the difference in scale for the exponents of each num-
ber. When adding two numbers, we must line up the binary point
(or decimal point, in the case of decimal numbers). Let’s expand
the binary representations, including the implied leading 1 to do so:
+ 1010110101111000111011000.0000000000000000000000 (1e20)

11.0010001111010111000011 (3.14)

101011010111100011101100011.0010001111010111000011

If we convert the result back to a binary floating point value, we
lose all of the significant digits from 3.14 (the resulting significand
is in bold):

101011010111100011101100011.0010001111010111000011

Notice that the significand from the result of our addition is the
same as the significand for 1× 1020, and therefore, the calculation
loses the significant digits from 3.14.

Floating Point Maximums and Minimums

Much like the integers, there are defined maximum and minimum
values for floating point numbers, which can be derived from the

cs 107 reader 105

floating point formats we have been discussing. Figure 30 shows
the 32-bit FLT_MAX and FLT_MIN values (defined in float.h).

Figure 30: 32-bit FLT_MAX and FLT_MIN
values

31 30 23 0

0 00000001 00000000000000000000000
22

FLT_MIN

31 30 23 0

0 1111110 11111111111111111111111
22

FLT_MAXWe can generate those values directly in a roundabout way, as
demonstrated with the following program:

// file: float_extremities.c

#include <stdio.h>

#include <stdlib.h>

#include <float.h>

int main(int argc , char **argv)

{

int flt_max_int_form = 0b01111111011111111111111111111111;

int flt_min_int_form = 0b00000000100000000000000000000000;

float flt_max = *((float *)&flt_max_int_form);

float flt_min = *((float *)&flt_min_int_form);

printf("flt_max: %g = %g\n",flt_max ,FLT_MAX);

printf("flt_min: %g = %g\n",flt_min ,FLT_MIN);

return 0;

}

$ gcc -g -O0 -std=gnu99 float_extrimities.c -o float_extremities

$ gdb float_extremities

flt_max: 3.40282e+38 = 3.40282e+38

flt_min: 1.17549e-38 = 1.17549e-38

There are some properties of FLT_MAX and FLT_MIN that you
should be aware of:

1. FLT_MAX is the largest normalized representable number, which
is similar to the integer definition of INT_MAX. Infinity is a larger
number, but not finite.

2. FLT_MIN is the smallest in magnitude normalized number. It is
still a positive number, and in fact it is not the smallest repre-
sentable number, which would be a denormalized number.

Final Thoughts

The IEEE Floating Point Standard was a carefully thought out way
to get the most out of a discrete set of bits. It may not be simple,
but it is a great study in good engineering design. Floating point
numbers represent a very large range, in a limited number of bits.
A 32-bit float can only hold a bit over 4 billion numbers but it has
a range of −3.4× 1038 to +3.4× 1038. Not only is this literally an
infinite number of reals that the format must try and represent, but
that is a phenomenal range of numbers. The 64-bit double range is
−1.7× 10308 to +1.7× 10308, which is enormous. Most numbers are,

cs 107 reader 106

therefore, only represented approximately in float format, including
many integers.

When working with floating point numbers, we as programmers
must be cognizant of the limitations and the nuances, but it is an
excellent and versitile format for representing the real numbers.

Floating Point Practice Problems

cs 107 reader 107

x86-64 Assembly Language

Every microprocessor has an underlying machine code that it
uses to perform calculations and to write and read data to and from
memory. It is this machine code that high level languages like C

get compiled into by gcc and other compilers and intrepeters. The
machine code is in binary, and the binary directly maps to a textual
and human-readable representation, called assembly language. One
assembly language instruction generally maps to one (or possibly
two) machine code instructions, based on simple rules. In this chap-
ter, we will investigate the assembly lanugage used in the Intel /
AMD x86-64 series of microprocessors, which are the microproces-
sors used in the Myth machines.96 Other microprocessor families, 96 The comprehensive set of x86-64

manuals can be found here: https://
software.intel.com/en-us/articles/
intel-sdm. We are going to be using
AT&T syntax; see the following for
information on the differences between
AT&T and Intel format: http://
www.imada.sdu.dk/Courses/DM18/
Litteratur/IntelnATT.htm

like the one that is in your phone, use a different assembly lan-
guage instruction set, and unlike higher level languages, assembly
language programs are not compatible with one another, and do
not enable portable programs. However, once you learn assembly
language for one family of processors, learning a different assembly
language is a bit like learning a dialect of a spoken language, and
the skills are largely transferable.

Because assembly language is low level, everything in the lan-
guage is explicit, and assembly language programs do not have
features you might be used to from C, such as loops and variables.
This means that assembly language tends to be much more verbose
than an equivalent high level language, and it does make reading
it more involved. That said, there is a simplicity to assembly lan-
guage that enables you to get a feel for the actual way a computer is
processing your data that is illuminating.

One goal of this chapter is for you to understand how a sec-
tion of assembly language code translates into C code, and we will
build up to those constructs as we go along. We don’t expect you
to necessarily translate in the other direction (from C to assembly
language), nor do we expect you to write much assembly language
code. Programmers used to write in assembly language when they
wanted to tune their code for maximum efficiency, but compiler op-
timization technology has advanced such that most compilers can
turn C code into extremely efficient assembly code and it is usually
not worth the effort to try and do better by hand.

The Intel-based Myth computers we use are direct descendants
of Intel’s 16-bit, 1978 processor with the name 8086.97 Intel has 97 See the excellent Wikipedia article

on the history of the x86 family of
processors

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
http://www.imada.sdu.dk/Courses/DM18/Litteratur/IntelnATT.htm
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86

cs 107 reader 108

taken a strict backwards-compatibility approach to new processors,
and their 32- and 64-bit processors have built upon the original
8086 Assembly code. These days, when we learn x86 assembly
code, we have to keep this history in mind. Naming of registers, for
example, has historical roots, and there is some terminology based
on the original processor that has remained to this day.

The Intel Instruction Set Architecture and a Sample Program

The machine code for a processor is based on the instruction set
architecture (ISA) for a processor. The ISA defines the behavior and
layout of a system, and the behavior is defined as if instructions
are run one after the other. Memory appears as a very large byte-
addressable array.98 There are a number of parts of the underlying 98 As you may guess, C is a high level

language that is based on an under-
lying machine architecture that is
byte-addressable, and operates linearly.
Unlike some other languages, C code
translates in a relatively straightfor-
ward manner into assembly code.

machine that we have not discussed yet (in some sense, they have
been hidden from us by C), but that will be necessary to understand
how the machine works. Some of these ideas are listed below:

• Program values are stored in a register file, and there are sixteen
named locations that store 64-bit values, plus other registers that
hold information you cannot directly access. Registers are the
fastest memory on your computer. Registers can hold addresses,
or integer data. Some registers are used to keep track of your
program’s state, and others hold temporary data. Registers are
used for arithmetic, local variables, and return values for func-
tions, and your entire processor core shares the small number of
registers.

• The computer has a register program counter called either %rip
or %pc99 which indicates the address of the next machine code 99 r stands for register, ip stands for

instruction pointer, and pc stands for
program counter.

instruction.

• The condition code registers hold status information about the
most recently executed arithmetic or logical instruction. These
are used to control program flow – e.g., if the result of an addi-
tion is negative, exit a loop.

• There are registers called vector registers which are specifically
designed for integer and floating point calculations.

Unlike in C, assembly language and the ISA does not differenti-
ate between signed and unsigned integers, between different types
of pointers, or even between pointers and integers. As we will see,
there is a set of data widths that can be referred to when moving
data between registers and memory, and these do map onto specific
C data types, depending on the machine100 100 We will discuss the mapping for

64-bit machines, as you might expect.A single machine instruction performs only a very elementary
operation. For example, there is an instruction to add two numbers
in registers, there is an instruction that transfers data between a
register and memory, and there is an instruction that conditionally

cs 107 reader 109

branches to a new instruction address. As you shall see, assem-
bly instructions are simple, and often, one C statement generates
multiple assembly code instructions.

Let’s start by looking at some assembly code. We will compile
with the -S flag to tell gcc to create the assembly code output of
our program. We will also use the -Og optimization flag to produce
lightly optimized code that will be easy to debug. The gcc output
has more detail then we really care about at this point, and we have
annotated the interesting portions. We will show a different view of
it below the following code.

#include <stdlib.h>

#include <stdio.h>

int main()

{

int i = 1;

printf("Hello , World %d!\n", i);

return 0;

}

$ gcc -S -Og -std=gnu99 -Wall simpleasm.c

$ cat simpleasm.s

The string is placed into memory, and
there is a label called .LC0

The main function begins here.

The movl instruction moves informa-
tion between registers, and between
registers and memory. This is actu-
ally setting up the arguments for the
printf function.

The call to the printf function.

.file "simpleasm.c"

.section .rodata.str1.1 ,"aMS",@progbits ,1

.LC0:

.string "Hello , World %d!\n"

.text

.globl main

.type main , @function

main:

.LFB39:

.cfi_startproc

subq $8, %rsp

.cfi_def_cfa_offset 16

movl $1, %edx

movl $.LC0 , %esi

movl $1, %edi

movl $0, %eax

call __printf_chk

movl $0, %eax

addq $8, %rsp

.cfi_def_cfa_offset 8

ret

.cfi_endproc

.LFE39:

.size main , .-main

.ident "GCC: (Ubuntu 5.4.0 -6 ubuntu1 ~16 .04.5) 5.4.0 20160609"

.section .note.GNU -stack ,"",@progbits

cs 107 reader 110

If we compile the code to a binary program as we normally do
(using the -Og optimization flag), we can look at the assembly in
gdb as well:

$ gcc -g -Og -std=gnu99 -Wall simpleasm.c -o simpleasm

$ gdb simpleasm

The target architecture is assumed to be i386:x86-64

Reading symbols from simpleasm...done.

(gdb) disas main

Dump of assembler code for function main:

0x0000000000400546 <+0>: sub $0x8,%rsp

0x000000000040054a <+4>: mov $0x1,%edx

0x000000000040054f <+9>: mov $0x4005f4,%esi

0x0000000000400554 <+14>: mov $0x1,%edi

0x0000000000400559 <+19>: mov $0x0,%eax

0x000000000040055e <+24>: callq 0x400430 <__printf_chk@plt>

0x0000000000400563 <+29>: mov $0x0,%eax

0x0000000000400568 <+34>: add $0x8,%rsp

0x000000000040056c <+38>: retq

End of assembler dump.

By the end of this chapter, you will have no trouble understand-
ing the code above, although at this point it may look confusing!
For now, notice how many mov instructions there are – these are the
instructions that move data between registers and memory. Also
notice on line <+9> that there is a value of 0x4005f4 – that happens
to be the location where the Hello, World \%d!\n is kept, which we
can also see in gdb:

(gdb) p (char *)(0x4005f4)

$2 = 0x4005f4 "Hello, World %d!\n"

A couple of other things to point out about the assembly code
above:

• A single C statement can lead to multiple assembly instructions.

• Setting up function calls takes some work.

• The %rsp register refers to the stack, so something is happening
on the stack.

• Two instructions before the ret (return) instruction, a value is
placed into the %eax register, which will become the return value
for the main function. In this case, we are returning 0.

Data Formats

Intel assembly language has four basic data width formats, to de-
note byte widths of 1 (b), 2 (w), 4 (l), and 8 (q). Because of its 16-bit
origins, Intel uses word to mean 16-bits, or 2 bytes. Thirty-two bit
words are referred to double words, and 64-bit words are referred to
as quad words. Table 8 shows how the assembly code suffix aligns
with common C data types.

Table 8: Intel Data Types
C type Suf. B Intel data type

char b 1 Byte
short w 2 Word
int l 4 Double word
long q 8 Quad word
char * q 8 Quad word
float s 4 Sing. precision
double l 8 Dbl. precision

cs 107 reader 111

x86-64 Registers

x86 CPUs have 16 general purpose registers, which store 64-bit val-
ues. Registers store integer data and pointers. Register names begin
with r, but the naming is historical: the original 16-bit registers
were %ax, %bx, %cx, %dx, %si, %di, %bp, and %sp. Each register had a
purpose, and were named as such.

When 32-bit x86 arrived, the register names expanded to 32-
bits each, and changed to %eax, %ebx, etc. When x86-64 arrived, the
registers were again renamed to %rax, %rbx, etc., and expanded to
64-bits. Additionally, eight more registers were added, %r8 - %r15.

Figure 31 shows the integer registers, which are nested such that
(for example), %rax is the full 64-bit register, and %eax is the low 32

bits of the register, %ax is the low 16 bits of the register, and %al is
the low 8 bits of the register.

Operand Forms and the mov and lea Instructions

Most assembly language instructions take one or two operands to
perform an operation on, and there are multiple operand forms.
These forms can be broken down into a few general examples.

$IMM : An immediate value is a constant, which is preceded by a
dollar sign. Examples: $1, $0x1A, $-42.

%ra : A register. Examples: %rax, %edx, %r8d.

Imm(rb,ri,s) The general form of a scaled indexed operand. The
value is computed with the following linear formula:

Imm + rb + s * ri

The s stands for the scaling factor, and it is limited to either 1, 2,
4, or 8. Each part may be left out, except that if ri is left out, then
s must, as well. Examples:

4(%rax,%rdx,2) = 4 + %rax + 2 * %rdx

(%rdx,%rax,4) = %rdx + 4 * %rax

5(%rax) = 5 + %rax

-7(,%rdx,8) = -7 + 8 * %rdx

(%rax, %rdx) = %rax + %rdx

The most common x86-64 assembly instruction is the mov in-
struction101, which copies immediate data (e.g., constant numbers) 101 See an interesting pie chart about

it at https://www.strchr.com/x86_
machine_code_statistics

into a register or memory, copies values between two registers, or
copies values between a register and memory (in either direction).
In x86-64 assembly, it is not legal to copy directly from one memory
location to another memory location without first copying the data
into a register. The general form of the mov instruction is as follows:

movx src, dest

where x can be replaced by b, w, l, or q to denote the width of the
value being moved. The register source and/or destination must

https://www.strchr.com/x86_machine_code_statistics
https://www.strchr.com/x86_machine_code_statistics

cs 107 reader 112

63 31 15 7

%rax %eax %ax %al return value

%rbx %ebx %bx %bl caller owned

%rcx %ecx %cx %cl 4th argument

%rdx %edx %dx %dl 3rd argument

%rsi %esi %si %sil 2nd argument

%rdi %edi %di %dil 1st argument

%rbp %ebp %bp %bpl caller owned

%rsp %esp %sp %spl stack pointer

%r8 %r8d %r8w %r8b 5th argument

%r9 %r9d %r9w %r9l 6th argument

%r10 %r10d %r10w %r10b callee owned

%r11 %r11d %r11w %r11b callee owned

%r12 %r12d %r12w %r12b caller owned

%r13 %r13d %r13w %r13b caller owned

%r14 %r14d %r14w %r14b caller owned

%r15 %r10d %r15w %r15b caller owned

Figure 31: The sixteen x86-64 integer
registers

cs 107 reader 113

also be the proper width for the instruction (see the examples be-
low), and in most cases, only the bits in the specified width are
modified in a 64-bit register. For example, if you are moving 1 byte
(with the b specifier), only the lowest byte of a destination register
will be affected, and the rest will remain the same. There is one
exception: the movl instruction moves 32-bits into the low bits of a
register, and clears the upper 32-bits with zeros.

If the operand is in the form Imm(rb,ri,s), then the location is
a memory address, and the copy will be from the location calculated
with the linear equation above.

Examples:

movl $0x20,%eax copies the immediate value 0x20 into the low 32 bits of

%rax, and clears the upper 32 bits to zero.

movq 4(%rax,%rdx,2),%rax copies the 64-bit (8 byte) value at memory location

4 + %rax + 2 * %rdx into register %rax.

movw %bx, (%rdx,%rax,4) copies two bytes from %bx into the memory location

%rdx + 4 * %rax

movl %eax,%edx copies the low 32-bits (four bytes) of %eax into the

low 32-bits of %rdx, and clears the upper 32 bits to zero.

movb (,%rdx,8),%al copies one byte from 8 * %rdx to the lowest 8 bits of %rax.

movq %rcx, (%rax, %rdx) copies the 64-bit value in %rcx into the memory location

at %rax + %rdx.

There is another mov instruction, movabsq $IMM, Reg, which is
used to put a 64-bit immediate value into a register. This instruciton
is needed because in the regular mov instruction, the maximum
immediate value is only 32 bits. Example:

movabsq $0x0011223344556677, %rax

There are two additional mov instructions, which are used to copy
a smaller source into a larger destination (which must be a register):
movz and movs. These instructions perform either a zero-fill of the
remaining bytes, or a sign-extension of the remaining bytes. There
are six ways to move a 1- or 2-byte operand into a 2-, 4- or 8-byte
operand. There is not an explicit instruction to zero-extend a 4-
byte source into an 8-byte destination, because the movl instruction
already accomplishes the zero-fill operation. Note that the instruc-
tions have the size designations embedded in each instruction:

movzbw and movsbw : move zero- or sign-extended byte to word.

movzbl and movsbl : move zero- or sign-extended byte to double word.

movzbq and movsbq : move zero- or sign-extended byte to quad word.

movzwl and movswl : move zero- or sign-extended word to double word.

cs 107 reader 114

movzwq and movswq : move zero- or sign-extended word to quad word.

movslq : move sign-extended double word to quad word.

An important instruction that is related to movq is the leaq in-
struction. The difference is that instead of actually reading from
memory, it simply puts the result of the calculation of the operand
into the destination. You can think of it as the address of (&) operator
in C:

leaq src, dest

where the destination is a register. For example:

leaq (%rax,%rdx,4), %rax copies the value of %rax + 4 * %rdx into %rax

Often, you will see the leaq instruction used to perform arith-
metic on values in registers, and the registers do not have to hold
addresses.102 102 Keep this in mind! You may see the

leaq instruction in what seem like odd
sections of code (where there are no
memory references), but in those cases
it is being used for arithmetic.

cs 107 reader 115

The Linux Address Space, and the Stack and the Heap

At this point, we will take a brief detour into the land of the stack
and the heap in a program. We have discussed stack variables (local
variables and local arrays), and heap allocation (using malloc and
free), but as we get into assembly language, we need to discuss
how the stack and heap are layed out in memory.

Figure 32 shows the layout of the Linux address space.

Figure 32: The Linux address space
(not to scale)

0x7ffffffff000

0x7ffff7ffe000

8MB
reserved

Sized for
library

Grows on
demand

Sized for
executable

Shared library
text/data

Text

(machine code)

Low addresses
deliberately unmapped

0x602010

0x600000

0x400000

Heap

Global data

Stack
The following is a brief introduction to each section of memory:

stack The stack grows downward in memory, and every program
is, by default, given an 8MB stack partition.103 The stack holds

103 But the hardware memory manager
only doles out the memory as needed.

local variables, arrays, and parameters104, and it is fast to allocate

104 It actually infrequently holds the
paramaters, as we will see later in the
chapter

variable space on the stack, because a program already “owns”
the memory when it begins. Addresses on the stack are in the
0x7ffffxxxxxxx range.

heap The heap grows upward in memory, and the heap holds values
allocated with malloc and calloc. The heap is typically much
larger (measured in GB instead of MB), and is managed by the
operating system. It is slower to request heap memory because
the operating system is directly involved. The heap grows as
is necessary for a program (i.e., there isn’t a fixed limit). Heap
memory begins in the range 0x602010, and we will see many
addresses in this range as we continue the chapter.

shared library text and data The C libaries (and other shared libraries)
are placed into a location accessable by all programs. Each pro-
gram gets its own data segment for shared libraries, but the code
is completely shared.

global data Any global or static variables get stored in global mem-
ory.

text The text segment (in the 0x400000 range is where a program’s
code resides. You will see these addresses when you analyze
code in more detail.

low addresses The low addresses are used by the operating system
and hardware.

Pushing and Popping from the Stack

As we saw in the previous section, the stack is an important part
of our program. Assembly language has two built-in instructions,
called push and pop to place values onto, and to take values off of
the stack. Just like the stack abstract data type, the instructions have
a last-in-first-out discipline.

We saw above that the stack grows downward in memory. The
push instruction places a value from a register onto the stack at
location of the stack pointer, %rsp. Then it decrements %rsp by the
amount of bytes that it pushed. The pop instruction accomplishes

cs 107 reader 116

the reverse process: it saves the value at the location of %rsp into a
register, and then it increments %rsp by the amount of bytes that it
popped. Figure 33 demonstrates a push followed by a pop.

Initially

%rax 0x123
%rdx 0
%rsp 0x108

pushq %rax
%rax 0x123
%rdx 0
%rsp 0x100

Stack "bottom"

Stack "top"

Increasing
address

.

.

.
0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.
0x108

0x1230x100

popq %rdx
%rax 0x123
%rdx 0x123
%rsp 0x108

Stack "bottom"

Stack "top"

Increasing
address

.

.

.
0x108

0x1230x100

Figure 33: A push followed by a pop.
Notice that after the push %rax, the
stack pointer has been decremented
by 8, and after the pop %rdx, the stack
pointer has been incremented by 8.
Also note that the value on the stack
after the pop has not been cleared.

Arithmetic in Assembly

In assembly languages, arithmetic forms a substantial set of the
instructions. The unary instructions act on a single operand (reg-
ister or memory), and the binary operations act on two operands
(one of which can be memory). There are also some special instruc-
tions (e.g., mul and div) that act one one operand but affect other
operands, as well. The shift instructions operate on one operand,
but take a second argument to determine how much to shift the
operand by.

The unary instructions we care about are defined as follows:

inc dst : Increments the register or memory location by 1. Exam-
ple: incq %rax

dec dst : Decrements the register or memory location by 1. Exam-
ple: decq 4(%rdx)

neg dst : Performs a two’s complement conversion on the operand.
Example: negl %eax

not dst : Performs a bitwise complement on the operand. Exam-
ple: notb %ax

The binary instructions are defined as follows105: 105 Note the lack of a division instruc-
tion; we will cover division as a special
case belowadd src,dst : Adds src to dst and puts the result into dst. Example:

addq %rax,%rdx

sub src,dst : Subtracts src from dst and puts the result into dst.106. 106 This syntax can be tricky. addq
%rax, %rdx is read “subtract %rax
from %rdx.”

Example: subl %eax,%edx

imul src,dst : Peforms a signed multiply on src and dst, and puts
the result into dst. There is a possibility of losing information, as

cs 107 reader 117

the result of two n-bit multiplications can produce a 2n-bit prod-
uct.107 Can be used on unsigned operands as well, because the 107 See below for a different form of

imul that does not lose information.lower half of the product is the same. Example: imulb %al,%dl

xor src,dst : Performs the exclusive-OR operation on src and dst
and puts the result into dst. Example: addq %rax,%rdx

or src,dst : Performs the OR operation on src and dst and puts
the result into dst. Example: andl (%rax,%rdx,2),%edx

and src,dst : Performs the AND operation on src and dst and puts
the result into dst. Example: andw %ax,%dx

The shift instructions are defined as follows. Note that the first
operand can be either an immediate value or %cl (and only %cl):

sal k,dst or shl src,dst : Performs a left shift of k bits on dst and
puts the result into dst.108 Example: shlq $4,%rdx 108 The reason there are two instruc-

tions that do the exact same thing is
simply to be analogous to the right
shift instructions, which have a logical
and artihmetic form.

sar k,dst : Performs an arithmetic right shift of k bits on dst and
puts the result into dst. Example: sarb $2,%dl

shr k,dst : Performs an logical right shift of k bits on dst and puts
the result into dst. Example: shrq %cl,8(%rax)

Because the multiplication of two n-bit numbers can produce a
2n-bit product, we have a different form of imul and and additional
mul instruction to perform the multiplication of two 64-bit operands
without losing information. Both instructions take a single 64-bit
operand, but also implicitly use the %rax register as one of the
multiplicands. The 128-bit result is always put into the combination
of %rdx:%rax, with the upper 64-bits placed into %rdx and the lower
64-bits place into %rax. The following example demonstrates the
idea:

// file: octmult.c

#include <stdio.h>

#include <stdlib.h>

// multiply64

// x : the first multiplicand

// y : the second multiplicand

// result : a pointer to an array of 2 longs

// that will be in little -endian format

void multiply64(unsigned long x, unsigned long y, unsigned long *result);

int main(int argc , char **argv)

{

unsigned long x = strtol(argv[1],NULL ,0);

unsigned long y = strtol(argv[2],NULL ,0);

unsigned long result [] = {0,0};

cs 107 reader 118

multiply64(x,y,result);

printf("0x%016lx%016lx\n",result [1], result [0]);

return 0;

}

File: multiply64.s

Demonstrates the 1-operand imul / mul

instructions with two signed 64-bit multiplicands

and the result placed into %rdx:%rax

.section .text

.type multiply64 , @function

.globl multiply64

%rdi will hold first multiplicand

%rsi will hold the second multiplicand

%rdx will hold a pointer to an array

for the little endian 128-bit result

multiply64:

store %rdx in %r8 because %rdx will

hold the upper bits of the product

movq %rdx ,%r8

copy the first multiplicand into %rax

movq %rdi ,%rax

perform the multiplication

mulq %rsi

result is now in %rdx:%rax

now we copy the result into

the array

movq %rax ,(%r8)

movq %rdx ,8(%r8)

ret

$ gcc -g -Og -std=gnu99 -Wall octmult.c -x assembler multiply64.s -o octmult

$./octmult 0x3000000000000000 0x2000000000000000

x06000000000000000000000000000000

The division instruction seemed to be missing from the list of
arithmetic instructions above. However, division is another special
case. There are two division instructions (idivq and divq), and a
third helper instruction (ctqo) that is used as well (described be-
low). Instead of using a single 64-bit dividend, the div instructions
take a 128-bit dividend, located in %rdx:%rax, and then divide the
single operand into the 128-bit dividend. The resulting quotient is

cs 107 reader 119

placed into %rax, and the remainder of the integer division is placed
into %rdx. If the quotient ends up as too large for the destination
register, %rax), the runtime throws an exception.109 The divide in- 109 One way to check for this potential

case is to ensure that %rdx is less than
the divisor operand.

structions are explained below:

idivq src : Divides the signed 128-bit combination of %rdx:%rax
by the signed src, and puts the quotient into %rax, and puts the
remainder into %rdx. Example: idivq %rdi

divq src : Divides the unsigned 128-bit combination of %rax:%rdx
by the unsigned src, and puts the quotient into %rax, and puts
the remainder into %rdx. Example: idivq %rdi

cqto : Sign-extends %rax into %rdx to produced a correctly-signed
128-bit %rdx:%rax combination.

The following shows an example of the idiv instruction:

// file: div_example.c

#include <stdio.h>

#include <stdlib.h>

long divide_with_remainder(long x, long y, long *rem)

{

*rem = x % y;

return x / y;

}

int main(int argc , char **argv)

{

long x = strtol(argv[1],NULL ,0);

long y = strtol(argv[2],NULL ,0);

long remainder;

long quotient = divide_with_remainder(x,y,& remainder);

printf("%ld / %ld = %ld remainder %ld\n",x,y,quotient ,remainder);

return 0;

}

$ gcc -Og -std=gnu99 -Wall div_example.c

$./div_example 10000 3

10000 / 3 = 3333 remainder 1

$ gdb div_example

The target architecture is assumed to be i386:x86-64

Reading symbols from div_example...done.

(gdb) disas divide_with_remainder

Dump of assembler code for function divide_with_remainder:

0x0000000000000760 <+0>: mov %rdi,%rax

0x0000000000000763 <+3>: mov %rdx,%rcx

0x0000000000000766 <+6>: cqto

0x0000000000000768 <+8>: idiv %rsi

0x000000000000076b <+11>: mov %rdx,(%rcx)

cs 107 reader 120

0x000000000000076e <+14>: retq

End of assembler dump.

Control

So far, we have only been discussing "straight-line" code, where
one instruction happens directly after the previous instruction.
However, it is often necessary to perform one instruction or an-
other instruction based on the logic in our programs, and assembly
code gives us tools to do this. We can alter the flow of code using
a jump instruction, which indicates that the next instruction will be
somewhere else in the program (this is called a branch), or we can
modify the instruction path by calling and returning from func-
tions. We will start by discussing condition codes that are set when
we do arithmetic and some other operations, and then we will talk
about jump instructions to change control flow.

Besides the registers we have already discussed, the x86-64 pro-
cessors have a separate set of single-bit condition code registers that
describe attributes of the result of recent instructions. We can use
the registers (by testing them) to perform branches in our code.

The condition code registers we will use in class are:

CF : Carry flag. The most recent instruction generated a carry out
of the most significant bit. The carry flag is used to detect over-
flow for unsigned operations.

ZF : Zero flag. The most recent instruction yielded zero.

SF : Sign flag. The most instruction yielded a negative value.

OF : Overflow flag. The most recent instruction caused a two’s-
complement overflow, either negative or positive.

For example, if %rax contains 5 and %rdx contains −5, the in-
struction add %rax,%rdx will set the ZF flag, because the result of
the addition was 0. If, instead, %rdx holds −20, then the same in-
struction would set the SF flag, because the result of the addition is
negative.

The leaq and mov instructions do not set any condition codes,
but the arithmetic instructions do set them, as do the logical in-
structions110. For shift instructions, the carry flag is set to the last 110 The logical instructions, e.g., xor set

the carry and overflow flags to 0.bit shifted out, while the overflow flag is set to zero. For historical
reasons, the inc and dec instructions do not set the carry flag, but
do set the overflow and zero flags.

There are two types of instructions, cmp and test that we can use
to set condition codes without altering any other registers:

cmpx s1,s2: Compares two numbers by subtracting s2-s1.111 The x 111 Be careful to get the order correct!
Think, “subtract s1 from s2.”is replaced by a bit width, b, w, l, or q. Example:

movl $5,%eax

movl $1,%edx

cs 107 reader 121

cmpl %eax,%edx # sets the sign flag because 1-5 is less than 0

also sets the carry flag, because adding

-1 to 5 produces a carry-out

testx s1,s2: Compares two numbers by performing a bitwise AND

on the operands. The x is replaced by a bit width, b, w, l, or q.
The result from the AND sets the flags; for instance, a result that
has its most significant bit set would set the Sign Flag, and a
number that is all zeros would set the zero flag. We often use the
test instruction with the same register as both operands in order
to determine if the register’s value is negative, positive, or zero.
Example:

movl $0,%eax

test %eax,%eax # sets the zero flag because 0 AND 0 == 0

There are three common ways to use the condition codes to
affect assembly language behavior. The set instruction will set a
single byte based on condition codes. The j (jump) instruction sets
the instruction pointer to a different instruction than the one that
is next in the program.112 The cmov (conditional move) instruction 112 There is also an unconditional jump

instruction, jmp, which changes the
instruction pointer unconditionally.

performs a regular mov instruction based on the condition codes.
All three conditional instructions use the same suffixes to deter-

mine which flags will affect their behavior. Table 9 shows the suffix,
english description, and the condition code flags. The suffixes are
preceded by either set (e.g., setz), j (e.g., jz, or cmov (e.g., cmovz):

Suffix Behavior Flags used

e / z set, jump, move if equal/zero ZF

ne / nz set, jump, move if not equal/nonzero ~ZF

s set, jump, move if negative SF

ns set, jump, move if nonnegative ~SF

g / nle set, jump, move if greater (signed) ~(SF ˆ OF) & ~ZF

ge / nl set, jump, move if greater or equal (signed) ~(SF ˆ OF)

l / nge set, jump, move if less (signed) SF ˆ OF

le / ng set, jump, move if less or equal (SF ˆ OF) | ZF

a / nbe set, jump, move if above (unsigned) ~CF & ~ZF

ae / nb set, jump, move if above or equal (unsigned) ~CF

b / nae set, jump, move if below (unsigned) CF

be / na set, jump, move if below or equal (unsigned) CF|ZF Table 9: The common conditional
suffixes for set / j / cmovFor completeness, we have put all of the flags used in the table

above. However, most of the time it is far simpler to think about the
behavior as it relates to the suffix, and to think about two instruc-
tions at a time. For example:

cmpq $0x5,%rax

jg 0x821 <main+193>

To read this, say, “jump if %rax is greater than 5.”
Here is another example:

cs 107 reader 122

cmpw %dx,%ax

cmovne %rcx,%r8

To read this, say, “move %rcx to %r8 if %ax is not equal to %dx.”
The jmp instruction is unconditional, meaning that it always per-

forms the requested jump to a different instruction:

jmp Label : Directly jump to the Label, which is usually replaced in
C generated code with an offset (e.g., a certain number of bytes
away from the instruction pointer). Example: jmp .L0

jmp *Operand : Jump indirectly, based on the value in memory
pointed to by the operand. This is used when we have a function
pointer. Example: jmp *(%rdx)

The following program demonstrates how an unconditional and
a conditional jump work in a loop in C:

// file: loopjumps.c

#include <stdio.h>

#include <stdlib.h>

void loop()

{

int i = 0;

while (i < 100) {

printf("i:%d\n",i);

i++;

}

}

int main(int argc , char **argv)

{

loop();

return 0;

}

$ gcc -Og -std=gnu99 -Wall loopjumps.c -o loopjumps

$ gdb loopjumps

The target architecture is assumed to be i386:x86-64

Reading symbols from loopjumps...done.

(gdb) disas loop

Dump of assembler code for function loop:

0x0000000000400546 <+0>: push %rbx

0x0000000000400547 <+1>: mov $0x0,%ebx

0x000000000040054c <+6>: jmp 0x400567 <loop+33>

0x000000000040054e <+8>: mov %ebx,%edx

0x0000000000400550 <+10>: mov $0x400614,%esi

0x0000000000400555 <+15>: mov $0x1,%edi

0x000000000040055a <+20>: mov $0x0,%eax

0x000000000040055f <+25>: callq 0x400430 <__printf_chk@plt>

0x0000000000400564 <+30>: add $0x1,%ebx

cs 107 reader 123

0x0000000000400567 <+33>: cmp $0x63,%ebx

0x000000000040056a <+36>: jle 0x40054e <loop+8>

0x000000000040056c <+38>: pop %rbx

0x000000000040056d <+39>: retq

End of assembler dump.

Let’s take a closer look at the assembly code above. We will
refer to the code by the values in angle brackets (<>), which are
actually counts of how many bytes the instruction is away from the
beginning of the function.113 113 x86-64 instructions are variable

length, and generally take between
1 and 5 bytes. The address of each
instruction is, therefore, not exactly
the same number of bytes from the
previous instruction.

The function starts on line <+0> by pushing the register %rbx onto
the stack, to save it.114

114 We will discuss why this is the case
soon!

The value of %rbx, which is the loop counter, i, is set to 0 on line
<+1>.

The unconditional jmp on line <+6> sets the instruction pointer to
instruction <+33> (address 0x400567), where the initial while loop
check for i < 100 is completed.

The jle instruction on line <+36> jumps back to line <+8> if %rbx
is less than or equal to 99 (0x63), at which point the function enters
into the while loop body.

Lines <+8> through <+25> set up and call the printf function.
On line <+30>, the counter is incremented, and the code falls

through to the loop counter check again. When the counter has
reached a value of 99, the jle instruction does not branch, and
the code continues with line <+38>, restoring %rbx (line <+38> and
returning from the function (line <+39>.

More on Conditional Moves

The conditional moves we discussed in the previous section have
an interesting use, especially in today’s computers. Some times, a
program that has a conditional statement that normally requires
a conditional jump can be re-written to use a conditional move,
instead. Although the resulting change may take extra lines of as-
sembly code, the removal of a branch can actually speed up the
program. Modern processors perform what is called brach prediction
when they read a conditional branch; i.e., they guess whether the
program will branch, or not. The reason this is necessary is because
modern processors have the ability to perform many115 of instruc- 115 sometimes up to hundreds

tions in parallel, and by guessing which way a conditional branch
will go can keep the processor working on instructions before it
actually gets to a point where it knows whether the branch will
happen or not. Branch prediction technology has an extremely high
rate of correct behavior (over 90% correct), but when it mispredicts,
the processor has to stall and throw away the result of instructions
that it thought would get executed.

Therefore, if we can remove a branch from our programs, this
can often speed up the program, at the cost of a few extra instruc-
tions.

cs 107 reader 124

Take the following two C functions that accomplish the same
thing:

// file: conditionalmov_prog.c

#include <stdio.h>

#include <stdlib.h>

int maxdifference_A(int a, int b)

{

int diffab;

if (a - b >= b - a) {

diffab = a - b;

} else {

diffab = b - a;

}

return diffab;

}

int maxdifference_B(int a, int b)

{

int diffab = a - b;

int diffba = b - a;

int maxab = diffab < diffba;

if (maxab) diffab = diffba;

return diffab;

}

int main(int argc , char **argv)

{

int a = atoi(argv [1]);

int b = atoi(argv [2]);

printf("max_diff_A: %d\n",maxdifference_A(a,b));

printf("max_diff_B: %d\n",maxdifference_B(a,b));

return 0;

}

$ gcc -O3 -std=gnu99 -Wall conditionalmov.c -o conditionalmov

$./conditionalmov 4 5

max_diff_A: 1

max_diff_B: 1

In maxdifference_A, there is an explicit if/else statement, and it
would seem that a conditional jump is warranted. In maxdifference_B,
there is no else statement to go along with the if statement, be-
cause both calculations, diffab and diffba are actually computed.
Now take a look at the output the compiler produces when the
optimization level is set to a high level of optimization, -O3:

$ gdb conditionalmov

cs 107 reader 125

The target architecture is assumed to be i386:x86-64

Reading symbols from conditionalmov...done.

(gdb) disas maxdifference_A

Dump of assembler code for function maxdifference_A:

0x0000000000400620 <+0>: mov %edi,%eax

0x0000000000400622 <+2>: sub %esi,%eax

0x0000000000400624 <+4>: sub %edi,%esi

0x0000000000400626 <+6>: cmp %esi,%eax

0x0000000000400628 <+8>: cmovl %esi,%eax

0x000000000040062b <+11>: retq

End of assembler dump.

(gdb) disas maxdifference_B

Dump of assembler code for function maxdifference_B:

0x0000000000400630 <+0>: mov %edi,%eax

0x0000000000400632 <+2>: sub %esi,%eax

0x0000000000400634 <+4>: sub %edi,%esi

0x0000000000400636 <+6>: cmp %esi,%eax

0x0000000000400638 <+8>: cmovl %esi,%eax

0x000000000040063b <+11>: retq

End of assembler dump.

Notice that the compiler has discovered that both of the loops
can be re-written using the cmovl instruction, without needing to
use any conditional jumps.

From C to Assembly: while Loops

In this and the following sections, we are going to analyze how
the compiler creates code for various C programs. Note that these
are unoptimized compilations, and in many cases the compiler can
make faster and more efficient code (as we saw in the last section)
when it is allowed to optimize. However, for instructional purposes,
we will look at the unoptimized code.

The first code transformation we will look at is the while loop.
There are two forms that we will look at, and depending on what
the compiler can deduce from your code, it will perform one of the
following transformations.

In C, the general form of the while loop is as follows:

while (test_expr)

body_statement

Gcc often translates a while loop into assembly that looks like
this:

jmp test // unconditional jump

loop:

body_statement instructions

test:

cmp ... // comparison instruction

cs 107 reader 126

j.. loop // conditional jump based on comparison

// can think of as "if test, goto loop"

The following program demonstrates a real example (with com-
ments manually added to the gdb output):

// file: whileloop1.c

#include <stdio.h>

#include <stdlib.h>

long fact_while(long n)

{

long result = 1;

while (n > 1) {

result *= n;

n = n - 1;

}

return result;

}

int main(int argc , char **argv)

{

long x = 5;

long x_fact = fact_while(x);

printf("%ld! = %ld\n",x,x_fact);

return 0;

}

$ gcc -Og -std=gnu99 -Wall whileloop1.c

$./whileloop1

5! = 120

$ gdb whileloop1

The target architecture is assumed to be i386:x86-64

Reading symbols from whileloop1...done.

(gdb) disas fact_while

Dump of assembler code for function fact_while:

0x000000000040055d <+0>: mov $0x1,%eax # set result to 1

0x0000000000400562 <+5>: jmp 0x40056c <fact_while+15> # jump to test

0x0000000000400564 <+7>: imul %rdi,%rax # loop start, compute result *= n

0x0000000000400568 <+11>: sub $0x1,%rdi # decrement n

0x000000000040056c <+15>: cmp $0x1,%rdi # compare n:1

0x0000000000400570 <+19>: jg 0x400564 <fact_while+7> # if >, jmp to loop

0x0000000000400572 <+21>: repz retq # return from function

End of assembler dump.

(gdb)

From C to Assembly: for Loops

The next code transformation we will look at is the for loop. The
general form of a for loop in C is as follows:

cs 107 reader 127

for (init_expr; test_expr; update_expr)

body_statement

A for loop can be re-written as a while loop as follows:116 116 Except in the case where there is a
continue statement in the loop.

init_expr;

while (test_expr) {

body_statement

update_expr;

}

The program first evaluates init_expr. Then it enters the loop
where it first evaluates the test condition, test_expr, exiting if
the test fails. Then, it continues the body_statement, and finally
evaluates the update expression, update_expr.

Gcc has two different forms of assmebly that it prefers for a for

loop in assembly. The first looks like this:

init_expression

jmp test // unconditional jump

loop:

body_statement instructions

update_expression

test:

cmp ... // comparison instruction

j.. loop // conditional jump based on comparison

// can think of as "if test, goto loop"

The second form looks like this:

init_expression

cmp ... // comparison instruction

j.. done // conditional jump based on comparison

// can think of as "if not test, goto done"

loop:

body_statement instructions

update_expression

cmp ... // comparison instruction

j.. loop // "if test, goto loop"

done:

Here is a full example of a factorial function using a for loop:

// file: forloop1.c

#include <stdio.h>

#include <stdlib.h>

long fact_for(long n)

{

long i;

long result = 1;

for (i = 2; i <= n; i++)

result *= i;

cs 107 reader 128

return result;

}

int main(int argc , char **argv)

{

long x = 5;

long x_fact = fact_for(x);

printf("%ld! = %ld\n",x,x_fact);

return 0;

}

$ gcc -Og -std=gnu99 -Wall forloop1.c -o forloop1

$./forloop1

5! = 120

$ gdb forloop1

The target architecture is assumed to be i386:x86-64

Reading symbols from forloop1...done.

(gdb) disas fact_for

Dump of assembler code for function fact_for:

0x0000000000400546 <+0>: mov $0x1,%eax # set result to 1

0x000000000040054b <+5>: mov $0x2,%edx # set i = 2

0x0000000000400550 <+10>: jmp 0x40055a <fact_for+20> # jump to test

0x0000000000400552 <+12>: imul %rdx,%rax # compute the result *=i

0x0000000000400556 <+16>: add $0x1,%rdx # increment i

0x000000000040055a <+20>: cmp %rdi,%rdx # compare n:i

0x000000000040055d <+23>: jle 0x400552 <fact_for+12> # if <=, jump to loop

0x000000000040055f <+25>: repz retq # return

End of assembler dump.

(gdb)

From C to Assembly: Functions

Functions117 are an important software abstraction that creates a 117 also called “procedures,” although
procedures are generally described
as not returning any value, while
functions do return a value. In C, of
course, a function can return void,
which means that it doesn’t return
anything.

reusable section of code that can be called from anelsewhere in
the program, accepts zero or more arguments, and has an optional
return value. In C, there are multiple things a function must accom-
plish, based on an x86-64 standard for calling functions:

1. Programs pass control to a function by updating the instruction
pointer, %rip, to point to the first instruction in the function.
When the function ends, it must change %rip to point to the next
instruction after the call in the calling function.

2. The calling function must be able to pass arguments to the func-
tion it calls, and the function that is called must be able to return
a value back.

3. There must be a way to save the state of the calling function, and
to recover the saved state when control is returned to the calling
function.

cs 107 reader 129

4. The called function must be able to allocate and deallocate mem-
ory (normally on the stack) to use while it is running.

The x86-64 processors have special assembly instructions that
allow function calls to happen correctly, based on a standard that
all programs should meet.

From C to Assembly: The Stack Frame

As we have seen earler, the stack holds local data that a function
uses for variables, arrays, etc. Figure 34

118 shows the stack with 118 R.E. Bryant and D.R. O’Hallaron.
Computer Systems : A Programmer’s
Perspective. Pearson, 2015. ISBN
9781292101767. URL https://books.
google.com/books?id=KfM2rgEACAAJ

more detail than we have seen before – in particular, it shows the
“stack frames” for two functions, a calling function (P), and an
executing function (Q).

Figure 34: The stack frame structure,
borrowed from Figure 3.25, Bryant and
O’Halloran

Stack "bottom"

Increasing
address

.

.

.

Stack
pointer

%rsp

Earlier Frames

.

.

.

.

.

.

Argument n

Argument 7

Return address

Saved Registers

Local Variables

Argument build
area

Frame for calling
function P

Frame for
executing
function Q

Stack "top"

The calling function, P, generally stores its arguments in regis-
ters, but if there are more than six arguments to a function, they
get placed onto the stack before calling the function, Q. Addition-
ally, the return address of the next instruction after the instruction
that calls Q is stored on the stack, and when Q is called, the stack
pointer points to the location on the stack where that return ad-
dress is stored. The arguments passed on the stack and the return
address are all considered part of Q’s stack frame.

While function Q is executing, P (along with all of the calls up
to P) is temporily suspended. Q may need stack space for its own
variables, and it may also call other functions, so it uses stack space
below the return address (labeled as “Frame for executing function
Q in Figure 34). Function Q allocates this space by either pushing
and popping values onto and off of the stack, or by decrementing
the stack pointer appropriately. When function Q ends, it must re-
turn the stack pointer to point to the location of the return address
(thereby cleaning up after itself).

As an example of the stack frame structure, we will use the fol-
lowing program, which has three functions (main, first_function,
and leaf). The program listing is shown along with a partial listing
of the dissassembly (to just show the relevant functions):

// file: run_time_stack.c

#include <stdio.h>

#include <stdlib.h>

int leaf(int x)

{

x *= 3;

return x;

}

int first_function(int a)

{

a--;

a = leaf(a);

https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=KfM2rgEACAAJ

cs 107 reader 130

return a;

}

int main(int argc , char **argv)

{

int n = 10;

n = first_function(n);

printf("n: %d\n",n);

return 0;

}

$ gcc -Og -std=gnu99 -Wall run_time_stack.c

$ objdump -d run_time_stack

0000000000400546 <leaf>:

400546: 8d 04 7f lea (%rdi,%rdi,2),%eax

400549: c3 retq

000000000040054a <first_function>:

40054a: 83 ef 01 sub $0x1,%edi

40054d: e8 f4 ff ff ff callq 400546 <leaf>

400552: 83 c0 03 add $0x3,%eax

400555: c3 retq

0000000000400556 <main>:

400556: 48 83 ec 08 sub $0x8,%rsp

40055a: bf 0a 00 00 00 mov $0xa,%edi

40055f: e8 e6 ff ff ff callq 40054a <first_function>

400564: 89 c2 mov %eax,%edx

400566: be 14 06 40 00 mov $0x400614,%esi

40056b: bf 01 00 00 00 mov $0x1,%edi

400570: b8 00 00 00 00 mov $0x0,%eax

400575: e8 b6 fe ff ff callq 400430 <__printf_chk@plt>

40057a: b8 00 00 00 00 mov $0x0,%eax

40057f: 48 83 c4 08 add $0x8,%rsp

400583: c3 retq

Table 10 shows a stack trace for the above code, starting at in-
struction 40055f:

Instruction State values (at beginning)

PC Instruction %rdi %rax %rsp *%rsp Description
0x40055f callq 10 – 0x7fffffffe940 – Call call first_function(10)
0x40054a sub 10 – 0x7fffffffe938 0x400564 Entry of first_function
0x40054d callq 9 – 0x7fffffffe938 0x400564 Cal leaf(9)
0x400546 lea 9 – 0x7fffffffe930 0x400552 Entry of leaf
0x400549 retq 9 27 0x7fffffffe930 0x400552 Return 27 from leaf
0x400552 add 9 27 0x7fffffffe938 0x400564 Resume first_function
0x400551 retq 9 30 0x7fffffffe938 0x400564 Return 30 from first_function
0x400564 mov 9 30 0x7fffffffe940 – Resume main

Table 10: Stack Trace Example

From C to Assembly: Data Transfer

Procedure calls can pass data as arguments (either via the stack or
registers), and a function can return a value to the calling function

cs 107 reader 131

as well.119 Most often, arguments can fit into registers, so we don’t 119 Normally through the %rax register
for integer return values, and through
a floating point register for floats, or
via the stack for structs.

need to involve the stack. However, if there are more than six argu-
ments (or the argument is a struct120, the calling function allocates

120 though not a struct pointer, of
course – that is sent as the value of the
address of the struct.

space on the stack for those arguments, in a well-defined way. The
first six arguments are placed into the following registers, in the
order of the arguments to the function: %rdi, %rsi, %rdx, %rcx, %r8,
and %r9. Arguments seven and above are placed onto the stack in 8-
byte chunks, even if smaller values are passed.121 The return value 121 e.g., a char argument will take up 8

bytes on the stack.is (for integer values) placed in the %rax register.
In the following listing, when stackargs is called, the arguments

are passed as described in Table ??: Table 11: Arguments for the stackargs
function.

Argument Register Bytes

a1 %rdi 8

a2 %esi 4

a3 %dx 2

a4 %rcx 8

a5 %r8 8

a6 %r9 8

a7 %rsp + 8 8

a8 %rsp + 16 8

// file: stackargs.c

#include <stdio.h>

#include <stdlib.h>

long stackargs(long a1, int a2, short a3, long *a4,

int *a5, short *a6, char a7, char *a8)

{

long sum = a1 + a2 + a3 + *a4 + *a5 + *a6 + a7 + *a8;

*a4 = *a5 = *a6 = 0;

*a8 = 'y';

return sum;

}

int main(int argc , char **argv)

{

long a = 0xabcdefabcdef;

int b = 0x1234567;

short c = 0xabcd;

char d = 'x';

printf("%lx, %x, %x, %c\n",a,b,c,d);

long sum = stackargs(a,b,c,&a,&b,&c,d,&d);

printf("%lx, %x, %x, %c\n",a,b,c,d);

printf("sum: %lx\n",sum);

return 0;

}

$ gcc -Og -std=gnu99 -Wall stackargs.c -o stackargs

$./stackargs

abcdefabcdef, 1234567, ffffabcd, x

0, 0, 0, y

sum: 1579be19d7f36

The following code is the dissassembly of the stackargs func-
tion:

movq 0x10(%rsp), %r10

movslq %esi, %rax

addq %rdi, %rax

cs 107 reader 132

movslq %edx, %rdx

addq %rax, %rdx

movslq (%r8), %rsi

movswq (%r9), %rdi

movsbq (%rsp), %rax

movsbq (%r10), %r11

addq %rdx, %rax

addq (%rcx), %rax

addq %rsi, %rax

addq %rdi, %rax

addq %r11, %rax

movw $0x0, (%r9)

movl $0x0, (%r8)

movq $0x0, (%rcx)

movb $0x79, (%r10)

retq

From C to Assembly: Local Stack Storage

In x86-64 assembly, the stack can be used to hold data for a function
aside from the arguments. When the “address of” operator, & is
applied to a local variable, the value must be copied onto the stack
because registers do not have addresses, and a proper address
needs to be generated that points to the variable. Also, if the local
variables are arrays or structs, these must also be placed onto the
stack. Whenever a function uses the stack, it must return the stack
pointer to its original value when the function was called in order
to properly return to the calling function.122 122 Remember, this is because at the

end of the function, the stack pointer
must point to the return address of the
calling function.

In the following example, main puts the address values onto the
stack, which get used by the settomin function:

// file: localstack.c

#include <stdio.h>

#include <stdlib.h>

int settomin(int *a, int *b)

{

int aval = *a;

int bval = *b;

if (aval < bval) {

*b = aval;

return aval;

} else {

*a = bval;

return bval;

}

}

cs 107 reader 133

void setvals(int x, int y)

{

printf("x:%d, y:%d\n",x,y);

int min = settomin (&x,&y);

printf("x:%d, y:%d, min:%d\n",x,y,min);

}

int main(int argc , char **argv)

{

if (argc < 3) {

printf("Usage:\n\t%s x y\n",argv [0]);

return -1;

}

int x = atoi(argv [1]);

int y = atoi(argv [2]);

setvals(x,y);

return 0;

}

$ gcc -Og -std=gnu99 -Wall localstack.c -o localstack

$./localstack 2 1

x:2, y:1

x:1, y:1, min:1

The following code is the dissassembly of the setvals function.
Notice that it puts the original arguments onto the stack in order to
pass them to the settomin function:

(gdb) disas setvals

Dump of assembler code for function setvals:

0x00000000004005a6 <+0>: sub $0x18,%rsp

0x00000000004005aa <+4>: mov %edi,%edx

0x00000000004005ac <+6>: mov %edi,0xc(%rsp)

0x00000000004005b0 <+10>: mov %esi,%ecx

0x00000000004005b2 <+12>: mov %esi,0x8(%rsp)

0x00000000004005b6 <+16>: mov $0x4006f4,%esi

0x00000000004005bb <+21>: mov $0x1,%edi

0x00000000004005c0 <+26>: mov $0x0,%eax

0x00000000004005c5 <+31>: callq 0x400480 <__printf_chk@plt>

0x00000000004005ca <+36>: lea 0x8(%rsp),%rsi

0x00000000004005cf <+41>: lea 0xc(%rsp),%rdi

0x00000000004005d4 <+46>: callq 0x400596 <settomin>

0x00000000004005d9 <+51>: mov %eax,%r8d

0x00000000004005dc <+54>: mov 0x8(%rsp),%ecx

0x00000000004005e0 <+58>: mov 0xc(%rsp),%edx

0x00000000004005e4 <+62>: mov $0x400700,%esi

0x00000000004005e9 <+67>: mov $0x1,%edi

0x00000000004005ee <+72>: mov $0x0,%eax

0x00000000004005f3 <+77>: callq 0x400480 <__printf_chk@plt>

0x00000000004005f8 <+82>: add $0x18,%rsp

0x00000000004005fc <+86>: retq

cs 107 reader 134

Caller owned and callee owned registers

Function calling on an x86-64 processor follows conventions, as
we have seen. One convention we haven’t yet discussed is the idea
of “caller owned” and “callee owned” registers. This convention
designates six of the sixteen general purpose registers to be caller
owned,123 meaning that the calling function is guaranteed that the 123 These registers are also called callee

saved.values stored in those registers will be the same after any function
is called. On the other hand, when a function is called, it must en-
sure that those registers are the same as when the function started
when it finishes. The callee owned registers are just the opposite: a
calling function cannot expect that those registers will be the same
after it makes a function call, and a function itself can modify callee
owned registers without concern about their original value (when
the function started). The list of caller owned registers is %rbx,
%rbp, and %r12 - %r15. The callee-owned registers are %rax, %rcx,
%rdx, %rdi, %rsi, and %r8 - %r11. The final register, %rsp is the stack
pointer, and we have already discussed the limitations placed on its
value.

Often, gcc will use caller owned registers to ensure that data
does not get overwritten when making a function call. For example,
it may move %rdi (the first argument) into %rbx in order to call an-
other function (and, perhaps, to free up %rdi to be used as the first
argument to the funciton it will call). Before replacing %rbx’s value,
however, it must first save the value so it can return it to the origi-
nal value when the function ends. Normally, this saving is done via
a push of %rbx onto the stack at the beginning of the function, and a
pop of %rbx at the end of the function. This same push/pop dance
is played with all of the caller owned registers, so you may see a
large number of pushes at the beginning of a function in anticipa-
tion of using those registers, and you may likewise see a number of
pops at the end of the function, to clean up and restore the original
values.

From C to Assembly: Recursion

Recursive functions in assembly are not significantly different than
any other functions, except that they rely heavily on the caller
owned and callee owned registers and on the stack itself because
at some point a recursive function calls itself, and the state of the
calling function must be saved. We can use recursive functions to
demonstrate how a stack overflow can occur, and we can see this par-
ticularly well by looking at a recursive function in gdb, where we
can show that the stack is heavily used.

cs 107 reader 135

From C to Assembly: Array Allocation and Access

From C to Assembly: Structures

From C to Assembly: Function Pointers in Assembly

cs 107 reader 136

Managing the Heap

In this chapter, we will investigate different options for
the heap allocator, which performs the malloc, calloc, realloc, and
free functions in a C program. The heap allocator manages large
memory blocks that it receives from the operating system.124 The 124 The heap allocator requests the

blocks of memory from Linux using
the sbrk and/or mmap functions,
but that is beyond the scope of this
text. Suffice it to say that has a large
memory block to dole out to programs
that request memory.

heap allocator needs to partition this memory block into smaller
blocks, and it provides pointers to these smaller blocks to programs
as they request specified numbers of bytes. The heap allocator
also has to be able to recapture the memory as programs free it,
and it has to re-use memory in an efficient way in order to reduce
fragmentation of the memory.

What Does it Mean to Allocate Memory?

Your programs have two areas of main memory: the stack and
the heap. On a Linux system, programs have (by default) 8MB
of stack space that they must manage based on the conventions
we discussed in x86-64 Assembly Language. The heap, on the other
hand, is ultimately controlled by the operating system, and a heap
allocator maintains the heap as a collection of contiguous memory
blocks that are either free or allocated.

An allocated block has been reserved for a particular application.
When a program calls malloc, it has access to an allocated block,
and only that program can modify or read the values in that block.
Allocated blocks remain allocated for the rest of the program, or
until the program frees them. If the program ends, the heap alloca-
tor frees the block.

As we have discussed before, stack memory is limited and serves
as a scratch-pad for functions, and it is continually being re-used by
a program’s functions. Stack memory isn’t persistent, but because it
is already allocated to a program, it is fast.

Heap memory takes more time to set up (a program has to go
through the heap allocator), but it is unlimited,125 and persistent for 125 For all intents and purposes it is

unlimited. Operating systems and
hardware are excellent at allocating
memory, and they will even use (slow)
hard disk or SSD memory to fulfill
requests if necessary.

the rest of a program.

Heap Allocator Requirements

The heap allocator must be able to service any sequence of malloc,
calloc, free, and realloc requests. Recall that malloc must return

cs 107 reader 137

a pointer to a contigous area of memory that is equal to or greater
than the requested size, or NULL if it can’t satisfy the request. The
area that the pointer returned by malloc points to is called the
payload, and the program can legally modify any byte in the range
from the pointer to the number of bytes requested.126 The contents 126 In fact, as we shall see, the program

often has slightly more memory that
it can access, but it does not have
this information available to take
advantage of it.

of the memory requested are unspecified, and they can be 0s or be
filled with any value.127

127 For calloc, of course, the memory
is initialized to 0s. In fact, the first
time a program allocates a region of
memory, it must be requested from the
operating system, and that memory is
zeroed by the OS for security reasons.
When a program calls free and then
subsequently calls malloc again, if
the pointer returned is in the same
range as the original memory, it will be
recycled and will hold values that were
leftover from the previous allocation.
See https://stackoverflow.com/a/
8029624/561677 for more information.

If the client128 introduces an error, then the behavior is unde-

128 the function calling malloc, free,
etc.

fined. Often this will result in a seg fault, but it could be ignored by
malloc, or the problem could manifest itself later in the program.129

129 this is a source of hard to find bugs
– make sure you use the functions
correctly!

For example, if the client tries to free non-allocated memory, or tries
to use freed memory, the operations are undefined.

The heap allocator has some constraints. It cannot control the
number, size, or lifetime of the allocated blocks. It must be flexible
enough to handle any sequence of mallocs, frees, reallocs, etc.
The heap allocator must also respond immediately to each malloc
request, and it cannot buffer the requests to try and find a better
allocation strategy. Although this may seem obvious, the first re-
quest must be handled first. However, the heap allocator can defer,
ignore, or reorder requests to free, and this may be useful for effi-
ciency reasons (as we shall see).

The heap allocator must align blocks so that they satisfy align-
ment constraints, which vary from system to system. In a 64-bit
Linux system, the alignment must be on 16-byte boundaries.130 130 e.g., the block returned by malloc or

realloc will always be a multiple of
16.

Importantly, the memory that has already been allocated must
be maintained throughout the life of a program. This is critical,
because the program has no way of updating its pointers if the allo-
cation were to change. On the other hand (as mentioned above), the
allocator can manipulate and move free memory blocks around as
much as is necessary. We call this coalescing free memory, and will
will discuss it below.

Heap Allocator Goals

First and foremost, a heap allocator must attempt to meet malloc
and free requests as efficiently and as quickly as possible. If pos-
sible (and it is not always possible), requests should be handled in
constant time, and should not degrade to linear time. A poor heap
allocator can be a bottleneck to programs, as it is used frequently,
and a finely tuned and fast heap allocator is an important part of a
standard library. The GNU Standard library comes with an excel-
lent heap allocator, and although in CS 107 we will practice writing
one, you should virtually always prefer to simply use the library’s
allocator.

A heap allocator should also attempt to utilize space in mem-
ory efficiently. In other words, it should try to serve requests in a
way that minimizes fragmentation of the heap (areas where there are
many small free blocks that are unlikely to be used), and that pro-
vides large free blocks for use if needed. A heap allocator should

https://stackoverflow.com/a/8029624/561677
https://stackoverflow.com/a/8029624/561677

cs 107 reader 138

also be written in a way that minimizes the overhead per block.
Because free simply provides a pointer to a block to be freed, the
heap allocator must inherently keep track of the amount of bytes re-
quested for every malloc, and this incurs an overhead. Minimizing
that overhead is important.

A heap allocator should provide good locality for blocks – this
means that blocks that are allocated one after the other should
ideally be located near each other. Additionally, blocks that are
similar to each other in size should be allocated close to each other,
as well. This is a secondary concern, but important nonetheless.

A good heap allocator will also limit undefined behavior due to
client error, to the extent possible. If a client makes a mistake, the
heap allocator should either crash the program at that point, and it
should report a good error. This is not always possible, of course,
but it is a good goal to have.

From a coding perspective, heap allocator functions (like all pro-
grams) should be clearly written so that they are easy to maintain.
As we shall see, using *(void **) all across your code is inherently
hard to understand, and often typedefs and structs can be used to
create cleaner code.

A Simple Heap Allocation Example

We will investigate heap allocation for the following program:

Table 12: Stack at beginning of heap
trace (values are uninitialized)

Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0xabcde
d 0xffffe818 0xf0123
c 0xffffe810 0x0
b 0xffffe808 0x0
a 0xffffe800 0xbeef

Table 13: Stack after a = malloc(16)
Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0xabcde
d 0xffffe818 0xf0123
c 0xffffe810 0x0
b 0xffffe808 0x0
a 0xffffe800 0x100

Table 14: Stack after b = malloc(8)
Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0xabcde
d 0xffffe818 0xf0123
c 0xffffe810 0x0
b 0xffffe808 0x110
a 0xffffe800 0x100

Table 15: Stack after c = malloc(24)
Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0xabcde
d 0xffffe818 0xf0123
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

// file: heapalloc_ex1.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc , char **argv)

{

void *a, *b, *c, *d, *e, *f;

a = malloc (16);

memset(a,'a' ,16);

b = malloc (8);

memset(b,'b' ,8);

c = malloc (24);

memset(c,'c' ,16);

d = malloc (16);

memset(d,'d' ,16);

free(a);

free(c);

e = malloc (8);

cs 107 reader 139

memset(e,'e' ,8);

b = realloc(b, 24);

memset(b,'b' ,24);

e = realloc(e, 24);

memset(e,'e' ,24);

f = malloc (24);

memset(f,'f' ,24);

free(b);

free(d);

free(e);

free(f);

return 0;

}

Table 16: Stack after d = malloc(16)
Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0xabcde
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

Table 17: Stack after e = malloc(8)
Variable Address Value

f 0xffffe828 0xfeed
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

Table 18: Stack after f = malloc(24)
Variable Address Value

f 0xffffe828 0x0
e 0xffffe820 0x100
d 0xffffe818 0x130
c 0xffffe810 0x118
b 0xffffe808 0x110
a 0xffffe800 0x100

The heap we will look at will be limited to 96 bytes (and yes,
this is a very small heap!). The initial heap is shown in Figure 35.
The numbers in Figure 35 are left-aligned to their start locations,
and each minor hash-mark represents 4 bytes. Table 12 shows the
stack after the pointer variables are declared in the program, and
note that the variables have uninitialized values. We will investigate
partitioning the heap as if we were simply filling in locations in our
block of memory – we will soon see that this is not the way most
heaps are organized.

(free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 35: Empty 96-byte heap

Figure 36 shows the heap after the a = malloc(16); line. The
as are only supposed to represent that a has access to that block of
memory.

aaaaaaaa (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 36: Heap after a = malloc(16);

Figure 37 shows the heap after the b = malloc(8); line. The
heap allocator was able to put the b range directly after the a range.

Figure 38 shows the heap after the c = malloc(24); line. Again,
the heap allocator was able to put the c range directly after the b

range.

cs 107 reader 140

aaaaaaaa bbbb (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 37: Heap after b = malloc(8);

aaaaaaaa bbbb cccccccccccc (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 38: Heap after c = malloc(24);

Figure 39 shows the heap after the d = malloc(16); line. The
heap allocator was able to put the d range directly after the c range.

aaaaaaaa bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 39: Heap after d = malloc(16);

Figure 40 shows the heap after the free(a); line. Note that the
only information the free line provides is the pointer, and the heap
allocator must keep track of the amount of space allocated to a in
order to free it.

(free) bbbb cccccccccccc dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 40: Heap after free(a);

Figure 41 shows the heap after the free(c); line.

(free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 41: Heap after free(c);

Figure 42 shows the heap after the e = malloc(8); line. The
heap allocator was able to give e the same pointer as a was origi-
nally given, because a has been freed.

eeee (free) bbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 42: Heap after e = malloc(8);

Figure 43 shows the heap after the b = realloc(b,24); line.131 131 Yes, it is bad practice to not check
the return value for realloc, but we
are leaving that out here in the interest
of making the code relatively concise.

cs 107 reader 141

Because c was already freed, the heap allocator was able to extend
b’s allocation, and returned the same pointer.

eeee (free) bbbbbbbbbbbb (free) dddddddd (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 43: Heap after b =
realloc(b,24);

Figure 44 shows the heap after the e = realloc(e,24); line.
Notice that the heap allocator needed to move e’s range because
there was not enough contiguous bytes in the original location.

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 44: Heap after e =
realloc(e,24);

Figure 45 shows the heap after the f = malloc(24); line. The
heap allocator ran out of contiguous space in the block, and there-
fore it returns NULL, failing to allocate the space for f. Even though
the heap does indeed have 24 bytes free, they must be contigous for
malloc to successfully allocate the region.

(free) bbbbbbbbbbbb (free) dddddddd eeeeeeeeeeee (free)

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 45: Heap after f = malloc(24);

The above description of a heap allocator is a simple way to
demonstrate the basic idea. In order to implement the heap al-
locator as described above, the malloc, realloc, and free func-
tions would have to keep a global state of the heap, most likely in
a linked list, array, or table. This separate list or table is reason-
able, but it would likely be slow, and potentially have considerable
overhead to keep track of the details of the list. In practice, it is
rare to see such a heap allocator, though programs that need more
information about the heap (for profiling, for instance), such as
Valgrind do use such a list. The next two sections describe a differ-
ent method for heap allocation, and both are more frequently used
in real heap allocators.

Using an Embedded Implicit Free List

The second possible method used to create a heap allocator is to
use a block header that is stored in the heap memory itself, alonside
the data, which is known as the payload. In other words, the mem-
ory block that the heap alloctor uses to allocate to programs is the

cs 107 reader 142

same memory that keeps track of the used and free information.
Figure 46 shows a 96-byte, completely free heap. The first eight
bytes make up the block header, and the rest of the bytes are free.

88

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 46: Empty, 96-byte Implicit
Heap

The block header in this case has both the amount of free bytes
following it (88, in this case), and an “F” to designate that it is free.

Figure 47 shows how the heap memory changes after a a =

malloc(16); statement is executed. Memory for the requested bytes
is allocated to a after the first block header, and the header is up-
dated to reflect the amount of memory (16 bytes), and the fact that
it is now used (“U”). After the allocated memory, another block
header is created in order to designate the smaller free block that is
left after the allocation. This second block header uses an additional
8 bytes from the available memory, so there are only 64 bytes in the
free block.

16

U aaaaaaaa 64

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 47: Implicit Heap after a call to
a = malloc(16);

Figure 48 shows how the heap memory changes after a b =

malloc(8); statement is executed. Again, memory for the requested
bytes is allocated to b from the free block, and the header is up-
dated to reflect the amount of memory (8 bytes), and the fact that
it is now used (“U”). Another block header is created in order to
designate the smaller free block that is left after the allocation.

16

U aaaaaaaa 8

U bbbb 48

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 48: Implicit Heap after a call to
b = malloc(8);

Figure 49 shows how the heap memory changes after a c =

malloc(24); statement is executed, and follows the same pattern.

16

U aaaaaaaa 8

U bbbb 24

U cccccccccccc 16

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 49: Implicit Heap after a call to
c = malloc(24);

cs 107 reader 143

Figure 50 shows how the heap memory changes after a free(a)

statement. The free statement only provides a pointer to the mem-
ory that will be freed, but we know that the prior 8 bytes to that
pointer holds the block header, so we can perform a small amount
of arithmetic to find that location to retrieve the data. We can then
update the block to be free, with the same number of bytes. Note
that the heap allocator does not clear the memory, though the dia-
gram seems to indicate this.

16

F

8

U bbbb 24

U cccccccccccc 16

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 50: Implicit Heap after a call to
free(a);

Figure 51 shows how the heap memory changes after a free(c)

statement. At this point, there are two free blocks that are contigu-
ous, with a block header in between. This situation wastes memory
(in the form of the block header), and it also fragments the mem-
ory – although there should be 48 free bytes, there are two smaller
blocks of 24 bytes and 16 bytes respectively.

16

F

8

U bbbb 24

F
16

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 51: Implicit Heap after a call to
free(a);

When faced with this situation, a heap allocator should coalesce
the free memory into a more appropriate, larger block. To do this,
the heap allocator simply starts searching forward from the freed
block to see if the next block is indeed free. When the heap allo-
cator decides to perform the coalesce is a design decision – it can
perform it immediately, during the free function, or it can postpone
the coalesce until a future malloc or realloc. We will discuss how
a heap allocator can perform a reverse-coalesce (in the case where
a block is freed that is directly after an already free block) shortly.
Figure 52 shows the result of a coalesce after the free(c) statement.

16

F

8

U bbbb 48

F

96 bytes
0x100 0x108 0x110 0x118 0x120 0x128 0x130 0x138 0x140 0x148 0x150 0x158

Figure 52: The result after coalescing.

cs 107 reader 144

Bibliography

R.E. Bryant and D.R. O’Hallaron. Computer Systems : A Programmer’s
Perspective. Pearson, 2015. ISBN 9781292101767. URL https:

//books.google.com/books?id=KfM2rgEACAAJ.

B.W. Kernighan and D. Ritchie. The C Programming Language.
Pearson Education, 1988. ISBN 9780133086218. URL https:

//books.google.com/books?id=Yi5FI5QcdmYC.

Dennis M Ritchie. The development of the c language. 1993. URL
https://www.bell-labs.com/usr/dmr/www/chist.pdf.

https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=KfM2rgEACAAJ
https://books.google.com/books?id=Yi5FI5QcdmYC
https://books.google.com/books?id=Yi5FI5QcdmYC
https://www.bell-labs.com/usr/dmr/www/chist.pdf

cs 107 reader 145

Index

ASCII, 23, 54

bit, 54

bitmask, 59

byte, 56

license, 2

overflow, 62

printf, 28

sizeof, 67

standard library, 29

swap, 36, 37

	List of URLs
	Running the Code in the Reader
	Links in the Text and Footnotes
	Contact Information
	Unix, the Command Line, gcc, and Makefiles
	Unix and Linux
	The Unix Philosophy
	Compiling programs using gcc
	Compiling programs using make
	Using git
	Testing and using sanitycheck

	Number Formats Used in CS 107
	Base 10
	Base 2 (binary)
	Base 16 (hexadecimal)
	Using man ascii

	C Primer
	C Basics
	The printf statement
	The Standard Library
	The command line arguments, argv and argc
	C Arrays and C Strings
	Pointers and void *
	The memcpy and memmove Functions
	C structs and the typedef statement
	C Memory Management: malloc, free, calloc, and realloc
	Using the assert Function
	Using cdecl
	Boolean Values
	Final Thoughts

	gdb
	Other Important gdb Commands

	Bits and Bytes
	Unsigned and Signed Integers
	Information Storage
	Byte Storage in Memory (Little Endian and Big Endian)
	Boolean Algebra
	Bit Masking
	Shift Operations
	Integer Representations in C
	The Two's Complement Circle
	Two's Complement Number Properties
	Casting Between Signed and Unsigned Integers
	Comparison Between Signed and Unsigned Integers
	The sizeof Operator
	Expanding the Bit Representation of an Integer
	Truncating Numbers
	Final Thoughts
	Bits and Bytes Practice Problems

	C-Strings and the C String Library
	The ctype Library
	C Strings in Memory
	The string Library
	Final Thoughts
	C Strings Practice Problems

	Pointers, Generic functions with void *, and Pointers to Functions
	Pointers
	Pointers -vs- Arrays
	Generic functions with void *
	Pointers to Functions
	Final Thoughts
	Pointer Practice Problems

	IEEE Floating Point
	Fixed Point Format
	Floating Point Format
	Normalized Floats
	Denormalized Floats
	Exceptional Floats
	Unrepresentable Numbers
	Comparing Floating Point Values
	Floating Point Arithmetic
	Floating Point Maximums and Minimums
	Final Thoughts
	Floating Point Practice Problems

	x86-64 Assembly Language
	The Intel Instruction Set Architecture and a Sample Program
	Data Formats
	x86-64 Registers
	Operand Forms and the mov and lea Instructions
	The Linux Address Space, and the Stack and the Heap
	Pushing and Popping from the Stack
	Arithmetic in Assembly
	Control
	More on Conditional Moves
	From C to Assembly: while Loops
	From C to Assembly: for Loops
	From C to Assembly: Functions
	From C to Assembly: The Stack Frame
	From C to Assembly: Data Transfer
	From C to Assembly: Local Stack Storage
	Caller owned and callee owned registers
	From C to Assembly: Recursion
	From C to Assembly: Array Allocation and Access
	From C to Assembly: Structures
	From C to Assembly: Function Pointers in Assembly

	Managing the Heap
	What Does it Mean to Allocate Memory?
	Heap Allocator Requirements
	Heap Allocator Goals
	A Simple Heap Allocation Example
	Using an Embedded Implicit Free List

	Bibliography
	Index

