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ABSTRACT This paper introduces a robust Pareto design approach for transistor sizing of Gallium Nitride
(GaN) High Electron Mobility Transistors (HEMTs), particularly for power amplifier (PA) and low-noise
amplifier (LNA) designs in 5G applications. We consider five key design variables and two settings (PAs and
LNAs) where we have multiple objectives. We assess designs based on three critical objectives, evaluating
each by its worst-case performance across a range of Gate-Source Voltages (VGS). We conduct simulations
across a range of VGS values to ensure a thorough and robust analysis. For PAs, the optimization goals are
to maximize the worst-case modulated average output power (Pout,avg) and power-added efficiency (PAEavg)
while minimizing the worst-case average junction temperature (Tj,avg) under a modulated 64-QAM signal
stimulus. In contrast, for LNAs, the focus is on maximizing the worst-case maximum oscillation frequency
(fmax) and Gain, and minimizing the worst-case minimum noise figure (NFmin). We utilize a derivative-free
optimization method to effectively identify robust Pareto optimal device designs. This approach enhances
our comprehension of the trade-off space, facilitating more informed decision-making. Furthermore, this
method is general across different applications. Although it does not guarantee a globally optimal design,
we demonstrate its effectiveness in GaN transistor sizing. The primary advantage of this method is that it
enables the attainment of near-optimal or even optimal designs with just a fraction of the simulations required
for an exhaustive full-grid search.

INDEX TERMS Derivative-free optimization (DFO), gallium nitride (GaN), high electron mobility transis-
tor (HEMT), power amplifier (PA), low-noise amplifier (LNA), robust optimization, Pareto.

I. INTRODUCTION

GALLIUM Nitride (GaN) high-electron-mobility tran-
sistors (HEMTs) have gained significant attention at

millimeter-wave (mm-wave) frequencies thanks to their su-
perior high-power and low-noise performance compared to
other III-V and silicon-based semiconductor technologies.
These devices are primarily utilized in power amplifiers
(PAs), where GaN’s intrinsic material properties enable high
output power (Pout) and power-added-efficiency (PAE) across
the mm-wave spectrum, which is vital for RF systems in
current and emerging wireless links such as 5G and beyond-
5G [1]–[4]. While their predominant use is in PAs, GaN
HEMTs also demonstrate competitive low-noise performance
along with superior breakdown voltage and ruggedness when
compared to other III-V high-performance semiconductor
technologies (e.g., indium phosphide and gallium arsenide).
These attributes enable lower noise amplification and the abil-
ity to handle higher input power levels, making GaN HEMTs

particularly advantageous for 5G-and-beyond and defense
applications. Typically, LNAs based on semiconductor tech-
nologies with lower breakdown voltages require protection
circuits, such as limiters, to safeguard the amplifier, which
increases the system’s overall noise figure (NF). GaN-based
LNAs streamline system-level designs by reducing overall
complexity, size, and, most importantly, the NF [5], [6].

Even with the adoption of a high-performance semicon-
ductor technology like GaN, the development of PAs and
LNAs remains challenging due to the multifaceted design
space, which involves numerous trade-offs. As an example,
in the context of 5G technology and PA design, spectrally
efficient modulation schemes such as orthogonal frequency-
division multiplexing (OFDM), higher-order quadrature am-
plitude modulations (QAMs), and carrier aggregations are
employed to maximize the throughput of the communication
channels. In order to maintain a high signal fidelity, stringent
linearity standards are imposed in the form of adjacent chan-
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nel power ratio (ACPR) and error vector magnitude (EVM).
As such, PAs are forced to operate below their peak out-
put power (Pout) level to comply with these requirements,
which significantly reduces the modulated average output
power (Pout,avg) and average amplifier efficiency (PAEavg)
compared to their peak continuous wave (CW) performance.
This problem is further exacerbated by device-level issues
such as soft compression, dc-RF dispersion, and self-heating,
which reduce the device’s output power, PAE, and linearity
[3], [7]. In particular, as self-heating effects intensify, the
device’s junction temperature (Tj) rises, leading to reduced
channel mobility and, consequently, a lower drain current
(ID). This sets a boundary on the maximum achievable Pout,
PAE, and the overall operational lifetime of the device. From
a reliability standpoint, prior research using the same GaN
process as in this study has demonstrated that reducing Tj by
40 oC significantly enhanced themean time to failure (MTTF)
in RF accelerated life tests by an order of magnitude [8].

In LNA design, a direct trade-off exists between the mini-
mum achievable NF and maximum Gain [9]. As one of the
initial stages in the receiver, the NF of the LNA must be
minimized since the noise contribution of each subsequent
stage is less significant as the Gain of the first stageminimizes
the noise contribution of the proceeding stages, as suggested
by Friis’ equation [10]. On top of that, there is also a trade-
off between power consumption and LNA performance (e.g.,
Gain, NF, and linearity), as reducing power consumption gen-
erally comes at the expense of lower performance. However,
linearity is not typically the main concern in LNAs since
the linearity limitations for receivers are more prominent
at subsequent stages of the receiver. It is these later stages
that primarily determine the receiver’s overall third-order-
intercept point (IP3) or 1-dB compression point (P1dB). An
exception to this is in wideband receivers, which might en-
counter numerous strong interfering signals [11].

Given the previously described challenges, amajor concern
for circuit designers is choosing the optimal device size for
their intended application. Nevertheless, transistor sizing is a
complex multi-objective optimization problem in mm-wave
circuit design, typically tackled through iterative trial-and-
error methods, rarely leading to a definitive solution. In many
instances, the device is optimized without considering the
whole design space. Some examples include onlymaximizing
the device for the highest peak unity power Gain frequency
(fmax), Pout, or PAE performance [12], [13]. To find the opti-
mal device size, it is important to evaluate the whole design
space by taking into consideration the proper metrics for
various trade-offs in a PA or LNA. In the present work, we
propose a robust Pareto design approach to size GaN HEMTs
by evaluating the ‘‘worst-case’’ performance obtained from
both LNA and PA metrics and then finding the Pareto op-
timal designs (i.e., a design that is equally good or better
across all objectives and superior in at least one). We utilize
a lightweight hyperparameter optimization (HPO) software
named Hyperparameter Optimizer: Light-weight and Asyn-
chronous (HOLA) [14] to aid this approach, which searches

and retrieves Pareto optimal points with respect to multi-
ple objectives using derivative-free optimization (DFO). Our
DFO method achieves near-optimal or even optimal designs
with significantly fewer simulations than a full-grid search.
Compared to previous multi-objective optimization studies

done in various semiconductor technologies, such as in 2D-
material-based FETs [15], stacked nanosheet transistors [16],
and thermal/mechanical behavior of GaN HEMTs [17], the
goal of our approach is to create device designs that perform
reliably in a carefully controlled environment and across a
wide range of conditions in mass production. This approach
also differs from other Pareto optimization studies, such as the
one in [18], which has been conducted for a DC generation
system using GaN power devices. We primarily focus on ro-
bust Pareto optimization to achieve our goal. This systematic
design methodology aims to identify system/process settings
that remain robust against variability and uncertainty, opti-
mizing for worst-case scenarios across multiple objectives.
This article is organized as follows. Section II describes

and formulates the robust optimization approach to sizing
GaN HEMTs. In Section III, we use the described Pareto
optimization approach by first evaluating modulated large-
signal metrics based on a 64-QAMmodulation scheme in the
context of PA design, followed by the evaluation of small-
signal metrics in GaN HEMTs for LNA design. Section V
describes our derivative-free approach to retrieving Pareto
optimal points using HOLA. Lastly, Section VII concludes
this article.

II. ROBUST OPTIMIZATION
Robust optimization is a specialized area within the broader
field of optimization. It primarily focuses on developing
methods and approaches to manage (or reduce) the adverse
implications of parameter uncertainty [19]–[22]. Within ro-
bust optimization, two approaches are prevalent: statistical
and worst-case deterministic. The statistical approach models
parameter uncertainty as random variables, aiming to opti-
mize the expected value of the objective under the distribution
of these variables. Conversely, the worst-case deterministic
approach, which is the core of the present work, assumes a
range of potential parameter values and focuses on optimizing
the desired outcome under the most unfavorable conditions
[23]. Analogous to this, in machine learning (ML), this con-
cept is referred to as adversarial, which pertains to a method
of evaluation where an ‘‘adversary’’ specifically selects the
most challenging or worst-case parameter for operational
use and then critically assesses the system by examining
its performance. This approach is critical to ensuring the
resilience and reliability of ML models, particularly against
inputs specifically crafted to test their limits, i.e., adversarial
examples [24]. Consequently, the term adversarial optimiza-
tion is often used interchangeably with worst-case robust
optimization.
In engineering design, the principle of worst-case robust

optimization transcends beyond optimizing for performance
metrics under the most unfavorable conditions. It addresses
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common oversights in device designs, such as failing to
account for known and unknown factors during device us-
age. For example, some elements of a device’s functionality
might be predictable, while others remain uncertain. This
uncertainty is particularly relevant in manufacturing, where
parameters might vary. Therefore, it is crucial that the de-
sign works well, not just for a hand-crafted device but also
for devices produced on a large scale. Another oversight is
assuming complete knowledge about how the device will be
used. During the design phase, it is common to calibrate
the device based on known factors, but this can introduce
biases. Nonetheless, device parameters can be inherently un-
predictable, and this variability worsens during the manufac-
turing phase.

In the context of transistor sizing, there are numerous
benefits to employing a robust Pareto design methodology.
A robust design results in reduced sensitivity, i.e., the designs
are less sensitive to manufacturing and operational variations,
such as threshold voltage shifts or quiescent point changes
during large-signal operation. In addition to these benefits,
identifying Pareto designs offers two practical applications
that enhance the decision-making process. The first appli-
cation allows finding a dense set that characterizes the ac-
tual trade-off surface, facilitating intelligent discussions about
what is achievable. The second application involves identify-
ing a small representative set of designs, enabling designers
to choose from various options with a specific metric in mind.
This could be a device with high Pout, PAE, linearity, or
a combination of the three, thereby providing an informed
approach to selecting the most suitable design based on the
application requirements.

It is essential to clarify that the concepts of Pareto opti-
mality (multi-objective optimization) and robustness are dis-
tinct and address different aspects of device design. Pareto
optimality ensures we can trade-off between multiple ob-
jectives rather than solely optimizing for one. In contrast,
robust optimization ensures that the performance of designs
remains satisfactory under variations in manufacturing or
operational conditions. Users can opt for either approach,
e.g., they might choose to implement only Pareto optimality
without incorporating robustness, or vice versa. With this un-
derstanding of Pareto optimality and robustness, we proceed
to our main objective, which integrates both elements. In the
present work, our goal is to identify robust Pareto optimal
designs that comprehensively cover the trade-off surface. This
approachmerges the two concepts discussed above: achieving
robustness in design to ensure consistent performance under
varying conditions and identifying Pareto optimal points to
effectively navigate the trade-offs among multiple objectives.

A. ROBUST OPTIMIZATION PROBLEM FORMULATION
In the present work, we encounter an optimization problem
with k objectives f1(x, p), . . . , fk(x, p), where x corresponds
to a vector of design variables with a variables, and p is the
operating parameter with dimension b. Each objective has a
‘‘direction,’’ i.e., we want to minimize or maximize it. We

also adjust the objectives wewish tomaximize bymultiplying
them by −1. Therefore, when considering a multi-objective
optimization problem, our goal is to minimize all fi(x, p).
Given that objectives depend on operating parameters and

other parameters not under our control, the robustness of the
design is achieved by considering the worst-case scenarios
across a plausible range of values for p, defined within the
set P . Since we are minimizing the objectives, robustness is
ensured by taking the maximum value of fi(x, p) over the set
P . We express this mathematically as

Fi(x) = max
p∈P

fi(x, p). (1)

In this framework, one design is said to dominate another if
it is equally good or better (i.e., smaller) across all objectives
and superior in at least one. A design that is not dominated
is called Pareto optimal. The set of Pareto optimal designs
is called the optimal trade-off curve (with two objectives) or
surface (with more than two). When considering a problem
with k objectives, we restrict our considerations to Pareto
optimal points, as accepting any solution that is not Pareto
optimal is inherently suboptimal [23].
We consider two settings: PA and LNA transistor sizing. In

both settings, we address five design variables (i.e., a = 5),
which correspond to factors we have control over, particularly
the drain-source voltage (VDS), finger width (Wf ), number
of fingers (Nf ), gate-drain–gate spacing (GDG), and gate-
source–gate spacing (GSG). Additionally, we have one op-
erating parameter (i.e., b = 1), the gate-source voltage (VGS).
In this context, VGS was chosen as an operating parameter (to
not be confused with the transistor’s operating condition) as
any small changes in VGS can have a significant impact on the
device’s performance. On the other hand, VDS was selected
as a design variable, as it is often a specified requirement
provided to a circuit designer.
For PAs, we aim to optimize three objectives (i.e., k = 3),

which include maximizing the worst-case Pout,avg (Pout,avg,wc)
and worst-case PAEavg (PAEavg,wc), while minimizing the
worst-case average junction temperature (Tj,avg,wc) under a
modulated signal stimulus. Similarly, for LNAs, we also fo-
cus on three objectives (i.e., k = 3), namely maximizing
the worst-case maximum oscillation frequency (fmax,wc) and
worst-case Gain (Gainwc), and minimizing the worst-case
minimum noise figure (NFmin,wc). For both settings (e.g.,
PA and LNA transistor sizing), the worst-case objectives are
determined by evaluating their performance across a range
of VGS and selecting the values that result in the worst-case
performance for each objective.

III. PA AND LNA OPTIMIZATION
The robust Pareto design methodology is studied using
a 150-nm gate length (LG = 150 nm) GaN-on-SiC
HEMT from MACOM (previously Wolfspeed) [25] by
carrying out thousands of SPICE simulations using the
Cree/Wolfspeed/MACOM HEMT model within Keysight
Advanced Design System (ADS) [26]–[28]. This HEMT
model has undergone thorough validation by the foundry
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FIGURE 1. Qualitative layout of a HEMT device with its corresponding
design variables.

across various frequencies, bias conditions, and geometries
to ensure good simulation accuracy for the devices utilized in
this study. Furthermore, the HEMT model has been validated
against measured S-parameter, load-pull, and Gain compres-
sion data to verify the model’s capability for accurate small-
and large-signal simulations. Although the models have been
validated through single-tone frequency large-signal mea-
surements, they offer a reliable first-order representation of
performance under a large-signal stimulus. This work pri-
marily focuses on providing a workflow for transistor sizing.
If the model is improved, the simulations using the updated
model can be repeated according to the proposed approach.

A. PA TRANSISTOR SIZING DESIGN VARIABLES AND
OBJECTIVES
In the context of PA transistor sizing, we have one operating
parameter,VGS, and five design variables (i.e., factors we have
control over), specificallyVDS,Wf ,Nf , GDG, andGSG. Table
1 outlines the operating parameter range (with linear spacing)
corresponding to VGS utilized in the context of PA transistor
sizing, representing the factor chosen by the adversary to
assess the worst-case scenario for each objective. Here, the
range was chosen to be across a reasonable bias range where
the devices might be typically operated in [8], [29], [30]. It
translates to an ID range of 30− 275 mA/mm (for reference,
the threshold voltage of the devices is approximately −2 V,
and this range corresponds to Class AB to Class A operation).
We also did not consider bias conditions below 10 mA/mm
as current densities below this threshold did not adhere to
the foundry model guidelines (i.e., Class B operation was not
considered). In practice, the range for robust optimization is
primarily driven by the application, and it is up to the user to
carefully choose a reasonable range to ensure no additional
performance is unnecessarily ‘‘thrown away.’’ Furthermore,
Table 2 summarizes the type, range, step, and number of
points (with linear spacing) for these five design variables,
representing a total of 672 designs. In addition, Fig. 1 show-
cases a qualitative layout of a HEMT, visually showing the
physical representation of the design variables used.

With regard to the objectives used for PA transistor sizing,

TABLE 1. Operating Parameter Range for PA Optimization

Parameter Range Step # Points
VGS (V) [−1.8,−1.2] 0.1 7

TABLE 2. Design Variables for PA Optimization

Variable Type Range Step # Points
VDS (V) Float [16, 28] 4 4
Nf Even Integer [2, 8] 2 4

Wf (µm) Float [25, 100] 12.5 7
GDG (µm) Float [22, 52] 30 2
GSG (µm) Float [33, 78] 30 3

we primarily considered modulation performance metrics as
they are a better representation of system-level performance
[7]. Interested readers may refer to [7] for a more detailed
comparison of various metrics used to quantify GaN HEMT
devices in the context of PA applications.
The modulated performance was quantified by a 5G new

radio (NR) uplink CP-OFDM 64-QAM modulation scheme,
which was generated using the virtual test bench (VTB) in
Keysight ADS. In this modulation scheme, the maximum
allowable EVM is 8%, and the maximum allowable ACPR
is −30 dBc, in accordance with the standards for NR devices
[31]. The modulated signal was then utilized to characterize
signal distortion, employingmethods such as the compact test
signal and distortion EVM [32]. This approach was designed
to expedite simulation time while maintaining high accuracy,
which is necessary to simulate the 672 designs.
In our approach, we have implemented self-heating

functionality to capture electro-thermal effects accurately,
which are inherently layout-dependent. This was done us-
ing Keysight’s Electro-Thermal simulator to calibrate self-
heating within the MACOM HEMT model for the various
geometries. Similarly, each of the device’s optimal load-pull
impedances that minimized Gain compression while provid-
ing high Pout and PAE was extracted for the 672 designs (i.e.,
a Pareto optimal load that maximized Pout and PAE while
minimizing Gain compression was chosen accordingly). To
focus solely on the contribution of the fundamental harmonic,
the terminations for all other harmonics (i.e., second, third,
fourth, and fifth harmonics) were ‘‘opened’’ (i.e., set to a high
value) accordingly.
A frequency of 30 GHz was selected, primarily aiming

to align with the 5G frequency bands, i.e., the employed
modulation scheme is a Cyclic Prefix-Orthogonal Frequency
Division Multiplexing (CP-OFDM) 64-QAM signal, with a
center frequency (fc) of 30 GHz and a bandwidth (BW) of 10
MHz. The finger width in the designs that were taken into
consideration was optimized up from 25 µm (the minimum
value feasible in the model, as imposed by the foundry’s
restrictions or Design Rule Checking (DRC) flags) to 100
µm since, beyond this value, there is a noticeable decline in
the device’s Gain. The range of the other design variables
were chosen similarly, adhering to any restrictions imposed
by the model. Given that EVM is usually the limiting factor
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in PA design under modulated conditions, the objectives,
namely Pout,avg, PAEavg, and the modulated average junction
temperature (Tj,avg) were extracted at a fixed EVM of 8%.
This EVM value represents the highest tolerable EVM for
a 64-QAM modulation scheme. On the other hand, ACPR
and Gain are used as constraints instead of objectives, where
any design with an ACPR of more than−30 dBc (i.e., ACPR
requirement for NR devices [31]) or less than 7 dB of Gain is
deemed infeasible.

B. LNA TRANSISTOR SIZING DESIGN VARIABLES AND
OBJECTIVES
The operating parameter and design variables used for LNA
transistor sizing are the same as those used for PA transistor
sizing. However, the operating parameter range differs since
the application targets low-noise amplification [6]. The num-
ber of designs has also significantly increased, totaling 2,352.
This is a greater number because simulating small-signal
objectives in the context of LNA design is generally faster.
Table 3 outlines the operating parameter range (with linear
spacing) corresponding to the VGS used in LNA transistor
sizing, which translates to 90 − 375 mA/mm. Additionally,
Table 4 summarizes the type, range, step, and number of
points (with linear spacing) for the five design variables used
for LNA transistor sizing.

TABLE 3. Operating Parameter Range for LNA Optimization

Parameter Range Step # Points
VGS (V) [−1.6,−1.0] 0.1 7

TABLE 4. Design Variables for LNA Optimization

Variable Type Range Step # Points
VDS (V) Float [16, 28] 2 7
Nf Even Integer [2, 8] 2 4

Wf (µm) Float [25, 100] 12.5 7
GDG (µm) Float [22, 52] 30 3
GSG (µm) Float [33, 78] 30 4

Unlike in PA transistor sizing, self-heating is not included
in the simulations, which significantly reduces computation
time and increases the number of designs. A frequency of 30
GHz was selected once again, targeting 5G frequency bands.
We primarily considered four objectives: fmax, Gain (at 30
GHz), and minimum noise figure (NFmin, at 30 GHz).

C. OPTIMAL TRANSISTOR SIZING FOR PAs
To find optimal device sizes in the context of PA applica-
tions, 4,704 SPICE simulations are done, accounting for 672
device designs and seven different bias conditions. All of
the simulations in the present work were conducted using
an Intel i9-9900 CPU (3.1 GHz). On average, each simula-
tion takes approximately three minutes, resulting in approx-
imately 9.8 days of simulation time to solely simulate these
device designs under modulated conditions. After consider-
ing the worst-case performance for each objective, along with
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FIGURE 2. Two-dimensional cross-sections of the optimal trade-off
surface showcasing the trade-off between (a) PAEavg,wc vs. Pout,avg,wc, (b)
Tj,avg,wc vs. Pout,avg,wc, and (c) Tj,avg,wc vs. PAEavg,wc. The Pareto optimal
designs are highlighted in red, and the dominated designs are in blue.
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FIGURE 3. Optimal trade-off surface showcasing the trade-off between
Tj,avg,wc vs. PAEavg,wc vs. Pout,avg,wc. The Pareto optimal designs are
highlighted in red, and the dominated designs are in blue.

the imposed constraints (i.e., ACPR < −30 dBc and Gain >
7 dB) across the 7 bias conditions (to account for robustness),
this number reduces to 530 robust designs, where 142 points
are deemed infeasible (i.e., they do not meet the ACPR or
Gain constraints). In this context, a design is considered
robust if it accounts for the worst-case performance of all
objectives within the given range of the operating parameter
VGS.
From these robust designs, the robust Pareto optimal de-

signs are then found by maximizing Pout,avg,wc and PAEavg,wc

while minimizing Tj,avg,wc. This results in a total of 39 ro-
bust Pareto optimal designs. Fig. 2 showcases the 2D cross-
sections of the optimal trade-off surface for various objec-
tives, highlighting the Pareto optimal designs in red and the
dominated designs in blue. In a similar manner, Fig. 3 shows
the optimal trade-off surface, where the Pareto optimal de-
signs are highlighted in red while the dominated designs are
highlighted in blue. Here, each design corresponds to a unique
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transistor size, representing one specific combination of the
five possible design variables. Based on these results, it can
be seen that a variety of optimal designs with different trade-
offs can be chosen. For example, if Pout,avg is a top priority,
then a robust Pareto optimal design can be selected with the
desired Pout,avg value at the expense of a higher Tj,avg, which
is generally the case since a larger device is needed.

D. OPTIMAL TRANSISTOR SIZING FOR LNAs
The optimal device sizes for LNAs are found using a pro-
cedure similar to that used for the sizing of PAs. However,
16,464 SPICE simulations were performed, accounting for
2,352 device designs and seven VGS bias conditions. These
simulations were much faster, taking less than an hour to
complete, given that these are small-signal simulations.When
considering the worst-case performance for each objective,
there are 2,352 robust designs. The robust Pareto optimal
designs were then found by maximizing fmax,wc and Gainwc,
and minimizing NFmin,wc, resulting in a total of 60 robust
Pareto optimal designs. These results are summarized in the
2-D cross-sections of the optimal trade-off surface for the
three objectives in Fig. 4, where the Pareto optimal and the
dominated points are highlighted in red and blue, respectively.
The optimal trade-off surface is also shown in Fig. 5 with the
Pareto optimal designs highlighted in red and the dominated
designs in blue.

IV. DERIVATIVE-FREE OPTIMIZATION IN TRANSISTOR
SIZING
In a variety of engineering optimization problems, the ob-
jective functions or constraints generally involve complex,
time-intensive simulations, which is the case in the present
work. In some instances, the objective function might not
be differentiable or is too computationally expensive to dif-
ferentiate. An elegant solution in such scenarios is to resort
to derivative-free optimization, a black-box approach that
does not require gradient information about the objective
function [33]–[36]. Derivative-free optimization particularly
shines in the context of ML, more specifically, in hyper-
parameter tuning, where the objective is to find the set of
hyperparameters that yields the best model performance [14],
[37]–[39]. There are numerous open-source HPO frameworks
that employ DFO methods, which include Autotune [37],
HOLA [14], Hyperopt [38], and Optuna [39], to name a few.
In this work, we have chosen to use HOLA. Although the
selection of a specific HPO framework is not critical for
our task, HOLA offers distinct advantages when addressing
multiple objectives. It minimizes an overall scalar cost func-
tion by combining multiple objectives with a target-priority-
limit scalarizer, streamlining the process of selecting a Pareto
design.

With respect to transistor sizing optimization, we are
presently dealing with five design variables, and our objec-
tives for PA optimization are to maximize Pout,avg and PAEavg

whileminimizing Tj. For LNAs, we are primarily interested in
maximizing fmax and Gain, and minimizing NFmin. Resource-
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FIGURE 4. Two-dimensional cross-sections of the optimal trade-off
surface showcasing the trade-off between (a) Gainwc vs. fmax,wc, (b)
NFmin,wc vs. fmax,wc, and (c) NFmin,wc vs. Gainwc. The Pareto optimal designs
are highlighted in red, and the dominated designs are in blue.
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FIGURE 5. Optimal trade-off surface showcasing the trade-off between
NFmin,wc vs. Gainwc vs. fmax,wc. The Pareto optimal designs are highlighted
in red, and the dominated designs are in blue.

intensive simulations are needed to compute these objectives,
particularly for simulations requiring a modulated stimulus
(e.g., a 64-QAM signal). If wewere to consider every possible
combination of design variables, the computation time would
become prohibitively expensive and time-consuming, leading
to the curse of dimensionality. By using a DFO method,
particularly a hyper-parameter optimizer likeHOLA, the opti-
mization process is steered toward regions in the design space
where robust Pareto designs are likely to be found. It also
drastically reduces the number of required simulations, reduc-
ing simulation time and computational power. Moreover, the
optimization problem can be quickly adjusted if the design
objectives or constraints change. However, one drawback
of this method is that we do not know if a global optimal
design was achieved. This is because DFO methods employ
stochastic or heuristic approaches for search space sampling,
which may not fully traverse the search space, potentially
resulting in convergence to local minima.
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TABLE 5. Summary of the Mean Scores⋆ from Various Experiments Using HOLA for Optimal Transistor Sizing in PAs

Exp. Pout,avg (dBm) PAEavg (%) Tj,avg (◦C) Mean Score⋆ / % of Runs Within 5% of Optimal Score Optimal
Tgt. Lim. Pri. Tgt. Lim. Pri. Tgt. Lim. Pri. n = 15 n = 30 n = 45 n = 60 n = 75 Score

(a) 28 8 1 17 5 1 125 150 1 0.182 / 27% 0.100 / 42% 0.068 / 55% 0.050 / 70% 0.033 / 81% 0
(b) 23 12 1 15 5 1 95 145 1 0.186 / 21% 0.092 / 50% 0.065 / 62% 0.038 / 77% 0.023 / 86% 0
(c) 12 5 1 9 5 1 70 125 1 0.109 / 25% 0.060 / 49% 0.040 / 70% 0.027 / 84% 0.022 / 92% 0
(d) 25 10 1 15 5 1 105 160 1 0.139 / 17% 0.073 / 39% 0.051 / 60% 0.035 / 78% 0.022 / 87% 0

Our proposed method is broadly applicable to other en-
gineering applications that require optimizing one or multi-
ple objectives with various design variables. Some examples
include compact model parameter extraction [40] or device
TCAD simulations. We have demonstrated its efficacy in the
context of transistor sizing, where carrying out exhaustive
simulations ensures the certainty of the results. This approach
allows us to confidently identify the global optimum in de-
sign. However, it is important to highlight that, in practical
settings, conducting exhaustive simulations is often impracti-
cal. The primary advantage of our method is that it can lead to
the identification of optimal or near-optimal device designs,
achieving the set objectives with far fewer simulations than a
full grid search would require.

A. DERIVATIVE-FREE OPTIMIZATION USING HOLA

HOLA considers a vector x within a subset X of Rn to
represent the selected hyperparameters from a feasible set X .
The i-th element of vector x is given by xi. In the context of
the present work, x denotes a vector of the design variables
of interest (e.g., VDS, Wf , Nf , etc.). As previously defined,
fwc represents the vector-valued objective under worst-case
conditions, fwc(x) = (f1,wc(x), . . . , fk,wc(x)). Each objective
has a desired direction of optimization, meaning some are to
be maximized and others minimized.

The different choices of hyperparameters or design vari-
ables are compared by scalarizing the objectives into a sin-
gular cost function, Fwc, which we want to minimize. By
convention, Fwc(x) = +∞ designates an unacceptable hy-
perparameter vector. The transformation is realized through
a target-limit-priority scalarization function ϕ, which maps
the vector of objectives to the real numbers. This can be
expressed as Fwc(x) = ϕ(fwc(x)) = ϕ(f1,wc(x), . . . , fk,wc(x)).
In essence, Fwc(x) represents a traditional weighted sum of
objectives.

The target-priority-limit scalarizer ϕ is separable and can
be represented as:

ϕ(u) =
k∑
i=1

ϕi(ui), (2)

where each ϕi is characterized by three parameters: a target
value Ti, a priority Pi > 0, and a limit Li. For an objective
function that we want to minimize, the requirement is that
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FIGURE 6. Plot of the Mean Score⋆ as a function of the number of trials,
showcasing four experiments with various targets, limits, and priorities
for the objectives Pout,avg,wc, PAEavg,wc, and Tj,avg,wc. Each experiment
involves 100 independent simulation runs, with 75 trials in total per run.
The plot illustrates the mean and standard deviation of Score⋆ across
runs, along with the optimal score for the corresponding experiment. The
specific target (Tgt.), limit (Lim.), and priority (Pri.) values for each
subfigure (a), (b), (c), and (d) are provided in Table 5.

Ti ≤ Li, and the function ϕi is defined as:

ϕi(ui) =


0 if ui ≤ Ti,
Pi ui−Ti

Li−Ti
if Ti ≤ ui ≤ Li,

+∞ if ui > Li.

(3)

The scalarizer ϕi(ui) is designed to be non-negative
(ϕi(ui) ≥ 0), achieving its minimum of zero when the
objective is at or below the target value. When the objective
value exceeds the target and stays below the limit, ϕi(ui) will
increase in a linear fashion, directly proportional to Pi. If ui
exceeds the limit, it incurs an infinite penalty via the scalarizer
function, i.e., ϕi(ui) = ∞. Essentially, the target represents
the ideal or satisfactory performance level, the limit denotes
the maximum allowable value, and the priority dictates the
gradient between these bounds. In the case of an objective
function we want to maximize, the inequality is inverted by
setting Li ≤ Ti and reversing the definition of ϕi(ui).
Having already established the scalarizer function ϕ, the

goal of HOLA is then to identify an optimal vector x within
X that minimizes F(x) through simulations. We seek to solve
the optimization problem:

minimize Fwc(x)
subject to x ∈ X .

(4)

In terms of sampling, a hybrid approach was employed,
given the limitations of random sampling. The procedure is
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TABLE 6. Summary of the Mean Scores⋆ from Various Experiments Using HOLA for Optimal Transistor Sizing in LNAs

Exp. fmax (GHz) Gain (dB) NFmin (dB) Mean Score⋆ / % of Runs Within 5% of Optimal Score Optimal
Tgt. Lim. Pri. Tgt. Lim. Pri. Tgt. Lim. Pri. n = 30 n = 60 n = 90 n = 120 n = 150 Score

(a) 110 90 1 3 0.5 1 1.3 1.75 1 0.057 / 50% 0.024 / 84% 0.013 / 93% 0.008 / 98% 0.006 / 100% 0
(b) 105 90 1 3.4 1 1 1.35 1.75 1 0.081 / 28% 0.048 / 52% 0.030 / 72% 0.018 / 85% 0.012 / 90% 0
(c) 112 90 1 2.3 0.5 1 1.22 1.75 1 0.046 / 58% 0.028 / 77% 0.017 / 92% 0.011 / 96% 0.007 / 98% 0
(d) 113 90 1 1.5 0.5 1 1.22 1.75 1 0.025 / 88% 0.015 / 97% 0.010 / 100% 0.007 / 100% 0.005 / 100% 0

first started with random sampling, and subsequently, the
sampling strategy is enhanced by incorporating Sobol se-
quences. This hybrid approach allows for a more systematic
exploration of the hyperparameter space, which potentially
improves the algorithm’s performance. Once a baseline of hy-
perparameter values is established, a threshold is introduced.
Beyond this threshold, HOLA employs a learned model de-
signed to identify the most promising hyperparameter values
with greater efficacy. A Gaussian Mixture Model (GMM) is
then used to collect new hyperparameter values and concur-
rently present the findings [14].

At its core, HOLA begins by exploring a wide spectrum
of promising hyperparameter values in order to identify re-
gions in the hyperparameter space with the most potential.
Subsequently, the GMM is tailored to align with the top
20–30% best-performing hyperparameter samples observed
thus far. This allows the GMM to progressively detect and
adjust to the distribution of best-performing hyperparameter
values. As more samples are collected, the GMM’s precision
is enhanced, suggesting increasingly superior hyperparameter
samples.

B. HOLA SIMULATIONS FOR OPTIMAL TRANSISTOR
SIZING OF PAs
We resort to HOLA primarily to recover the robust Pareto
optimal designs. Doing so provides a better understanding of
the trade-off space for more informed decision-making. Most
importantly, HOLA allows us to find near-optimal or optimal
designs in a relatively small number of trials as opposed to
performing a more comprehensive search.

This process begins by first setting the attributes of the
design variables (or hyperparameters). We closely follow the
description provided in Table 2 for the type, range, and step,
number of points (given by a finite set of values) for opti-
mal transistor sizing of PAs. Four different experiments are
then considered, corresponding to various targets, priorities,
and limits for the three objectives Pout,avg,wc, PAEavg,wc, and
Tj,avg,wc. The optimal score is then calculated for these four
experiments based on the definition ofϕ, which is given by (3)
and represents the lowest possible score that can be obtained
based on the given targets, priorities, and limits. For each of
the four experiments, we perform 100 independent simulation
runs usingHOLA. Each run consists of 75 trials, duringwhich
we record the best score achieved to date, denoted as Score⋆.
From the 100 independent runs, we calculate the mean and
standard deviation of Score⋆. The results are summarized in
Table 5 and Fig. 6, showing the Mean Score⋆ for various
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FIGURE 7. Plot of the Mean Score⋆ as a function of the number of trials,
showcasing four experiments with various targets, limits, and priorities
for the objectives fmax,wc, Gainwc, and NFmin,wc. Each experiment involves
100 independent simulation runs, with 150 trials in total per run. The plot
illustrates the mean and standard deviation of Score⋆ across runs, along
with the optimal score for the corresponding experiment. The specific
target (Tgt.), limit (Lim.), and priority (Pri.) values for each subfigure (a),
(b), (c), and (d) are provided in Table 6.

number of trials (n) along with the corresponding targets
(Tgt.), limits (Lim.), priorities (Pri.), and the optimal scores
for the three objectives. In Table 5, a cell corresponding to a
given experiment at trial number (n) is highlighted in green if
more than 70% of the 100 independent runs achieve a Score⋆

within 5% of the optimal score.
Based on these results, we found that after 60 trials, 70%

of the independent runs are within 5% of the optimal score,
which corresponds to searching less than 9% of the 672
robust designs. This outcome highlights the effectiveness of
the derivative-free approach in identifying near-optimal or
optimal designs with significantly fewer trials, as opposed to
an exhaustive search among all 672 designs.

C. HOLA SIMULATIONS FOR OPTIMAL TRANSISTOR
SIZING OF LNAs
Similar to what was done for PAs, we resort once again to
HOLA, but this time, a much larger number of designs is used
(i.e., 2,352 robust designs as opposed to 672). We consider
four distinct experiments with different targets, limits, and
priorities for the three objectives, namely fmax,wc, Gainwc, and
NFmin,wc. For each of the four experiments, we conduct 100
independent simulation runs using HOLA. Each run consists
of 150 trials, during which we record Score⋆. From these
100 independent runs, we compute the mean and standard
deviation of Score⋆.
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The results are summarized in Table 6 and Fig. 7, along
with the corresponding targets (Tgt.), limits (Lim.), priorities
(Pri.), and the optimal scores for the three objectives: fmax,wc,
Gainwc, and NFmin,wc. In addition, each cell representing a
specific experiment at trial number n is highlighted in green
if more than 70% of the 100 independent runs achieve a
Score⋆ within 5% of the optimal score. These results show-
case HOLA’s effectiveness in finding near-optimal or optimal
designs in less than 90 trials, corresponding to less than 4%
of the total number of robust designs. We observe that as the
number of designs increases, HOLA’s capabilities become
more useful in finding good designs in fewer trials with
respect to the total number of designs.

In this particular example, HOLA evaluated less than 90
designs instead of going through all 2,352 designs. This
approach is highly beneficial in problems with larger design
spaces, such as in device-level TCAD simulations, which
involve a greater number of design variables and lead to a
vast number of design possibilities (in the order of millions).
Despite the uncertainty of not knowing if the best possible
(global) design has been achieved, there is a high likelihood
that a near-optimal design has been identified with just a
fraction of the simulations than what is required from a full-
grid search.

V. CONCLUSION
In this work, we have shown a robust Pareto design approach
for sizing GaN HEMTs in the context of both PA and LNA
settings. Five key design variables were addressed to target
three different objectives. The device designs were assessed
based on their worst-case performance over various values of
VGS. A derivative-free optimization method was then used to
identify robust Pareto optimal designs to enhance our under-
standing of the trade-offs involved. While our DFO method
does not guarantee a globally optimal design, it found Pareto
optimal designs much faster than if we did a full-grid search.
This approach provides a practical solution for sizing GaN
HEMTs in 5G technology and is broadly applicable to various
engineering design scenarios where multiple design variables
and one or more objectives are at stake. The code used for this
work can be found in our GitHub repository.1
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