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Abstract

The retirement funding problem addresses the question of how to manage a re-
tiree’s savings to provide her with a constant post-tax inflation adjusted consumption
throughout her lifetime. This consists of choosing withdrawals and transfers from and
between several accounts with different tax treatments, taking into account basic rules
such as required minimum distributions and limits on Roth conversions, additional
income (such as Social Security payments), liabilities, taxes, and the bequest when the
retiree dies.

We develop a retirement funding policy in two steps. In the first step, we consider
a simplified planning problem in which various future quantities, such as the retiree’s
remaining lifetime, future investment returns, and future inflation, are known. Using
a simplified model of taxes, we pose this planning problem as a convex optimization
problem, where we maximize the bequest subject to providing a constant inflation
adjusted consumption target. Since this problem is convex, it can be solved quickly
and reliably.

We leverage this planning method to form a retirement funding policy, i.e., an
algorithm that determines the actions to take each year, based on information known
at that time. Each year the retiree forms a new plan for the future years, using the
current account values and life expectancy, and optionally, updated information such
as changes in tax rates or rules. The retiree then carries out the actions from the first
year of the current plan. This update-plan-act cycle is repeated each year, a general
policy called model predictive control (MPC). The MPC retirement policy reacts to the
effects of uncertain investment returns and inflation, changes in the retiree’s expected
lifetime or external income and liabilities, and changes in tax rules and rates.

We demonstrate the effectiveness of the MPC retirement policy using Monte Carlo
simulation, with realistic statistical models of investment returns and inflation. By
simulating thousands of trajectories of realized investment returns and inflation, and
the retiree’s lifetime, we show that the MPC retirement policy works well, delivering a
higher bequest than the standard 4% rule.
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1 Introduction

Retirement planning involves managing uncertainties in investment returns, inflation, longevity
(i.e., lifetime of the retiree), external income and liabilities, and possibly legislative changes
to deliver financial well-being in later life. At its core, the problem requires balancing income,
contributions to and withdrawals from various retirement accounts, and tax implications, un-
der dynamic and evolving conditions. This paper addresses these challenges by formulating
a simple model predictive control (MPC) policy for retirement funding. The policy deter-
mines a retiree’s withdrawals and transfers from and between several accounts with different
tax treatments, while taking into account external income and liabilities, and the bequest
when the retiree dies. The policy is designed to deliver stable inflation adjusted consumption
at a target determined by the retiree, adapting the withdrawal and transfer plan annually
to changes in external factors such as life expectancy, realized investment returns, and tax
liabilities. Each year, the policy solves a convex optimization problem to determine the
optimal contributions, and withdrawals from the accounts [BV04]. The policy is simple,
yet flexible, and can be implemented using standard optimization software such as CVXPY
[DB16]. While we assume the target consumption is provided by the retiree, there are many
ways to choose this target. For example, a retiree could use her current annual consumption,
or base it on the 4% rule [Ben94]. She could also use our method to choose the target
consumption by simulating many scenarios with different target values and choosing one
that she is comfortable with. We provide an open-source implementation of the policy, along
with all data needed to replicate all numerical results given in this paper.

Traditional approaches to retirement planning typically fall into two broad categories,
one mostly theoretical and the other mostly practical. Early theoretical work such as Mer-
ton’s framework for optimal consumption [Mer75], offers elegant solutions based on simplified
assumptions. The Merton problem, a well-known stochastic control model, focuses on de-
termining the optimal consumption and investment strategy to maximize expected constant
relative risk aversion (CRRA) utility over time. While it addresses uncertainty in portfolio
returns, its original formulation overlooks practical considerations like longevity risk, taxes,
the specific rules governing different retirement accounts, and the fact that a typical objec-
tive of a retiree is stable inflation adjusted consumption throughout retirement, rather than
maximizing an expected utility. Recent extensions of the Merton problem have considered
uncertainty in longevity [MB21]. In Merton’s problem, and its extensions, consumption is
handled as a variable, and judged by an increasing concave utility function. In contrast,
we strive for inflation adjusted consumption that is at, or near, a constant specified target
value.

At the other extreme, financial advisors use detailed spreadsheets and customized heuris-
tics to guide clients. They assess a client’s financial situation, future income needs, and risk
tolerance to craft personalized strategies, which typically involve selecting appropriate retire-
ment accounts (e.g., 401(k)s, IRAs, annuities), diversifying investments, and offering advice
on tax-efficient withdrawals, Social Security benefits, and healthcare costs. They also mon-
itor portfolios and adjust strategies in response to market shifts, life events, and changing
goals.
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We propose a third approach: an MPC-based framework that solves an optimization
problem each year to create a plan for future actions, based on current projections for
investment returns and inflation, retiree lifetime, and other uncertain future quantities. This
method incorporates the retiree’s age, financial situation, income streams, liabilities, and
projections for longevity, investment returns, and inflation. Our model explicitly accounts
for the main tax rules as well as contribution and withdrawal restrictions associated with
different account types. By recalibrating the plan annually based on updated information,
our framework adapts to changes in both forecasted uncertainties and realized outcomes,
offering a dynamic and robust strategy for retirement funding. Notably, the effectiveness
of our approach does not hinge heavily on the precision of the forecasts or the specific
formulation of the planning problem, as the iterative nature of the framework inherently
adjusts to evolving conditions and uncertainties [MR22, GMTT07, KR24]. In essence, we
propose an algorithmic method to carry out retirement funding. Our method models only the
main tax rules, and makes a number of approximations; it could be monitored or modified
by a financial retirement advisor who can make adjustments depending on the specific needs
and situation of a client.

1.1 Related work

We mention here some related work, ranging from portfolio construction and tax-aware
investment strategies to pure retirement planning.

Tax-aware investing. Our approach is related to tax-aware investment strategies [Con83,
Con84, MKBA21]. These papers consider portfolio construction and asset allocation, taking
taxes into account. The underlying idea is that investors can reduce their tax liability by
deferring capital gains until they are classified as long term, and then taxed at a lower rate,
and realizing short term losses. (While not addressed in these papers, bequests of assets
with embedded gains also have beneficial tax treatments.) While the simplest version of our
retirement policy does not consider portfolio construction or optimal tax-aware rebalancing,
it could certainly be combined with such strategies.

Portfolio construction. Portfolio construction refers to the process of selecting a com-
bination of assets that optimally balances the trade-off between expected return and risk.
The foundation of modern portfolio construction dates back to Markowitz’s seminal 1952
paper [Mar52], introducing the concept of modern portfolio theory, which models portfolio
returns as random variables. The key innovation was the formulation of the trade-off between
expected return and portfolio risk, with the goal of maximizing the portfolio’s expected re-
turn for a given level of risk. Numerous advancements have been built on Markowitz’s initial
formulation [GK00, Chap. 14], [Nar24, Chap. 6], [CT06, KTF14, CK23, GB23, BJK+24].
Convex optimization, which we use in our retirement policy, also plays a large role, and is
widely used, in portfolio construction.

This paper does not focus on portfolio construction per se. Instead we fix the investment
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portfolios for the different accounts to be reasonable simple ones. The method we describe
could certainly be combined with more sophisticated portfolio construction methods, such
as ones that include collar options to limit investment returns. The choice of portfolios is
reflected in our retirement plans in a simple way, as a fixed or time varying typical return
for each account. When we assess our retirement policy, however, we use realistic statistical
models of investment returns, inflation, and longevity.

Retirement funding. The key challenge in retirement funding is determining how to
invest and spend savings to maintain a comfortable lifestyle throughout the retiree’s later
years. The literature on retirement funding is vast, with numerous approaches and strate-
gies. A simple strategy is proposed in [Ben94], where the author argues, based on historical
data, that a retiree can safely withdraw 4% of their initial savings each year, adjusted for
inflation. Much research has focused on these fixed withdrawal strategies (with adjustments
for inflation), and the objective is often to find a strategy with low probability of running
out of money before the end of life [Bla23]. Other studies advocate variable consumption
in proportion to survival probabilities, adjusted up for exogenous pension income and down
for longevity risk aversion [MH11], or allow the withdrawal to vary, depending on the re-
tiree’s sensitivity to consumption changes, arguing that wealthy individuals are less sensitive
to spending cuts [IB19, Bla23]. Our simple MPC policy has elements of both of these ap-
proaches. Given a target consumption, it adjusts the withdrawals and transfers between
accounts to give an inflation adjusted consumption that with very high probability is close
to the target, and a bequest that is as large as possible.

Model predictive control. Our method is based on a well known idea, used in many
other fields. The goal is to make sequential decisions (that affect the future), despite un-
certainty [Koc15]. In MPC this is done in a simple way that at each decision time carries
out three steps. In the first step the uncertain future quantities are predicted or forecasted.
In the second step, an optimal sequence of actions, or action plan, is found using an opti-
mization algorithm, assuming that the forecasts are correct. In the third step, we take the
action that is the first action in the plan. The whole forecast-plan-act process repeats at the
next decision time, with updated forecasts, and taking into account the current state. For
general background on MPC, see, e.g., [FB17] and the references therein.

MPC is used in a variety of industries, sometimes under different names such as reced-
ing horizon control, dynamic matrix control, or shrinking horizon control. Its applications
are broad, and include chemical engineering [KA12], supply chain management [WRK07,
PLYG03], multi-period trading [LUM22, BBD+17], optimal execution of an order [BJS24],
and even the autonomous landing of SpaceX’s Falcon 9 and Falcon Heavy first stages [Bla16].
These applications often rely on convex optimization, which ensures that the resulting prob-
lems are tractable and can be efficiently and reliably solved [BV04].
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1.2 Contributions

We make two main contributions. First, we formulate the retirement funding planning
problem as a mathematical optimization problem, which is convex and so can be solved
reliably and efficiently. (This also means that we can evaluate the policy over many thousands
of scenarios, which is necessary to assess its effectiveness by simulation.) Second, we leverage
the planning problem into a simple model predictive control policy, which systematically
adapts the retiree’s retirement plan to changing external factors such as life expectancy,
investment returns, and tax liabilities.

1.3 Outline

In §2 we outline the retirement planning problem, making a number of strong assumptions
such as knowing future investment returns, inflation, and the retiree’s lifetime. The method
does, however, take into account the main rules that govern distributions and transfers
between accounts, as well as a basic model of taxation. We formulate this simplified planning
problem as a convex optimization problem, which can be very efficiently solved.

In §3 we leverage this planning method into a retirement funding policy, which each year
suggests deposits to, withdrawals from, and transfers between accounts, based on information
available at that time. Because we re-plan each year, this policy reacts to uncertainties
in investment returns, inflation, retiree lifetime, external income and liabilities, and even
changes to the rules and tax rates.

In §4 and §5 we evaluate our proposed retirement funding policy. We introduce statistical
models for investment returns, Treasury rates, and inflation in §4, describing both how to
use these to simulate realistic scenarios and to form forecasts for MPC. We evaluate the
MPC policy using simulations in §5. Extensions and variations are discussed in §6, and
we conclude in §7. In appendix A we give numerical results for our method using more
sophisticated portfolios than a simple stock/bond split.

2 Optimal retirement planning

In this section we introduce our notation and describe the retirement planning problem. We
consider a US tax resident who retires in year t = 1, and uses her savings (and any additional
income) to fund her retirement consumption for years t = 1, . . . , T . We assume the retiree
retires at age 60 or older, which simplifies some of the rules and eliminates some penalties.
All USD values are in real dollars, i.e., inflation adjusted.

In year T the retiree dies, and leaves a bequest. Assuming we know the year of death
of the retiree is clearly unrealistic; this will be addressed in §3, where we use the retirement
plan developed in this section to create a policy.
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2.1 Savings accounts

The retiree has three types of accounts, which are taxed differently: a brokerage account, for
which realized gains are taxed at the long-term capital gains rate (i.e., assuming they have
been held for at least one year), a traditional IRA, for which withdrawals are taxed, and a
Roth IRA, where withdrawals are tax-free. (We do not consider additional accounts, such
as a 401(k) or Roth 401(k) here, but discuss how to model them in §6.)

We denote the (nonnegative) amounts in these accounts at the beginning of year t as Bt,
It, and Rt, respectively, for t = 1, . . . , T +1, denoted in real USD, i.e., adjusted for inflation.
We assume the retiree starts off with balances B1 = Binit, I1 = I init, and R1 = Rinit. To
finance retirement in year t = 1, . . . , T the retiree withdraws amounts bt, it, and rt, from the
brokerage, IRA, and Roth accounts, respectively, with bt ≤ Bt, it ≤ It, and rt ≤ Rt. These
can be negative, which corresponds to a deposit.

2.2 Distributions

This section describes the rules for distributions from brokerage, IRA, and Roth accounts,
including components like conversions, deposits, and withdrawals. It covers withdrawal
limits, deposit restrictions, and required minimum distributions (RMDs) for IRAs, as well
as conditions for Roth conversions.

Brokerage withdrawals. Each year the retiree withdraws an amount bt from the broker-
age account, with bt ≤ Bt. This amount can be negative, which means a deposit of −bt to
the brokerage account.

IRA withdrawals. The withdrawal from the IRA account is split into three components,
ict , i

d
t , and iwt , all nonnegative. The first component ict is a conversion to the Roth account,

the second component idt is the amount we deposit into the IRA account, and the third
component iwt is the withdrawal. The net IRA withdrawal is

it = ict − idt + iwt .

This number can be negative, indicating a net deposit into the IRA; however, this is unlikely
for most retirees following the RMDs, described below. We split the net withdrawal into
these three components to handle Roth conversion limits and RMDs.

Roth withdrawals. The Roth withdrawal is also split into three components, rct , r
d
t , and

rwt , all nonnegative. The first component, rct , is a conversion from the IRA account, the
second, rdt , is the amount we deposit in the Roth account, and the third is the withdrawal.
The net Roth withdrawal is

rt = −rct − rdt + rwt .

The net Roth withdrawal can be negative, indicating a net deposit into the Roth account,
most commonly attained through a Roth conversion.
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There are some limits on Roth withdrawals we do not account for here. Roth withdrawal
limits mainly affect individuals under the age of 59.5, and so will most likely not be relevant
for a retiree. We discuss this further in §6.

Deposit limits. The total annual deposits to traditional IRA and Roth IRA accounts are
subject to certain restrictions:

idt + rdt ≤ dmax,

where dmax depends on factors such as age and income. For 2024, individuals aged 50 or older
with a modified adjusted gross income (MAGI) below $146,000 are allowed to contribute up
to $8,000. (Roth IRA contributions have income limits, but deductible traditional IRA
contributions do not, unless the individual is covered by a workplace retirement plan.) A
more detailed description of MAGI dependences is given in §6.

Additionally, contributions to an IRA or Roth IRA must come from earned income during
the year, expressed as

idt + rdt ≤ et,

where et represents earned income in year t. Combining these constraints, the total contri-
butions are bounded by

idt + rdt ≤ min{dmax, et}.

Required minimum distributions and Roth conversions. The IRA account is subject
to RMDs. This states that iwt ≥ κtIt, where κt ∈ [0, 1] is the given fraction of the account
value that must be withdrawn in year t. These fractions are zero until the retiree reaches
age 73, and after that given as 1/yt, where yt is the expected remaining lifetime of someone
alive in year t, obtained from tables published by the Internal Revenue Service (IRS).

Roth conversions are also limited. When rct > 0, the amount rct must come from an IRA
withdrawal in excess of the RMD. We can express the RMD and Roth conversion constraints
as

iwt ≥ κtIt, ict = rct , t = 1, . . . , T.

This states that the IRA withdrawal must be at least the RMD, and that the Roth conversion
must come from an IRA withdrawal in excess of the RMD, i.e., from the portion of the net
IRA withdrawal that corresponds to the conversion.

2.3 Income, liabilities, and consumption

We now outline the retiree’s sources of income and liabilities, including earned income,
such as a salary, which can be used for funding savings accounts or consumption, as well
as additional income like Social Security or pension payments. The section also addresses
liabilities, which represent the retiree’s known future financial obligations.

Earned income. If the retiree has earned income, such as a salary, she may use this to
fund any of her accounts, or her consumption. We denote the (nonnegative) amount of
earned income in year t as et.
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Additional income. The retiree may receive additional income, such as Social Security
payments, pension income, or annuity payments, which falls outside the category of earned
income. We denote this income as at, representing the amount received in year t. Additional
income cannot be used to fund the IRA or Roth accounts.

Liabilities. Liabilities include, e.g., mortgage payments or other debts. We denote the
liability in year t as lt. The liability is typically nonnegative, but could be negative, meaning
an income lt. We distinguish between a negative liability and additional income, as we pay
taxes on the latter, but not on the former. An example of a negative liability is a tax refund,
which we do not pay taxes on.

Constant consumption target. We assume that the retiree wants to consume a constant
nonnegative amount c in each year. Since we work with real (inflation adjusted) values, this
corresponds to consumption that includes a cost of living adjustment (COLA) each year.
The goal is for this consumption to be close to a target value, which we denote as ctar. The
target level ctar can be chosen in various ways, such as the retiree’s average consumption
over recent (pre-retirement) years, or applying a rule of thumb like the 4% rule.

Taxes. The retiree pays a nonnegative tax bill in year t = 1, . . . , T , based on taxable
income and capital gains in year t, denoted τt. (This amount is described in more detail
below.)

Cash balance. Cash balance must hold, which means

bt + it + rt + et + at = c+ lt + τt, t = 1, . . . , T.

The lefthand side is the net amount withdrawn from the three accounts plus income; the
righthand side is the retiree’s total expenses, including consumption, taxes, and liabilities.

2.4 Taxes

Taxable income. The taxable income in year t is given by

ωt = ict − idt + iwt + et + at.

The first three terms correspond to the net IRA withdrawal; we pay taxes on the Roth
conversion and the withdrawal, while the deposit acts as a tax deduction. The last two
terms are the earned income and additional income.

Capital gains. Capital gains in the brokerage account are taxed separately from income
and are based on nominal gains, the difference between the sale and purchase price in nominal
(not inflation adjusted) dollars. (With this one exception, all other dollar values in this paper
are inflation adjusted.) To track taxable gains in the brokerage account, we record tax lots,
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maintaining the number of shares st and nominal purchase price pt at the time of purchase.
We assume shares are sold using the average cost basis method, where the cost basis per
share is given by

xt =

∑
τ<t sτpτ∑
τ<t sτ

,

denoted in nominal USD per share. Assuming no tax benefits from losses, the capital gain
(in real dollars) upon sale at time t is

ωcg
t = (bt)+ (1− δt) ,

where (u)+ = max{u, 0} and δt = xt/pt is the ratio of basis to value. Since future sales prices
and cost basis are unknown when constructing the plan, we approximate this ratio using the
last known value δ0 = x0/p0, leading to the simplified expression

ωcg
t = (bt)+ (1− δ0) , t = 1, . . . , T.

Thus our approximation is that the ratio of basis to value in the brokerage account remains
constant.

We assume positive capital gains are taxed at a fixed nonnegative rate ξ, reflecting the
retiree’s long-term capital gains rate, so the capital gains tax (in real dollars) in year t is
given by ξ (ωcg)+. Here we ignore the tax reduction possible when a withdrawal from the
brokerage account results in a capital loss, which occurs when δ0 > 1.

Tax bill. The tax bill is given by

τt = ϕ(ωt) + ξ(bt)+ (1− δ0)+ ,

where ϕ is an increasing convex piecewise linear function with ϕ(ω) = 0 for ω ≤ 0. (For
simplicity, we assume there is no tax benefit from a negative taxable income.) The tax
function is described by the K kink points 0 < β1 < · · · < βK , and the slopes of ϕ in the
K + 1 intervals [0, β1], [β1, β2], . . . , [βK−1, βK ], [βK ,∞), given by 0 < η1 < · · · < ηK+1. The
numbers βi are the tax bracket boundaries, and the slopes ηi are the marginal tax rates in
the K + 1 tax brackets. If we include the kink in ϕ at 0, we have K + 1 kink points, and
K + 2 tax brackets, with zero tax for the negative income tax bracket (−∞, 0].

We model the tax function as constant in future years. Since we work with inflation
adjusted values, this corresponds to annual adjustments of the tax brackets in future years,
which is a reasonable assumption.

Tax simplifications. We have made several simplifying assumptions. First, we assume
that the retiree pays a fixed tax rate ξ on capital gains, rather than distinguishing between
short-term and long-term gains and applying a progressive tax rate based on taxable income.
Moreover, while long-term capital gains are taxed at a lower rate than ordinary income at the
federal level, most states treat capital gains as ordinary income. Second, we assume that the
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retiree receives no tax benefits from capital losses or negative income. These assumptions
simplify the problem, and introduce some conservatism in the planning. Third, we have
ignored dividends, which are taxed annually, either as ordinary income or at the long-term
capital gains rate, depending on whether the dividend is qualified and the holding period.
Fourth, we assume that the retiree pays full taxes on the additional income, which is often
not the case. For example, Social Security payments are only partially taxed, somewhere
between 0% and 85%, depending on the retiree’s income. Our simplification that additional
income is fully taxed also introduces conservatism. We can modify the problem to account
more accurately for these effects; see §6.

These simplifications are good enough for the purposes of creating a funding policy with
MPC. When we simulate the retirement funding policy, however, we compute the capital
gain tax bill exactly using the progressive tax rate, which depends on the retiree’s taxable
income.

2.5 Account dynamics

This section outlines the dynamics of the investment accounts, including investment gains
and a bequest. Account balances evolve based on inflation adjusted returns, and the bequest
is defined as the sum of the account values at the end of the investment horizon, i.e., any
remaining funds after the retiree’s death.

Investment gains. The account balance dynamics are given by

Bt+1 = (Bt − bt)ρ
B
t , It+1 = (It − it)ρ

I
t , Rt+1 = (Rt − rt)ρ

R
t , t = 1, . . . , T,

where ρBt , ρ
I
t , ρ

R
t are the (positive, inflation adjusted) investment total returns for the three

accounts. The inflation adjusted returns are in general not known, but would be estimated
based on the investment portfolio and current market conditions. For example, if the retiree
holds a risk-free bond portfolio paying 4% annually, and the inflation is 2%, then the inflation
adjusted return would be 2%.

The assumption of known investment returns is of course unrealistic. But it is adequate
for the purpose of making a plan to be used in an MPC policy. Here too we can introduce
conservatism in the planning process, by taking values of the constant returns ρB, ρI , ρR

that are lower than we might really expect. For example, they might be taken as the 30th
or 40th percentile of anticipated (random) investment returns, as opposed to a mean or
median. When we carry out simulation, however, we update the account balances using
realized returns, as described in §3.

Bequest. The retiree dies in year T and leaves the bequest

q = BT+1 + IT+1 +RT+1

in year T + 1. Knowing the year of death of a retiree is also an unrealistic assumption,
like knowing future investment returns or inflation, but it is also adequate for the purposes
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of MPC. Like the investment returns, we can introduce conservatism in the plan by over-
estimating the remaining lifetime of the retiree, e.g., using the 75th percentile of remaining
lifetime from a life table, or increasing expected lifetime by a fixed factor.

2.6 Objective

The primary objective of the retiree is to maximize the bequest, subject to maintaining a
constant consumption close to the target value, if possible. We model this objective as

U(c, q) = q − γ(ctar − c)+,

where γ > 0 represents the retiree’s preference for maintaining a constant consumption close
to the target value. With a suitable (large enough) choice of γ, this objective incentivizes
choosing c = ctar if at all possible. The parameter γ can be chosen, for example, by simu-
lating the retirement funding policy with multiple choices, and choosing one that gives good
performance. The second term, which is proportional to the consumption shortfall (ctar−c)+,
can be thought of as a softening of the hard constraint c = ctar [BJK+24]. Roughly speaking,
we hope that in all but very adverse circumstances, we have c = ctar. That is, we reduce
consumption below the target only if we really must.

2.7 Retirement funding planning problem

We formulate the choice of an optimal plan for retirement funding as an optimization prob-
lem, with the goal of maximizing our objective subject to the many constraints described
above. This results in the optimization problem

maximize U(c, q)
subject to B1 = Binit, I1 = I init, R1 = Rinit,

Bt ≥ 0, It ≥ 0, Rt ≥ 0, t = 1, . . . , T + 1,
Bt+1 = (Bt − bt)ρ

B
t , It+1 = (It − it)ρ

I
t , Rt+1 = (Rt − rt)ρ

R
t , t = 1, . . . , T,

it = ict − idt + iwt , rt = −rct − rdt + rwt , t = 1, . . . , T,
bt ≤ Bt, it ≤ It, rt ≤ Rt, t = 1, . . . , T,
bt + it + rt + et + at = c+ lt + τt, t = 1, . . . , T,
iwt ≥ κtIt, idt + rdt ≤ min{dmax, et}, ict = rct , t = 1, . . . , T,
τt = ϕ(ict − idt + iwt + et + at) + ξ(bt)+(1− δ0)+, t = 1, . . . , T,
q = BT+1 + IT+1 +RT+1.

(1)
We refer to this as the retirement funding planning (RFP) problem. The variables and
parameters are summarized below.

Variables. The variables are

• Account balances Bt, It, Rt, t = 1, . . . , T + 1.
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• Distributions bt, it, rt, i
c
t , i

d
t , i

w
t , r

c
t , r

d
t , r

w
t , t = 1, . . . , T .

• Consumption and bequest c, q.

• Tax bill τt, t = 1, . . . , T .

Data. The given data are

• Initial account balances Binit, I init, Rinit.

• Ratio of brokerage basis to value δ0.

• Investment returns ρBt , ρ
I
t , ρ

R
t , t = 1, . . . , T .

• Income and liabilities et, at, lt, t = 1, . . . , T .

• RMD rates κt, t = 1, . . . , T .

• Tax brackets and marginal tax rates β1, . . . , βK , η1, . . . , ηK+1.

• Long-term capital gain tax rate ξ.

• Deposit limit dmax.

• Target consumption ctar.

• Objective trade-off parameter γ.

Convexity. As stated, the RFP problem (1) is not a convex optimization problem, due
to the non-affine tax function ϕ. However, it can be transformed to an equivalent convex
optimization problem by replacing this nonconvex constraint with its relaxation

τt ≥ ϕ(ict − idt + iwt + et + at) + ξ(bt)+(1− δ0), t = 1, . . . , T. (2)

This results in a convex optimization problem [BV04].
A standard argument shows that if we solve the RFP problem (1) with the relaxed

tax constraints (2) (with inequality constraints), replacing the orignal tax constraints (with
equality constraints), we obtain the solution of the original problem, i.e., the tax constraints
hold with equality. It is easy to see why the relaxation is tight at the solution. The relaxation
means that we are given the option to pay more in taxes than what we are required to, which
is not something we would do; we could always reduce the tax payment and use the additional
money to increase q. Hence, the solution to the convex problem is the same as that of the
original nonconvex problem (1).
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Solve speed. We henceforth refer to the relaxed RFP problem, which is (1) with the tax
constraints relaxed as in (2), as the RFP problem. It has around 13T variables, 7T equality
constraints, and 9T inequality constraints. It can be solved very reliably and quickly.

As an example, consider a planning horizon of T = 45 (e.g., age range 60–105), which
yields an RFP problem with around 600 variables, 300 equality constraints, and 400 in-
equality constraints. This problem can be solved in around 0.01 seconds on an Apple M2
Max chip (12-core CPU, 64GB unified memory) using CVXPY and Clarabel [DB16, GC24].
The solver is single-threaded, so we can solve around 500 tax planning problems per second,
using all 12 cores. Our ability to solve the tax planning problem this quickly is evidently not
needed to implement MPC, where it will be solved once, or a few times, per year. But the
speed is critical when we carry out Monte Carlo simulations to evaluate the effectiveness of
a policy.

Simplifying assumptions. We have already mentioned some strong simplifying assump-
tions made in the formulation of the RFP, such as knowing the remaining lifetime of the
retiree, knowing future investment returns in her savings accounts, assuming gains in the
brokerage account are taxed at a fixed rate, and assuming that all external income is taxed.

Other simplifications regard the IRA and Roth accounts. We assume that the retiree
can withdraw any amount from the IRA and Roth accounts, which is almost accurate for
those over 59.5 years old. In reality, withdrawals from Roth IRAs are subject to the five-
year rule. This rule requires that the account be open for at least five years for earnings
to be withdrawn tax-free, even after age 59.5. Furthermore, for Roth conversions, the five-
year rule applies separately to each conversion, requiring that five years have passed since
the conversion for the earnings to be withdrawn penalty-free. (There are also penalties
for withdrawals from IRAs before the age of 59.5, which we have not considered.) These
conditions could influence the retiree’s withdrawal strategy, particularly for those who rely
heavily on Roth funds. Furthermore, many retirees have additional accounts, such as a
401(k) or Roth 401(k), which have different rules than IRAs, mainly higher contribution
limits and possible company matching.

Our RFP problem can be extended to handle many of these aspects, some discussed in
§6. Our simulation experiments suggest that this level of accuracy in the planning problem
is not needed, at least when the RFP is used in an MPC policy.

3 Model predictive control policy

MPC is a dynamic optimization approach that determines a new plan of action each year
based on the current account balances (which depend on realized investment returns) and
updated forecasts, such as the retiree’s expected year of death, inflation rates, and invest-
ment returns. Essentially, the retiree solves the planning problem (1) annually, with several
modifications to account for evolving conditions and changing values. We describe these in
a bit more detail below.
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3.1 Expected remaining lifetime

The planning horizon T is adjusted each year to reflect the retiree’s remaining expected
lifetime. The current year t = 1 always corresponds to the present year, while the horizon
T is updated using life expectancy tables such as those provided by the Social Security
Administration [Soc24b]. For example, a 65-year-old female retiree initially has a planning
horizon of approximately 20 years. This planning horizon decreases annually as the retiree
ages.

We can modify this simple method to introduce conservatism in the planning process.
Instead of adjusting T to be the expected remaining lifetime, we can take it to be a quantile
such as the 70th percentile, according to the distribution of lifetimes, or increase it over
the expected lifetime by some fixed factor such as 30%. Roughly speaking, we plan on the
(optimistic) basis that the retiree’s remaining lifetime will be longer than the mean. This
introduces some conservatism, since we must plan on funding the retiree’s consumption over
a longer period.

3.2 Updated account values and forecasts

The account values Binit, I init, and Rinit are set to be the current values of the accounts.
These updates incorporate realized investment returns, taxes, deposits, withdrawals, external
income, and liabilities, over the last year.

We can also, optionally, update our forecasts and even models. For example, the tax
rates and brackets in our planning problem might be the current ones, implicitly indexed for
inflation since we work with inflation adjusted quantities. These could be replaced by the
updated true current values, or an entirely new model of tax rates, if they are changed by
new tax laws. Other examples include forecasts of inflation or investment returns, earned
or additional income, and liabilities. These updates modify the problem data to reflect the
current conditions.

3.3 Cash balance discrepancy

The cash balance equation used in the MPC policy,

bt + it + rt + et + at = c+ lt + τt, t = 1, . . . , T,

relies on forecasts of uncertain quantities. For instance, income streams and liabilities may
not be precisely known at the beginning of the year, and the tax bill τt depends on realized
taxable income. In practice, capital gains are taxed progressively, with tax rates ranging
from 0% to 20% depending on the retiree’s total taxable income. However, in the planning
problem, we assume a fixed tax rate ξ, which can lead to discrepancies between the planned
and actual cash balance.

To account for this discrepancy, we introduce a realized adjustment term,

∆t = c+ τt + lt − (bt + it + rt + et + at),
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which represents the difference between actual and planned cash flows. This discrepancy
is carried over to the next year’s liabilities by adjusting lt+1. For example, if the retiree
underestimates her tax bill, the shortfall is treated as an additional liability in the following
year.

3.4 Simulation

When simulating a policy, we need to account for the fact that some parameters in the
planning RFP problem are not known exactly, as discussed in §3.2 and §3.3. To account for
this (generally small) discrepancy, we carry out the simulations as follows. At the beginning
of each year we solve the RFP problem in MPC to determine the current year’s deposits and
withdrawals from the savings accounts. This is done using forecasted investment returns.
At the end of the year we update the account values using the realized investment returns,
rather than the forecasted returns. The realized investment returns are used to update the
account values, and the tax bill is computed based on the realized taxable income, and the
capital gains tax, which can differ from the forecasted tax bill that appears in the RFP
solved at the beginning of the year. Next, we perform cash accounting by adding the cash
balance discrepancy to the next year’s liabilities, as described in §3.3. (When the retiree
dies, we subtract any remaining liabilities from the bequest.)

3.5 Evaluating the MPC policy

We start by solving a big problem (as above), i.e., one with large T ; the problem gets smaller
(i.e., T shrinks) every year until the retiree dies. For example, consider a 60-year-old retiree
with an original 45-year planning horizon. The first plan is the problem example described
earlier, which can be solved in around 0.01 seconds using CVXPY and Clarabel [DB16,
GC24]. Subsequent planning problems are smaller (since T decreases from 45), and can be
solved faster. Assuming the retiree lives to be 105, we solve 45 planning problems, requiring
a total time of around 0.13 second, or about 0.003 seconds per problem, with Clarabel.
The retiree will likely have a shorter lifespan, which means that evaluating the MPC policy
for one retiree’s lifetime can be simulated in even less time. This means that by multi-
threading, say using all 12 cores of the Apple M2 Max chip, we can evaluate roughly 5,000
retirement policies in under a minute. This only takes into account the time to solve the
optimization problems. The actual simulation can be up to five times longer due to our
inefficent implementation of the Python code for simulation. An efficient implementation
would have a total simulation time closer to the solve time, around one minute.

4 Data and forecasts

In this section we describe our statistical model of inflation adjusted investment returns,
Treasury rates, and inflation, which we use to evaluate the MPC policy. We construct
simple statistical models for investment returns, Treasury rates, and inflation rates. We use
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Figure 1: Annual market returns from 1927 to 2023.

these models to generate realistic data for use in Monte Carlo simulations, and also to create
simple forecasts of future values for use in MPC.

We focus here on traditional stock/bond investment portfolios since they are simple
and commonly used. More sophisticated portfolios that limit the left and right tails of the
return distribution using collars, Treasury inflation securities (TIPS), and other methods are
discussed in appendix A.

4.1 Market returns

We use annual market returns from 1927 to 2023 obtained from Kenneth French’s web-
site [Fre24]. These market returns are shown in figure 1, with a few statistics given in the
first row of table 1.

Model. We model the market returns as a three-component Gaussian mixture model
(GMM), fit using Scikit-learn [ld24]. This model allows us to sample realistic market re-
turns. The fitted GMM component means are 28%, -11%, and 11%, and the corresponding
standard deviations are 11%, 16%, and 12%. The component weights are 0.38, 0.25, and
0.38, respectively.

Simulation. Using the GMM we can simulate realistic market returns. A few statistics for
1,000 simulated returns are given in the second row of table 1. As seen, these statistics are
reasonably close to the historical statistics. We show the cumulative distribution function
(CDF) of the historical and simulated returns in figure 2. Here too we see a good match.
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Percentiles

Data Mean Volatility 10th 30th 50th 70th 90th

Historical 12.0% 20.0% -11.5% 1.5% 15.4% 24.2% 33.9%
Simulated 11.7% 20.4% -15.7% 1.4% 13.6% 24.2% 36.3%

Table 1: Market return statistics.

Figure 2: CDF of historical and simulated market returns.
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Percentiles

Data Mean Volatility 25th 50th 75th

Historical 5.9% 3.0% 4.0% 5.6% 7.6%
Simulated 5.3% 2.8% 3.4% 5.2% 7.2%

Table 2: Treasury return statistics.

Percentiles

Data Mean Volatility 25th 50th 75th

Historical 3.8% 2.5% 2.1% 2.9% 4.8%
Simulated 3.5% 2.2% 2.0% 2.6% 4.8%

Table 3: Inflation rate statistics.

Forecast. It is extremely challenging to forecast market returns, so we rely on the historical
average return of 12.0% as the (constant) forecast for the market return. As mentioned above,
we can use a more conservative estimate, such as the 40th percentile.

4.2 Treasury rates and inflation

We obtain 10-year Treasury rates from 1962 to 2023 from Yahoo Finance [Yah24], and annual
inflation rates over the same period from the Bureau of Labor Statistics [oLS24]. Figure 3
shows the historical 10-year Treasury and inflation rates from 1962 to 2023. The top rows
of tables 2 and 3 show a few statistics for the Treasury and inflation rates.

Model. The distribution of inflation rates is substantially nonsymmetric around its median
value, as can be seen in the righthand plot in figure 4. To mitigate this we first transform
the inflation rates using a simple piecewise linear (PWL) function φ with different slopes
below and above the median,

φ(z) =

{
(z − k)s− + k z ≤ k,
(z − k)s+ + k z > k,

(3)

where k (the ‘kink point’) is the empirical median k = 2.9%, and s− and s+ are the slopes of
the PWL function below and above the median, which we took as s− = 2.5 and s+ = 0.75.
These values were chosen to make the transformed inflation rates approximately, or at least
closer to, Gaussian.

We model the Treasury rates and transformed inflation rates, denoted as the vector
xt ∈ R2, as a first-order vector autoregressive (VAR) process that includes a mean. This
model has the form

xt+1 = µ+ A(xt − µ) + ϵt,
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Figure 3: Historical 10-year Treasury and inflation rates.

where µ ∈ R2 is the mean, A ∈ R2×2 is the VAR (matrix) coefficient, and ϵt ∼ N (0,Σϵ),
where Σϵ is the covariance matrix of the residuals. We take µ to be the empirical mean of
xt, and A is chosen to minimize the sum of squared errors on the historical data. We take
Σϵ to be the empirical covariance of the residuals of the VAR model. The fitted parameter
values are

µ =

[
0.058
0.029

]
, A =

[
0.80 0.24

−0.04 0.88

]
, Σϵ = 10−4

[
0.72 0.48
0.48 1.47

]
,

respectively.

Simulation. Given initial values for the Treasury and inflation rates, we can simulate the
rates over time. We first transform the initial inflation rate using the PWL function φ given
in (3), then simulate the Treasury and transformed inflation rates using the VAR model. To
obtain the simulated inflation rates, we apply the inverse PWL function φ−1 to the second
component of xt.

Two examples of simulated trajectories, initialized at the 1962 values, are shown in
figure 5. A few statistics for 1,000 simulated trajectories, initialized at the 1962 values and
simulated until 2023, are given in tables 2 and 3. Figure 4 shows the CDFs of the historical
and simulated rates. We can see good fits for both the Treasury and inflation rates. As an
example of a joint statistic, the correlation between the Treasury and inflation rates is 72%
for the historical data and 70% for the simulated data.

When simulating trajectories not initialized from specific known values, we can sample
initial Treasury and inflation rates from their steady state distribution under the VAR model,
which is N (µ,Σss), where Σss solves the Lyapunov equation Σss = AΣssAT + Σϵ.
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(a) Treasury rates. (b) Inflation rates.

Figure 4: CDF of historical and simulated Treasury and inflation rates.

Forecast. We can use the VAR model to give an elementary forecast of future Treasury
and inflation rates. Denoting our estimate of xτ in time period t, with τ > t, as x̂τ |t, we have

x̂τ |t = µ+ At−τ (xt − µ), τ = t+ 1, t+ 2, . . . .

(To get the inflation rate prediction we apply φ−1 to the second component of x̂τ |t.) Figure
6 shows the forecasted Treasury and inflation rates, up to 2023, at two periods in time, 1980
and 2000. They are not particularly good forecasts, but they do capture the general shape
of future values, which is all that is needed in MPC.

4.3 Portfolio returns

Using the statistical models for market returns, Treasury rates, and inflation we construct
models for two portfolios: 20/80 and 60/40 portfolios, comprised of 20% and 60% stocks,
respectively, and the remainder in Treasury bonds. The inflation adjusted returns for the
portfolios is the weighted sum of the market and Treasury returns minus inflation. The
realized returns for the three portfolios are shown in figure 7, with a few statistics given in
the top rows of tables 4 and 5, respectively.

Simulation. We can simulate the portfolio returns by sampling from the GMM for the
market returns and the VAR model for the Treasury and inflation rates. The CDFs of
simulated and realized inflation adjusted portfolio returns are shown in figure 8, and some
statistics are given in tables 4 and 5. (We ran 1,000 simulations initialized at the 1962 values
for the Treasury and inflation rates and simulated until 2023.)

Note that the market return model is fit on data from 1927, while the Treasury and
inflation rate model is fit on data from 1962. Realized portfolio returns are available only from
1962, accounting for the small discrepancy between the historical and simulated portfolio
returns. (The historical portfolio returns are available from 1962, while the simulated returns
leverage the market return model with data from 1927.)

21



(a) Historical rates.

(b) First simulated trajectory.

(c) Second simulated trajectory.

Figure 5: Two simulated trajectories of Treasury and inflation rates, initialized
from the 1962 values.
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(a) Forecasted rates in year 1980. (b) Forecasted rates in year 2000.

Figure 6: Forecasted Treasury and inflation rates. The shaded and solid curves
represent forecasted and realized rates, respectively.

Figure 7: Inflation adjusted portfolio returns.
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(a) 20/80 portfolio. (b) 60/40 portfolio.

Figure 8: CDF of inflation adjusted portfolio returns.

Percentiles

Portfolio Mean Volatility 25th 50th 75th

Historical 3.2% 4.0% 0.6% 3.7% 6.0%
Simulated 3.1% 4.4% 0.3% 3.5% 6.3%

Table 4: Inflation adjusted 20/80 portfolio return statistics.

Forecast. We forecast the portfolio returns by combining the forecasts for the market
returns, Treasury rates, and inflation described above. We forecast the market using the
historical average market return of 12.0%, and use the VAR model forecasts from §4.2 for
Treasury bonds and inflation rates. The portfolio returns are then forecasted as a weighted
sum of the market and Treasury returns minus inflation. Another, much simpler approach,
which turns out to work just as well, is to assume fixed returns based on historical averages,
giving 3.2% and 5.5% for the 20/80 and 60/40 portfolios, respectively.

Percentiles

Portfolio Mean Volatility 25th 50th 75th

Historical 5.5% 10.7% -0.7% 8.2% 12.9%
Simulated 5.7% 12.1% -2.1% 7.1% 14.7%

Table 5: Inflation adjusted 60/40 portfolio return statistics.
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5 Numerical experiments

5.1 Experimental setup

We consider two different retirees: an upper-middle-class female and a lower-middle-class
male, both retiring at age 65. We select their income levels, account balances, and target con-
sumption levels as typical, drawing from [Fin24b, Inv24, Bur24, Fin24a]. The data and code
to reproduce the experiments are available at https://github.com/cvxgrp/retirement.

Investments. We assume both retirees invest in stock and bond portfolios in their bro-
kerage, IRA, and Roth accounts. The brokerage account has a mix of 20% stocks and 80%
Treasury bonds, and the IRA and Roth accounts have 60% stocks and 40% Treasury bonds.
Roughly speaking, the brokerage account is the most conservative, reducing liquidity risk in
any given year, while the IRA and Roth are more aggressive, aiming for higher long-term
returns. We described how to forecast the returns for these investments in §4.3. Our simula-
tions did not show any significant differences in the results when using the more complicated
VAR model forecasts versus the historical averages. Hence, we adopt the simpler historical
average forecasts for the portfolio returns, giving

ρB = 1.032, ρI = 1.055, ρR = 1.055.

Planning horizon. To incorporate a margin of conservatism, we extend the planning
horizon to 150% of the retiree’s remaining life expectancy or until age 120, whichever occurs
first. For example, if a retiree is 65 years old with an expected lifespan of 85 years, we plan
until age 95. Life expectancy estimates are obtained from the Social Security Administration
(SSA) actuarial tables [Soc24b].

Tax rates. We use the federal tax brackets and rates for 2024 for single individuals, avail-
able on the IRS website [Int24], shown in table 6. We model the tax function as constant
over the future, which corresponds to the brackets being annually adjusted for inflation, but
the rates in each bracket remaining the same. We choose different capital gains tax rates for
the two retirees.

5.2 Benchmark policy

We compare the MPC policy to a benchmark policy, in which the retiree withdraws the
same amount (adjusted for inflation) each year, without any optimization, in analogy to
the popular 4% rule [Ben94]. The retiree computes 3.75% of the initial balance, including
all account balances and projected future earnings up until age 85, as the annual (post-
tax) withdrawal, adjusted for inflation. We compute the pre-tax withdrawal that yields the
target post-tax consumption by adjusting the pre-tax amount numerically. This roughly
speaking corresponds to a 4% pre-tax withdrawal rate, which is a common rule of thumb for
retirement planning. We use a simple withdrawal scheme, where the retiree withdraws the
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Marginal rate Income range ($)

10% up to 11,600
12% 11,601 – 47,150
22% 47,151 – 100,525
24% 100,526 – 191,950
32% 191,951 – 243,725
35% 243,726 – 609,350
37% over 609,350

Table 6: Federal income tax rates for single individuals in 2024.

Percentiles

Min Max 1st 5th 50th 95th 99th

Relative bequest 0.42 — 0.58 0.84 1.06 1.33 4.19

Table 7: Relative bequest statistics for the upper-middle-class retiree.

required mininum amount from the IRA account, and the remaining amount is split between
the three accounts in proportion to their remaining balances, so that the three accounts are
depleted at the same rate.

5.3 Example: Upper-middle-class female

We consider a female retiree who begins receiving Social Security payments of $3,938 monthly
at age 70; the Social Security payments are estimated using [Soc24a] for a person who makes
around $150,000 annually prior to retirement. We set the initial account balances to

Binit = 200, I init = 400, Rinit = 200,

in thousands of USD, yielding a total initial balance of $800,000. The target consumption
is set to 3.75% of the initial balances plus projected Social Security payments up to age 85,
giving

ctar = $58,400,

corresponding roughly to a planned 30-year retirement. Finally, we let γ = 500 in the
objective, chosen to give good performance with a small risk of running out of money. We
take the capital gains tax rate as ξ = 15% as this is typically the rate applicable to upper-
middle-class individuals, which our experiments also support.

Relative consumption and bequest. The objective of the retiree is to leave a large
bequest, while maintaining a stable consumption throughout retirement, with a very small
risk of needing to consume less than the target. To directly compare the two policies, we
consider the relative consumption and bequest for each simulation, i.e., the consumption and
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Figure 9: Empirical CDF of the relative bequest for the upper-middle-class retiree.

bequest for the MPC policy divided by that of the benchmark policy. When these numbers
are larger than one, the MPC policy delivered more to the retiree (or her heirs) than the
benchmark.

The relative consumption is almost always one, meaning that the MPC policy delivers
the same consumption as the benchmark policy. It differs from one in about 2% of the
simulations, with a minimum relative consumption of 0.78 and a maximum of 1.25.

Some percentiles of the relative bequest are shown in table 7. We see that the MPC
policy is more likely to deliver a noticeably larger bequest than the benchmark policy, with
a median increase of 6%. There is no maximum relative bequest, since the benchmark
bequest can be zero, as happens in 0.6% of the simulations when the retiree depletes all her
investments. (The MPC bequest is never below $10,000.)

We show the empirical CDF of the relative bequest in figure 9. We see that the MPC
policy delivers a larger bequest in about two thirds of the simulations. In the cases where a
larger bequest is delivered, the median increase is about 12%. Overall, the MPC policy is
more likely to deliver a larger bequest than the benchmark policy, with a very low risk of
delivering a lower consumption.

Withdrawals. The realized withdrawals for both policies from the brokerage, IRA, and
Roth accounts are shown in figure 10. With the MPC policy, we see that the retiree with-
draws from the brokerage and IRA accounts in the first few years, until around age 70.
Meanwhile, yearly deposits of up to around $50,000 are made to the Roth account until a
little before age 70, when Roth withdrawals start at around $10,000–$15,000 per year. The
benchmark policy withdrawals differ significantly from the MPC policy. No Roth conver-
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(a) Brokerage withdrawals, MPC policy. (b) Brokerage withdrawals, benchmark policy.

(c) IRA account withdrawals, MPC policy. (d) IRA account withdrawals, benchmark policy.

(e) Roth account withdrawals, MPC policy. (f) Roth account withdrawals, benchmark policy.

Figure 10: Realized withdrawals from the brokerage, IRA, and Roth accounts for
the upper-middle-class retiree. The dark lines represent realized trajectories, and
the red line represents the median over all trajectories at each age.
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Figure 11: Realized Roth conversions with the MPC policy for the upper-middle-
class retiree. The dark lines represent realized trajectories, and the red line repre-
sents the average over all trajectories at each age.

sions are made, and rather than optimizing for tax efficiency, the retiree withdraws from
each account proportionally to the remaining balance, with any excess money going to the
brokerage account. (Of course, this is all by construction of the benchmark policy.)

The MPC policy Roth conversions are shown in figure 11. Conversions start at almost
$50,000 per year and gradually decline to zero around age 70. This pattern is intuitive:
Before reaching age 70, the retiree remains in a lower tax bracket since consumption can
be funded by the brokerage account, making conversions advantageous. However, once the
brokerage account is depleted, the retiree enters a higher tax bracket due to increased reliance
on IRA withdrawals, reducing the benefit of further conversions. After age 70, the potential
tax savings from converting no longer seem to justify the costs, given the expected remaining
lifetime, except in a few cases.

Finally, the balances of the three accounts are shown in figure 12. For the MPC policy,
the brokerage account is depleted around age 70, while the IRA is significantly reduced by
the same age due to substantial conversions to the Roth account. This strategy enables the
retiree to leave a large bequest, particularly in the case of strong market returns.

Taxes. Most of the improvements in the MPC policy over the benchmark policy can be
explained by the tax-efficient withdrawals and conversions. The average realized taxes (over
all 1,000 simulations) each year for the two policies are shown in figure 13. We can see that
the MPC policy pays higher taxes the first few years; this is due to the Roth conversions.
After the age of 70, the MPC policy pays lower taxes while the Roth account is allowed to
grow tax-free, which is what allows for a larger bequest.
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(a) Brokerage account balance, MPC policy. (b) Brokerage account balance, benchmark policy.

(c) IRA account balance, MPC policy. (d) IRA account balance, benchmark policy.

(e) Roth account balance, MPC policy. (f) Roth account balance, benchmark policy.

Figure 12: Realized balances of the brokerage, IRA, and Roth accounts for the
upper-middle-class retiree. The dark lines represent realized trajectories, and the
red line represents the median over all trajectories at each age.
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Figure 13: Average realized taxes with the MPC and benchmark policies for the
upper-middle-class retiree.

5.4 Example: Lower-middle-class male

We now consider a lower-middle-class male retiree, age 65, who begins receiving Social
Security payments of $2,013 monthly at age 70, estimated via [Soc24a] for a person who
makes $50,000 annually prior to retiring. We let the initial account balances be

Binit = 50, I init = 100, Rinit = 0,

in thousands of USD, yielding a total initial balance of $150,000. The target consumption
is set to 3.75% of the initial balance plus projected Social Security payments up to age 85,
giving

ctar = $20,100.

We let γ = 500 in the objective. We take the capital gains tax rate as ξ = 0, as the
lower-middle-class retiree likely is in a very low tax bracket.

Relative consumption and bequest. A few percentiles for the relative consumption
and bequest of the lower-middle-class retiree are shown in table 8. The relative consumption
is almost always one, with a 0.01% risk of going below one. This makes sense as the lower-
middle-class retiree lives off mainly the Social Security payments alone, which he receives
every year from age 70, resulting in a very small risk of being forced to reduce consumption.
The bequest on the other hand is higher for the MPC policy in 68% of the cases with a
median increase of 6%, and in the cases where the bequest is higher, the median increase
is 14%. The relative bequest distribution is also heavier toward the right tail, indicating a
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Percentiles

Min Max 1st 5th 50th 95th 99th

Relative bequest 0.57 3.22 0.70 0.82 1.06 1.47 1.76

Table 8: Relative bequest statistics for the lower-middle-class retiree.

Figure 14: Empirical CDF of the relative bequest for the lower-middle-class retiree.

higher potential for a large bequest. This is further illustrated in the empirical CDF of the
relative bequest in figure 14.

Withdrawals. The realized withdrawals from the brokerage, IRA, and Roth accounts are
shown in figure 15. With the MPC policy the retiree moves the money from the IRA to the
Roth account in the first few years, until a little past age 70, via Roth conversions. From
that point onwards, the retiree makes yearly deposits to the brokerage account (with money
left from the Social Security payments after consumption), and leaves the Roth account
untouched. The benchmark on the other hand, withdraws from the brokerage and IRA
proportionally during the first few years, and after about age 70 makes yearly deposits to
the brokerage account with money left from the Social Security payments and RMDs after
consumption.

The Roth conversions are shown in figure 16. They are equal to the IRA withdrawals
in figure 15. The difference between the Roth withdrawals (which are negative) in figure 15
and the Roth conversions in figure 16 is the consumption.

Finally, the balances of the three accounts are shown in figure 17. With the MPC policy,
the IRA account is reduced to zero a little past age 70, increasing the Roth account balance.
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(a) Brokerage withdrawals, MPC policy. (b) Brokerage withdrawals, benchmark policy.

(c) IRA account withdrawals, MPC policy. (d) IRA account withdrawals, benchmark policy.

(e) Roth account withdrawals, MPC policy. (f) Roth account withdrawals, benchmark policy.

Figure 15: Realized withdrawals from the brokerage, IRA, and Roth accounts for
the lower-middle-class retiree. The dark lines represent realized trajectories, and
the red line represents the median over all trajectories at each age.
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Figure 16: Realized Roth conversions with the MPC policy for the lower-middle-
class retiree. The dark lines represent realized trajectories, and the red line repre-
sents the median over all trajectories at each age.

Once Social Security payments start, the brokerage account starts growing, while the Roth
account remains untouched, growing with investment gains.

Taxes. The average realized taxes each year for the two policies are shown in figure 18. The
MPC policy has higher taxes for the first few years following age 70, when a large portion
of the Roth conversions are made. Other than that the MPC policy pays lower taxes, due
to tax efficient withdrawals.

6 Extensions and variations

Here we describe some extensions and variations of the problem, relaxing some simplifications
of problem (1).

6.1 Model improvements

We first describe a few ways to improve the model in order to make it more accurate.

Taxation of capital gains. Our model approximates capital gains taxation using a con-
stant rate and assumes that retirees receive no benefit from losses. In reality, the capital
gains tax rate varies with taxable income, and capital losses can be deducted against capital
gains or, in some cases, offset against ordinary income up to a specified limit, with any excess
losses carried forward to future years. As a result, the effective tax burden on investment
gains may be lower than our approximation, depending on the retiree’s financial situation.
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(a) Brokerage account balance, MPC policy. (b) Brokerage account balance, benchmark policy.

(c) IRA account balance, MPC policy. (d) IRA account balance, benchmark policy.

(e) Roth account balance, MPC policy. (f) Roth account balance, benchmark policy.

Figure 17: Realized balances of the brokerage, IRA, and Roth accounts for the
lower-middle-class retiree. The dark lines represent realized trajectories, and the
red line represents the median over all trajectories at each age.
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Figure 18: Average realized taxes with the MPC and benchmark policies for the
lower-middle-class retiree.

While this simplification introduces some conservatism, incorporating more precise tax rules
into the model is relatively straightforward.

Five-year rules. There are two key five-year rules: the Roth IRA five-year rule and
the Roth conversion five-year rule. The Roth IRA rule requires that earnings can only be
withdrawn tax-free if the account has been open for at least five years, even after age 59.5. If
the funds are withdrawn before meeting this requirement, the earnings are subject to income
tax and a 10% early withdrawal penalty. The Roth conversion rule requires that converted
funds remain in the Roth account for at least five years to avoid penalties. If withdrawn
before five years, the converted amount is subject to a 10% early withdrawal penalty, but
only for individuals under age 59.5.

We can incorporate these rules into the problem setup as follows. First, to account for
the Roth IRA rule, we add any Roth withdrawal rwt , where t is less than five years after the
Roth account was opened, to the taxable income, and reduce rwt by 10% in the cash balance
equation.

Second, to account for the Roth conversion rule, we introduce two vectors. The Roth
vector R̄t ∈ R5 defines the Roth account balance in each of the five conversion slots, tracking
the balance for each year since the money was converted. We also introduce a Roth with-
drawal vector r̄wt ∈ R5, which contains the Roth withdrawals for each of the five conversion
slots. The total Roth account balance and Roth withdrawal are

Rt = 1T R̄t, rwt = 1T r̄wt .
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The vectors R̄t and r̄wt evolve according to linear dynamic equations.

Employee sponsored accounts. Many retirees have additional accounts, such as a 401(k)
or Roth 401(k), which are very similar to IRAs and Roth IRAs, but have different rules,
mainly higher contribution limits and possible company matching. We can handle this by
adding two accounts in §2. They would have similar constraints to the IRA and Roth
accounts:

• The total deposit to the 401(k) and Roth 401(k) accounts is limited. In 2024, the limit
was $22,500 for individuals under 50, and $30,000 for those aged 50 and above.

• Any deposit to the 401(k) and Roth 401(k) must come from earned income in that
year.

• The 401(k) account is subject to RMDs starting at age 73.

• The Roth 401(k) account is also subject to the five-year rule for qualified distributions.
(Roth 401(k) accounts also used to be subject to RMDs, unlike Roth IRAs, but this
rule was recently repealed.)

We can add additional accounts and the corresponding deposit and withdrawal constraints
to the problem.

MAGI dependency. In addition to the combined contribution limit for both traditional
IRA and Roth IRA accounts, there are income-based restrictions on Roth IRA contributions
for high-income earners. For 2024, an individual must have a modified adjusted gross income
(MAGI) under $146,000 to contribute the full amount to a Roth IRA. The contribution limit
phases out for MAGI between $146,000 and $161,000. Above $161,000, no contribution is
allowed. These limits add a set of linear constraints, depending on the retiree’s MAGI, which
can be estimated from the retiree’s projected income and tax deductions.

There are also income-based restrictions on traditional IRA contributions. For 2024,
if an individual is covered by a workplace retirement plan, they must have a MAGI under
$66,000 to contribute the full amount to a traditional IRA. The contribution limit phases out
for MAGI between $66,000 and $76,000. Above $76,000, no tax-deductible contribution is
allowed, although a non-deductible contribution is still allowed. These IRA limits affect the
taxable income in our problem formulation for individuals who are covered by a workplace
retirement plan.

6.2 Investments

In our numerical experiments we used simple stock/bond portfolios, since these are tradi-
tional and widely used. The few adverse retirement outcomes we see in these simulations
are all due to extreme left-tail events in the stock market. It is straightforward to inten-
tionally construct portfolios with less left-tail risk, by leveraging annuities, treasury inflation
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protected securities (TIPS), collars, or ETFs tracking TIPS or collar protected indexes. The
methodology of this paper still applies to these more sophisticated portfolios, with poten-
tially better results (in terms of worst-case outcomes) since the left-tail risk is reduced. We
present numerical results for a specific case of constructing a more sophisticated investment
portfolio in appendix A.

Stocks/bond split. We could use a different mix of stocks and bonds. For example, we
could reduce the stock exposure to reduce the downside risk. This would reduce the average
bequest, but also improve the worst-case outcomes. An alternative approach is to use age-
adjusted investments. For example, a retiree could begin with an aggressive stock/bond
allocation, such as 80/20, and gradually decrease stock exposure over time. This strategy
offers greater growth potential in the early years while mitigating downside risk as the retiree
gets older. Examples of such age-adjusted investments are Fidelity’s Freedom Funds [Fid25].

Annuities. An annuity is an insurance product that provides a fixed stream payment
(typically not inflation adjusted) over the lifetime of the retiree, starting either at the time
of purchase or at a deferred time. Including annuities in a retirement portfolio can reduce
longevity risk, ensuring that the retiree does not outlive their savings. For example, an
immediate fixed annuity can be purchased using a portion of the retirement savings, which
guarantees a steady income regardless of market performance. Indexed annuities allow the
retiree to participate in some of the upside of market returns, while protecting the downside.

TIPS. TIPS are U.S. government bonds designed to protect investors from inflation risk.
The principal value of TIPS increases with inflation, as measured by the Consumer Price
Index (CPI), ensuring that the purchasing power of the investment is preserved over time. In
the context of retirement planning, incorporating TIPS into a portfolio provides a reliable,
low-risk source of income that adjusts for inflation, which is critical for retirees whose ex-
penses may rise over time. Additionally, ETFs that track TIPS indices can offer liquidity and
diversification benefits while maintaining the inflation protection inherent in the underlying
securities [iSh25].

Collars. A collar is a financial strategy that involves purchasing a protective put option
while selling a covered call option on the same underlying asset. This strategy limits both
the potential downside and upside of the investment. In the context of retirement planning,
collars can be used to stabilize the returns on stock investments, reducing exposure to signif-
icant market downturns. For instance, the retiree could purchase a put option limiting the
downside to -5% annually, say, and finance this by selling a call option for the same price.
This limits both the downside and the upside, and like an indexed annuity can give returns
with fewer extreme values. ETFs tracking collar-protected indexes are also available, making
it easier to gain exposure to collar-protected portfolios [Glo25].
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7 Conclusion

We have presented a convex optimization formulation of the retirement funding planning
problem, aimed at maximizing a retiree’s bequest while delivering a target inflation ad-
justed consumption, accounting for taxes and rules governing the different types of accounts.
Building on this formulation of the planning problem we propose an MPC algorithm that
dynamically optimizes annual withdrawals and account conversions across brokerage, IRA,
and Roth accounts, with careful consideration of tax implications.

Through extensive simulations, we demonstrated that the MPC approach outperforms
traditional withdrawal strategies, such as the 4% rule, in key metrics. Specifically, the MPC
policy delivers comparable consumption, with bequest outcomes that are better in around
70% of the cases, with a median increase around 6%.
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A More sophisticated investment portfolios

In §6.2 we described a few alternative investment portfolios that could be used in the re-
tirement planning problem. Here we describe one of them in more detail, namely the collar
portfolio, and show how the results change when we use this portfolio instead of the simple
stock/bond portfolio.

A.1 Portfolios with collar options

A collar is an option strategy that involves buying a put option and selling a call option
on the same underlying asset, effectively limiting the range of possible returns. The put
option provides downside protection, while the call option limits the upside potential. The
downside is referred to as the “floor” (F ) and the upside as the “cap” (C). We will assume
the investor invests in a collar on the market portfolio, i.e., the S&P 500 index, together
with a bond (the risk-free asset).

Investment portfolio. Just as before, the investor invests in stock/bond portfolios, but
she now purchases a collar on the stock portfolio. (We do not need a collar on the bond
portfolio, as the bond return is approximately known.) We will make the collar self-financing,
meaning that we purchase a put option, limiting the downside, and sell a call option for the
same price, limiting the upside. The collar is self-financing, as the cost of the put option
is offset by the premium received from selling the call option. For simplicity, we price the
options using the Black-Scholes formula [BS73].

Determining floor and cap. We assume the investor wants to hedge her stock/bond
portfolio against poor market returns. She holds a weight w in stocks, and 1− w in bonds.
She wants to ensure that the total inflation adjusted return is at least rmin. This means that
the floor F must satisfy

(1− w)rf + wF − i ≥ rmin, (4)

where rf is the risk-free rate and i is the inflation rate. Since we can not have a self-financing
collar with a floor greater than the risk-free rate, we set the floor as

F = min

{
rmin − (1− w)rf + i

w
, rf

}
. (5)

In words, if we can guarantee a floor greater than the risk-free rate, we do so. Otherwise,
we set the floor to the risk-free rate.

We then sell a call option with a cap C, where C is defined by the call option that has
the same price as the put option with floor F . In summary we find the floor and cap in three
steps.

• Determine the minimum inflation adjusted return the investor is willing to accept, rmin.

• Find the floor F using (5).
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(a) 20/80 stock/bond portfolio. (b) 60/40 stock/bond portfolio.

Figure 19: Histograms of simulated inflation adjusted returns of the simple stock-
/bond portfolios and the collar portfolios.

• The cap C is the strike price of the call option with the same price as the put option
with floor F .

A.2 Experimental setup

We consider the two retiree examples from §5, one upper-middle class and one lower-middle
class. We use the same investment portfolios as before, i.e., a 20/80 stock/bond portfolio
in the brokerage account and a 60/40 stock/bond portfolio in the IRA and Roth accounts,
now with a self-financing collar on the stock portfolio. We set the floor to F = −7.5%.
The parameter values are the same as before, as are the realizations of the market returns,
Treasury rates, and inflation rates. A comparison between the inflation adjusted returns of
the simple stock/bond portfolios and the collar portfolios is shown in figure 19, showing that
the collar portfolios have a narrower range of returns than the simple stock/bond portfolios,
especially for higher risk portfolios. The annual inflation adjusted returns of the three
portfolios are found as the average over 1,000 simulations:

ρB = 1.034, ρI = 1.054, ρR = 1.054.

A.3 Numerical results

Figure 20 shows the empirical CDSs of the bequest under the MPC policy, with and without
a collar, for the two retirees. The collar strategy leads to a more concentrated distribution,
with reduced tail probabilities on both the left and right, compared to a simple stock/bond
portfolio. This suggests that the collar provides some protection against extreme outcomes.
Additionally, consumption remains close to the target level in nearly all realizations when the
collar is used. The benefit of the collar is more pronounced for the upper-middle-class retiree,
where the left tail of the bequest distribution is significantly reduced. For the lower-middle-
class retiree, the effect is smaller, and it is not immediately clear whether the collar strategy
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(a) Upper-middle-class retiree. (b) Lower-middle-class retiree.

Figure 20: Empirical CDFs of the bequest under the MPC policy, with and without
a collar, for the two retirees.

provides a meaningful improvement over a simple stock/bond portfolio. The exact benefit
depends on factors such as the risk level of the underlying portfolio, as well as the floor of
the collar. For more aggressive allocations, say, an 80/20 stock/bond mix in the IRA and
Roth, the risk reduction from the collar is more substantial. More generally, incorporating a
collar provides a mechanism for a risk-averse retiree to mitigate downside risk by giving up
some upside potential.

46


	Introduction
	Related work
	Contributions
	Outline

	Optimal retirement planning
	Savings accounts
	Distributions
	Income, liabilities, and consumption
	Taxes
	Account dynamics
	Objective
	Retirement funding planning problem

	Model predictive control policy
	Expected remaining lifetime
	Updated account values and forecasts
	Cash balance discrepancy
	Simulation
	Evaluating the MPC policy

	Data and forecasts
	Market returns
	Treasury rates and inflation
	Portfolio returns

	Numerical experiments
	Experimental setup
	Benchmark policy
	Example: Upper-middle-class female
	Example: Lower-middle-class male

	Extensions and variations
	Model improvements
	Investments

	Conclusion
	More sophisticated investment portfolios
	Portfolios with collar options
	Experimental setup
	Numerical results


