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Abstract

We consider the all-pairs multicommodity network flow problem on a network with
capacitated edges. The usual treatment keeps track of a separate flow for each source-
destination pair on each edge; we rely on a more efficient formulation in which flows
with the same destination are aggregated, reducing the number of variables by a factor
equal to the size of the network. Problems with hundreds of nodes, with a total number
of variables on the order of a million, can be solved using standard generic interior-
point methods on CPUs; we focus on GPU-compatible algorithms that can solve such
problems much faster, and in addition scale to much larger problems, with up to a
billion variables. Our method relies on the primal-dual hybrid gradient algorithm, and
exploits several specific features of the problem for efficient GPU computation. Nu-
merical experiments show that our primal-dual multicommodity network flow method
accelerates state of the art generic commercial solvers by 100× to 1000×, and scales
to problems that are much larger. We provide an open source implementation of our
method.
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1 Multicommodity network flow optimization

1.1 Multicommodity network flow problem

Our formulation of the multicommodity network flow (MCF) problem, given below, follows
[YDLB19].

Network. We consider a directed network with n nodes and m edges which is completely
connected, i.e., there is a directed path between each pair of nodes. Let A ∈ Rn×m denote
its incidence matrix, i.e.,

Aiℓ =


+1 edge ℓ enters node i
−1 edge ℓ leaves node i
0 otherwise.

Edge ℓ has a positive capacity cℓ. The total flow on edge ℓ (to be defined below) cannot
exceed cℓ.

Traffic matrix. We consider the all-pairs multicommodity flow setting, i.e., there is traffic
that originates at every node, destined for every other node. We characterize the traffic
between all source-destination pairs via the traffic matrix T ∈ Rn×n. For any pair of distinct
nodes i, j, Tij ≥ 0 is the traffic from (source) node j to (destination) node i. There is no
traffic from a node to itself; for mathematical convenience we define the diagonal traffic
matrix entries as Tii = −

∑
j ̸=i Tij, the negative of the total traffic with destination node i.

With this definition of the diagonal entries we have T1 = 0, where 1 is the vector with all
entries one.

Network utility. Let uij denote the strictly concave increasing utility function for traffic
from node j to node i, for j ̸= i. We will assume utility functions are differentiable with
domains R++, the set of positive numbers. (The methods we describe are readily extended
to nondifferentiable utilities using subgradients instead of gradients.) The total utility, which
we wish to maximize, is

∑
i ̸=j uij(Tij). For simplicity we take uii = 0, so we can write the

total utility as

U(T ) =
∑
i,j

uij(Tij).

The domain of U is T = {T | Tij > 0 for i ̸= j}, i.e., the traffic matrix must have positive
off-diagonal entries.

Common examples of utility functions include the weighted log utility u(s) = w log s,
and the weighted power utility u(s) = wsγ, with γ ∈ (0, 1), where w > 0 is the weight.

Destination-based flow matrix. Following [YDLB19] we aggregate all flows with the
same destination, considering it to be one commodity that is conserved at all nodes except
the source and destination, but can be split and combined. The commodity flows are given
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by the (destination-based) flow matrix F ∈ Rn×m, where Fiℓ ≥ 0 denotes the flow on edge ℓ
that is destined to node i. The edge capacity constraint can be expressed as F T1 ≤ c, where
the inequality is elementwise.

Flow conservation. The flow destined for node i is conserved at all nodes j ̸= i, including
the additional injection of traffic Tij that originates at node j and is destined for node i.
This means that

Tij +
∑
ℓ

AjℓFiℓ = 0, i, j = 1, . . . , n, j ̸= i.

At the destination node, all traffic exits and we have (using our definition of Tii)

Tii +
∑
ℓ

AiℓFiℓ = 0, i = 1, . . . , n.

Combining these two, and using our specific definition of Tii, flow conservation can be com-
pactly written in matrix notation as

T + FAT = 0.

Multicommodity flow problem. In the MCF problem we seek a flow matrix that max-
imizes total network utility, subject to the edge capacity and flow conservation constraints.
This can be expressed as the problem

maximize U(T )
subject to F ≥ 0, F T1 ≤ c, T + FAT = 0,

(1)

with variables F and T , and implicit constraint T ∈ T . The problem data are the network
topology A, edge capacities c, and the traffic utility functions uij.

We can eliminate the traffic matrix T using T = −FAT and state the MCF problem in
terms of the variable F alone as

maximize U(−FAT )
subject to F ≥ 0, F T1 ≤ c,

(2)

with variable F , and implicit constraint −FAT ∈ T . The number of scalar variables in this
problem is nm. For future use we define the feasible flow set as

F = {F | F ≥ 0, F T1 ≤ c}.

Existence and uniqueness of solution. The MCF problem (1) always has solution.
To see that it is always feasible, consider a unit flow from each source to each destina-
tion, over the shortest path, i.e., smallest number of edges, which exists since the graph
is completely connected. We denote this flow matrix as F sp. Now take F = αF sp, where
α = 1/maxi((F

spT1)i/ci), so we have F T1 ≤ c. Evidently F is feasible, and we have Tij = α
for i ̸= j. Existence of a solution follows since feasible set is bounded. The solution need
not be unique. The optimal T , however, is unique.
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Solving MCF. The multicommodity flow problem (2) is convex [BV04], and so in principal
can be efficiently solved. In [YDLB19] the authors use standard generic interior-point solvers
such as the commercial solver MOSEK [ApS19], together with CVXPY [DB16], to solve
instances of the problem with tens of nodes, and thousands of variables, in a few seconds
on a CPU. In this paper we introduce an algorithm for solving the MCF problem that fully
exploits GPUs. For small and medium size problems our method gives a substantial speedup
over generic methods; in addition it scales to much larger problems that cannot be solved
by generic methods.

1.2 Optimality condition and residual

Optimality condition. A flow matrix F is optimal for (2) if and only if F ∈ F , −FAT ∈
T , and for all Z ∈ F ,

Tr(Z − F )TG ≥ 0,

where G = ∇F (−U)(−FAT ) (see, e.g., [BV04, §4.2.3]). We have G = U ′A, where U ′
ij =

u′
ij((−FAT )ij).
We can express this optimality condition in terms of projection onto the feasible flow

set. Let Π denote Euclidean projection onto F . The optimality condition can be expressed
in terms of a matrix Q ∈ Rn×m, with F = Π(Q). Evidently F ∈ F . We need to have
−FAT ∈ T for the gradient G to exist. When that holds, the other optimality condition
can be expressed as

G = γ(F −Q)

for some γ ≥ 0.

Optimality residual. For any Q ∈ Rn×m with F = Π(Q), we define the (optimality)
residual as

r(Q) =

{
minγ≥0 ∥G− γ(F −Q)∥2F −FAT ∈ T
∞ otherwise,

where ∥ · ∥2F denotes the squared Frobenius norm of a matrix, i.e., the sum of squares of its
entries. When −FAT ∈ T , the righthand side is a quadratic function of γ, so the minimum
is easily expressed explicitly as

r(Q) =


∥G∥2F − Tr2 GT (F−Q)

∥F−Q∥2F
−FAT ∈ T , F ̸= Q, TrGT (F −Q) ≥ 0

∥G∥2F −FAT ∈ T , F = Q or TrGT (F −Q) < 0
∞ otherwise.

(3)

Evidently F = Π(Q) is optimal if and only if r(Q) = 0.

1.3 Related work

Multicommodity network flow. Historically, different forms of MCF problems have
been formulated and studied. Starting from [FJF58] and [Hu63] which studied a version
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with linear utility functions, which can be formulated as a linear program, later works de-
velop nonlinear convex program formulations [GG95, OM00] and (nonconvex) mixed integer
program formulations [Man12, KS16, Zan05] of MCF problems for different application pur-
poses. These various forms of MCF have been widely used in transportation management
[EMS05, MMPP15, RFZS16], energy and economic sectors [Sin78, GG95, Man12], and net-
work communication [WRP+06, KS16, LHB17]. [SB22] surveys over two hundred studies on
MCF problems between 2000 and 2019. In this work, we focus on nonlinear convex formu-
lation of MCF problems and develop GPU-compatible algorithms for solving large problem
instances. See [OMV00] for a survey on nonlinear convex MCF problems. MCF models have
very recently been exploited to design multi-GPU communication schedules for deep learn-
ing tasks [LAK+24, BZF+24], but the underlying MCF problems are solved with CPU-based
solvers.

First-order methods for convex optimization. First-order methods such as gradient
descent algorithm, proximal point algorithm, primal-dual hybrid gradient algorithm, and
their accelerated versions have been exploited to tackle different forms of convex optimization
problems. Compared to second-order methods which exploit Hessian information, first-order
methods are known for their low computational complexity and are thus attractive for solving
large-scale optimization problems. Recently, primal-dual hybrid gradient algorithm has been
explored for solving large linear programs [ADH+21, LY24, LPY24] and optimal transport
problems [RCLO18] on GPUs. Other first-order methods such as ADMM have been exploited
for designing GPU-accelerated optimizers for optimal power flow problems [DGR24, RBK25].

GPU-accelerated network flow optimization. Specialized to GPU-based optimizers
for network flow optimization, [WZR+18] considers implementing a parallel routing algorithm
on GPUs for SDN networks, which solves the Lagrangian relaxation of a mixed integer linear
program. [KOY+15] implements a genetic method on GPUs for solving an integer linear
program formulation of routing problem. [ZAC23] considers a linear program formulation of
multicommodity network flow problems and constructs a deep learning model for generating
new columns in delayed column generation method. [WHH12] implements an asynchronous
push-relabel algorithm for single commodity maximum network flow problem, which is CPU-
GPU hybrid. [LHQ+24] exploits exactly the same flow aggregation formulation of MCF
following [YDLB19] as we do and trains a neural network model for minimizing unconstrained
Lagrangian relaxation objective, and feeds the result as warm start to Gurobi [Gur24] to get
the final answer.

1.4 Contribution

Motivated by recent advancement of GPU optimizers, in this work we seek to accelerate
large-scale nonlinear convex MCF problem solving with GPUs. Specifically, we adopt the
MCF problem formulation in [YDLB19] (also described above) which is compactly matrix-
represented and requires fewer optimization variables by exploiting flow aggregation. We
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show that this specific problem formulation can be efficiently solved with first-order primal-
dual hybrid gradient method when run on GPUs.

To the best of our knowledge, our work is the first to tackle exactly solving convex MCF
problems on GPUs. Classic works for solving such large-scale MCF problems usually adopt
Lagrangian relaxation for the coupling constraint and solve the resulting subproblems with
smaller sizes in parallel (see, e.g., [OMV00]). In our work, we do not exploit any explicit
problem decomposition strategy and our algorithmic acceleration is mainly empirical and
depends on highly-optimized CUDA kernels for matrix operations. Moreover, we achieve
problem size reduction via flow aggregation. Therefore our method has a simpler form
which does not involve massive subproblem solving and synchronizing, and is also exact.

1.5 Outline

We describe our algorithm in §2. Experimental results, using our PyTorch implementation,
are presented and discussed in §3; very similar results obtained with our JAX implementation
are given in appendix B. We conclude our work in §4. The code, and all data needed to
reproduce the results reported in this paper, can be accessed at

https://github.com/cvxgrp/pdmcf.

2 Primal-dual hybrid gradient

2.1 Primal-dual saddle point formulation

We first derive a primal-dual saddle point formulation of the MCF problem (1). Let I denote
the indicator function of F , i.e., I(F ) = 0 for F ∈ F and I(F ) = ∞ otherwise. We switch
to minimizing −U in (1) to obtain the equivalent problem

minimize −U(T ) + I(F )
subject to T = −FAT ,

(4)

with variables T and F . We introduce a dual variable Y ∈ Rn×n associated with the (matrix)
equality constraint. The Lagrangian is then

L(T, F ;Y ) = −U(T ) + I(F )−TrY T (T + FAT )

(see [BV04, Chap. 5]). The Lagrangian L is convex in the primal variables (T, F ) and affine
(and therefore concave) in the dual variable Y . If (T, F ;Y ) is a saddle point of L, then (T, F )
is a solution to problem (4) (and F is a solution to the MCF problem (2)); the converse also
holds.

We can analytically minimize L over T to obtain the reduced Lagrangian

L̂(F ;Y ) = inf
T

L(T, F ;Y ) = −(−U)∗(Y ) + I(F )−TrY TFAT , (5)
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where U∗ is the conjugate function of U [BV04, §3.3]. This reduced Lagrangian is convex
in the primal variable F and concave in the dual variable Y . If (F ;Y ) is a saddle point of
L̂, then F is a solution to the MCF problem (2) (see [MP18, § 1]). We observe that L̂ is
convex-concave, with a bilinear coupling term.

2.2 Basic PDHG method

The primal-dual hybrid gradient (PDHG) algorithm, as first introduced in [ZC08] and later
studied in [CP11, CP15], is a first-order method for finding a saddle point of a convex-concave
function with bilinear coupling term. The algorithm was extended to include over-relaxation
in [CP15, §4.1], which has been observed to improve convergence in practice. For (5), PDHG
has the form

F̂ k+1/2 = proxαI(F
k−1/2 + αY kA)

F k+1 = 2F̂ k+1/2 − F k−1/2

Ŷ k+1 = proxβ(−U)∗(Y
k − βF k+1AT )

F k+1/2 = ρF̂ k+1/2 + (1− ρ)F k−1/2

Y k+1 = ρŶ k+1 + (1− ρ)Y k

(6)

where proxf (v) = argminx(f(x)+(1/2)∥x−v∥22) denotes the proximal operator of f [PB14],
α, β > 0 are positive step sizes satisfying αβ ≤ 1/∥A∥22, and ρ ∈ (0, 2) is the over-relaxation
parameter.

Reasonable choices for the parameters are

α = β = 1/∥A∥2, ρ = 1.9.

(An upper bound on ∥A∥2 can be used in place of ∥A∥2.)

Convergence. In [CP15] it has been shown that when there exists a saddle point of L̂,
(F k;Y k) converges to a saddle point of L̂ as k → ∞. For MCF the existence of an optimal
flow matrix and dual variable is known, so F k converges to an optimal flow matrix. It follows
that r(F k−1/2 + αY kA) → 0 as k → ∞. We note that −FAT ∈ T only holds eventually.

2.3 Proximal operators

Here we take a closer look at the two proximal operators appearing in PDHG.

First proximal operator. We note that proxαI appearing in the F̂ k+1/2 update of (6)
is projection onto F ,

proxαI(F ) = Π(F ).

Since the constraints that define F separate across the columns of F , we can compute Π(F )
by projecting each column fℓ of F onto the scaled simplex Sℓ = {f | f ≥ 0, 1Tf ≤ cℓ}. This
projection has the form

ΠSℓ
(fℓ) = (fℓ − µℓ1)+,
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where µℓ is the optimal Lagrange multiplier and (a)+ = max{a, 0}, which is applied element-
wise to a vector. The optimal µℓ is the smallest nonnegative value for which (fℓ−µℓ1)

T
+1 ≤ cℓ.

This is readily found by a bisection algorithm; see §2.6.

Second proximal operator. The proximal operator appearing in the Ŷ k+1 update step in
(6) can be decomposed entrywise, since β(−U)∗ is a sum of functions of different variables.
(The diagonal entries −uii are zero, so (−βuii)

∗ is the indicator function of {0}, and its
proximal operator is the zero function.) For each off-diagonal entry i ̸= j we need to
evaluate

proxβ(−uij)∗(y).

These one-dimensional proximal operators are readily computed in the general case. For
the weighted log utility u(s) = w log s, we have

proxβ(−u)∗(y) =
y −

√
y2 + 4βw

2
.

For the weighted power utility u(s) = wsγ, proxβ(−u)∗(y) is the unique negative number z
for which

(−z)c1+2 + y(−z)c1+1 − c1c2 = 0,

where

c1 =
γ

1− γ
> 0, c2 = β

(
1

γ
− 1

)
(wγ)

1
1−γ > 0.

2.4 Adaptive step sizes

In the basic PDHG algorithm (6), the step sizes α and β are fixed. It has been observed
that varying them adaptively as the algorithm runs can improve practical convergence sub-
stantially [ADH+21]. We describe our implementation of adaptive step sizes here.

We express the step sizes as

αk = η/ωk, βk = ηωk,

where η ≤ 1/∥A∥2 and ωk > 0 gives the primal weight. With ωk = 1 we obtain basic PDHG
(6).

The primal weight ωk is initialized as ω0 = 1 and adapted following [ADH+21, §3.3] as

ωk+1 =

(
∆k+1

Y

∆k+1
F

)θ (
ωk

)1−θ
, (7)

where ∆k+1
F = ∥F k+1/2 − F k−1/2∥F , ∆k+1

Y = ∥Y k+1 − Y k∥F and θ is a parameter fixed as
0.5 in our implementation. The intuition behind the primal weight update (7) is to balance
the primal and dual residuals; see [ADH+21, §3.3] for details. In [ADH+21] the authors
update ω each restart. We do not use restarts, and have found that updating ωk every kadapt
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iterations, when both ∆k
F > 10−5 and ∆k

Y > 10−5 hold, works well in practice for MCF. In
our experiments we use kadapt = 100. We can also stop adapting ωk after some number of
iterations, keeping it constant in future iterations. At least technically this implies that the
convergence proof for constant ω holds for the adaptive algorithm.

A simple bound on ∥A∥2. We can readily compute a simple upper bound on

∥A∥2 =
√

λmax(AAT ),

where λmax denotes the maximum eigenvalue. We observe that AAT is the Laplacian matrix
associated with the network, for which the well-known bound

λmax(AA
T ) ≤ 2dmax

holds, where dmax is the largest node degree in the graph. (For completeness we derive this
in appendix A.) Thus we can take

η = 1/
√

2dmax. (8)

2.5 Algorithm

We summarize our final algorithm, which we call PDMCF. We set r0 = +∞, α0 = η/ω0,
and β0 = ηω0, where η is given in (8) and ω0 = 1.

Algorithm 2.1 PDMCF

given F−1/2, Y 0, parameter ϵ > 0.

for k = 0, 1, . . .

1. Check stopping criterion. Quit and return F̂ k−1/2 if rk < nmϵ holds.
2. Basic PDHG updates (6).

F̂ k+1/2 = Π(F k−1/2 + αkY kA).

F k+1 = 2F̂ k+1/2 − F k−1/2.

Ŷ k+1
ij =

{
proxβk(−uij)∗(Y

k
ij − βk(F k+1AT )ij) j ̸= i

0 j = i.

F k+1/2 = ρF̂ k+1/2 + (1− ρ)F k−1/2.

Y k+1 = ρŶ k+1 + (1− ρ)Y k.

3. Adaptive step size updates (7) (if k is multiple of kadapt and ∆k+1
F ,∆k+1

Y > τ).

ωk+1 =
(
∆k+1

Y /∆k+1
F

)θ (
ωk

)1−θ
.

αk+1 = η/ωk+1, βk+1 = ηωk+1.

Initialization. We always take F−1/2 = 0 and Y 0 = I − 11T . We can alternatively use a
better guess of F−1/2 and Y , for example in a warm start, when we have already solved a
problem with similar data. We illustrate more on this in §3.1.
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Stopping criterion. Since F̂ k+1/2 is result of projection onto F , our optimality residual
(3) has the form

rk+1 = r(F k−1/2 + αkY kA).

We consider the stopping criterion rk < nmϵ, i.e., the entrywise normalized residual rk/nm
is smaller than a user-specified threshold ϵ.

2.6 Implementation details

Incidence matrix indexing. We only store the indices of the non-zero entries of A.
Matrix multiplication with A and AT can be efficiently computed by exploiting scatter and
gather functions, which are highly optimized CUDA kernels and are available in most major
GPU computing languages.

Projection onto scaled simplex. To compute µℓ when (fℓ)
T
+1 > cℓ, we follow [HWC74]

and first sort fℓ from largest entry to smallest entry to form f ′
ℓ. We then find the largest

index t such that f ′
ℓt − ((

∑t
i=1 f

′
ℓi − cℓ)/t) > 0. Finally we take µℓ = (

∑t
i=1 f

′
ℓi − cℓ)/t.

3 Experiments

We run all our experiments on a single H100 GPU with 80 Gb of memory supported by
26 virtual CPU cores and 241 Gb of RAM. The results given below are for our PyTorch
implementation; similar results, reported in appendix B, are obtained with our JAX imple-
mentation.

3.1 Examples

Data and parameters. We consider weighted log utilities of form uij(Tij) = wij log Tij.
We take logwij to be uniform on [log 0.3, log 3]. For network topology, we first create n
two-dimensional data points ξi ∈ R2, each denoted by (ξix, ξiy) for i = 1, . . . , n. We take
ξix and ξiy uniform on [0, 1]. Then we add both edges (ξi, ξj) and (ξj, ξi) when either ξi is
among the q-nearest neighbors of ξj or vice versa. For each edge ℓ, we impose edge capacity
cℓ where we take log cℓ to be uniform on [log 0.5, log 5].

We use stopping criterion threshold ϵ = 0.01/(n(n−1)) for small to medium size problems
and ϵ = 0.03/(n(n−1)) for large size problems. We compare to CPU-based commercial solver
MOSEK, with default settings. MOSEK is able to solve the problems to high accuracy; we
have checked that for all problem instances, the normalized utility differences between results
of PDMCF and MOSEK are no more than around 0.01. The pairwise normalized (optimal)
utilities range between around 1 and 10, which means that PDMCF finds flows that are
between 0.1% and 1% suboptimal compared to the flows found by MOSEK.
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problem sizes timing (s)
iterations

n q m nm MOSEK PDMCF (CPU) PDMCF (GPU)
100 10 1178 1× 105 5 1 0.5 490
200 10 2316 5× 105 23 2 0.7 690
300 10 3472 1× 106 95 6 0.8 840
500 10 5738 3× 106 340 18 1.1 950
500 20 11176 6× 106 1977 34 1.4 790
1000 10 11424 1× 107 2889 1382 19.5 7220
1000 20 22286 2× 107 16765 349 5.1 1040

Table 1: Runtime table for small and medium size problems.

problem sizes timing (s)
iterations

n q m nm MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1× 108 OOM 7056 96 4140
5000 10 57338 3× 108 OOM 19152 395 3970
10000 10 114054 1× 109 OOM 87490 1908 4380

Table 2: Runtime table for large size problems.

Small to medium size problems. Table 1 shows runtime for both MOSEK and PDMCF
required to solve problem instances of various sizes. The column titled nm gives the number
of scalar optimization variables in the problem instance. We see that our implementation of
PDMCF on a GPU gives a speedup over MOSEK of 10× to 1000×, with more significant
speedup for larger problem instances. We also report runtime for PDMCF when run on
CPU, which is still quicker than MOSEK but with a significantly lower speedup. Similar
performance is also observed for our JAX implementation, reported in appendix B.

Large size problems. Table 2 shows runtime for several large problem instances. MOSEK
fails to solve all these problems due to memory limitations. PDMCF handles all these
problem instances, with the largest one involving 109 variables.

Scaling. We scatter plot the runtime data for small and medium problem instances in figure
1. Here we take 5 problem instances generated by iterating over random seeds {0, 1, 2, 3, 4}
for the different n, q values listed in table 1. The x-axis represents optimization variable size
nm and the y-axis represents runtime in seconds. We plot on a log-log scale. The lines show
the affine function fits to these data, with a slope around 1.5 for MOSEK and around 0.5
for PDMCF.

Convergence plot. Figure 2 shows the convergence for three problem instances with
variable sizes 105, 106, and 107 with PDMCF, where the x-axis represents iteration numbers.
Especially in the initial iterations we have infinite residual rk since −FAT ̸∈ T . For those
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Figure 1: Runtime plot for small and medium size problems.

Figure 2: Convergence plot for small and medium size problems.

iterations we plot the fraction of nonpositive off-diagonal entries of T in blue. For feasible
iterates we plot the (finite) residual, in red.

Warm start. In §2.5 we start with some simple initial F−1/2 and Y 0. We also test per-
formance of PDMCF with warm starts. In figure 3 we present how runtime changes under
different warm starts. To form these warm starts, for some perturbation ratio ν, we ran-
domly perturb entries of our utility weight matrix to derive w̃ij = (1 ± ν)wij, each with
probability a half. We solve the multicommodity network flow problem with perturbed
utility weight w̃ with PDMCF until we land at a feasible point (F feas, Y feas) satisfying
(−F feasAT )ij > 0 for all distinct i, j. We record the primal weight at this point as ωfeas.
We then solve the desired multicommodity network flow problem with original utility weight
w with F−1/2 = F feas, Y 0 = Y feas and ω0 = ωfeas. We note that setting ω0 = ωfeas is impor-
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Figure 3: Warm start plot for medium size problem.

tant for accelerated convergence, otherwise it usually requires similar number of iterations
to converge as cold start if we simply set ω0 = 1. In figure 3, we take problem instance with
n = 1000, q = 10. x-axis stands for perturbation ratio ν and y-axis represents runtime in
seconds. As can be observed, with perturbation ratio ν = 10%, we harness > 80% saving
of runtime. Such savings keep decreasing to around 30% when ν = 30%, which makes sense
given that larger perturbation indicates more different utility weights between original prob-
lem and perturbed problem, thus our warm start is expected to stay further from optimal
solution to the original problem instance.

4 Conclusion

In this work, we present PDMCF algorithm which accelerates solving multicommodity net-
work flow problems on GPUs. Our method starts with a destination-based formulation
of multicommodity network flow problems which reduces optimization variable amount
compared to classic problem formulation. We then apply PDHG algorithm to solve this
destination-based problem formulation. Empirical results verify that our algorithm is GPU-
friendly and brings up to three orders of magnitude of runtime acceleration compared to
classic CPU-based commercial solvers. Moreover, our algorithm is able to solve ten times
larger problems than those can be solved by commercial CPU-based solvers.
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A Upper bound on λmax(AA
T )

For a directed graph with incidence matrix A, di = (AAT )ii is the degree of node i and for
i ̸= j, −(AAT )ij is the number of edges connecting node i and node j, i.e., 2 if both edges

(i, j) and (j, i) exist. Note that λmax(AA
T ) = max∥x∥2=1 x

T (AAT )x = maxx ̸=0
xT (AAT )x

xT x
. We
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Therefore λmax(AA
T ) = maxx ̸=0

xT (AAT )x
xT x

≤ 2dmax.

B JAX results

The results shown in §3.1 are for our PyTorch implementation. Here we provide the same
results for our JAX implementation. Tables 3 and 4 show the runtimes on the same problem
instances as reported in tables 1 and 2. We note that JAX’s just-in-time (JIT) compilation
adds runtime overhead for first-time function compilation and thus it does worse than its
PyTorch counterpart on small size problems. The runtimes of these two versions are close
for medium and large size problems, with JAX slightly slower.

problem sizes timing (s)
iterations

n q m nm MOSEK PDMCF (CPU) PDMCF (GPU)
100 10 1178 1× 105 5 12 5 490
200 10 2316 5× 105 23 57 6 690
300 10 3472 1× 106 95 164 6 840
500 10 5738 3× 106 340 548 7 950
500 20 11176 6× 106 1977 890 8 790
1000 10 11424 1× 107 2889 18554 26 7150
1000 20 22286 2× 107 16765 5143 15 1040

Table 3: Runtime table for small and medium size problems (JAX).
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problem sizes timing (s)
iterations

n q m nm MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1× 108 OOM 106274 139 4140
5000 10 57338 3× 108 OOM 382400 421 3970
10000 10 114054 1× 109 OOM 2078 4380

Table 4: Runtime table for large size problems (JAX).
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