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Abstract

We consider the problem of choosing prices of a set of products so as to maximize
profit, taking into account self-elasticity and cross-elasticity, subject to constraints on
the prices. We show that this problem can be formulated as maximizing the sum of a
convex and concave function. We compare three methods for finding a locally optimal
approximate solution. The first is based on the convex-concave procedure, and involves
solving a short sequence of convex problems. Another one uses a custom minorize-
maximize method, and involves solving a sequence of quadratic programs. The final
method is to use a general purpose nonlinear programming method. In numerical
examples all three converge reliably to the same local maximum, independent of the
starting prices, leading us to believe that the prices found are likely globally optimal.
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1 Introduction

1.1 Optimal pricing

Already in the mid 19th century, researchers studied the relationship between price and
demand for a product, and how to balance marginal revenue and marginal cost (implying
profit-maximizing prices). In the 1863 book [Cou63], the producer decides on the production
quantity, and the price of the product is determined by the market, as a function of quantity.
In early work from the 1930s, instead, the decision variable is the price itself, and price elas-
ticity of the demand, the marginal change of demand due to marginal change in price, is used
to derive the so-called Lerner markup rule [Ler34]. Also in the 1930s, cross-price substitution
was first studied [AH34], which laid the foundation for pricing portfolios of products, with
product substitutes (where one product may replace another) and complements (where one
product is typically sold along with another). Later in the 1950s, this concept was extended
to the case where a break-even constraint is imposed [Boi56], and numerical optimization
methods including linear and quadratic programming were mentioned in the context of pric-
ing [Samb52, Uzab8, Hou60]. It took until the 1990s when frameworks for optimal pricing
subject to generic constraints (e.g., on production capacity, inventory, etc.) were widely
established [GVR94, Wil93, 1.T93, §4]. Work from this century has focused on dynamic
and personalized pricing [BZ09, FLSL16, BK21] and the use of modern machine learning
techniques to improve the demand models used for pricing [HLLBT17, DOBM24|. Further,
research from the past two decades has addressed several specialized settings, including joint
optimization of prices and production plans in manufacturing [DY06, UU13, BFS16], and op-
timizing the prices of perishable products, where the demand is a function of price, freshness
of the products, and other factors [LYW16, HK17, Dye20, MM23].

There is related work on the theory of multi-product pricing [AV18], which focuses on
economic models, but not on numerical optimization methods for choosing prices subject
to constraints, as we do. For example, it is common to model demand as the maximizer
of the expenditure-adjusted or expenditure-constrained utility of purchasing a portfolio of
products, which is sometimes referred to as Marshallian demand [AV18, MCWG95, §3.D].
A closely related concept is Hicksian demand, which minimizes the total expenditure when
purchasing a portfolio of products, subject to a minimum utility [LP09]. Further, multi-
product pricing is studied in the context of monopolies [Oi71, BM82, AJPT16], and Cournot
oligopolies, where a few firms control a market and maximize their respective profits in a
game-theoretic sense [Viv99, JM06, NS18]. In this paper, however, we take a simple model
of demand, based on an elasticity matrix or Slutsky substitution matrix, as described in,
e.g., [IMCWGO95, §2.F].

1.2 Our contribution

Optimal pricing problems are nonlinear optimization problems. These can be solved, in
the weak sense of possibly finding a locally optimal point, i.e., a feasible point with better
objective than nearby points, using generic nonlinear programming methods [LN89, NW06,



WBO06]. In contrast, convezr optimization problems can be reliably and efficiently solved, in
the strong sense of always finding a point that is feasible and has optimal objective value
[BV04]. While many practical problems are convex, many others, including the optimal
pricing problem, are not. We will see that the optimal pricing problem can be expressed
as an optimization problem that is, roughly speaking, close to convex, which means that
methods that exploit this structure can be used to solve it. While this solution is still in the
weak sense, we at least get the reliability advantages of convex optimization.

We explore two methods for solving the optimal pricing problem that rely on convex
optimization. One method is minorization mazimization (MM) [SBP16], where in each
iteration the non-concave profit function is under-approximated, i.e., minorized, by a concave
function, which yields a convex optimization problem that can be effectively solved. The
other method is a special case of MM, the convex-concave procedure (CCP), where the
minorization is obtained by linearizing the convex terms in the objective [LB16, SDGB16].
Numerical experiments show that these methods work well, in the sense of reliably finding
locally optimal prices even for problems with thousands of products.

In our numerical experiments we find that the two methods proposed, and a generic non-
linear programming solver, always converge to the same prices, independent of initialization.
This suggests that the prices found by these methods may be global, i.e., the ones that truly
give the highest profit subject to the pricing constraints. But we have not shown this.

Code and data to reproduce the results of this paper, as well as to solve general optimal
pricing problems, is available at

https://github.com/cvxgrp/optimal-pricing.

1.3 Outline

In §2 we introduce a generic product pricing problem (PPP) for maximizing profit generated
by selling multiple products, subject to general convex constraints. In §3, we give concrete,
practical examples for such constraints, before we describe three solution methods for the
PPP in §4. In §5 we assess the convergence properties and numerical performance of the
three solution methods on numerical examples.

2 Optimal pricing

2.1 Prices

We are to choose positive prices py, ..., p, for n different products or services. Each product
has a positive nominal price pf°™, which is typically the price at which the product (or a

similar reference product) has been sold in the past. We denote by

nom nom

m; = log(pi/pi°™) = logp; — logpi®™, i=1,...,n,

the (logarithmic) fractional price change with respect to the nominal price. For example,
if m; = 0, the price of product ¢ is the nominal price. If m; = —0.2, the product price is a
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factor exp(—0.2) =~ 0.819 compared to the nominal price, i.e., 18.1% lower. We let m € R"
denote the vector of price changes. Our goal is to choose the prices, or equivalently, the price
change vector .

Price constraints. We are given a set of constraints that the prices must satisfy, which
we express in terms of the price changes as m € P, where P C R" is the set of allowed price
changes. At the very least this will include lower and upper limits on the price changes. It
can also specify relationships among the prices, such as that one product price must be at
least 10% higher than another. We will describe many other constraints later, in §3.

We will assume that P is polyhedral, i.e., is described by a set of linear equality and
inequality constraints, as

P={n|Ar=0b, Fr < g},

where A € R¥™, b € RF, F € R, and ¢ € R\, We assume that P is nonempty and
bounded.

2.2 Demand

We denote the (positive) demand for the ith product as d;. Each product has a positive
nominal demand d}°™, which is the demand for product ¢ at its nominal price p°™. We
denote by

0; =log(d;/d}°™) =logd; — logd}°™, 1=1,...,n,

the (logarithmic) fractional demand change, with respect to the nominal demand. We let
d € R" denote the vector of demand changes. (It follows that the revenue for product i is
pid;, and the nominal revenue for product i is pP°™d} ™, denoted by r°™.)

Price elasticity of the demand. We model the price elasticity of the demand as in
[IMCWG95, §2.F],
0 = Em, (1)

where F € R"™" is the elasticity matriz, also referred to as the Slutsky substitution matriz.
The entry £;; is the elasticity of the demand for product ¢ with respect to the price of product
j. When ¢ = j, this is called a self-elasticity. When 7 # j, this is called a cross-elasticity.
This model is basically the linearization of ¢ as a function of 7, around 7 = 0 (i.e., nominal
prices) [Per09, Varl4].

We make no assumptions about the elasticity matrix, but we mention here some typical
attributes; see, e.g., [Var92, MCWG95] for more on elasticity matrices. In almost all practical
cases, the self-elasticities F;; are negative, which means that an increase in price results in
a decrease in demand for that product. Cross-elasticities can be positive or negative. For
example, when products ¢ and j are substitutes for each other, £;; and E;; will be positive,
as a higher price of one will result in higher demand for the other product (which will be
bought as a substitute). When two products are complements (e.g., printer and ink), then
their cross-elasticity will be negative. Using the example of printer and ink, increasing the



price for ink will decrease the demand for ink, as well as the demand for printers. While the
order of magnitude of the self-elasticities is typically —1, the cross-elasticities are typically
smaller in magnitude. The elasticity matrix is typically sparse, e.g., block diagonal, with
the blocks representing similar or related products.

Utility-based demand. We mention here a different but related demand model, based
on a utility function. A utility-based demand model has the form

4 = D(p) = argmax(U(d) — p"d). 2)
d
where U : R} — R is a strictly concave and increasing utility function; see, e.g., [AV18].
This means that the demand maximizes the utility of purchasing a portfolio of products,
minus the total expenditure.
The utility-based demand (2) does not in general have the form (1), but we can form a
local approximation that does. We first form the first order Taylor approximation of D at
the nominal price and demand, to obtain

d ~ dHOm + DD(pHOm)(p pHOIH>

where DD is the derivative of D, which can be shown to have the form

nom nom -1
DD(p™™) = (V*U@™™))
assuming U is twice differentiable. From this we obtain the first order elasticity approxima-
tion 6 ~ F"lr with

Eutil — diag(dnom)—l (V2U(pnom)) dlag( nom)

where we use the ﬁrst order approximations d; ~ (d; —d™)/dy°™ and m; ~ (p; — pi°™)/pio™.
Since (V2U (p™™)) " is symmetric and negative definite, it follows that if the elasticity matrix
E comes from linearization of a utility-based demand model, then diag(r"*™)E, i.e., E with
its rows scaled by the nominal revenues, is symmetric and negative definite. This implies,
for example, that F; < 0.

Here we are simply observing that if the elasticity matrix comes from a utility-based
demand, then it has this specific form; in the sequel, however, we make no assumptions
about the structure of E.

2.3 Profit

The revenue for product i is d;p;; the total revenue is > | d;p;. Let ¢; be the (positive) cost
to provide or produce one unit of product 7, so the cost of providing product i is d;c;. The
profit for product 7 is d;(p; — ¢;), and the total profit is

P = Zd i — Ci).



We can express P in terms of the fractional values as

n
nom _J; /,.nom _T;
P:E d;ome’ (plome™ — ¢;).
1=1

We denote nominal revenue by 7/°™ = d°"p*™ and cost for providing product ¢ at nominal

demand by k™ = d*™¢;. Together with the demand model (1), the profit is

7
n
o nom  0;+m; nom _9J;
P = E (ri e’ — Ky el).
=1

This is readily interpreted. When increasing the price for the ith product, i.e., m; > 0, we
observe two effects. First, revenue changes by the factor exp(d; +m;), where the price increase
enters via 9; in terms of changed demand, and additionally via 7;, as each unit of product ¢
is sold at the increased price. The second effect we observe is that the total cost for product
i changes by the factor exp(d;).

2.4 Optimal pricing problem

Our goal is to choose the prices, subject to the constraints, so as to maximize profit. This
can be expressed as the product pricing problem (PPP)

maximize P
subject to w € P,

with variable 7. It can be written explicitly as

maximize Y ., (r?omeéﬁm — phom e5i)

subject to 0 = Ew, Am=0b, Fn <y, (3)

with variables m and 6. The data for the PPP are the vectors of nominal revenue and cost
rhom koM. the elasticity matrix F; and the matrices and vectors A, b, F', g, which define
the price constraints.

PPP is not a convex optimization problem, since the objective is not concave [BV04]. It
can, however, be effectively solved using several methods that rely on convex optimization,
as described in §4.

Independent prices and demands. When E is diagonal, i.e., all cross-elasticities are
zero, and the set of allowable prices is a set of lower and upper limits on the individual price
changes, P = {7 | 7™® < 7 < 72X} the PPP is readily solved analytically, by maximizing
the profit associated with each product separately. When E;; < —1, the solution is

Khom E.. .
* 1 1 1 (&2 min max
; Clp(Og (T?OmEZ‘i—}-l)’ﬂ-l y T )7




where
I <l

clip(z,l,bu)=¢ =z [ <z<u
u T > u.

When FE;; > —1, the solution is 7} = m;"%*.

3 Price constraints

In this section we briefly describe some practical constraints that can be imposed on the
prices, by incorporating them into P. They can be combined with one another, and with
other polyhedral constraints, and assembled into P.

3.1 Simple constraints

Price limits. We can impose price limits, of the form

p;ningpigp;nm{? 7;:17"'7”7

where p™™ and p"® are given limits. (A minimum price also sets a minimum profit, or if
negative, a maximum loss, for each product.) We express these in terms of the price changes

as

max

min max .
m<m<mo, 1=1...,n,

where 7" = log(pmin /ppom X

pom) - and similarly for /"%, Limits on price changes can also be
used to specify a maximum change in price from nominal. For example, to restrict prices to
be within +£20% of nominal, we take 7" = log(0.8) and 7["* = log(1.2) for i = 1,...,n.
Demand limits. We can also put limits on (predicted) demand, as

SN LS < i =1,...,n.

This can be done for several reasons. We might limit the predicted demand changes to not
exceed 20%, using 6" = log(0.8) and 6™ = log(1.2), because we do not trust the demand
model when it predicts larger demand changes. It can also be used to limit demand to not
exceed our capacity to provide the product, or some fraction of the total available market.

Partial pricing. To determine the prices of only a subset of products, we simply impose
m; = 0 when the product ¢ is not to be changed. Here the PPP still takes into account the
change in demand for such products, induced by the changes in price of other products.

Inter-price inequalities. We can impose inequality relations between prices, such as the
price of product ¢ must be at least 10% higher than the price of product j, as

m — m; > log(1.1) + log(p}™™ /pi°™).
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3.2 Pricing policy

The constraints described above directly constrain the price changes. Here we describe
another setting where there are constraints among the price changes, induced by imposing a
pricing policy, which is a simple formula that determines the price of each product based on
some attributes of a product. Attributes can be Boolean, categorical, ordinal, or numerical.
We illustrate this with the example of a hiking jacket. A Boolean attribute could be whether
it is waterproof or not. A categorical attribute could be the color of the jacket. An ordinal
attribute might be the thermal protection, with more protection deemed higher. A numerical
attribute might be the weight of the jacket (measured in grams), or its size. We denote the
attributes for product 7 as a; € A.

We will consider a simple additive form of a pricing policy, based on the values of m
attributes of a product, given by

mzzej@(aij), L= 1,...,n, (4)

j=1
where a;; is the value of attribute j for product i, and 6 = (64,...,0,,) is a vector of
parameters that specify the policy. The functions ¢4, ..., ¢,, map the attributes to numerical

values. We denote the set of allowable parameters as € ©, with © polyhedral. In the
context of machine learning, a prediction which is a sum of functions of a set of features
or attributes is called a generalized additive model (GAM) [HT86, Has17]. So we call the
pricing policy (4) a generalized additive pricing policy.

The constraint that we follow a pricing policy can be directly written as

™ =C0, 0 e 0o,

where 6 is an additional variable to be determined. Together with the demand model § = E,
we can write 6 = FE(C0, giving rise to the following interpretation. As E gives the price
elasticity of the demand, EC' gives the parameter elasticity of the demand (with respect to
the parameters in the affine pricing policy).

Affine policy. Perhaps the simplest policy uses ¢;(u) = u, and we take one attribute to be
the constant one. The policy has the simple form 7; = #7a;. We interpret 6; as the amount
by which we fractionally increase the price for one unit of increase in attribute j. For small

price changes, we have m; = log(p;/pi°™) ~ p;/pi°™ — 1, and we can interpret the model as

pi/p?om ~ 1+ QTai.

Such pricing policies are sometimes referred to as hedonic [SMZ05], as the price is broken
down into the individual values of the constituent characteristics or attributes of the product.



Value-based policy. When ¢;(u) = log(u), then the pricing policy can be interpreted as
nom __ 0;
pi/pi =[] o,
=1

Here, the parameters 0; are elasticities of prices with respect to product attributes. This
model is analogous to the Cobb-Douglas production function [ZKD66], and can be inter-
preted as the value that can be created from a product. Therefore, we might call this a
value-based pricing policy.

Cost-based policy. Here is an interesting special case, where m = 2. Suppose we have
a;; = pi°™/c; (the nominal markup factor) with ¢1(u) = —log(u) and #; = 1 imposed by ©.
Also, suppose that ¢o(u) = 1. Then, m; = —log(a;1) + 02 and the resulting markup factor is

pi/ci:ee?

We call this a cost-based pricing policy [GA18]. Clearly, there are simpler ways to represent
such a policy, but we use this to demonstrate the expressiveness of equation (4).

4 Solution methods

We present three methods for effectively solving the non-convex problem (3). The first two
methods exploit the fact that the objective function is a sum of convex and concave expo-
nentials. These methods linearize the convex exponentials to make the objective concave,
and solve the modified (convex) problem repeatedly. We can also approximate the concave
exponentials by quadratic functions, in which case the problem solved in each iteration is a
quadratic program (QP), for which specialized solvers have been developed [SBGT20]. We
call this method quadratic minorization-maximization. The third method views the problem
as a general nonlinear programming problem, which can be (approximately) solved using
generic techniques [LN89, NW06, WB06].

4.1 Convex-concave procedure

Problem (3) is a so-called difference of convex program, since the objective is a difference
of convex functions [LB16] (in this case convex exponentials). We can solve it with the
convex-concave procedure (CCP) [LB16, SDGB16].
First, we initialize # = 6 = 0, corresponding to no price changes. Then, we linearize the
convex revenue terms in the objective of (3), and solve the convex problem
maximize Z?:l(r?omesﬁﬁi(éi + ;) — KIOmed)

subject to 6 = Ew, Am=0b, Fr <y,

(5)

where we have dropped constant terms from the objective. We assign 7* and 0* from the
solution of (5) to 7 and 9, respectively, re-solve (5), and repeat until the profit converges.
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The profit increases in each iteration, and so converges. We cannot in general claim that
it converges to the global maximum of the PPP, but we suspect that in practical cases it
almost always does.

The convex problem (5) can be solved using a generic method for convex optimization,
or by expressing the problem as a cone program, using the exponential cone [GC24].

Specification using DCP. It is particularly useful to pose problem (5) using disciplined
convex programming (DCP). The DCP rules allow the user to model convex optimization
problems with instructions that are very close to the mathematical problem description
[AVDB18]. The modeling language CVXPY [DB16] uses DCP to verify convexity and to
translate the problem to a form accepted by standard convex optimization solvers. With
DCP, the code that declares the problem is human-readable and it is easy to modify the
problem, e.g., to add constraints. We give an example in §5.

4.2 Quadratic minorization-maximization

In minorization-maximization (MM) [SBP16], a minorizer to the objective is maximized at
each iteration. The minorized objective increases each iteration, and so the actual objective
does as well. It follows that the objective increases each iteration and therefore converges.
The previously described CCP is a special case of MM, where the minorizer is obtained by
linearizing the convex part of the objective.

In addition to linearizing the convex part of the objective, we can also approximate
the concave exponentials by concave quadratics, to obtain a concave approximation of the
objective that is a minorizer of the actual objective. We call this quadratic minorization-
majorization (QMM). With this method the problems solved each iteration are QPs, for
which specialized solvers have been developed [SBGT20].

Quadratic minorizer. With prices bounded as 7™ < 7 < 7™ we deduce that the
demand is bounded as

5 < gmax (E)+7Tmax o (E)_,]Tmin’

where () = max{z,0} and (z)_ = max{—=x,0} (elementwise). With that, we can construct
a minorizer to —exp(d;), or, equivalently, a majorizer to exp(d;). We take the second-order
Taylor approximation of exp(d;) around §; = ¢d;, and scale the quadratic term by 23; > 0 as

We require this to be a majorizer to exp(¢;) with smallest possible f3;, to minimize approxi-
mation error. In other words, we require exp(d;) and its quadratic majorizer to intersect at
0; = 0" Abbreviating b; = §]"* — ¢;, this can be written as

el = 651-(1 + b;) + @63%?»

which we solve for ; as

Bi = (P — by — 1)/b2. (6)
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Algorithm. First, we initialize # = § = 0 and f; = (exp(6) — 6P — 1)/(5™%%)2, for
1t =1,...,n. Then, we linearize the convex revenue terms, replace the exponential cost terms
with their quadratic minorizers, and solve the quadratic program

maximize Z?:l(rilomesﬁﬁi(@ + ;) — /f?omegi(&- + Bi(6; — 6,)2)) (1)
subject to 0 =FEw, An=0b, Fn<g,

where we dropped constant terms from the objective. We assign 7* and 6* from the solution
of (7) to 7 and 5, respectively, update all 3; according to (6), re-solve (7), and repeat until
the profit converges.

As with CCP, we cannot claim that the profit always converges to the global maximum,
but we suspect that in practical cases it almost always does.

4.3 Nonlinear programming

One can view the objective function of problem (3) as an instance of general nonlinear (and
twice differentiable) functions, and apply local nonlinear programming (NLP) methods that
use the local gradient or Hessian (approximation) at every iteration [Ber97, LN89, NW06,
KT13]. Well-known NLP solver implementations are the open-source IPOPT [WB06] and
the proprietary KNITRO [BNWOG].

5 Numerical examples

We compare solving PPPs with CCP, QMM, and NLP. We use a relative objective tolerance
of 0.001 for all three methods. To solve the convex subproblems of CCP, we use the open-
source convex optimization solver SCS [OCPB16]. To solve the quadratic subproblems of
QMM, we use the open-source QP solver OSQP [SBGT20]. For NLP, we use the open-source
NLP solver IPOPT [WBO06]. We interface with all solvers via CVXPY [DB16] and use their
respective default settings. We run the experiments on an Apple M1 Pro.

CVXPY specification. Figure 1 shows how the convex-concave procedure outlined in
§4.1 is implemented with a few lines of CVXPY code. In lines 4-12, problem (5), with price
limits and a pricing policy, is modeled with CVXPY. In line 7, we use a CallbackParam,
such that the linearization will be updated automatically when the problem is re-solved. In
line 11, the ijth entry of C stores the attribute a;;. In line 15, the convex-concave procedure
is initialized, before iterations are run in lines 16 and 17. The code for QMM and NLP is
very similar.

5.1 Data generation

Elasticity, revenue, and cost. We generate random instances of the PPP of various
dimensions. We consider a block-diagonal elasticity matrix £ with block size 10, representing

12



import cvxpy as cp

3 # variables and parameters

pi = cp.Variable(n, bounds=[pi_min, pi_max])

5 delta = cp.Variable(n)

; theta

= cp.Variable(m)
rscaled = cp.CallbackParam(

lambda: rnom * np.exp(E @ pi.value + pi.value), n)

# objective and constraints

obj = rscaled @ (delta + pi) - knom @ cp.exp(delta)
con = [delta == E @ pi, pi == C @ thetal

prob = cp.Problem(cp.Maximize(obj), con)

# solve

5 pi.value = np.zeros(n)
; for i in range(5):

prob.solve()

Figure 1: Modeling and solving the PPP with CVXPY. The dimensions n, m and
the data pi_min, pi_max, rnom, knom, E, C are given.
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Figure 2: Profit and price changes for n = 1280 and m = 256.

groups of related products that might be substitutes or complements. We sample the self-
elasticities E;; between —3.0 and —1.0, and the cross-elasticities E;; (within each block)
between —0.05 and 0.05. We set the nominal revenue per product 7™ between 1.0 and 5.0,
and the nominal cost to k7™ = 0.97°™, i.e., a nominal profit margin of 10%.

Constraints. We limit price changes to £20%, and impose an affine pricing policy as
described in §3.2, where the attributes a;; are sampled IID from N(0,1). We do not restrict
the policy parameters directly, i.e., © = R™.

5.2 Results

Convergence and price changes. We solve the problem for n = 1280 and m = 256 with
CCP (in 2.4 seconds), QMM (in 1.5 seconds), and NLP (in 2.7 seconds). Figure 2a shows the
profit versus iterations of CCP and QMM. As expected, the profit increases at each iteration
and converges after an increase from about 384 to about 483. It takes QMM one more
iteration to converge, due to its initial approximation errors of the concave exponentials.
Still, the overall solve time is smaller with QMM, since each QP can be solved fast. Figure
2b presents the ultimate price changes. We observe that almost all prices are changed, and
the +20% limit takes effect for a number of prices.

Scaling. To explore how the methods scale with problem size, we generate PPP instances
with dimensions n = 20,40, 80, 160, 320, 640, 1280, 2560, using m = n/5 parameters in the
pricing policy. Figure 3 shows the solve times for each value of n, for each of the three
methods CCP, QMM, and NLP. Overall, the solve times are comparable between the three
solution methods. QMM solves the problems fastest for almost all sizes. The positive
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Figure 3: Solve times for different problem sizes, with CCP, QMM, and NLP.

effect of dealing with a quadratic program at each iteration of QMM (and being able to
use a specialized solver) appears to outweigh the effect of larger approximation errors. In
fact, QMM took around 3-5 iterations for all problem sizes, just slightly more than the
3—4 iterations required by CCP. These scaling results were insensitive to the seed used for
generating the data.

Effect of initialization. In our final experiments, we explore the effect of the starting
point on the final prices found. We randomly initialize 7 between 7™ and 7%, solve
the PPP with all three methods, repeating this 1000 times. In all such cases, the method
converged to the same prices as our all-zeros initialization, with all final objectives within
our objective tolerance. We cannot claim that the prices found are globally optimal, but
these experiments suggest that they might be.
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