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FITTING MULTILEVEL FACTOR MODELS*
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Abstract. We examine a special case of the multilevel factor model, with covariance given by
multilevel low rank (MLR) matrix [T. Parshakova et al., Factor fitting, rank allocation, and parti-
tioning in multilevel low rank matrices, in Optimization, Discrete Mathematics, and Applications to
Data Sciences, SOIA 220, Springer, 2024, pp. 135-173]. We develop a novel, fast implementation of
the expectation-maximization algorithm, tailored for multilevel factor models, to maximize the like-
lihood of the observed data. This method accommodates any hierarchical structure and maintains
linear time and storage complexities per iteration. This is achieved through a new efficient technique
for computing the inverse of the positive definite MLR matrix. We show that the inverse of positive
definite MLR matrix is also an MLR matrix with the same sparsity in factors, and we use the recur-
sive Sherman—Morrison-Woodbury matrix identity to obtain the factors of the inverse. Additionally,
we present an algorithm that computes the Cholesky factorization of an expanded matrix with linear
time and space complexities, yielding the covariance matrix as its Schur complement. This paper is
accompanied by an open-source package that implements the proposed methods.
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1. Introduction. Factor models are used to explain the variation in the ob-
served variables through a smaller number of factors. In fields like biology, econom-
ics, and social sciences, the data often has hierarchical structures. To capture this
structure specialized multilevel factor models were developed. Existing methods for
fitting these models do not scale well with large datasets.

In this work, we introduce an efficient algorithm for fitting multilevel factor mod-
els. Our method is compatible with any hierarchical structure and achieves linear
time and storage complexity per iteration.

1.1. Prior work.

Factor models. Factor analysis was initially developed to address problems in
psychometrics about 120 years ago [55], and it later found applications in psychology,
finance, economics, and statistics. The idea behind factor analysis is to describe vari-
ability among the observed variables using a small number of unobserved variables
called factors. Factor models decompose a covariance matrix into a sum of a low rank
matrix, associated with underlying factors, and a diagonal matrix, representing idio-
syncratic variances. Since the early 20th century, factor analysis has seen significant
methodological advancements [21, 11, 30, 20, 19], with several books dedicated to its
theory and application [27, 12].
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Hierarchically structured data. Data from fields such as biology, economics, so-
cial sciences, and medical sciences often exhibit a hierarchical, nested, or clustered
structure. This has led to the development of specialized techniques in factor analy-
sis aimed specifically at handling hierarchically structured data such as hierarchical
factor models [54, 57] and multilevel factor models [1, 38].

Hierarchical factor models. In hierarchical factor models, factors are organized
into a hierarchy, where general factors at the top influence more specific factors po-
sitioned beneath them [54, 9, 59, 50]. This model type does not necessarily reflect a
hierarchy in the data (e.g., individuals within groups) but rather in the latent variables
themselves. Widely used in psychometrics, these models are crucial for distinguishing
between higher-order and lower-order factors [10, 39]. For instance, [17] identified a
hierarchical structure of personality with two general factors, stability and plasticity,
at the top, and the so-called Big Five personality factors below them: neuroticism,
agreeableness, and conscientiousness are under stability, while extraversion and open-
ness are under plasticity.

Multilevel factor models. Multilevel factor models are statistical frameworks de-
veloped in the 1980s to handle hierarchical data structures; see [1, 23, 38, 52, 46], and
the books [14, 24]. These models partition factors into global and local components,
allowing the decomposition of the variances of observed variables into components
attributable to each level of the hierarchy. There is a wide variety of multilevel factor
models discussed in the literature, with the general form for a 2-level factor model
presented in [24, section 8.2].

Multilevel (dynamic) factor models have also been applied to time series data
[26, 3, 56, 4]. They have been particularly effective in modeling the co-movement of
economic quantities across different levels [26, 4]. For example, [33, 13, 32] used these
models to characterize the co-movement of international business cycles on global,
regional, and country levels.

In this paper we focus on a special case of the multilevel factor model, that has
no intercept and no linear covariates. The framework can be easily extended to more
general case as needed, see Appendix E. We assume the observations follow a normal
distribution, so the model is defined by a covariance matrix that is a multilevel low
rank (MLR) matrix [43]. In [43] the authors consider two problems beyond fitting,
namely, rank allocation and capturing partition. Here, we assume that both rank
allocation and hierarchical partition are fixed, and focus solely on fitting factors.

Fitting methods. Several methods have been employed to fit multilevel models,
each with its advantages and challenges. Among the most prominent are maximum
likelihood and Bayesian estimation techniques [15], and Frobenius norm-based fit-
ting methods [43]. Commonly utilized algorithms for these methods include the
expectation-maximization (EM) algorithm [53, 49], the Newton—Raphson algorithm
[36], iterative generalized least squares [23], the Fisher scoring algorithm, and Markov
Chain Monte Carlo [25]. Despite the efficacy of these approaches, no single method
proves entirely satisfactory under all possible data conditions encountered in research.
As a result, statisticians are continually developing alternative techniques to enhance
model fitting and accuracy [15, 35].

Software packages. Several commercial packages offer capabilities for handling
multilevel modeling, including LISREL [31], Mplus [2, 41, 42], and MLwiN [48]. The
open-source packages include lavaan [51, 29], gllamm [47]. Additional resources and
software recommendations can be found in [14, section 1.7] and [24, section 18]. These
tools are primarily designed for multilevel linear models [22], and most of them do not
support the specific requirements of factor analysis within multilevel frameworks that
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involve an arbitrary number of levels in hierarchical structures. Although OpenMx
[7, 44], an open-source package that implements MLE-based fitting methods, does
support multiple levels of hierarchy, it was unable to handle our large-scale examples.
Additionally, we found no high-quality, open-source implementations of MCMC-based
fitting methods; thus these were not included in our comparison.

In this paper, leveraging the MLR structure of the covariance matrix, we derive
a novel fast implementation of the EM algorithm for multilevel factor modeling that
works with any hierarchical structure and requires linear time and storage complexities
per iteration.

1.2. Our contribution. The main contributions of this paper are the following:

1. We present a novel computationally efficient algorithm for fitting multilevel

factor models, which operates with linear time and storage complexities per
iteration.

2. We show that the inverse of an invertible PSD MLR matrix is also an MLR
matrix with the same sparsity in factors, and we use the recursive Sherman—
Morrison-Woodbury (SMW) matrix identity to obtain the factors of the in-
verse.

3. We present an algorithm that computes the Cholesky factorization of an ex-
panded matrix with linear time and space complexities, yielding the covari-
ance matrix as its Schur complement. We also show that Cholesky factor has
the same sparsity pattern as its inverse.

4. We provide an open-source package that implements the fitting method, avail-
able at https://github.com/cvxgrp/multilevel_factor model. We also
provide several examples that illustrate our method.

2. Multilevel factor model. In this section we review the multilevel low rank
(MLR) matrix along with notations necessary for our method. We then present a
variant of the multilevel factor model that will be the focus of this paper.

2.1. Multilevel low rank matrices. An MLR matrix [43] is a row and column
permutation of a sum of matrices, each one a block diagonal refinement of the previous
one, with all blocks low rank, given in the factored form. We focus on the special case
of symmetric positive semidefinite (PSD) MLR matrices.

An n x n contiguous PSD MLR matrix ¥ with L levels has the form

(2.1) Y=ty 42
where ¥; is a PSD block diagonal matrix,
Zl:blkdiag(EM,...,Elml), ZZL...,L,

where blkdiag is the direct sum of blocks 3; j, € R":+*"+ for k=1,...,p;. Here p
is the size of the partition at level [, and

D1
an,k:n, l=1,...,L.
k=1

Throughout this paper we consider L > 2 and p; = n; therefore, ¥ is a diagonal
matrix. Also for all [=1,..., L define matrices

S =S4 45, S =% 445

By definition, we have ¥ =31, =% _.
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The block dimensions on level [ partition the n indices into p; groups, which are
contiguous. Let Ji,...,Jr be partitions of the set {1,...,n}. (By symmetry of ¥,
these partitions are the same for rows and columns.)

For each [ =1,..., L, the level [ partition of the indices is the set of p; index sets

J={L ... onah {41, F et {n =y, + 1,00t}

We require that these partitions be hierarchical, meaning that for all [ =2,..., L, the
partition J; is a refinement of J;_1. We write

J =2 J

to indicate that for every index set X € J;, there exists index set Y € J;_1 such that
XCY.

We require that blocks on level [ have rank not exceeding r;, given in the factored
form as

Sip=FpFl, FreR™Y M I=1..L-1 k=1,..p,

and refer to F j as the factor (of block k on level 1).

Define a diagonal matrix D = ¥y, which forces 7, = 1. See Figure 1. We refer to
r=ry+---+rr_1+1 as the MLR-rank of . The MLR-rank of A is, in general, not
the same as the rank of . We refer to (r1,...,r5_1,1) as the rank allocation.

Factor form. For each level [=1,...,L — 1 define

Iy =blkdiag(F} ..., F,) € RV
Then we have
YWw=FKF', 1=1,....L—1.
Define
F=[F - Fp; ]eR™,
with s = Zf;ll piry. Then we can write X as
Y=[F DY? ][ F D2 ]T:FFTJFD’

where F' has s columns, and a very specific sparsity structure, with column blocks
that are block diagonal, and D is diagonal; see Figure 2.

Define Fj as the concatenation of left factors from levels [,..., L—1, and similarly
F_.ie.,

Fio=[F - Fr1], F_=[FR - F].

Thus the number of nonzero coefficients in Fj is nZlL,;ll rpand in Fj_ is nZé,:l .
By definition, we also have F'=F1 = F(;_1)_.

FiG. 1. (Contiguous) PSD MLR matriz given as a sum of block diagonal matrices with each
block being low rank. The coefficients of the factors are depicted in green. (Figure in color online.)
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Fi1G. 2. (Contiguous) PSD MLR matriz given as a product of two sparse structured matrices.
The coefficients of the factors are depicted in green. (Figure in color online.)

Fi1G. 3. (Contiguous) PSD MLR matriz given in compressed form.

Compressed factor form. We can also arrange the factors into one dense matrix
with dimensions n x r. We vertically stack the factors at each level to form matrices

Fl= : eR™"™, |=1,...,L—1,
‘F‘lml

and lastly a diagonal of matrix D, diag(D) € R™. We horizontally stack these matrices
to obtain one matrix

F:[ Flo... pL-1 ]eRnx(r—l).

All of the coefficients in the factors of a contiguous MLR matrix are contained in this
matrix and vector diag(D); see Figure 3. To fully specify a contiguous MLR matrix,
we need to give the block dimension n;j for [=1,...,L, k=1,...,p;, and the ranks
™,...,TL-

PSD MLR matriz. We reviewed the contiguous PSD MLR matrix. The PSD
MLR matrix is given by the symmetric permutation of rows and columns of a contigu-
ous PSD MLR matrix. Therefore, the PSD MLR matrix uses a general hierarchical
partition of the index set.

Ezxample. To illustrate our notation we give an example with L =4 levels, p; =1,
with the second level partitioned into ps = 2 groups, and the third level partitioned
into p3 =4 groups. We take n =5, with block row (and column) dimensions

nii =5,

ng1 =3, MNg2=2,

nsi1= 1, n3 2= 2, n3 s = 1, n3 4= 1

N4l = 1, Nyg2 = 1, Nyg.3 = 1, N4 4= 1, Ny 5= 1.
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The sparsity patterns of X1, Yo, and X3 are shown below, with * denoting a possibly
nonzero entry, and all other entries zero (the sparsity pattern of ¥4 matches that of
a diagonal matrix),

E1 ) 23 =

I
P
* % % % %
* % % % %
* % %X % %
A

™

(V)

I

*

If we have ranks ry =2, ro =1, r3 =1, and r4 =1, the MLR~rank is r =5, with factor
sparsity pattern as below,

F1: ) F2: * ) F3:

¥ X X ¥ ¥
EEE SR SR

*

This means that ¥; has rank 2, the po = 2 blocks in Y5 each have rank 1, and the
ps =4 blocks in X3 also have rank 1.

2.2. Partition notation. In this paper we consider matrices that are block
diagonal, e.g., F;, and matrices formed by concatenation of block diagonal matrices,
e.g., Fi;. To formally describe the row and column sparsity patterns of these matrices,
we define the following operators.

Define an operator 7, that for any block diagonal matrix B € R™*™ returns its
column index partition. Similarly, define operator Z to return the row index partition
of B. Note by definition Z(B) = J(BT).

Define operators Z and J that for any (horizontal or vertical) concatenation of
block diagonal matrices B =[ By --- B, ] € R™*" return lists of partitions for
each block diagonal matrix

j(B) = (j(Bl)avj(Bc))v I(B) = (I(Bl)avj(Bc))

We say a partition refines a list of partitions if it refines each partition in that
list. Conversely, we say a list of partitions refines a partition if every partition in the
list refines that partition. We denote this relation by <.

Finally, define the sparsity pattern of any B € R™*"™ as

supp(B) ={(4,7) | Bi; #0,i=1,...,m,j=1,...,n}.

Remark 2.1. If B,C € R™*™ are concatenations of block diagonal matrices with
supp(B) =supp(C), then Z(B) =Z(C) and J(B) = J(C).

Example. Applying these operators to the matrices from the previous section, we
get

I(%)=J (%) =Z(F) = J,
and

I('Fl*) = (le' . '7Jl)a
j(ﬂ) :{{1,...,7’5},{1"1 +1,...,2rl},...,{(pl — 1)7’1 +1,...,pl7"l}},
T(Fs) = (i Ti1).
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We also have
I(Fiy) 2I(F) 2 I(F-),
and
supp(%;) = supp(Z ).
2.3. Problem setting. We consider a multilevel factor model,
(2.2) y=Fz+e,

where F' € R™** is structured factor loading matrix, z € R* are factor scores, with
2~ N(0,1), and e € R™ are the idiosyncratic terms, with e ~ N (0, D).

We assume that the n features can be hierarchically partitioned, with specific
factors explaining the correlations within each group of this hierarchical partition.
This can be modeled by taking F to be the factor matrix of PSD MLR. Then y € R" is
a Gaussian random vector with zero mean and covariance matrix Y that is PSD MLR,

Y=FFT +D.

We assume we have access to hierarchical partition and rank allocation. There-
fore, we reorder n features so that the groups in hierarchical partition correspond to
contiguous index ranges. We seek to fit the coefficients of F' € R"**® and diagonal
D e R™*" (with diag(D) > 0) from the observed samples.

We assume s < n, i.e., number of factors is smaller than the number of features.

3. Fitting methods. In this paper, we estimate parameters F' and D using the
maximum likelihood estimation (MLE). This approach is different from that in [43],
which focuses on fitting the PSD MLR matrix to the empirical covariance matrix using
a Frobenius norm-based loss. Notably, the Frobenius norm is not an appropriate loss
for fitting covariance models. First, the Frobenius norm is coordinate-independent,
it treats all coordinates equally, whereas MLE accounts for coordinate-specific dif-
ferences, where changes across different coordinates have varying implications. This
can lead to covariance models with small eigenvalues when using the Frobenius norm,
a situation that MLE inherently guards against. Second, the Frobenius norm-based
loss is distribution-agnostic. In contrast, MLE takes advantage of the known distri-
bution of the data. Nevertheless, there is an intrinsic connection between the MLE
and Frobenius norm, which we detail in section A of the appendix.

3.1. Frobenius norm-based estimation. One way to estimate coefficients of
matrices F' and D is by minimizing Frobenius norm-based distance with sample co-
variance. This means solving the following optimization problem:

minimize ||FFT+D—53||%

(3.1) subject to FFT 4+ D is PSD MLR,

with the hierarchical partition and sparsity structure of F' (number of levels, block
dimensions, and ranks) predefined and fixed, as previously proposed in [43].

Since the problem (3.1) is nonconvex, [43, section 4] introduce two complementary
block coordinate descent methods to find an approximate solution. For example,
alternating least squares minimizes the fitting error over the left factors, then over
the right factors, and so on. The second method updates factors at one level in each
iteration by minimizing the fitting error while cycling over the levels.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/25 to 171.66.161.187 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

FITTING MULTILEVEL FACTOR MODELS 1937

3.2. Maximum likelihood estimation. Alternatively, we can estimate matri-
ces F' and D using MLE. Suppose we observe samples y1,...,yny € R", organized in
the matrix form as

yi

Y=| : | eRV™

vk

The log-likelihood of NV samples is

(3.2)
(F,D;Y) = f% log(2m) — g logdet(FFT 4+ D) — %Tr((FFT + D) 'YTY).

For structured F, directly maximizing the log-likelihood ¢(F, D;Y) is difficult. In-
stead, the expectation-maximization (EM) algorithm [16] is the preferred approach
for MLE.

Simplification via data augmentation. Difficult maximum likelihood problems can
be simplified by data augmentation. Suppose, along with Y, we also observed latent
data z1,...,zy € R®, organized in matrix Z € RV**. Then the log-likelihood of
complete data (Y, Z) for model (2.2) is

(3.3)

E(F,D;Y,Z):—M

N 1 _ 1
log(2r) — o) logdet D — 5||(Y — ZFT)D1/?)2 — 5||Z||’j;.

Maximizing the ¢(F, D;Y, Z) with respect to F' and D is now tractable. First, since D
is diagonal, when F' is known solving for D is trivial. Second, note that ¢(F,D;Y, Z)
is separable across the rows of F. The nonzero coefficients in each row of F' can be
found by solving the least squares problem.

For example, consider a simple factor model, where F' is just a dense low rank
matrix. Then from the optimality conditions, the solution to (3.3) is given by

1
(3.4) F=Y'7z(Z*2)"*, D= Ndiag(diag((Y - ZFNT(y — ZFTY)).
Since we only observe Y and Z are missing, we use the EM algorithm to simplify

the problem through data augmentation.

4. EM algorithm. The EM algorithm iterates expectation and maximization
steps until convergence. After each pair of E and M steps it can be shown that the
log-likelihood of the observed data is nondecreasing, with equality at a local optimum.

4.1. Expectation step. In the expectation step we compute the conditional
expectation of complete data log-likelihood with respect to the conditional distribution
(Y, Z|Y) governed by the the current estimate of parameters F and DO:

(4.1) Q(F,D;F°,D°) =E ((F,D;Y, Z) | Y,F°, D).

To evaluate the Q(F,D; FY, D°), we need to compute several expectations. First,
using (2.2) we have

cov(y,z) =EFz:" =F,
cov(y,y)=FFT + D=%.
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Thus (z,y) is a Gaussian random vector with zero mean and covariance
I, FT
cov(z) o= | 3 g |-
Second, the conditional distribution (z; | y;, F°, D°) is Gaussian,

N (FOT(E())fly,-,IS _ FOT(EO)AFO) '

Using the omitted derivations in section C.1, we can show that (4.1) equals

Q(F,D;F°, D% = —WTS)N log(27) — glogdetD - %Tr(W)
(4.2) — %Tr (D' (Y"Y —2FV + FWFT)),
where we defined matrices V € R**™ and W € R**® as
(4.3) VZiV:E(Zi | yi, F°, D%) yF = FO7 (29) 1y 7Y,

=
=

E (zZle | yi, FO,DO)

Z M=

W=

K2

N

(4.4) I, — FOT (20) "1 F0) 4 FOT (x0) "1y Ty (0) 1 O,

Remark 4.1. Note that (I, — FO" (3°9)~1F%) = 0, as it is a Schur complement of
matrix

[IS FT

RS

Consequently, it follows that W = 0.

4.2. Maximization step. In the maximization step we find updated parameters
F' and D! by solving the following problem:

maximize Q(F,D;F°, D)

(4.5) subject to [ F D2 ] is the factor of PSD MLR.

Similar to (3.3), the maximization problem (4.5) is tractable. Observe, Q(F, D;
FY DY) is separable across the rows of F (and respective diagonal elements of D).
Moreover, using optimality conditions, the nonzero coefficients in each row of F' can
be determined by solving the least squares problem. For efficiency, we can group the
rows by their sparsity pattern and instead solve the least squares problems for each
row sparsity pattern of F at once, forming resulting matrix F!; see section 5.2.2.
Having F!, the diagonal matrix is then equal to

D'= %diag(diag(YTY —2F'V + F'w(FHT)).

Thus F! and D' are the optimal solutions to problem (4.5), which we can also compute
efficiently as discussed in section 5.
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4.3. Initialization. The EM algorithm is a maximization-maximization pro-
cedure [28, section 8.5]; therefore, it converges to at least a local maximum. The
trajectory of the EM algorithm depends on the initial values of F and D°. We have
observed that, depending on the initialization, it can converge to different local max-
ima. Additionally, when a good initial guess is not available, we have also observed
that initializing matrices using a single sweep of the block coordinate descent method
[43, section 4.2] from the top to bottom level works well.

5. Efficient computation.

5.1. Inverse of PSD MLR. In the maximization step, evaluating matrices V'
(4.3) and W (4.4) requires solving linear systems with the PSD MLR matrix. We will
first address the efficient computation of X1, i.e.,

(B Ff -+ Fp . FF 4+ D)~%

We will show that the inverse of the PSD MLR matrix is the MLR matrix with the
same hierarchical partition and rank allocation, and

S l=—HH — .. —H,_HF  +D7},

where H; € R"*P" is a factor at level [ with the same sparsity structure as Fj.
We compute the coefficients of the inverse by recursively applying the Sherman—
Morrison-Woodbury (SMW) matrix identity.

5.1.1. Properties of structured matrices. We begin by giving useful proper-
ties of our structured matrices. Consider a factor matrix on level [, F; € R™"*Pi" with
p; diagonal blocks of size n; j x r;, and row index partition set .J; for all k=1,...,p;.

Remark 5.1. Lemma C.1 states that if block diagonal matrices B and C' are such
that J(B) < Z(C), then BC is block diagonal with J(BC) = J(C), e.g.; see below.
Moreover, if Z(B) = J(B), then supp(BC) = supp(C).

T | = ==

Remark 5.2. The following properties are based on Lemma C.1, and they will be
useful in the next section.
1. Matrix FlFlT € R™"*" is a block diagonal matrix with blocks of size n; j X ng ,
with Z(FEF) = J(F,FF) = Jj, e.g., see illustration below.

-

For all I’ > 1, Jy < J; implies supp(F) F/') C supp(F,F;'). Then for matrix
L-1
Fueny+Fiys = Y, Bl
U=I+1

we obtain supp(FlHFfjﬂ) = supp(F(Hl)JrF(j;HH).
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2. For matrix ¥ ;1) it holds that supp(X41)4) = supp(F(Hl)Fngl)).
3. The inverse of a block diagonal matrix is a block diagonal matrix consisting
of the inverses of each block. Thus for
1 T -1
Yt = (Fusn+Fi1)+ + D)
we get supp(E&il)+) = supp(Z(l+1)+).
4. Since Z(214y,) = T (Eqiy,) 2 I(F), for My = X1, i, supp(My) =

supp(F}).

Thus matrix-vector product with My can be computed in the order of
YoM, myry = nry operations.

5. Since j(FlT) = I(F(l—l)—)a we have j(MOTF(l_l)_) = j(F(l—l)—)- Further,
since J(X(41)4+) 2 Z(F(y—1)-), it follows that

SUPP(E&LHF(z—l)—) =supp(F(;-1)-).

6. For F;'' My € RP™>Pim it holds that Z(Fj' My) = J (FF M) = J (F}); see the

figure below.
—_— N =

It is straightforward to check that each of the blocks is PSD.

5.1.2. Computing the inverse. We show that ¥~! is an MLR matrix with
factors having the same sparsity pattern as 3. To establish this, we employ SMW
matrix identity

(FFT+ D)y '=D ' - D 'F(I,+ FTD 'F)"'FTDL.
We derive

(5.1) sh=3

T
@+ — HH

where we defined matrix

-1 Ty —1 —1/2,
Hy =300 BT, + F 8000 F) ™

see section C.2 for details. Remark 5.2 implies that supp(H;) = supp(E&ilHFl) =
supp(F;). Applying recursion (5.1) from the bottom to the top level we get

S l=—HH - .. —H, HF +D7%

Combining, we establish that ¥ 7! is an MLR matrix with the same hierarchical
partition as 3.
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Recursive SMW algorithm. We now show that the complexity of computing the
coefficients of the MLR matrix X! is O(nr2 —l—pL_lrma,(TQ) and extra memory used is
less than 3nr + 2pr,_17max”, where ryax = max{ry,...,r}. To do so, we recursively
compute the coefficients of the matrices

(5.2) S Faen-,  Hi,

from the bottom to the top level.

Suppose we have ”Zﬁ/:l 7 coefficients of X
the coefficients of My = E(ililH
matrix identity (5.1).

1. Compute My = Mg F;_1)— in O(m"lZ;,_:ll ri) and store its p;ry Zé,_:ll Ty
coefficients, since for I’ <1 —1 computing M F}: takes nr;r; operations, and
compact form of F{;_;)_ has Zé,_:ll r;; columns.

2. Compute My = (Ip,r, + FF Mo)~! in O(nr? + pir}) and store its pyr? coeffi-
cients. Compute H; = Mo(I,,,, + F My)~'/? in O(nr? + pir}) and store its
nr; coefficients. Note that computing I, + F My requires O(nr}) opera-
tions, and its eigendecomposition, I,,., + Fi' My = Q;A,QF, to compute H,
takes O(p;r?) operations.

3. Compute M3 = M>M; in O(pir? Zi,_:ll r;/) and store its p;ry Z§'_:11 ry coeffi-
cients, since Z(Ms) = J(Ms) X Z(M;) and compact form of M has Z;;ll ry
columns. Note that supp(Ms) =supp(M7).

4. Compute My = MoMs in O(nr 257:11 ) and store its nZi;ll ry coefficients,
since J(My) 2 Z(M3), and compact form of M3 has Eﬁ,_:ll rp columns. Note
that supp(My) =supp(F(i-1)-).

5. Compute M5 = Z(_lil)JrF(l_l)_ — My in an;ll r; and store its nZé,;ll ry
coeflicients.

Therefore, the complexity at the level [ is

!
0 ((m“l +pirf) Z 7‘l'> :

I'=1

(7l~1%1) Fi—. This implies that we have

F;. We now show how to compute (5.2) using SMW

Finally, we conclude that the total complexity is

l

L-1
T(n)=) 0 ((m“z +prf) Y T‘z/) = O(nr® 4+ pr_1rmaxr?),
=1

I'=1

and extra storage used is less than 3nr + 2pr,_17max”-

Recall that s = Zf;ll piry < n; therefore, we have pr_1 < n. This implies that
the time complexity is linear in n.

If we assume that the rank allocation is uniform r; = --- = r;_; = 7 and that
each block on one level is split into two nearly equal-sized blocks on the next level,
p; =21, then the total complexity and storage are, respectively,

T(n)=0nL? +2573L),  3nfL+ 2172 L.
Using the assumption that s < n and s = (2L'~1 — 1)7, we have

L <logy(n/F+1)+1.
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Determinant. In Appendix D we show the covariance matrix 3 is the Schur com-
plement of the expanded matrix. For this expanded matrix, we also provide an explicit
Cholesky factorization method with linear time and space complexities. We leverage
this connection to argue that the determinant of ¥ equals to

L—1
det(X) =det(D) [ det(A,).
=1

Therefore, det(X) can be computed at no additional cost while recursively comput-
ing ¥~!. Moreover, Cholesky factors enable feature-dependent linear transform that
whitens the data and offer multiple useful interpretations; see [5, section 2]. See
section D.4 for details.

5.2. EM iteration.

5.2.1. Selection matrices. Let s; be the ith row sparsity pattern of F. We
denote by |s;| the number of rows that share this sparsity. Then the number of unique
sparsity patterns of rows of F' equals the number of groups at level L — 1, i.e., pr_1.
Note that we must have 77" |s;| = n. Let S,, € {0,1}*/*" be a matrix that selects
rows with ith sparsity pattern. Since any row sparsity pattern of F has ZlL;ll rp=r—1
nonzero columns, we define S% € {0, 1}5%(=1) as a matrix that selects those columns
of F'. Thus, number of nonzero columns for row sparsity pattern s; is r — 1, and the

matrices
Sp FSEeRISIX0=D 1 j=1.. pr_y,
are dense in the coefficients of F'; see Figure 4.
Remark 5.3. For any matrix M with s rows we have
Sy FM =8, FSLSe. M, i=1,...,pr_1.

5.2.2. EM iteration computation. Recall that Q(F, D; F°, D°) (4.2) is sepa-
rable across the rows of F. Therefore, to find F! we solve the reduced least squares
problem for each sparsity pattern of F.

Recall matrices V' (4.3) and W (4.4), where W > 0. To find the coefficients of F’
in problem (4.5), using section 5.2.1, it suffices to minimize the following:

Tr(FWFT —2FV)
PL—-1
=Y Tr(S, FWF'S! —25, FVS!)
=1
PL—1
= Tr((S, FSH)(Se, WSE) (S, FSE)T = 2(S,, FSE)(S.,VSE)).

i=1

>

Fic. 4. Structured matriz F with p3 =4 row sparsity patterns is shown on the left. The second
row sparsity pattern is highlighted in red. The dense matriz S, FSZ;, is shown on the right. (Figure
in color online.)
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To recover the coefficients of F', we solve the least squares problem,

(5.3) Sy FSE = (S, VST (S, WST)™!
foreach i=1,...,pr. The inverse operation above is well-defined, since W = 0 implies
SciWSg >~ 0.

We now derive the computational complexity for calculating F'*. We first compute
coefficients of MLR (X°)~! in T'(n).
Next, we describe how to efficiently compute S, VST and S, WS,,. Since FOST €

R™ (=1 we compute (2°)~1(F0ST) e R™* ("= in O(nr?) using section 5.1. Next,
we compute

((SCiFOT)(EO)*l) (FOSCTZ) c R(T*I)X(Tfl)

in O(nr?). To evaluate the product ((S,, FOT)(EO)’l)YTGR(T’l)XN we need O(nrN).
Combining the above, we obtain

Se VSE = (Se FOT ()Y T) (v ST) e RO DXl
in O(]s;|rN). Also by computing
(56 ) E) 1Y) (V(E) T FOSE) e RUTDXOD

in O(r?N), we then get S, WSI € R=1*0=Din O(r?). Given S, VST and
S.,WS.,,, solving the linear system (5.3) takes O(]s;|r?).
When solving for each sparsity pattern s;, the total complexity of the maximiza-
tion step is
pPL-1
T(n)+ Z O(nr? +nrN + |si|rN + 72N + |s]r?),

i=1

which simplifies to
T(n) + O(pp_1nr* 4+ pr_1nrN + pp 172N + nr?).
Plugging in the complexity of the inverse computation we arrive at
O(pr—1nr? +nr® + pr_1nrN + pr_1rmaxr”® + pr—17°N).

Since py_1 < n, the time complexity is linear in n.

As a stopping criteria we use the relative difference between consecutive log-
likelihoods of observations (3.2). This requires computing the determinant of the
covariance matrix, which we obtain at no cost during the inverse computation. See
Appendices D and D.4 for details.

6. Numerical examples. We compare two factor fitting approaches based on
Frobenius norm [43] and MLE. In the first example, we compare a traditional fac-
tor model (FM) with a multilevel factor model (MFM) using real data. We demon-
strate that the multilevel factor model significantly improves the likelihood of the
observations. In the second example, we consider a synthetic MFM to generate the
observations. Our results show that the expected log-likelihood distribution of
the MLE-based method significantly outperforms the Frobenius norm-based method.
Finally, we apply our method to the real-world large-scale example.
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6.1. Asset covariance matrix. We focus on the asset covariance matrix from
[43, section 8.1]. In this example the daily returns of n = 5000 assets are found
or derived from data from CRSP Daily Stock and CRSP/Compustat Merged Data-
base 2023 Center for Research in Security Prices (CRSP), The University of Chicago
Booth School of Business. We consider a N = 300 (trading) day period ending
2022/12/30, and for hierarchical partition use Global Industry Classification Stan-
dard (GICS) [6] codes from CRSP/Compustat Merged Database—Security Monthly
during 2022/06/30 to 2023/01/31 which has L =6 levels.

We use the GICS hierarchy and two different rank allocations; see Figure 5 and
Table 1. For a rank allocation of 1y = 29,79 = -+ =15 = 0,76 = 1 (i.e., a tradi-
tional factor model), our method’s average log-likelihood of realized returns improves
by 98 compared to the Frobenius norm-based method. Alternatively, using ranks
ry=14,r9 =6,r3 =4,74 = 3,75 = 2,76 = 1, as determined by the rank allocation al-
gorithm in [43] (i.e., multilevel factor model), the average log-likelihood increases by
158. Thus the best log-likelihood is achieved using the MFM fitted with MLE-based
objective. Also note that a low Frobenius error does not necessarily indicate a better
log-likelihood; see Table 1.

To assess whether the log-likelihoods of the two methods are significantly different,
we can compare it to the standard deviation of the expectation of these log-likelihoods
with respect to the true model. Since we do not have the density of the true model,
we assume that the samples are drawn from (2.2). Under this assumption the stan-
dard deviation of the average log-likelihood is 2.887; see Appendix B. Therefore, we
conclude that the log-likelihood for our method MLE is significantly better.

6.2. Synthetic MFM. We generate samples from a synthetic MFM with n =
10,000 features. We create a random hierarchical partition with L =6. Starting with

1.215 x 10*
5x 10 — MLE
1.21 x 10* ---- Frob
1.205 x 10*
z
= 1.2x10*
>

§ 1.195 x 10*

((F,D;Y)/N

Y
< 1.19 x 10*

1.185 x 104

1.18 x 10*

-=-- Frob

T T T T T
50 75 100 125 150 0 25 50 75 100 125 150
iteration iteration

F1G. 5. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve), for FM (left) and MFM (right) of the asset covariance matriz. (Figure in color
online.)

TABLE 1
Frobenius errors and average log-likelihoods for factors fitted using either the Frobenius norm
or MLE-based methods for the asset covariance matriz.

Fit  Model [S—S|p/ISlr  4FD;Y)/N
Frob FM 0.1538 11809
MLE FM 0.1617 11907
Frob MFM 0.1648 11956
MLE MFM 0.8497 12114
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a single group, we evenly divide it across levels, resulting in 4, 8, 16, 32, and finally
10,000 groups at the bottom level. Each level is assigned ranks: r1 = 10,7, = 5,73 =
4,ry = 3,15 = 2,76 = 1, respectively, yielding s = 174 unique factors in total. The
resulting compression ratio is 200: 1.

Following this, the coefficients of the structured factor matrix F' are sampled
from A(0,1). Then we sample the noise variance in proportion to the average signal
variance maintaining a signal-to-noise ratio (SNR) of 4. This is achieved by sampling
D;; uniformly from the interval

[0,2(17diag(FFT)/n)/SNR], i=1,...,n.

To evaluate how effectively we can fit the factors using MLE, we use the rank
allocation and hierarchical partition from the true model. The model is fitted with
N =80 samples and evaluated using expected log-likelihood (based on the density of
the true model).

Since in this example we have access to the true model Xtrue = ftrue ptrue | prue
we can compute the expected log-likelihood

E({(F,D;y)) = —g log(27) — %log det(FFT 4+ D) — %Tr((FFT + D)~ ixtrue),

We compare the average log-likelihood of two fitting approaches based on Frobe-
nius norm and MLE; see Figure 6 and Table 2. Our method outperforms the Frobenius
norm-based approach, showing a 284 higher average log-likelihood on the sampled data
Y and a 372 greater expected log-likelihood.

We generate 200 samples Y, and for each Y, fit the model with two competing
methods. The resulting histograms of expected log-likelihoods E(¢(F, D;y)) are shown
in Figure 7. The histogram of differences E(¢(FMLE DMLE: ) _F(¢(FFrob) DFrob.4)))
is displayed in Figure 8. The mean of the differences is 371, with a standard deviation

20600 - MLE
---- Frob
—20650
i —20700
E‘. —20750
= 20800
-
—20850
—20900
—20950 +— : : : : : :
0 50 100 150 200 250 300

iteration

FI1G. 6. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve) for a single Y in the synthetic example. (Figure in color online.)

TABLE 2
Log-likelihood for models fitted using the Frobenius morm, MLE-based methods, and the true
model for a single Y in the synthetic example.

Fit  (F,D;Y)/N  E({(F,Dsy))
Frob —20851 —24843
MLE —20567 —24471
True —22031 —22068
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Fic. 7. Histograms of expected log-likelihoods for MLE and Frobenius norm-based fitting methods.
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Fic. 8. Histogram of differences in expected log-likelihoods between MLE and Frobenius norm-
based fitting methods.

of 136, and for 99.5% of the samples, the difference is positive. Based on these his-
tograms, we conclude that the distribution of the MLE-based method is significantly
better than that of Frobenius norm-based method.

6.3. Large-scale single-cell RNA sequencing dataset. Single-cell RNA se-
quencing generates transcript count matrices that contain gene expression profiles of
individual cells. In this section we use the dataset from [18, 40, 45] that contains
immune cells from human tissues.

The original dataset contains 329,762 cells with 36,398 genes, collected from 12
donors. Then we follow standard preprocessing steps for single-cell RNA sequencing
data [37, 34]. We use Scanpy package [58] for quality control metrics [37] to filter out
low-quality cells and uninformative genes. In particular, we filter cells with fewer than
200 genes and filter genes expressed in fewer than 200 cells. We also filter out cells
with more than 20% of transcript counts from mitochondrial genes, or which contain
more than 2,500 detected gene types. Next, we normalize gene counts per cell, and
subsequently apply log-plus-one transformation. To reduce the dimensionality, we
selected the top 500 most variable genes. The final feature matrix is standardized
across cells and has n = 280,535 cells and N =500 genes.

We use a hierarchy with L = 3 levels, grouping level [ = 2 by donor IDs (i.e.,
making 12 groups in [ = 2). We set the rank allocation to r = 12,75 = 8,15 = 1.
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—218000
2 —2190001
< — MLE
& —220000 - Frob
<
=~
~921000 1
992000 1
L | | | |
0 50 100 150 200

iteration

F1G. 9. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve) in the single-cell RNA example. (Figure in color online.)

Our method achieves an average log-likelihood of —217,730, which is by 4,376 larger
than the Frobenius norm-based method with —222,106, see Figure 9.

In this experiment we expect the ro = 8 factors on level [ = 2 to capture donor-
specific correlations, while the factors on level [ = 1 are to be shared across all the
donors and to describe the correlations across the cells. In Figure 10 we plot the factor
loadings F7i, reordered to display the cell types as contiguous groups, using CellTypist
labels [18]. The horizontal yellow lines indicate the ranges of the cell types. We can
see that some factors are strong predictors for specific cell types. For instance, the
second factor (the second column) predicts B cells with large positive loadings, and
both CD16+ and CD16- NK cells with large negative loadings. Similarly, the fifth
factor is associated with classical monocytes, and macrophages through large positive
loadings. Furthermore, 71 = 12 factors on the first level explain on average 68%
of their individual variances. In contrast, applying our fitting method to the factor
model, i.e., flat hierarchy with L =2 and 12 factors, results in factors that explain on
average 62% of their individual variances.

7. Conclusion. In this work, we present a novel and computationally efficient
algorithm for fitting multilevel factor model. We introduce a fast implementation of
the EM algorithm that uses linear time and space complexities per iteration, making
it scalable. This method relies on a novel fast algorithm for computing the inverse
and a determinant of the PSD MLR matrix.

We also provide an open-source implementation of our methods that demonstrate
their effectiveness on several examples, including the large-scale real-world example.
Our MLE-based method consistently outperforms the Frobenius norm-based method.
In this paper we assume that the hierarchy, as well as rank allocation, are known. Fu-
ture research will focus on developing scalable heuristics for finding hierarchy and rank
allocation while leveraging our fast factor-fitting method. The challenge is to keep
storage and time complexities nearly linear. As demonstrated in Appendix A, mini-
mizing the Frobenius norm-based error approximately maximizes the log-likelihood.
Therefore, one promising approach is to adapt the techniques from [43] to avoid form-
ing dense matrices and store all matrices in the factored form. For example, applying
partial singular value decomposition to the matrices in factored form enables the rank
exchange algorithm to be applied straightforwardly to our setting. However, the in-
cremental hierarchy construction is less straightforward to apply as it requires forming
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Tem/Naive cytotoxic T cells
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Fi1G. 10. Factor loading matriz F1 € R™*"1 with reordered rows to display the cell types as
contiguous groups in the single-cell RNA example.
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dense residual matrices. Specifically, it is based on the nested spectral dissection [43],
which involves computation of the second smallest eigenvalue of Laplacian matrix
for graph with adjacency matrix given by the squared valued in the residual matrix.
And even though the residual matrix is factored, when we square it elementwise, this
structure changes. Future work will focus on the development of spectral clustering
methods for the factored residual matrix, while respecting the storage requirements.

Appendix A. Second order approximation of log-likelihood. In this sec-
tion we explain the intricate relationship between Frobenius norm and MLE-based
losses. Let S = YTY/N be a sample covariance matrix. Then the average log-
likelihood of N data points for a Gaussian model y ~ N(0,%) is

1 o m 1 1
N@(E,Y)f 210g(27r) 210gdet2 2TI‘(E S).

We now derive the second-order approximation of the average log-likelihood. We
start with finding the second-order approximation of the function f:S™ - R,

f(X)=logdetX, domf=S8",.

Following the derivation of [8, section A.4], let A € S™ be such that (¥ 4+ A) €S is
close to ¥. We have

logdet(Z + A) =log det <21/2(I + 271/2AE’1/2)21/2>

=logdet X + logdet (I + E_l/QAE_l/Q)
1
=logdet X + Zlog(l +Xi),

i=1

where )\; is the ith eigenvalue of X~/2AX~1/2, Since A is small, then \; are small.
Thus to second order, we have

22
log(1+ X)) =\ — EZ

Combining the above we get
n 2
Ai -1 1 —1Ay—1
logdet(X + A) —logdet X zz i — o =Tr(27!A) - 5 Tr (Z7'ASTIA).
i=1

We used the fact the sum of eigenvalues is the trace, and the eigenvalues of the product
of a symmetric matrix with itself are the squares of the eigenvalues of the original
matrix, and the cyclic property of trace.

Next, we find the second-order approximation of the function g:S™ — R,

g(X) = Tr(Z—lg), domg =S ,.
Since X > 0, we have
Tr((S+8)78) =Tr (871/3(1 4 57245 1/2) 15125

Recall A € 8™ is small. Therefore, the spectral radius of ©~1/2AX~1/2 is smaller than
1. Thus using the Neuman series to second order, we have

(I4+ 27 V2AS V)L T -0~ 12An 12 L -1 2An T AR 1/2,
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Combining the above we get
Tr(Z+A)"'S)~Tr(Z7'S) - Tr(E AT ') + Tr (S 'ASTTARTLS).

Using the above derivations, the second-order approximation of the average log-
likelihood at S is the quadratic function of ¥ given by

1 1 1
(A1) USY)~ U8 Y) - L ISTHS = DIE = 1S Y) - I - S5

1 1
—/ —/
N N
Finally, (A.1) gives the relationship between the log-likelihood and Frobenius norm.

Appendix B. Heuristic method for variance estimation. In section 6,
we compare the log-likelihoods of models fitted using Frobenius-based loss or MLE.
To assess if the difference in the log-likelihoods is significant, we present a heuristic
method for estimating the variance of the average log-likelihood. We assume that
the empirical data is coming from model (2.2) with parameters F' and D. Then the
average log-likelihood of N data points is

1 n 1 1
—UF,D:Y)=——log(2n) — =1 FFT +D)— —Tr(FFT + D)"'YTY
Nf( ,D;Y) 5 og(2m) 3 og det ( + D) 5N r(( + D) )

N
n 1 1 Ta—1
= —glog(27r) - Elog det(X) — N ;:1 Y; B Y.

Since y; ~ N(0,%), then X712y, ~ A/(0,1). This implies
yIs 1y = (27 2) T (271 2y,) ~ X2 (n).

Let z; = X~ /2y;, thus

N N
1 1 . 1 . n
var (NK(F,D;Y)) = var <2N ZE:I z; zz> =1 ;:1 var (2] z;) = N

Also the expectation is
1 n 1 1 &
. _ T
E ( z(F,D,y)> =-3 log(27) — 51ogdet(2) - E E (2] )

N 2N

n 1 n
=——log(27) — =1 ) — —.
5 og(2m) 5 og det(X) 5

In the asset covariance example, we have n = 5000 and N = 300. Therefore, the
approximation to the standard deviation is

n
— ~22.887
2N ’
and the expectation is

1 1
—%(1 + log(27)) — 5 log det(X) — g ~ —7095 — §1ogdet(2).
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Appendix C. Auxiliary derivations.

LEMMA C.1. Let B € R™*™ be a block diagonal matriz with block sizes determined
by row and column index partitions I and J, respectively. Similarly, let C € R™™ be
a block diagonal matriz with row and column index partitions I and J, respectively.
If J =< I, then product BC is also a block diagonal matriz with column sparsity given
by the partition J. Moreover, if I = J, then supp(BC) =supp(C).

Proof. Define matrices in terms of blocks explicitly as

B =blkdiag(B;,...,B,) e R"™*", C =blkdiag(Cy,...,C;) € R,
Similarly, define index partitions as

ol oy =1, ol 6y =0, (b By =1, (B, 00 =

For each k=1, ... , D, index set bl € I is refined in J, because J < I. Formally,
there exist some indices 0 < ky < ko < p such that

k}z .
U ol =0k b =0.
k'=k1

Hence, the product BC restricted to the rows indexed by U’Z?:kl bf, is nonzero only
in the columns indexed by IN)]%

Therefore, BC' is block diagonal with  blocks, where kth block has size |UI,:?:k1
bl | x \?)g| and is given by

blkdiag(Bk.l geeey Bkg)ofw

and J defines its column partition.
If I =J, then

ko ko 3
U bb= U vl =0l

k'=ky k'=Fk,
Therefore, for all k=1,...,5 we have
Supp(blkdiag(Bkla cee 7Bk2)Cl~g) = Supp(cfg)7

which implies supp(BC) = supp(C). d

LEMMA C.2. Let F € R"*P" be a block diagonal matriz with p blocks of size ny X r
for all k=1,...,p. Similarly, let F'€ R"*P" be a block diagonal matriz with p blocks
of size Ny X T for allk=1,...,p. If Z(F) < I(ﬁ'), then product FTF is also a block
diagonal matriz with p blocks and pr nonzero elements. Moreover, computing FTF
takes O(nrr).

Proof. Applying Lemma C.1, Z(FTF) = J(F). In other words FTF is a block
diagonal matrix with p blocks. R
Consider any group k in the partition Z(F), it is refined into ¢ > 1 groups in Z(F).

Then the diagonal block corresponding to group k in Z(F') of size nj X 7 interacts
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with ¢, respective block diagonal elements in Z(F'), forming a block diagonal matrix
of size ny x cxr. This block diagonal matrix has ¢, blocks with column index partition

L, orh {r+ 1,20 o {(eg — D)y oo err ) )

Thus the matrix-vector multiplication with this matrix requires O(747) operations.
Therefore, computing FTF requires the order of > b, fgr = nr7 operations. Finally,
the number of nonzero elements in FTF is Zk 1 CETT = pr. ]

C.1. EM method. This section complements section 4.1. Using the joint distri-
bution (y, z) and conditional distribution z; | y;, F°, D° defined in section 4.1, we get

N
ZE 2zl | i, FO, DY) Zcov((zi,zi) | yi, F°, D)

=1
+E (2 | yi, FO, D°) E (2 | i, F°, D°) "
= N(I, - FO' (29) 1 F0) 4+ FOT (20) 1y Ty (20) 1 FO.
We can now derive the expression for (4.1),
Q(F,D;F°,D°)=E ({(F,D;Y,Z)|Y,F°, D)

(n+s)N N 1
= log(2m) — 5 logdet D — 5 ;Tr(E (zlz? \ yivFO’DO) )

—fZTr 1{ (yiy; —2FE(zl|yl,F0 Do)yz)

+ FE (zi 2l |y, F°,D°) FT})

= —M log(2m) — glogdetD
- %Tr(N(IS — FOT(50) " F0) + FOT(20) "y Ty (20) L FO)
=W
- %Tr(D‘l{YTY o pOT(x0) -1y Ty
=V
+F(N(I, — FOT(29)~1F0) 4 FoT(20)*1YTY(20)*1F0)FT}).
=W

C.2. Inverse computation. The SMW matrix identity implies

(Fis Fy + D) = Fuynys Fienys + D) = (Fugny+ Flienys + D) R

=M,
(Ipire + B (Flusnys Fiynyy + D) P R) T RN (Fuyny Foyyye + D)1
=M, =MT

= (Flurn)+ Fgnys + D)7 = Mo(Lpp, + F" M)~ Mg
= (F(l+1)+Fg+1)+ + D)~ — HH.
Therefore, we have

s =20

T
(I+1)+ — H Hy .
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Appendix D. Cholesky factorization. In this section we present a Cholesky
factorization for the expanded matrix and show that the Cholesky factor has the same
sparsity as its inverse.

D.1. Schur complement. Finding the inverse of ¥ amounts to solving the linear
system

(FFT + D) X=DX +Fy, F{ X+ -+ FRF'X=1I,

which is equivalent to solving the expanded system of equations

D Fr_1 e Fy X
Fg—l _IpL—lTL—l Yo I
o |7 | ]
FlT 711017"1 Y1

Denote the expanded matrix (D.1) by E € S"T%. Note that E has the block sparsity
pattern of the upward-left arrow.

Block Gaussian elimination on the matrix (D.1) leads to an LDL decomposition
(D.2)
In —-Fpi - —-F In

IPL—ITL—l FFT + D _Fg—l IPLfl’f'L—l

: —I, : .

Iplh _FlT [;D1 1

And FFT + D is Schur complement of the block —I, of the matrix E.

D.2. Recursive Cholesky factorization. Let s;; = Zﬁ;ll pyry for all [ =
1,...,L — 1. Define E; as the top left (n+ s;4) X (n+ s;4) submatrix of E, i.e.,

D Fr 4 F,

FT -1
L—-1 PL-1TL—1 ESnJrSH'.

E; =
FlT _I;DH"L

We find the factors of E by recursively factorizing Ey_1,..., E; using the relation

F
B Eip [ Ol]
[FlT 0] 7IPL""l

D.2.1. Sparsity patterns. The block Gaussian elimination on Ej gives the
following factorization:

(D.3)

I B I
[FF O] EY Iy, Lo + [F" O] ELL | [FF Ol ELY Iy

Submatrices of E. In Lemma D.1 we show the sparsity pattern of matrices nec-
essary for Cholesky factorization.
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LEMMA D.1. Let F and D be factors of PSD MLR ¥, and let E be its expanded
matriz. Then for alll=1,...,L —1, we have

T —1 In T -1
[F(l—l)— O}El [0 :F(l—l)—2l+a

and
supp( [Fgfl)f 0} Efl) =supp(F(_y,_[D Fr1 -+ F).

Proof. 1t is easy to check that these properties hold for the base case, i.e., £y, = D.
Now we demonstrate the properties of E; for all =L —1,...,1.
Assume that

-1 I’r T v—1
(D.4) (2 0] El+1[0l =F_ X
and
(D.5) supp([FlT_ O]Eljrll):supp(FlT_ [D Fr_1 - Fl+1])~

Note that the (negative) bottom block in the block diagonal matrix in (D.3) is
equal to

(D.6) — FZTE(*ZL) LE-o0.

Recall from section 5.1.1, that this matrix is block diagonal, consisting of p; blocks,
each of which is of size r; x r;. Let RlVlRlT be the Cholesky factorization of (D.6).
Using the relation from (D.3), we can express the inverse as

T

I E 1

E-l1— nEsatny 1+1
! [[_FIT 0] B Ipm] [

Intsin, ]
1+1

_(RlVlRlT)_l] |:[_FZT O} El_+11 Ipm

Then the matrix [F(Illl)7 0} E; ' is equal to

—F EL
T FT 0 -1 l I+1
[FU-”- Fo- }EHI{O” h(szleT)lFF 0] B} —<RMR?‘>—1]’

which simplifies to

(D.7)

[Fg_l)_ 0} T

F _ _ F; _
Combining (D.7), (D.4), and SMW (5.1) we get
T ~1 | In T -1 1 T\—1 Ty—1
[Fufl)f 0} Ey {0 =Fi1)- (Z(z+1>+ = By FRVIR )T E<z+1)+)
=F 4y %
The coefficients of matrix

o _ _
(D.8) [Fgfl)f 0} E; 1[ }:Fg_l)_z L R(RVIRT) '=MT

Iplrl (l+1)+
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are obtained during the inverse computation; see section 5.1.2. Furthermore, we have
supp(MJ) = supp(F_,,_F). )
Using assumption (D.5), for any [ >+ 1 we have

0
supp {F(?*l)* 0} Elj_ll Lyr; = supp(F(il)fF[).
0
Similarly, it holds that
0
supp | M{ [FF 0] EZY | Ly | | =supp(F(_,) FiFTF).
0

By Lemma C.2, for any l; < [y product FEFI2 has p;,7, 7, nonzero entries,
I(F'FR,) = J(F,), and can be computed O(nry,ry,). By Lemma C.1, for any
I' <l—1and [ >1+1, we have Z(F,Fl) = J(FF’) < Z(Fy). This implies
supp(F} F,F) = supp(F}), and consequently, supp(F)] FFI'F;) = supp(F] F).
Combining this result with (D.7), for any { >+ 1 matrix

(D.9)
0 0

0
T ~1 T -1 T -1
[F(l—l)— 0} By Iy | = {F(l—l)— 0} Ey Ty | = M3 [FT O] B Ty |
0 0 0

has the sparsity of supp(Fg_l)_FlFlTFi) = supp(Fg_l)_F[). This implies

supp ([F(jlll)f O} Efl) = supp (F(?ﬂ% [D Fri - Fz]) _
The final result follows by induction. 0

Cholesky factors. Let the Cholesky factorization of a symmetric matrix Ej;; be
given by

El+1 — L(H—l)D(l-‘rl)L(l-i-l)T.
Using (D.3) we have

T
E, = Intsagny B Tntsignyy
[FT o|EL, I —RVRT| |[FF' O|EL, Iy

+1 Piri 11
D10 LO+D DU+ 7,0+ T

Note that the matrix R; is a block diagonal matrix consisting of p; blocks, each of
which is a lower triangular matrix of size r; x r; (i.e., Z(R;) = J(R;) X Z(F})); see
section 5.1.1. Thus from (D.10), Cholesky factors of E; are

(I+1)
L . po— [

) —
(D.11) LV= [FIT 0] (D(l+1)L(l+1)T)f1 R,

Then we also have
(L(l+1))71

—R, ' [FlT 0] El+11 R '
Lemma D.2 establishes the sparsity pattern of Cholesky factors, and, in particular,

supp (L") =supp((L1)~1).
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LEMMA D.2. Let F' and D be factors of PSD MLR X, and let E be its expanded
matriz. Then for alll=1L,...,1 andl=1L,...,l, we have

supp(F{"[D Fr1 -+ Fia])=supp([0 I, O] (LIFD)™
=supp([0 I, O L),
Proof. Assume for all I=0L,....l+1 we have
SUPP(F;T [D Fp_y -+ Fi])=supp([0 I, O (L)~
=supp([0 I, 0]LI*D).

Using (D.11) it suffices to show the sparsity of the bottom block of L®) and
(LW~ of size pyr; x (n+ 514 ). The assumptions above imply

supp([L, O] (L)) =supp(D[D Fr1 - Fia),

thus since DUHD) is diagonal we get
supp([F 0] (D(l+1)L(l+1)T)_l) = supp(F/ (D Fri -+ Fia)).
Combining Lemma D.1 with supp(R; ' F/") = supp(F/"), it follows that

supp(Rl_1 [FZT 0] El_+11) :supp(FlT [D Fr_q --- Fl+1])-
Since supp(R;) = supp(Rfl) C supp(F/' F}), the following holds

supp(F" [D Fr_1 --- F])=supp([0 Iy,] L")

=supp([0 Iy, ] (L)1),

Combining these results with (D.11) we conclude that supp(L®)) = supp((L")~1).
Evidently, for the base case, LX) = I,, and D) = D, these properties hold. By
induction we showed supp(L™")) =supp((LM)~1). 0

D.3. Efficient computation.
Recurrent term. Using (D.11) we recursively compute

T _ _1 | F; _
(DD L+ -1 gt [01] (ViRT) 1].

oo 0T [ o

Lemma D.1 implies

_1 | F _
{F(?—l)— 0] B [Ol] (ViR[) ™' = M R,.

The product MI R; requires 25,—:11 O(pir#ry) = O(pirr?) operations. Thus we get
identity

T, _ T\ _
(D.12) {F(?q)f 0} (DOLOH=1 = HF(?—l)f 0} (DUHD LD 71 M:;‘FRZ} .
This indicates that constructing a recurrent term at the next level only requires com-

puting M R;.
Moreover, by Lemma D.2 the sparsity is

supp ([Fg—l)— 0} (D(Z)L(Z)T)_l) — supp (F(Tl’_l)_ [D Fr_i - Fl}) .
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Method. We now describe the algorithm for computing Cholesky factorization
that recursively computes Cholesky factors of Er, Ep_1,...,Fy. This process is ac-
companied by the recursive computation of coefficients in X 7!; see section 5.1. We
include additional time and space complexities beyond those discussed in section 5.1.

We start with LX) = I,, and DY) = D. Then for each level =L —1,...,1 repeat
the following steps.

1. Compute Cholesky decomposition of (D.6), R;ViRF, in O(p;r}), and store its
O(pir}) coefficients. The coefficients of (D.6) and its inverse are obtained in
section 5.1.

2. Form L and D" using stored coefficients of [F/” 0] (D(Hl)L(Hl)T)*1
according to (D.11).

3. Form [F{_.y_ 0](D(l)L(l)T)_1 using (D.12). This requires computing M{ R,
with O(p;rr?) operations and Z;;ll ry(n+ Z[L;llpir[) coefficients. We use
Zé,_:ll pyryry coefficients of M3 from section 5.1.

Cholesky factor of E, i.e., lower triangular matrix L"), has less than

1
n+ > rntproarpoy e +pm) <nr+ppoar’

l=L-1

nonzero entries. The total cost for computing the factors is

1
r)+ Z O(pir + pirrd) = O(nr +pr_17°).
I=L-1

D.4. Determinant. Using the Cholesky decomposition of F we can easily com-
pute the determinant of MLR covariance matrix . Specifically, using (D.2) we have

det(E) =det(FFT + D)(-1)*,

since the eigenvalues of a triangular matrix are exactly its diagonal entries and because
the determinant i; a multiplicative map. Alternatively, using Cholesky decomposition,
E=LWDMLM" we have

det(E) = det(L™M)2 det(DM) = det(DM).

Since
det(DM) = (=1)* det(D H det(V}),
we obtain
n—+s n—+s
det(FFT 4+ D) = H D], logdet(FFT + D) = Z log|DV].

Remark D.3. The det(X) can be computed at no additional cost while recursively
computing the coefficients in ¥ 7!; see section 5.1. For every | = L —1,...,1 we
compute the eigendecomposition of the matrix

Rl‘/lRl = PLTZ+F‘Z 2(_[+1 Fl:QZAlQ’lT,
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which implies
det(V;) = det (R ViR ) = det(Q; A\, Q] ) = det(A;).

Therefore,
(D.13) det(FF" + D) = det(D) [ ] det(Ay).

Note that, alternatively, determinant (D.13) can be interpreted as relying on the
recursive application of the matrix determinant lemma, which states that if A € R"*™
is invertible, then for any U,V € R™*P_ it holds that

det(A+UVT) =det(A)det(I, + VT ATIU).

Appendix E. Factor model with linear covariates. In this section we show
how to apply our fitting method to the factor model with linear covariates. Suppose
we have samples y1,...,yny € R” along with covariates z1,...,2xy € RP. Then the
factor model with the covariates is given by

Yi = Bz + Fz; + e,

where B € R"*P is a matrix with regression coefficients. Define

]
X=| : |eRY? Z=[X Z]eRV*0tt) F=[B F]eR™WF),

Ty

Similarly to steps in section 4.1, we have y; ~ N (Bx;, %), z; ~ N(0,1), and the

conditional distribution (z; | y;,z;, F°, D) is Gaussian,

N (F()T(E[))*l(yi ~ B%;), I, — FOT(EO)*lFO> _
Since the log-likelihood of complete data (Y, X, Z) is

(n+s)N

_ . N 1 o 1
UF, DY, 2) = - log(2r) — - logdet D — Z|(¥ — ZF7)D™V2|1% - 2| Z]}3,

we have
Q(F, D;F°, D) =B (UF,D;Y. 2)| Y, X, I, D")

= _w log(2m) — glog det D — %Tr(W)

1 T [ XTy - [ XTx XTyT 7 -,
— 2Tr(D {Y Y -2F [ 7Yy } +F [ X W F ,
where the matrices V and W are defined as

V=r""(x%"Y(y - xB"")T,

W

N
S E (zzT | i, 4, FO, DO) = N(I, - F*" (29)1F%) + V7.
i=1

Similarly to (4.2), Q(F,D;F°, D) is separable across the rows of F; therefore,
our fast EM method can be applied directly.
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Appendix F. Product of MLR matrices. In this section we show that the
product of two MLR matrices, A with MLR-rank r and A’ with MLR-rank r’, sharing
the same symmetric hierarchical partition, is also an MLR matrix with the same
hierarchical partition and an MLR-rank of (r + /). We also show that it can be
computed using O(nmax{r,r’'}?) operations.

Since the hierarchical partition is symmetric, without loss of generality assume A
and A’ are contiguous MLR. Define

Ay =Ai+-+Ap

then it is easy to check that

=1
L-1
(F.1) =3 (ALAL + A+ Af) + ALAT.

=1

o () (524)

~

We now show that each term in the sum above can be decomposed into a product of
block diagonal matrices, which are the factors of matrix AA’ on level .
Recall the notation from [43],

Ay =blkdiag(B,,C]1,..., B, CL,), A =blkdiag(B;,C,1...., B, CL ),

where By i, B 1, Cx, Cf j, € R"+X" for all k=1,...,p;, and [=1,..., L.

Since for all levels | < I, supp(A;) C supp(4,), it follows that supp(4;47) =
supp(4;); see section 5.1.1. Thus we albo have supp(4;4;,) =supp(4;). Similarly,
supp(A(+1)+4)) = supp(4)).

Consider levels [ <. Let the kth group on level I (for k=1,...,p;) be partitioned
into p, ., groups on level l indexed by k,. k; +p i1 Let the partition of Cj
into p, ;. ; blocks for each group be deﬁned as follows:

Cli
Cir=
Cl7k;pl_’kj

Then the kth diagonal block of the AlA;~ is given by

(AZA%);,C:Bl}kCEkblkdiag(B’ cr...B. COF )

LE>" lﬁ”z,k,z‘ lvpz,k,z“

T / 'T T I 'T
=By { CliaBr i Crx Crkom i Biisn =1kt , -1
—=T
= Bl,kcl,k,ia

where By, C, , ; € R"#*" are left and right factors of (AlAg)k. Computing

/ 'T TUXNG foy s :
(Clk‘jB )Cl k+] 1 R l ka'*'J—l7 ]:1""’pl,k,[’
where Cjp,; € R"HFi-1*" and CY B € R"MFH-17TT takes

Uk+7—1" " k+j—1
O(n; 12+j—17”l7“1”) operations. Computing all coefficients of the right factor of AZA%

requires
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P; Pik,i

Z Z O(nf,lé-s-j—l”ri) = O(nriry).

k=1 J=1

Therefore, we have the following factorization:

) —T —T —T
AIA% = blkdlag(Blle’M’[, e, Bl,pl Cl,pz,i) = BlCl,[,
where Supp(@lj) =supp(B)).
Similarly, for levels [ > [, we have

A Al =blkdiag(B; , ,C;% ... B

"TN _f{/. ~T
Ly 1Crp) =BuiCr

[»P[-, l,p7

where supp(B;,;) = supp(Cj), and it can be computed in O(nryrj). Thus A; A7 has
the same sparsity as A%.
Combining the above we have the following factorization:

L L
_T — /
AL + Ay 1 Ap = Z B.C i+ Z B¢t
=l I=141

(F.2) = [ B i By ] [ YiLCuy O ]T»

which we can compute in

L L
O | nny E T%—Fn?“l’g Ty
=l

I=l+1

Note that I(ZZL:HlEl,Z) = Z(By), and similarly, I(El;:lél,f) = Z(C]). Therefore,
we can equivalently represent (F.2) as a product of two block diagonal matrices by
permuting the columns in the left and right factors accordingly. The resulting two
block diagonal matrices are the factors of AA’ on level [, and in the compressed form
have size n x (1, +r]) each.

Finally, from (F.1) we see that matrix AA’ is an MLR matrix with MLR-rank
(r +7"). Moreover, computing factors requires O(nmax{r,r’'}?) operations.

Reproducibility of computational results. This paper has been awarded the
“SIAM Reproducibility Badge: Code and data available” as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
computing community. Code and data that allow readers to reproduce the results
in this paper are available at https://github.com/cvxgrp/multilevel factor_model (see
notebooks in /examples folder).
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