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Abstract. We examine a special case of the multilevel factor model, with covariance given by
multilevel low rank (MLR) matrix [T. Parshakova et al., Factor fitting, rank allocation, and parti-
tioning in multilevel low rank matrices, in Optimization, Discrete Mathematics, and Applications to
Data Sciences, SOIA 220, Springer, 2024, pp. 135--173]. We develop a novel, fast implementation of
the expectation-maximization algorithm, tailored for multilevel factor models, to maximize the like-
lihood of the observed data. This method accommodates any hierarchical structure and maintains
linear time and storage complexities per iteration. This is achieved through a new efficient technique
for computing the inverse of the positive definite MLR matrix. We show that the inverse of positive
definite MLR matrix is also an MLR matrix with the same sparsity in factors, and we use the recur-
sive Sherman--Morrison--Woodbury matrix identity to obtain the factors of the inverse. Additionally,
we present an algorithm that computes the Cholesky factorization of an expanded matrix with linear
time and space complexities, yielding the covariance matrix as its Schur complement. This paper is
accompanied by an open-source package that implements the proposed methods.

Key words. multivariate analysis, sparse matrix factorization, math-
ematical software, scalable algorithm, multilevel factor model
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1. Introduction. Factor models are used to explain the variation in the ob-
served variables through a smaller number of factors. In fields like biology, econom-
ics, and social sciences, the data often has hierarchical structures. To capture this
structure specialized multilevel factor models were developed. Existing methods for
fitting these models do not scale well with large datasets.

In this work, we introduce an efficient algorithm for fitting multilevel factor mod-
els. Our method is compatible with any hierarchical structure and achieves linear
time and storage complexity per iteration.

1.1. Prior work.
Factor models. Factor analysis was initially developed to address problems in

psychometrics about 120 years ago [55], and it later found applications in psychology,
finance, economics, and statistics. The idea behind factor analysis is to describe vari-
ability among the observed variables using a small number of unobserved variables
called factors. Factor models decompose a covariance matrix into a sum of a low rank
matrix, associated with underlying factors, and a diagonal matrix, representing idio-
syncratic variances. Since the early 20th century, factor analysis has seen significant
methodological advancements [21, 11, 30, 20, 19], with several books dedicated to its
theory and application [27, 12].
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FITTING MULTILEVEL FACTOR MODELS 1931

Hierarchically structured data. Data from fields such as biology, economics, so-
cial sciences, and medical sciences often exhibit a hierarchical, nested, or clustered
structure. This has led to the development of specialized techniques in factor analy-
sis aimed specifically at handling hierarchically structured data such as hierarchical
factor models [54, 57] and multilevel factor models [1, 38].

Hierarchical factor models. In hierarchical factor models, factors are organized
into a hierarchy, where general factors at the top influence more specific factors po-
sitioned beneath them [54, 9, 59, 50]. This model type does not necessarily reflect a
hierarchy in the data (e.g., individuals within groups) but rather in the latent variables
themselves. Widely used in psychometrics, these models are crucial for distinguishing
between higher-order and lower-order factors [10, 39]. For instance, [17] identified a
hierarchical structure of personality with two general factors, stability and plasticity,
at the top, and the so-called Big Five personality factors below them: neuroticism,
agreeableness, and conscientiousness are under stability, while extraversion and open-
ness are under plasticity.

Multilevel factor models. Multilevel factor models are statistical frameworks de-
veloped in the 1980s to handle hierarchical data structures; see [1, 23, 38, 52, 46], and
the books [14, 24]. These models partition factors into global and local components,
allowing the decomposition of the variances of observed variables into components
attributable to each level of the hierarchy. There is a wide variety of multilevel factor
models discussed in the literature, with the general form for a 2-level factor model
presented in [24, section 8.2].

Multilevel (dynamic) factor models have also been applied to time series data
[26, 3, 56, 4]. They have been particularly effective in modeling the co-movement of
economic quantities across different levels [26, 4]. For example, [33, 13, 32] used these
models to characterize the co-movement of international business cycles on global,
regional, and country levels.

In this paper we focus on a special case of the multilevel factor model, that has
no intercept and no linear covariates. The framework can be easily extended to more
general case as needed, see Appendix E. We assume the observations follow a normal
distribution, so the model is defined by a covariance matrix that is a multilevel low
rank (MLR) matrix [43]. In [43] the authors consider two problems beyond fitting,
namely, rank allocation and capturing partition. Here, we assume that both rank
allocation and hierarchical partition are fixed, and focus solely on fitting factors.

Fitting methods. Several methods have been employed to fit multilevel models,
each with its advantages and challenges. Among the most prominent are maximum
likelihood and Bayesian estimation techniques [15], and Frobenius norm-based fit-
ting methods [43]. Commonly utilized algorithms for these methods include the
expectation-maximization (EM) algorithm [53, 49], the Newton--Raphson algorithm
[36], iterative generalized least squares [23], the Fisher scoring algorithm, and Markov
Chain Monte Carlo [25]. Despite the efficacy of these approaches, no single method
proves entirely satisfactory under all possible data conditions encountered in research.
As a result, statisticians are continually developing alternative techniques to enhance
model fitting and accuracy [15, 35].

Software packages. Several commercial packages offer capabilities for handling
multilevel modeling, including LISREL [31], Mplus [2, 41, 42], and MLwiN [48]. The
open-source packages include lavaan [51, 29], gllamm [47]. Additional resources and
software recommendations can be found in [14, section 1.7] and [24, section 18]. These
tools are primarily designed for multilevel linear models [22], and most of them do not
support the specific requirements of factor analysis within multilevel frameworks that
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1932 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

involve an arbitrary number of levels in hierarchical structures. Although OpenMx
[7, 44], an open-source package that implements MLE-based fitting methods, does
support multiple levels of hierarchy, it was unable to handle our large-scale examples.
Additionally, we found no high-quality, open-source implementations of MCMC-based
fitting methods; thus these were not included in our comparison.

In this paper, leveraging the MLR structure of the covariance matrix, we derive
a novel fast implementation of the EM algorithm for multilevel factor modeling that
works with any hierarchical structure and requires linear time and storage complexities
per iteration.

1.2. Our contribution. The main contributions of this paper are the following:
1. We present a novel computationally efficient algorithm for fitting multilevel

factor models, which operates with linear time and storage complexities per
iteration.

2. We show that the inverse of an invertible PSD MLR matrix is also an MLR
matrix with the same sparsity in factors, and we use the recursive Sherman--
Morrison--Woodbury (SMW) matrix identity to obtain the factors of the in-
verse.

3. We present an algorithm that computes the Cholesky factorization of an ex-
panded matrix with linear time and space complexities, yielding the covari-
ance matrix as its Schur complement. We also show that Cholesky factor has
the same sparsity pattern as its inverse.

4. We provide an open-source package that implements the fitting method, avail-
able at https://github.com/cvxgrp/multilevel factor model. We also
provide several examples that illustrate our method.

2. Multilevel factor model. In this section we review the multilevel low rank
(MLR) matrix along with notations necessary for our method. We then present a
variant of the multilevel factor model that will be the focus of this paper.

2.1. Multilevel low rank matrices. An MLR matrix [43] is a row and column
permutation of a sum of matrices, each one a block diagonal refinement of the previous
one, with all blocks low rank, given in the factored form. We focus on the special case
of symmetric positive semidefinite (PSD) MLR matrices.

An n\times n contiguous PSD MLR matrix \Sigma with L levels has the form

\Sigma =\Sigma 1 + \cdot \cdot \cdot +\Sigma L,(2.1)

where \Sigma l is a PSD block diagonal matrix,

\Sigma l = blkdiag(\Sigma l,1, . . . ,\Sigma l,pl
), l= 1, . . . ,L,

where blkdiag is the direct sum of blocks \Sigma l,k \in Rnl,k\times nl,k for k = 1, . . . , pl. Here pl
is the size of the partition at level l, and

pl\sum 
k=1

nl,k = n, l= 1, . . . ,L.

Throughout this paper we consider L \geq 2 and pL = n; therefore, \Sigma L is a diagonal
matrix. Also for all l= 1, . . . ,L define matrices

\Sigma l+ =\Sigma l + \cdot \cdot \cdot +\Sigma L, \Sigma l - =\Sigma 1 + \cdot \cdot \cdot +\Sigma l.

By definition, we have \Sigma =\Sigma 1+ =\Sigma L - .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FITTING MULTILEVEL FACTOR MODELS 1933

The block dimensions on level l partition the n indices into pl groups, which are
contiguous. Let J1, . . . , JL be partitions of the set \{ 1, . . . , n\} . (By symmetry of \Sigma l,
these partitions are the same for rows and columns.)

For each l= 1, . . . ,L, the level l partition of the indices is the set of pl index sets

Jl = \{ \{ 1, . . . , nl,1\} ,\{ nl,1 + 1, . . . , nl,1 + nl,2\} , . . . ,\{ n - nl,pl
+ 1, . . . , n\} \} .

We require that these partitions be hierarchical, meaning that for all l= 2, . . . ,L, the
partition Jl is a refinement of Jl - 1. We write

Jl \preceq Jl - 1

to indicate that for every index set X \in Jl, there exists index set Y \in Jl - 1 such that
X \subseteq Y .

We require that blocks on level l have rank not exceeding rl, given in the factored
form as

\Sigma l,k = Fl,kF
T
l,k, Fl,k \in Rnl,k\times rl , l= 1, . . . ,L - 1, k= 1, . . . , pl,

and refer to Fl,k as the factor (of block k on level l).
Define a diagonal matrix D=\Sigma L, which forces rL = 1. See Figure 1. We refer to

r= r1 + \cdot \cdot \cdot + rL - 1 +1 as the MLR-rank of \Sigma . The MLR-rank of A is, in general, not
the same as the rank of \Sigma . We refer to (r1, . . . , rL - 1,1) as the rank allocation.

Factor form. For each level l= 1, . . . ,L - 1 define

Fl = blkdiag(Fl,1, . . . ,Fl,pl
)\in Rn\times plrl .

Then we have

\Sigma l = FlF
T
l , l= 1, . . . ,L - 1.

Define

F =
\bigl[ 
F1 \cdot \cdot \cdot FL - 1

\bigr] 
\in Rn\times s,

with s=
\sum L - 1

l=1 plrl. Then we can write \Sigma as

\Sigma =
\bigl[ 
F D1/2

\bigr] \bigl[ 
F D1/2

\bigr] T
= FFT +D,

where F has s columns, and a very specific sparsity structure, with column blocks
that are block diagonal, and D is diagonal; see Figure 2.

Define Fl+ as the concatenation of left factors from levels l, . . . ,L - 1, and similarly
Fl - , i.e.,

Fl+ =
\bigl[ 
Fl \cdot \cdot \cdot FL - 1

\bigr] 
, Fl - =

\bigl[ 
F1 \cdot \cdot \cdot Fl

\bigr] 
.

Thus the number of nonzero coefficients in Fl+ is n
\sum L - 1

l\prime =l rl\prime and in Fl - is n
\sum l

l\prime =1 rl\prime .
By definition, we also have F = F1+ = F(L - 1) - .

+ + + +...

Fig. 1. (Contiguous) PSD MLR matrix given as a sum of block diagonal matrices with each
block being low rank. The coefficients of the factors are depicted in green. (Figure in color online.)
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1934 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

...

...

Fig. 2. (Contiguous) PSD MLR matrix given as a product of two sparse structured matrices.
The coefficients of the factors are depicted in green. (Figure in color online.)

... ...

Fig. 3. (Contiguous) PSD MLR matrix given in compressed form.

Compressed factor form. We can also arrange the factors into one dense matrix
with dimensions n\times r. We vertically stack the factors at each level to form matrices

\=F l =

\left[   Fl,1

...
Fl,pl

\right]   \in Rn\times rl , l= 1, . . . ,L - 1,

and lastly a diagonal of matrixD, diag(D)\in Rn. We horizontally stack these matrices
to obtain one matrix

\=F =
\bigl[ 

\=F 1 \cdot \cdot \cdot \=FL - 1
\bigr] 
\in Rn\times (r - 1).

All of the coefficients in the factors of a contiguous MLR matrix are contained in this
matrix and vector diag(D); see Figure 3. To fully specify a contiguous MLR matrix,
we need to give the block dimension nl,k for l = 1, . . . ,L, k = 1, . . . , pl, and the ranks
r1, . . . , rL.

PSD MLR matrix. We reviewed the contiguous PSD MLR matrix. The PSD
MLR matrix is given by the symmetric permutation of rows and columns of a contigu-
ous PSD MLR matrix. Therefore, the PSD MLR matrix uses a general hierarchical
partition of the index set.

Example. To illustrate our notation we give an example with L= 4 levels, p1 = 1,
with the second level partitioned into p2 = 2 groups, and the third level partitioned
into p3 = 4 groups. We take n= 5, with block row (and column) dimensions

n1,1 = 5,
n2,1 = 3, n2,2 = 2,
n3,1 = 1, n3,2 = 2, n3,3 = 1, n3,4 = 1
n4,1 = 1, n4,2 = 1, n4,3 = 1, n4,4 = 1, n4,5 = 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FITTING MULTILEVEL FACTOR MODELS 1935

The sparsity patterns of \Sigma 1, \Sigma 2, and \Sigma 3 are shown below, with \ast denoting a possibly
nonzero entry, and all other entries zero (the sparsity pattern of \Sigma 4 matches that of
a diagonal matrix),

\Sigma 1 =

\left[      
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 
\ast \ast \ast \ast \ast 

\right]      , \Sigma 2 =

\left[      
\ast \ast \ast 
\ast \ast \ast 
\ast \ast \ast 

\ast \ast 
\ast \ast 

\right]      , \Sigma 3 =

\left[      
\ast 

\ast \ast 
\ast \ast 

\ast 
\ast 

\right]      .
If we have ranks r1 = 2, r2 = 1, r3 = 1, and r4 = 1, the MLR-rank is r= 5, with factor
sparsity pattern as below,

F1 =

\left[      
\ast \ast 
\ast \ast 
\ast \ast 
\ast \ast 
\ast \ast 

\right]      , F2 =

\left[      
\ast 
\ast 
\ast 

\ast 
\ast 

\right]      , F3 =

\left[      
\ast 

\ast 
\ast 

\ast 
\ast 

\right]      .
This means that \Sigma 1 has rank 2, the p2 = 2 blocks in \Sigma 2 each have rank 1, and the
p3 = 4 blocks in \Sigma 3 also have rank 1.

2.2. Partition notation. In this paper we consider matrices that are block
diagonal, e.g., Fl, and matrices formed by concatenation of block diagonal matrices,
e.g., Fl+. To formally describe the row and column sparsity patterns of these matrices,
we define the following operators.

Define an operator \~\scrJ , that for any block diagonal matrix B \in Rm\times n returns its
column index partition. Similarly, define operator \~\scrI to return the row index partition
of B. Note by definition \~\scrI (B) = \~\scrJ (BT ).

Define operators \scrI and \scrJ that for any (horizontal or vertical) concatenation of
block diagonal matrices B = [ B1 \cdot \cdot \cdot Bc ] \in Rm\times n return lists of partitions for
each block diagonal matrix

\scrJ (B) = ( \~\scrJ (B1), . . . , \~\scrJ (Bc)), \scrI (B) = (\~\scrI (B1), . . . , \~\scrI (Bc)).

We say a partition refines a list of partitions if it refines each partition in that
list. Conversely, we say a list of partitions refines a partition if every partition in the
list refines that partition. We denote this relation by \preceq .

Finally, define the sparsity pattern of any B \in Rm\times n as

supp(B) = \{ (i, j) | Bij \not = 0, i= 1, . . . ,m, j = 1, . . . , n\} .

Remark 2.1. If B,C \in Rm\times n are concatenations of block diagonal matrices with
supp(B) = supp(C), then \scrI (B) = \scrI (C) and \scrJ (B) =\scrJ (C).

Example. Applying these operators to the matrices from the previous section, we
get

\scrI (\Sigma l) =\scrJ (\Sigma l) = \scrI (Fl) = Jl,

and

\scrI (Fl - ) = (J1, . . . , Jl),

\scrJ (Fl) = \{ \{ 1, . . . , rl\} ,\{ rl + 1, . . . ,2rl\} , . . . ,\{ (pl  - 1)rl + 1, . . . , plrl\} \} ,
\scrI (Fl+) = (Jl, . . . , JL - 1).
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1936 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

We also have

\scrI (Fl+)\preceq \scrI (Fl)\preceq \scrI (Fl - ),

and

supp(\Sigma l) = supp(\Sigma l+).

2.3. Problem setting. We consider a multilevel factor model,

y= Fz + e,(2.2)

where F \in Rn\times s is structured factor loading matrix, z \in Rs are factor scores, with
z \sim \scrN (0, Is), and e\in Rn are the idiosyncratic terms, with e\sim \scrN (0,D).

We assume that the n features can be hierarchically partitioned, with specific
factors explaining the correlations within each group of this hierarchical partition.
This can be modeled by taking F to be the factor matrix of PSD MLR. Then y \in Rn is
a Gaussian random vector with zero mean and covariance matrix \Sigma that is PSD MLR,

\Sigma = FFT +D.

We assume we have access to hierarchical partition and rank allocation. There-
fore, we reorder n features so that the groups in hierarchical partition correspond to
contiguous index ranges. We seek to fit the coefficients of F \in Rn\times s and diagonal
D \in Rn\times n (with diag(D)> 0) from the observed samples.

We assume s\ll n, i.e., number of factors is smaller than the number of features.

3. Fitting methods. In this paper, we estimate parameters F and D using the
maximum likelihood estimation (MLE). This approach is different from that in [43],
which focuses on fitting the PSD MLR matrix to the empirical covariance matrix using
a Frobenius norm-based loss. Notably, the Frobenius norm is not an appropriate loss
for fitting covariance models. First, the Frobenius norm is coordinate-independent,
it treats all coordinates equally, whereas MLE accounts for coordinate-specific dif-
ferences, where changes across different coordinates have varying implications. This
can lead to covariance models with small eigenvalues when using the Frobenius norm,
a situation that MLE inherently guards against. Second, the Frobenius norm-based
loss is distribution-agnostic. In contrast, MLE takes advantage of the known distri-
bution of the data. Nevertheless, there is an intrinsic connection between the MLE
and Frobenius norm, which we detail in section A of the appendix.

3.1. Frobenius norm-based estimation. One way to estimate coefficients of
matrices F and D is by minimizing Frobenius norm-based distance with sample co-
variance. This means solving the following optimization problem:

minimize \| FFT +D - \^\Sigma \| 2F
subject to FFT +D is PSD MLR,

(3.1)

with the hierarchical partition and sparsity structure of F (number of levels, block
dimensions, and ranks) predefined and fixed, as previously proposed in [43].

Since the problem (3.1) is nonconvex, [43, section 4] introduce two complementary
block coordinate descent methods to find an approximate solution. For example,
alternating least squares minimizes the fitting error over the left factors, then over
the right factors, and so on. The second method updates factors at one level in each
iteration by minimizing the fitting error while cycling over the levels.
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FITTING MULTILEVEL FACTOR MODELS 1937

3.2. Maximum likelihood estimation. Alternatively, we can estimate matri-
ces F and D using MLE. Suppose we observe samples y1, . . . , yN \in Rn, organized in
the matrix form as

Y =

\left[   yT1
...
yTN

\right]   \in RN\times n.

The log-likelihood of N samples is

\ell (F,D;Y ) = - nN

2
log(2\pi ) - N

2
logdet(FFT +D) - 1

2
Tr((FFT +D) - 1Y TY ).

(3.2)

For structured F , directly maximizing the log-likelihood \ell (F,D;Y ) is difficult. In-
stead, the expectation-maximization (EM) algorithm [16] is the preferred approach
for MLE.

Simplification via data augmentation. Difficult maximum likelihood problems can
be simplified by data augmentation. Suppose, along with Y , we also observed latent
data z1, . . . , zN \in Rs, organized in matrix Z \in RN\times s. Then the log-likelihood of
complete data (Y,Z) for model (2.2) is

\ell (F,D;Y,Z) = - (n+ s)N

2
log(2\pi ) - N

2
logdetD - 1

2
\| (Y  - ZFT )D - 1/2\| 2F  - 1

2
\| Z\| 2F .

(3.3)

Maximizing the \ell (F,D;Y,Z) with respect to F and D is now tractable. First, since D
is diagonal, when F is known solving for D is trivial. Second, note that \ell (F,D;Y,Z)
is separable across the rows of F . The nonzero coefficients in each row of F can be
found by solving the least squares problem.

For example, consider a simple factor model, where F is just a dense low rank
matrix. Then from the optimality conditions, the solution to (3.3) is given by

F = Y TZ(ZTZ) - 1, D=
1

N
diag(diag((Y  - ZFT )T (Y  - ZFT ))).(3.4)

Since we only observe Y and Z are missing, we use the EM algorithm to simplify
the problem through data augmentation.

4. EM algorithm. The EM algorithm iterates expectation and maximization
steps until convergence. After each pair of E and M steps it can be shown that the
log-likelihood of the observed data is nondecreasing, with equality at a local optimum.

4.1. Expectation step. In the expectation step we compute the conditional
expectation of complete data log-likelihood with respect to the conditional distribution
(Y,Z | Y ) governed by the the current estimate of parameters F 0 and D0:

Q(F,D;F 0,D0) =E
\bigl( 
\ell (F,D;Y,Z) | Y,F 0,D0

\bigr) 
.(4.1)

To evaluate the Q(F,D;F 0,D0), we need to compute several expectations. First,
using (2.2) we have

cov(y, z) =EFzzT = F,

cov(y, y) = FFT +D=\Sigma .
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1938 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

Thus (z, y) is a Gaussian random vector with zero mean and covariance

cov ((z, y), (z, y)) =

\biggl[ 
Is FT

F \Sigma 

\biggr] 
.

Second, the conditional distribution (zi | yi, F 0,D0) is Gaussian,

\scrN 
\Bigl( 
F 0T (\Sigma 0) - 1yi, Is  - F 0T (\Sigma 0) - 1F 0

\Bigr) 
.

Using the omitted derivations in section C.1, we can show that (4.1) equals

Q(F,D;F 0,D0) = - (n+ s)N

2
log(2\pi ) - N

2
logdetD - 1

2
Tr(W )

 - 1

2
Tr
\bigl( 
D - 1(Y TY  - 2FV + FWFT )

\bigr) 
,(4.2)

where we defined matrices V \in Rs\times n and W \in Rs\times s as

V =

N\sum 
i=1

E
\bigl( 
zi | yi, F 0,D0

\bigr) 
yTi = F 0T (\Sigma 0) - 1Y TY,(4.3)

W =

N\sum 
i=1

E
\bigl( 
ziz

T
i | yi, F 0,D0

\bigr) 
=N(Is  - F 0T (\Sigma 0) - 1F 0) + F 0T (\Sigma 0) - 1Y TY (\Sigma 0) - 1F 0.(4.4)

Remark 4.1. Note that (Is  - F 0T (\Sigma 0) - 1F 0) \succ 0, as it is a Schur complement of
matrix \biggl[ 

Is FT

F \Sigma 

\biggr] 
\succ 0.

Consequently, it follows that W \succ 0.

4.2. Maximization step. In the maximization step we find updated parameters
F 1 and D1 by solving the following problem:

maximize Q(F,D;F 0,D0)
subject to

\bigl[ 
F D1/2

\bigr] 
is the factor of PSD MLR.

(4.5)

Similar to (3.3), the maximization problem (4.5) is tractable. Observe, Q(F,D;
F 0,D0) is separable across the rows of F (and respective diagonal elements of D).
Moreover, using optimality conditions, the nonzero coefficients in each row of F can
be determined by solving the least squares problem. For efficiency, we can group the
rows by their sparsity pattern and instead solve the least squares problems for each
row sparsity pattern of F at once, forming resulting matrix F 1; see section 5.2.2.
Having F 1, the diagonal matrix is then equal to

D1 =
1

N
diag(diag(Y TY  - 2F 1V + F 1W (F 1)T )).

Thus F 1 andD1 are the optimal solutions to problem (4.5), which we can also compute
efficiently as discussed in section 5.
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FITTING MULTILEVEL FACTOR MODELS 1939

4.3. Initialization. The EM algorithm is a maximization-maximization pro-
cedure [28, section 8.5]; therefore, it converges to at least a local maximum. The
trajectory of the EM algorithm depends on the initial values of F 0 and D0. We have
observed that, depending on the initialization, it can converge to different local max-
ima. Additionally, when a good initial guess is not available, we have also observed
that initializing matrices using a single sweep of the block coordinate descent method
[43, section 4.2] from the top to bottom level works well.

5. Efficient computation.

5.1. Inverse of PSD MLR. In the maximization step, evaluating matrices V
(4.3) and W (4.4) requires solving linear systems with the PSD MLR matrix. We will
first address the efficient computation of \Sigma  - 1, i.e.,

(F1F
T
1 + \cdot \cdot \cdot + FL - 1F

T
L - 1 +D) - 1.

We will show that the inverse of the PSD MLR matrix is the MLR matrix with the
same hierarchical partition and rank allocation, and

\Sigma  - 1 = - H1H
T
1  - \cdot \cdot \cdot  - HL - 1H

T
L - 1 +D - 1,

where Hl \in Rn\times plrl is a factor at level l with the same sparsity structure as Fl.
We compute the coefficients of the inverse by recursively applying the Sherman--

Morrison--Woodbury (SMW) matrix identity.

5.1.1. Properties of structured matrices. We begin by giving useful proper-
ties of our structured matrices. Consider a factor matrix on level l, Fl \in Rn\times plrl , with
pl diagonal blocks of size nl,k \times rl, and row index partition set Jl for all k= 1, . . . , pl.

Remark 5.1. Lemma C.1 states that if block diagonal matrices B and C are such
that \scrJ (B)\preceq \scrI (C), then BC is block diagonal with \scrJ (BC) = \scrJ (C), e.g.; see below.
Moreover, if \scrI (B) =\scrJ (B), then supp(BC) = supp(C).

= =

Remark 5.2. The following properties are based on Lemma C.1, and they will be
useful in the next section.

1. Matrix FlF
T
l \in Rn\times n is a block diagonal matrix with blocks of size nl,k\times nl,k,

with \scrI (FlF
T
l ) =\scrJ (FlF

T
l ) = Jl, e.g., see illustration below.

=

For all l\prime \geq l, Jl\prime \preceq Jl implies supp(Fl\prime F
T
l\prime )\subseteq supp(FlF

T
l ). Then for matrix

F(l+1)+F
T
(l+1)+ =

L - 1\sum 
l\prime =l+1

Fl\prime F
T
l\prime ,

we obtain supp(Fl+1F
T
l+1) = supp(F(l+1)+F

T
(l+1)+).
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1940 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

2. For matrix \Sigma (l+1)+ it holds that supp(\Sigma (l+1)+) = supp(F(l+1)F
T
(l+1)).

3. The inverse of a block diagonal matrix is a block diagonal matrix consisting
of the inverses of each block. Thus for

\Sigma  - 1
(l+1)+ = (F(l+1)+F

T
(l+1)+ +D) - 1

we get supp(\Sigma  - 1
(l+1)+) = supp(\Sigma (l+1)+).

4. Since \scrI (\Sigma  - 1
(l+1)+) = \scrJ (\Sigma  - 1

(l+1)+) \preceq \scrI (Fl), for M0 = \Sigma  - 1
(l+1)+Fl, supp(M0) =

supp(Fl).

=

Thus matrix-vector product with M0 can be computed in the order of\sum pl

k=1 nl,krl = nrl operations.
5. Since \scrJ (FT

l ) \preceq \scrI (F(l - 1) - ), we have \scrJ (MT
0 F(l - 1) - ) = \scrJ (F(l - 1) - ). Further,

since \scrJ (\Sigma (l+1)+)\preceq \scrI (F(l - 1) - ), it follows that

supp(\Sigma  - 1
(l+1)+F(l - 1) - ) = supp(F(l - 1) - ).

6. For FT
l M0 \in Rplrl\times plrl it holds that \scrI (FT

l M0) = \scrJ (FT
l M0) = \scrJ (Fl); see the

figure below.

= =

It is straightforward to check that each of the blocks is PSD.

5.1.2. Computing the inverse. We show that \Sigma  - 1 is an MLR matrix with
factors having the same sparsity pattern as \Sigma . To establish this, we employ SMW
matrix identity

(FFT +D) - 1 =D - 1  - D - 1F (Is + FTD - 1F ) - 1FTD - 1.

We derive

\Sigma  - 1
l+ =\Sigma  - 1

(l+1)+  - HlH
T
l ,(5.1)

where we defined matrix

Hl =\Sigma  - 1
(l+1)+Fl(Iplrl + FT

l \Sigma  - 1
(l+1)+Fl)

 - 1/2;

see section C.2 for details. Remark 5.2 implies that supp(Hl) = supp(\Sigma  - 1
(l+1)+Fl) =

supp(Fl). Applying recursion (5.1) from the bottom to the top level we get

\Sigma  - 1 = - H1H
T
1  - \cdot \cdot \cdot  - HL - 1H

T
L - 1 +D - 1.

Combining, we establish that \Sigma  - 1 is an MLR matrix with the same hierarchical
partition as \Sigma .
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FITTING MULTILEVEL FACTOR MODELS 1941

Recursive SMW algorithm. We now show that the complexity of computing the
coefficients of the MLR matrix \Sigma  - 1 is O(nr2+pL - 1r\mathrm{m}\mathrm{a}\mathrm{x}r

2) and extra memory used is
less than 3nr + 2pL - 1r\mathrm{m}\mathrm{a}\mathrm{x}r, where r\mathrm{m}\mathrm{a}\mathrm{x} =max\{ r1, . . . , rL\} . To do so, we recursively
compute the coefficients of the matrices

\Sigma  - 1
l+ F(l - 1) - , Hl,(5.2)

from the bottom to the top level.
Suppose we have n

\sum l
l\prime =1 rl\prime coefficients of \Sigma  - 1

(l+1)+Fl - . This implies that we have

the coefficients of M0 = \Sigma  - 1
(l+1)+Fl. We now show how to compute (5.2) using SMW

matrix identity (5.1).
1. Compute M1 = MT

0 F(l - 1) - in O(nrl
\sum l - 1

l\prime =1 rl\prime ) and store its plrl
\sum l - 1

l\prime =1 rl\prime 

coefficients, since for l\prime \leq l - 1 computing MT
0 Fl\prime takes nrlrl\prime operations, and

compact form of F(l - 1) - has
\sum l - 1

l\prime =1 rl\prime columns.
2. Compute M2 = (Iplrl + FT

l M0)
 - 1 in O(nr2l + plr

3
l ) and store its plr

2
l coeffi-

cients. Compute Hl =M0(Iplrl + FT
l M0)

 - 1/2 in O(nr2l + plr
3
l ) and store its

nrl coefficients. Note that computing Iplrl + FT
l M0 requires O(nr2l ) opera-

tions, and its eigendecomposition, Iplrl + FT
l M0 = Ql\Lambda lQ

T
l , to compute Hl

takes O(plr
3
l ) operations.

3. Compute M3 =M2M1 in O(plr
2
l

\sum l - 1
l\prime =1 rl\prime ) and store its plrl

\sum l - 1
l\prime =1 rl\prime coeffi-

cients, since \scrI (M2) =\scrJ (M2)\preceq \scrI (M1) and compact form of M1 has
\sum l - 1

l\prime =1 rl\prime 

columns. Note that supp(M3) = supp(M1).
4. ComputeM4 =M0M3 in O(nrl

\sum l - 1
l\prime =1 rl\prime ) and store its n

\sum l - 1
l\prime =1 rl\prime coefficients,

since \scrJ (M0)\preceq \scrI (M3), and compact form of M3 has
\sum l - 1

l\prime =1 rl\prime columns. Note
that supp(M4) = supp(F(l - 1) - ).

5. Compute M5 = \Sigma  - 1
(l+1)+F(l - 1) -  - M4 in n

\sum l - 1
l\prime =1 rl\prime and store its n

\sum l - 1
l\prime =1 rl\prime 

coefficients.
Therefore, the complexity at the level l is

O

\Biggl( 
(nrl + plr

2
l )

l\sum 
l\prime =1

rl\prime 

\Biggr) 
.

Finally, we conclude that the total complexity is

T (n) =

L - 1\sum 
l=1

O

\Biggl( 
(nrl + plr

2
l )

l\sum 
l\prime =1

rl\prime 

\Biggr) 
=O(nr2 + pL - 1r\mathrm{m}\mathrm{a}\mathrm{x}r

2),

and extra storage used is less than 3nr+ 2pL - 1r\mathrm{m}\mathrm{a}\mathrm{x}r.
Recall that s =

\sum L - 1
l=1 plrl \ll n; therefore, we have pL - 1 \ll n. This implies that

the time complexity is linear in n.
If we assume that the rank allocation is uniform r1 = \cdot \cdot \cdot = rL - 1 = \~r and that

each block on one level is split into two nearly equal-sized blocks on the next level,
pl = 2l - 1, then the total complexity and storage are, respectively,

T (n) =O(n\~r2L2 + 2L\~r3L), 3n\~rL+ 2L\~r2L.

Using the assumption that s\ll n and s= (2L - 1  - 1)\~r, we have

L\ll log2(n/\~r+ 1) + 1.
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1942 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

Determinant. In Appendix D we show the covariance matrix \Sigma is the Schur com-
plement of the expanded matrix. For this expanded matrix, we also provide an explicit
Cholesky factorization method with linear time and space complexities. We leverage
this connection to argue that the determinant of \Sigma equals to

det(\Sigma ) = det(D)

L - 1\prod 
l=1

det(\Lambda l).

Therefore, det(\Sigma ) can be computed at no additional cost while recursively comput-
ing \Sigma  - 1. Moreover, Cholesky factors enable feature-dependent linear transform that
whitens the data and offer multiple useful interpretations; see [5, section 2]. See
section D.4 for details.

5.2. EM iteration.

5.2.1. Selection matrices. Let si be the ith row sparsity pattern of F . We
denote by | si| the number of rows that share this sparsity. Then the number of unique
sparsity patterns of rows of F equals the number of groups at level L - 1, i.e., pL - 1.
Note that we must have

\sum pL - 1

i=1 | si| = n. Let Sri \in \{ 0,1\} | si| \times n be a matrix that selects

rows with ith sparsity pattern. Since any row sparsity pattern of F has
\sum L - 1

l=1 rl = r - 1
nonzero columns, we define ST

ci \in \{ 0,1\} s\times (r - 1) as a matrix that selects those columns
of F . Thus, number of nonzero columns for row sparsity pattern si is r - 1, and the
matrices

SriFST
ci \in R| si| \times (r - 1), i= 1, . . . , pL - 1,

are dense in the coefficients of F ; see Figure 4.

Remark 5.3. For any matrix M with s rows we have

SriFM = SriFST
ciSciM, i= 1, . . . , pL - 1.

5.2.2. EM iteration computation. Recall that Q(F,D;F 0,D0) (4.2) is sepa-
rable across the rows of F . Therefore, to find F 1 we solve the reduced least squares
problem for each sparsity pattern of F .

Recall matrices V (4.3) and W (4.4), where W \succ 0. To find the coefficients of F
in problem (4.5), using section 5.2.1, it suffices to minimize the following:

Tr(FWFT  - 2FV )

=

pL - 1\sum 
i=1

Tr
\bigl( 
SriFWFTST

ri  - 2SriFV ST
ri

\bigr) 
=

pL - 1\sum 
i=1

Tr
\bigl( 
(SriFST

ci)(SciWST
ci)(SriFST

ci)
T  - 2(SriFST

ci)(SciV ST
ri)
\bigr) 
.

Fig. 4. Structured matrix F with p3 = 4 row sparsity patterns is shown on the left. The second
row sparsity pattern is highlighted in red. The dense matrix Sr2FST

c2
is shown on the right. (Figure

in color online.)
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FITTING MULTILEVEL FACTOR MODELS 1943

To recover the coefficients of F , we solve the least squares problem,

SriFST
ci = (SciV ST

ri)
T (SciWST

ci)
 - 1(5.3)

for each i= 1, . . . , pL. The inverse operation above is well-defined, since W \succ 0 implies
SciWST

ci \succ 0.
We now derive the computational complexity for calculating F 1. We first compute

coefficients of MLR (\Sigma 0) - 1 in T (n).
Next, we describe how to efficiently compute SciV ST

ri and SciWSci . Since F
0ST

ci \in 
Rn\times (r - 1), we compute (\Sigma 0) - 1(F 0ST

ci) \in Rn\times (r - 1) in O(nr2) using section 5.1. Next,
we compute \Bigl( 

(SciF
0T )(\Sigma 0) - 1

\Bigr) 
(F 0ST

ci)\in R(r - 1)\times (r - 1)

inO(nr2). To evaluate the product ((SciF
0T )(\Sigma 0) - 1)Y T\in R(r - 1)\times N we needO(nrN).

Combining the above, we obtain

SciV ST
ri =

\Bigl( 
SciF

0T (\Sigma 0) - 1Y T
\Bigr) 
(Y ST

ri)\in R(r - 1)\times | si| 

in O(| si| rN). Also by computing\Bigl( 
(SciF

0T )(\Sigma 0) - 1Y T
\Bigr) \bigl( 

Y (\Sigma 0) - 1F 0ST
ci

\bigr) 
\in R(r - 1)\times (r - 1)

in O(r2N), we then get SciWST
ci \in R(r - 1)\times (r - 1) in O(r2). Given SciV ST

ri and
SciWSci , solving the linear system (5.3) takes O(| si| r3).

When solving for each sparsity pattern si, the total complexity of the maximiza-
tion step is

T (n) +

pL - 1\sum 
i=1

O(nr2 + nrN + | si| rN + r2N + | si| r3),

which simplifies to

T (n) +O(pL - 1nr
2 + pL - 1nrN + pL - 1r

2N + nr3).

Plugging in the complexity of the inverse computation we arrive at

O(pL - 1nr
2 + nr3 + pL - 1nrN + pL - 1r\mathrm{m}\mathrm{a}\mathrm{x}r

2 + pL - 1r
2N).

Since pL - 1 \ll n, the time complexity is linear in n.
As a stopping criteria we use the relative difference between consecutive log-

likelihoods of observations (3.2). This requires computing the determinant of the
covariance matrix, which we obtain at no cost during the inverse computation. See
Appendices D and D.4 for details.

6. Numerical examples. We compare two factor fitting approaches based on
Frobenius norm [43] and MLE. In the first example, we compare a traditional fac-
tor model (FM) with a multilevel factor model (MFM) using real data. We demon-
strate that the multilevel factor model significantly improves the likelihood of the
observations. In the second example, we consider a synthetic MFM to generate the
observations. Our results show that the expected log-likelihood distribution of
the MLE-based method significantly outperforms the Frobenius norm-based method.
Finally, we apply our method to the real-world large-scale example.
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1944 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

6.1. Asset covariance matrix. We focus on the asset covariance matrix from
[43, section 8.1]. In this example the daily returns of n = 5000 assets are found
or derived from data from CRSP Daily Stock and CRSP/Compustat Merged Data-
base 2023 Center for Research in Security Prices (CRSP), The University of Chicago
Booth School of Business. We consider a N = 300 (trading) day period ending
2022/12/30, and for hierarchical partition use Global Industry Classification Stan-
dard (GICS) [6] codes from CRSP/Compustat Merged Database---Security Monthly
during 2022/06/30 to 2023/01/31 which has L= 6 levels.

We use the GICS hierarchy and two different rank allocations; see Figure 5 and
Table 1. For a rank allocation of r1 = 29, r2 = \cdot \cdot \cdot = r5 = 0, r6 = 1 (i.e., a tradi-
tional factor model), our method's average log-likelihood of realized returns improves
by 98 compared to the Frobenius norm-based method. Alternatively, using ranks
r1 = 14, r2 = 6, r3 = 4, r4 = 3, r5 = 2, r6 = 1, as determined by the rank allocation al-
gorithm in [43] (i.e., multilevel factor model), the average log-likelihood increases by
158. Thus the best log-likelihood is achieved using the MFM fitted with MLE-based
objective. Also note that a low Frobenius error does not necessarily indicate a better
log-likelihood; see Table 1.

To assess whether the log-likelihoods of the two methods are significantly different,
we can compare it to the standard deviation of the expectation of these log-likelihoods
with respect to the true model. Since we do not have the density of the true model,
we assume that the samples are drawn from (2.2). Under this assumption the stan-
dard deviation of the average log-likelihood is 2.887; see Appendix B. Therefore, we
conclude that the log-likelihood for our method MLE is significantly better.

6.2. Synthetic MFM. We generate samples from a synthetic MFM with n =
10,000 features. We create a random hierarchical partition with L= 6. Starting with

0 25 50 75 100 125 150

iteration

1.18× 104

1.185× 104

1.19× 104

1.195× 104

1.2× 104

1.205× 104
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N

MLE

Frob

0 25 50 75 100 125 150
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,D
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Fig. 5. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve), for FM (left) and MFM (right) of the asset covariance matrix. (Figure in color
online.)

Table 1
Frobenius errors and average log-likelihoods for factors fitted using either the Frobenius norm

or MLE-based methods for the asset covariance matrix.

Fit Model \| \^\Sigma  - \Sigma \| F /\| \Sigma \| F \ell (F,D;Y )/N

Frob FM 0.1538 11809
MLE FM 0.1617 11907

Frob MFM 0.1648 11956

MLE MFM 0.8497 12114
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FITTING MULTILEVEL FACTOR MODELS 1945

a single group, we evenly divide it across levels, resulting in 4, 8, 16, 32, and finally
10,000 groups at the bottom level. Each level is assigned ranks: r1 = 10, r2 = 5, r3 =
4, r4 = 3, r5 = 2, r6 = 1, respectively, yielding s = 174 unique factors in total. The
resulting compression ratio is 200 : 1.

Following this, the coefficients of the structured factor matrix F are sampled
from \scrN (0,1). Then we sample the noise variance in proportion to the average signal
variance maintaining a signal-to-noise ratio (SNR) of 4. This is achieved by sampling
Dii uniformly from the interval

[0,2(1Tdiag(FFT )/n)/SNR], i= 1, . . . , n.

To evaluate how effectively we can fit the factors using MLE, we use the rank
allocation and hierarchical partition from the true model. The model is fitted with
N = 80 samples and evaluated using expected log-likelihood (based on the density of
the true model).

Since in this example we have access to the true model \Sigma \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} = F \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}F \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}T+D\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e},
we can compute the expected log-likelihood

E(\ell (F,D;y)) = - n

2
log(2\pi ) - 1

2
logdet(FFT +D) - 1

2
Tr((FFT +D) - 1\Sigma \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}).

We compare the average log-likelihood of two fitting approaches based on Frobe-
nius norm and MLE; see Figure 6 and Table 2. Our method outperforms the Frobenius
norm-based approach, showing a 284 higher average log-likelihood on the sampled data
Y and a 372 greater expected log-likelihood.

We generate 200 samples Y , and for each Y , fit the model with two competing
methods. The resulting histograms of expected log-likelihoods E(\ell (F,D;y)) are shown
in Figure 7. The histogram of differences E(\ell (F\mathrm{M}\mathrm{L}\mathrm{E},D\mathrm{M}\mathrm{L}\mathrm{E};y)) - E(\ell (F\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b},D\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b};y))
is displayed in Figure 8. The mean of the differences is 371, with a standard deviation

0 50 100 150 200 250 300

iteration

−20950

−20900

−20850

−20800

−20750

−20700

−20650

−20600
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F
,D

;Y
)/
N

MLE

Frob

Fig. 6. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve) for a single Y in the synthetic example. (Figure in color online.)

Table 2
Log-likelihood for models fitted using the Frobenius norm, MLE-based methods, and the true

model for a single Y in the synthetic example.

Fit \ell (F,D;Y )/N E(\ell (F,D;y))

Frob  - 20851  - 24843
MLE  - 20567  - 24471

True  - 22031  - 22068
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Fig. 7. Histograms of expected log-likelihoods for MLE and Frobenius norm-based fitting methods.
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Fig. 8. Histogram of differences in expected log-likelihoods between MLE and Frobenius norm-
based fitting methods.

of 136, and for 99.5\% of the samples, the difference is positive. Based on these his-
tograms, we conclude that the distribution of the MLE-based method is significantly
better than that of Frobenius norm-based method.

6.3. Large-scale single-cell RNA sequencing dataset. Single-cell RNA se-
quencing generates transcript count matrices that contain gene expression profiles of
individual cells. In this section we use the dataset from [18, 40, 45] that contains
immune cells from human tissues.

The original dataset contains 329,762 cells with 36,398 genes, collected from 12
donors. Then we follow standard preprocessing steps for single-cell RNA sequencing
data [37, 34]. We use Scanpy package [58] for quality control metrics [37] to filter out
low-quality cells and uninformative genes. In particular, we filter cells with fewer than
200 genes and filter genes expressed in fewer than 200 cells. We also filter out cells
with more than 20\% of transcript counts from mitochondrial genes, or which contain
more than 2,500 detected gene types. Next, we normalize gene counts per cell, and
subsequently apply log-plus-one transformation. To reduce the dimensionality, we
selected the top 500 most variable genes. The final feature matrix is standardized
across cells and has n= 280,535 cells and N = 500 genes.

We use a hierarchy with L = 3 levels, grouping level l = 2 by donor IDs (i.e.,
making 12 groups in l = 2). We set the rank allocation to r1 = 12, r2 = 8, r3 = 1.
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Fig. 9. Log-likelihood during the EM algorithm (red curve) and after Frobenius norm fitting
(blue curve) in the single-cell RNA example. (Figure in color online.)

Our method achieves an average log-likelihood of  - 217,730, which is by 4,376 larger
than the Frobenius norm-based method with  - 222,106, see Figure 9.

In this experiment we expect the r2 = 8 factors on level l = 2 to capture donor-
specific correlations, while the factors on level l = 1 are to be shared across all the
donors and to describe the correlations across the cells. In Figure 10 we plot the factor
loadings F1, reordered to display the cell types as contiguous groups, using CellTypist
labels [18]. The horizontal yellow lines indicate the ranges of the cell types. We can
see that some factors are strong predictors for specific cell types. For instance, the
second factor (the second column) predicts B cells with large positive loadings, and
both CD16+ and CD16- NK cells with large negative loadings. Similarly, the fifth
factor is associated with classical monocytes, and macrophages through large positive
loadings. Furthermore, r1 = 12 factors on the first level explain on average 68\%
of their individual variances. In contrast, applying our fitting method to the factor
model, i.e., flat hierarchy with L= 2 and 12 factors, results in factors that explain on
average 62\% of their individual variances.

7. Conclusion. In this work, we present a novel and computationally efficient
algorithm for fitting multilevel factor model. We introduce a fast implementation of
the EM algorithm that uses linear time and space complexities per iteration, making
it scalable. This method relies on a novel fast algorithm for computing the inverse
and a determinant of the PSD MLR matrix.

We also provide an open-source implementation of our methods that demonstrate
their effectiveness on several examples, including the large-scale real-world example.
Our MLE-based method consistently outperforms the Frobenius norm-based method.
In this paper we assume that the hierarchy, as well as rank allocation, are known. Fu-
ture research will focus on developing scalable heuristics for finding hierarchy and rank
allocation while leveraging our fast factor-fitting method. The challenge is to keep
storage and time complexities nearly linear. As demonstrated in Appendix A, mini-
mizing the Frobenius norm-based error approximately maximizes the log-likelihood.
Therefore, one promising approach is to adapt the techniques from [43] to avoid form-
ing dense matrices and store all matrices in the factored form. For example, applying
partial singular value decomposition to the matrices in factored form enables the rank
exchange algorithm to be applied straightforwardly to our setting. However, the in-
cremental hierarchy construction is less straightforward to apply as it requires forming
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Fig. 10. Factor loading matrix F1 \in Rn\times r1 with reordered rows to display the cell types as
contiguous groups in the single-cell RNA example.
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FITTING MULTILEVEL FACTOR MODELS 1949

dense residual matrices. Specifically, it is based on the nested spectral dissection [43],
which involves computation of the second smallest eigenvalue of Laplacian matrix
for graph with adjacency matrix given by the squared valued in the residual matrix.
And even though the residual matrix is factored, when we square it elementwise, this
structure changes. Future work will focus on the development of spectral clustering
methods for the factored residual matrix, while respecting the storage requirements.

Appendix A. Second order approximation of log-likelihood. In this sec-
tion we explain the intricate relationship between Frobenius norm and MLE-based
losses. Let S = Y TY/N be a sample covariance matrix. Then the average log-
likelihood of N data points for a Gaussian model y\sim N(0,\Sigma ) is

1

N
\ell (\Sigma ;Y ) = - n

2
log(2\pi ) - 1

2
logdet\Sigma  - 1

2
Tr(\Sigma  - 1S).

We now derive the second-order approximation of the average log-likelihood. We
start with finding the second-order approximation of the function f : Sn \rightarrow R,

f(\Sigma ) = logdet\Sigma , domf = Sn
++.

Following the derivation of [8, section A.4], let \Delta \in Sn be such that (\Sigma +\Delta )\in Sn
++ is

close to \Sigma . We have

logdet(\Sigma +\Delta )= logdet
\Bigl( 
\Sigma 1/2(I +\Sigma  - 1/2\Delta \Sigma  - 1/2)\Sigma 1/2

\Bigr) 
= logdet\Sigma + logdet(I +\Sigma  - 1/2\Delta \Sigma  - 1/2)

= logdet\Sigma +

1\sum 
i=1

log(1 + \lambda i),

where \lambda i is the ith eigenvalue of \Sigma  - 1/2\Delta \Sigma  - 1/2. Since \Delta is small, then \lambda i are small.
Thus to second order, we have

log(1 + \lambda i)\approx \lambda i  - 
\lambda 2
i

2
.

Combining the above we get

log det(\Sigma +\Delta ) - log det\Sigma \approx 
n\sum 

i=1

\biggl( 
\lambda i  - 

\lambda 2
i

2

\biggr) 
=Tr(\Sigma  - 1\Delta ) - 1

2
Tr
\bigl( 
\Sigma  - 1\Delta \Sigma  - 1\Delta 

\bigr) 
.

We used the fact the sum of eigenvalues is the trace, and the eigenvalues of the product
of a symmetric matrix with itself are the squares of the eigenvalues of the original
matrix, and the cyclic property of trace.

Next, we find the second-order approximation of the function g : Sn \rightarrow R,

g(\Sigma ) =Tr(\Sigma  - 1S), domg= Sn
++.

Since \Sigma \succ 0, we have

Tr((\Sigma +\Delta ) - 1S) =Tr
\Bigl( 
\Sigma  - 1/2(I +\Sigma  - 1/2\Delta \Sigma  - 1/2) - 1\Sigma  - 1/2S

\Bigr) 
.

Recall \Delta \in Sn is small. Therefore, the spectral radius of \Sigma  - 1/2\Delta \Sigma  - 1/2 is smaller than
1. Thus using the Neuman series to second order, we have

(I +\Sigma  - 1/2\Delta \Sigma  - 1/2) - 1 \approx I  - \Sigma  - 1/2\Delta \Sigma  - 1/2 +\Sigma  - 1/2\Delta \Sigma  - 1\Delta \Sigma  - 1/2.
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1950 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

Combining the above we get

Tr((\Sigma +\Delta ) - 1S)\approx Tr(\Sigma  - 1S) - Tr(\Sigma  - 1\Delta \Sigma  - 1S) +Tr
\bigl( 
\Sigma  - 1\Delta \Sigma  - 1\Delta \Sigma  - 1S

\bigr) 
.

Using the above derivations, the second-order approximation of the average log-
likelihood at S is the quadratic function of \Sigma given by

1

N
\ell (\Sigma ;Y )\approx 1

N
\ell (S;Y ) - 1

4
\| S - 1(S  - \Sigma )\| 2F =

1

N
\ell (S;Y ) - 1

4
\| I  - S - 1\Sigma \| 2F .(A.1)

Finally, (A.1) gives the relationship between the log-likelihood and Frobenius norm.

Appendix B. Heuristic method for variance estimation. In section 6,
we compare the log-likelihoods of models fitted using Frobenius-based loss or MLE.
To assess if the difference in the log-likelihoods is significant, we present a heuristic
method for estimating the variance of the average log-likelihood. We assume that
the empirical data is coming from model (2.2) with parameters F and D. Then the
average log-likelihood of N data points is

1

N
\ell (F,D;Y ) = - n

2
log(2\pi ) - 1

2
logdet(FFT +D) - 1

2N
Tr((FFT +D) - 1Y TY )

= - n

2
log(2\pi ) - 1

2
logdet(\Sigma ) - 1

2N

N\sum 
i=1

yTi \Sigma 
 - 1yi.

Since yi \sim \scrN (0,\Sigma ), then \Sigma  - 1/2yi \sim \scrN (0, I). This implies

yTi \Sigma 
 - 1yi = (\Sigma  - 1/2yi)

T (\Sigma  - 1/2yi)\sim \chi 2(n).

Let zi =\Sigma  - 1/2yi, thus

var

\biggl( 
1

N
\ell (F,D;Y )

\biggr) 
= var

\Biggl( 
1

2N

N\sum 
i=1

zTi zi

\Biggr) 
=

1

4N2

N\sum 
i=1

var
\bigl( 
zTi zi

\bigr) 
=

n

2N
.

Also the expectation is

E

\biggl( 
1

N
\ell (F,D;Y )

\biggr) 
= - n

2
log(2\pi ) - 1

2
logdet(\Sigma ) - 1

2N

N\sum 
i=1

E
\bigl( 
zTi zi

\bigr) 
= - n

2
log(2\pi ) - 1

2
logdet(\Sigma ) - n

2
.

In the asset covariance example, we have n= 5000 and N = 300. Therefore, the
approximation to the standard deviation is\sqrt{} 

n

2N
\approx 2.887,

and the expectation is

 - n

2
(1 + log(2\pi )) - 1

2
logdet(\Sigma ) - n

2
\approx  - 7095 - 1

2
logdet(\Sigma ).
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Appendix C. Auxiliary derivations.

Lemma C.1. Let B \in Rm\times n be a block diagonal matrix with block sizes determined
by row and column index partitions I and J , respectively. Similarly, let C \in Rn\times \~n be
a block diagonal matrix with row and column index partitions \~I and \~J , respectively.
If J \preceq \~I, then product BC is also a block diagonal matrix with column sparsity given
by the partition \~J . Moreover, if I = J , then supp(BC) = supp(C).

Proof. Define matrices in terms of blocks explicitly as

B = blkdiag(B1, . . . ,Bp)\in Rm\times n, C = blkdiag(C1, . . . ,C\~p)\in Rn\times \~n.

Similarly, define index partitions as

\{ bJ1 , . . . , bIp\} = I, \{ bJ1 , . . . , bJp\} = J, \{ \~b\~I1, . . . ,\~b
\~I
\~p\} = \~I, \{ \~b \~J

1 , . . . ,
\~b
\~J
\~p\} = \~J.

For each \~k = 1, . . . , \~p, index set \~b
\~I
\~k
\in \~I is refined in J , because J \preceq \~I. Formally,

there exist some indices 0\leq k1 <k2 \leq p such that

k2\bigcup 
k\prime =k1

bJk\prime =\~b
\~I
\~k
, bJ0 = \emptyset .

Hence, the product BC restricted to the rows indexed by
\bigcup k2

k\prime =k1
bIk\prime is nonzero only

in the columns indexed by \~b
\~I
\~k
.

Therefore, BC is block diagonal with \~p blocks, where \~kth block has size | \bigcup k2

k\prime =k1

bIk\prime | \times | \~b \~J
\~k
| and is given by

blkdiag(Bk1
, . . . ,Bk2

)C\~k,

and \~J defines its column partition.
If I = J , then

k2\bigcup 
k\prime =k1

bIk\prime =

k2\bigcup 
k\prime =k1

bJk\prime =\~b
\~I
\~k
.

Therefore, for all \~k= 1, . . . , \~p we have

supp(blkdiag(Bk1
, . . . ,Bk2

)C\~k) = supp(C\~k),

which implies supp(BC) = supp(C).

Lemma C.2. Let F \in Rn\times pr be a block diagonal matrix with p blocks of size nk\times r
for all k = 1, . . . , p. Similarly, let \~F \in Rn\times \~p\~r be a block diagonal matrix with \~p blocks
of size \~nk \times \~r for all k = 1, . . . , \~p. If \scrI (F ) \preceq \scrI ( \~F ), then product \~FTF is also a block
diagonal matrix with \~p blocks and pr\~r nonzero elements. Moreover, computing \~FTF
takes O(nr\~r).

Proof. Applying Lemma C.1, \scrI ( \~FTF ) = \scrJ ( \~F ). In other words \~FTF is a block
diagonal matrix with \~p blocks.

Consider any group k in the partition \scrI ( \~F ), it is refined into ck \geq 1 groups in \scrI (F ).
Then the diagonal block corresponding to group k in \scrI ( \~F ) of size \~nk \times \~r interacts
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1952 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

with ck respective block diagonal elements in \scrI (F ), forming a block diagonal matrix
of size \~nk\times ckr. This block diagonal matrix has ck blocks with column index partition

\{ \{ 1, . . . , r\} ,\{ r+ 1, . . . ,2r\} , . . . ,\{ (ck  - 1)r, . . . , ckr\} \} .

Thus the matrix-vector multiplication with this matrix requires O(\~nkr) operations.
Therefore, computing \~FTF requires the order of

\sum \~p
k=1 \~nkr\~r= nr\~r operations. Finally,

the number of nonzero elements in \~FTF is
\sum \~p

k=1 ckr\~r= pr\~r.

C.1. EM method. This section complements section 4.1. Using the joint distri-
bution (y, z) and conditional distribution zi | yi, F 0,D0 defined in section 4.1, we get

N\sum 
i=1

E
\bigl( 
ziz

T
i | yi, F 0,D0

\bigr) 
=

N\sum 
i=1

cov((zi, zi) | yi, F 0,D0)

+E
\bigl( 
zi | yi, F 0,D0

\bigr) 
E
\bigl( 
zi | yi, F 0,D0

\bigr) T
=N(Is  - F 0T (\Sigma 0) - 1F 0) + F 0T (\Sigma 0) - 1Y TY (\Sigma 0) - 1F 0.

We can now derive the expression for (4.1),

Q(F,D;F 0,D0) =E
\bigl( 
\ell (F,D;Y,Z) | Y,F 0,D0

\bigr) 
= - (n+ s)N

2
log(2\pi ) - N

2
logdetD - 1

2

N\sum 
i=1

Tr
\bigl( 
E
\bigl( 
ziz

T
i | yi, F 0,D0

\bigr) \bigr) 
 - 1

2

N\sum 
i=1

Tr
\bigl( 
D - 1\{ (yiyTi  - 2FE

\bigl( 
zi | yi, F 0,D0

\bigr) 
yTi )

+ FE
\bigl( 
ziz

T
i | yi, F 0,D0

\bigr) 
FT \} 

\bigr) 
= - (n+ s)N

2
log(2\pi ) - N

2
logdetD

 - 1

2
Tr
\bigl( 
N(Is  - F 0T (\Sigma 0) - 1F 0) + F 0T (\Sigma 0) - 1Y TY (\Sigma 0) - 1F 0\underbrace{}  \underbrace{}  

=W

\bigr) 
 - 1

2
Tr
\Bigl( 
D - 1

\bigl\{ 
Y TY  - 2F F 0T (\Sigma 0) - 1Y TY\underbrace{}  \underbrace{}  

=V

+ F (N(Is  - F 0T (\Sigma 0) - 1F 0) + F 0T (\Sigma 0) - 1Y TY (\Sigma 0) - 1F 0\underbrace{}  \underbrace{}  
=W

)FT
\bigr\} \Bigr) 

.

C.2. Inverse computation. The SMW matrix identity implies

((Fl+F
T
l+ +D) - 1 = F(l+1)+F

T
(l+1)+ +D) - 1  - (F(l+1)+F

T
(l+1)+ +D) - 1Fl\underbrace{}  \underbrace{}  
=M0

(Iplrl + FT
l (F(l+1)+F

T
(l+1)+ +D) - 1Fl\underbrace{}  \underbrace{}  
=M0

) - 1FT
l (F(l+1)+F

T
(l+1)+ +D) - 1\underbrace{}  \underbrace{}  

=MT
0

= (F(l+1)+F
T
(l+1)+ +D) - 1  - M0(Iplrl + FT

l M0)
 - 1MT

0

= (F(l+1)+F
T
(l+1)+ +D) - 1  - HlH

T
l .

Therefore, we have

\Sigma  - 1
l+ =\Sigma  - 1

(l+1)+  - HlH
T
l .
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FITTING MULTILEVEL FACTOR MODELS 1953

Appendix D. Cholesky factorization. In this section we present a Cholesky
factorization for the expanded matrix and show that the Cholesky factor has the same
sparsity as its inverse.

D.1. Schur complement. Finding the inverse of \Sigma amounts to solving the linear
system

(FFT +D)X =DX + FL - 1F
T
L - 1X + \cdot \cdot \cdot + F1F

T
1 X = In,

which is equivalent to solving the expanded system of equations\left[     
D FL - 1 \cdot \cdot \cdot F1

FT
L - 1  - IpL - 1rL - 1

...
. . .

FT
1  - Ip1r1

\right]     
\left[     

X
YL - 1

...
Y1

\right]     =

\biggl[ 
In
0

\biggr] 
.(D.1)

Denote the expanded matrix (D.1) by E \in Sn+s. Note that E has the block sparsity
pattern of the upward-left arrow.

Block Gaussian elimination on the matrix (D.1) leads to an LDL decomposition

E =

\left[     
In  - FL - 1 \cdot \cdot \cdot  - F1

IpL - 1rL - 1

. . .

Ip1r1

\right]     
\biggl[ 
FFT +D

 - Is

\biggr] \left[     
In

 - FT
L - 1 IpL - 1rL - 1

...
. . .

 - FT
1 Ip1r1

\right]     .

(D.2)

And FFT +D is Schur complement of the block  - Is of the matrix E.

D.2. Recursive Cholesky factorization. Let sl+ =
\sum L - 1

l\prime =l pl\prime rl\prime for all l =
1, . . . ,L - 1. Define El as the top left (n+ sl+)\times (n+ sl+) submatrix of E, i.e.,

El =

\left[     
D FL - 1 \cdot \cdot \cdot Fl

FT
L - 1  - IpL - 1rL - 1

...
. . .

FT
l  - Iplrl

\right]     \in Sn+sl+ .

We find the factors of E by recursively factorizing EL - 1, . . . ,E1 using the relation

El =

\left[  El+1

\biggl[ 
Fl

0

\biggr] 
\bigl[ 
FT
l 0

\bigr] 
 - Iplrl

\right]  .
D.2.1. Sparsity patterns. The block Gaussian elimination on El gives the

following factorization:

\biggl[ 
In+s(l+1)+\bigl[ 
FT
l \bfzero 

\bigr] 
E - 1

l+1 Iplrl

\biggr] \left[  El+1

 - 
\biggl( 
Iplrl +

\bigl[ 
FT
l \bfzero 

\bigr] 
E - 1

l+1

\biggl[ 
Fl

\bfzero 

\biggr] \biggr) \right]  \biggl[ 
In+s(l+1)+\bigl[ 
FT
l \bfzero 

\bigr] 
E - 1

l+1 Iplrl

\biggr] T

.

(D.3)

Submatrices of E. In Lemma D.1 we show the sparsity pattern of matrices nec-
essary for Cholesky factorization.
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1954 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

Lemma D.1. Let F and D be factors of PSD MLR \Sigma , and let E be its expanded
matrix. Then for all l= 1, . . . ,L - 1, we have\Bigl[ 

FT
(l - 1) - 0

\Bigr] 
E - 1

l

\biggl[ 
In
0

\biggr] 
= FT

(l - 1) - \Sigma 
 - 1
l+ ,

and

supp
\Bigl( \Bigl[ 

FT
(l - 1) - 0

\Bigr] 
E - 1

l

\Bigr) 
= supp(FT

(l - 1) - 
\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl

\bigr] 
).

Proof. It is easy to check that these properties hold for the base case, i.e., EL =D.
Now we demonstrate the properties of El for all l=L - 1, . . . ,1.

Assume that \bigl[ 
FT
l - 0

\bigr] 
E - 1

l+1

\biggl[ 
In
0

\biggr] 
= FT

l - \Sigma 
 - 1
(l+1)+,(D.4)

and

supp(
\bigl[ 
FT
l - 0

\bigr] 
E - 1

l+1) = supp(FT
l - 
\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
).(D.5)

Note that the (negative) bottom block in the block diagonal matrix in (D.3) is
equal to

Iplrl + FT
l \Sigma  - 1

(l+1)+Fl \succ 0.(D.6)

Recall from section 5.1.1, that this matrix is block diagonal, consisting of pl blocks,
each of which is of size rl \times rl. Let RlVlR

T
l be the Cholesky factorization of (D.6).

Using the relation from (D.3), we can express the inverse as

E - 1
l =

\biggl[ 
In+s(l+1)+\bigl[ 

 - FT
l 0

\bigr] 
E - 1

l+1 Iplrl

\biggr] T \biggl[ 
E - 1

l+1

 - (RlVlR
T
l )

 - 1

\biggr] \biggl[ 
In+s(l+1)+\bigl[ 

 - FT
l 0

\bigr] 
E - 1

l+1 Iplrl

\biggr] 
.

Then the matrix
\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l is equal to\biggl[ 
FT
(l - 1) - 

\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l+1

\biggl[ 
 - Fl

0

\biggr] \biggr] \biggl[ 
E - 1

l+1\bigl[ 
(RlVlR

T
l )

 - 1FT
l 0

\bigr] 
E - 1

l+1  - (RlVlR
T
l )

 - 1

\biggr] 
,

which simplifies to

\Bigl[ 
FT
(l - 1) - \bfzero 

\Bigr] 
E - 1
l+1

\biggl[ \biggl( 
In+s(l+1)+

 - 
\biggl[ 
Fl

\bfzero 

\biggr] 
(RlVlR

T
l )

 - 1
\bigl[ 
FT
l \bfzero 

\bigr] 
E - 1
l+1

\biggr) \biggl[ 
Fl

\bfzero 

\biggr] 
(RlVlR

T
l )

 - 1

\biggr] 
.

(D.7)

Combining (D.7), (D.4), and SMW (5.1) we get\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l

\biggl[ 
In
0

\biggr] 
= FT

(l - 1) - 

\Bigl( 
\Sigma  - 1

(l+1)+  - \Sigma  - 1
(l+1)+Fl(RlVlR

T
l )

 - 1FT
l \Sigma  - 1

(l+1)+

\Bigr) 
= FT

(l - 1) - \Sigma 
 - 1
l+ .

The coefficients of matrix\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l

\biggl[ 
0

Iplrl

\biggr] 
= FT

(l - 1) - \Sigma 
 - 1
(l+1)+Fl(RlVlR

T
l )

 - 1 =MT
3(D.8)
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FITTING MULTILEVEL FACTOR MODELS 1955

are obtained during the inverse computation; see section 5.1.2. Furthermore, we have
supp(MT

3 ) = supp(FT
(l - 1) - Fl).

Using assumption (D.5), for any \~l\geq l+ 1 we have

supp

\left(  \Bigl[ FT
(l - 1) - 0

\Bigr] 
E - 1

l+1

\left[  0
Ip\~lr\~l
0

\right]  \right)  = supp(FT
(l - 1) - F\~l).

Similarly, it holds that

supp

\left(  MT
3

\bigl[ 
FT
l 0

\bigr] 
E - 1

l+1

\left[  0
Ip\~lr\~l
0

\right]  \right)  = supp(FT
(l - 1) - FlF

T
l F\~l).

By Lemma C.2, for any l1 \leq l2 product FT
l1
Fl2 has pl2rl1rl2 nonzero entries,

\scrI (FT
l1
Fl2) = \scrJ (Fl1), and can be computed O(nrl1rl2). By Lemma C.1, for any

l\prime \leq l  - 1 and \~l \geq l + 1, we have \scrI (FlF
T
l ) = \scrJ (FlF

T
l ) \preceq \scrI (Fl\prime ). This implies

supp(FT
l\prime FlF

T
l ) = supp(FT

l\prime ), and consequently, supp(FT
l\prime FlF

T
l F\~l) = supp(FT

l\prime F\~l).
Combining this result with (D.7), for any \~l\geq l+ 1 matrix

\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l

\left[  0
Ip\~lr\~l
0

\right]  =
\Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l+1

\left[  0
Ip\~lr\~l
0

\right]   - MT
3

\bigl[ 
FT
l 0

\bigr] 
E - 1

l+1

\left[  0
Ip\~lr\~l
0

\right]  ,
(D.9)

has the sparsity of supp(FT
(l - 1) - FlF

T
l F\~l) = supp(FT

(l - 1) - F\~l). This implies

supp
\Bigl( \Bigl[ 

FT
(l - 1) - 0

\Bigr] 
E - 1

l

\Bigr) 
= supp

\Bigl( 
FT
(l - 1) - 

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl

\bigr] \Bigr) 
.

The final result follows by induction.

Cholesky factors. Let the Cholesky factorization of a symmetric matrix El+1 be
given by

El+1 =L(l+1)D(l+1)L(l+1)T .

Using (D.3) we have

El =

\biggl[ 
In+s(l+1)+\bigl[ 

FT
l 0

\bigr] 
E - 1

l+1 Iplrl

\biggr] \biggl[ 
El+1

 - RlVlR
T
l

\biggr] \biggl[ 
In+s(l+1)+\bigl[ 

FT
l 0

\bigr] 
E - 1

l+1 Iplrl

\biggr] T
=

\biggl[ 
L(l+1)\bigl[ 

FT
l 0

\bigr] 
E - 1

l+1L
(l+1) Rl

\biggr] \biggl[ 
D(l+1)

 - Vl

\biggr] \biggl[ 
L(l+1)\bigl[ 

FT
l 0

\bigr] 
E - 1

l+1L
(l+1) Rl

\biggr] T
.(D.10)

Note that the matrix Rl is a block diagonal matrix consisting of pl blocks, each of
which is a lower triangular matrix of size rl \times rl (i.e., \scrI (Rl) = \scrJ (Rl) \preceq \scrI (Fl)); see
section 5.1.1. Thus from (D.10), Cholesky factors of El are

L(l) =

\Biggl[ 
L(l+1)\bigl[ 

FT
l 0

\bigr] 
(D(l+1)L(l+1)T ) - 1 Rl

\Biggr] 
, D(l) =

\biggl[ 
D(l+1)

 - Vl

\biggr] 
.(D.11)

Then we also have

(L(l)) - 1 =

\biggl[ 
(L(l+1)) - 1

 - R - 1
l

\bigl[ 
FT
l 0

\bigr] 
E - 1

l+1 R - 1
l

\biggr] 
.

Lemma D.2 establishes the sparsity pattern of Cholesky factors, and, in particular,
supp(L(l)) = supp((L(l)) - 1).
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1956 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

Lemma D.2. Let F and D be factors of PSD MLR \Sigma , and let E be its expanded
matrix. Then for all l=L, . . . ,1 and \~l=L, . . . , l, we have

supp(FT
\~l

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
) = supp(

\bigl[ 
0 Ip\~lr\~l

0
\bigr] 
(L(l+1)) - 1)

= supp(
\bigl[ 
0 Ip\~lr\~l

0
\bigr] 
L(l+1)).

Proof. Assume for all \~l=L, . . . , l+ 1 we have

supp(FT
\~l

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
) = supp(

\bigl[ 
0 Ip\~lr\~l

0
\bigr] 
(L(l+1)) - 1)

= supp(
\bigl[ 
0 Ip\~lr\~l

0
\bigr] 
L(l+1)).

Using (D.11) it suffices to show the sparsity of the bottom block of L(l) and
(L(l)) - 1 of size plrl \times (n+ sl+). The assumptions above imply

supp(
\bigl[ 
In 0

\bigr] 
(L(l+1)) - 1) = supp(D

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
),

thus since D(l+1) is diagonal we get

supp(
\bigl[ 
FT
l 0

\bigr] 
(D(l+1)L(l+1)T ) - 1) = supp(FT

l

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
).

Combining Lemma D.1 with supp(R - 1
l FT

l ) = supp(FT
l ), it follows that

supp(R - 1
l

\bigl[ 
FT
l 0

\bigr] 
E - 1

l+1) = supp(FT
l

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl+1

\bigr] 
).

Since supp(Rl) = supp(R - 1
l )\subseteq supp(FT

l Fl), the following holds

supp(FT
l

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl

\bigr] 
) = supp(

\bigl[ 
0 Iplrl

\bigr] 
L(l))

= supp(
\bigl[ 
0 Iplrl

\bigr] 
(L(l)) - 1).

Combining these results with (D.11) we conclude that supp(L(l)) = supp((L(l)) - 1).
Evidently, for the base case, L(L) = In and D(L) =D, these properties hold. By

induction we showed supp(L(1)) = supp((L(1)) - 1).

D.3. Efficient computation.
Recurrent term. Using (D.11) we recursively compute\Bigl[ 

FT
(l - 1) - \bfzero 

\Bigr] 
(D(l)L(l)T ) - 1 =

\Bigl[ 
FT
(l - 1) - \bfzero 

\Bigr] \biggl[ 
(D(l+1)L(l+1)T ) - 1 E - 1

l+1

\biggl[ 
Fl

\bfzero 

\biggr] 
(VlR

T
l )

 - 1

\biggr] 
.

Lemma D.1 implies \Bigl[ 
FT
(l - 1) - 0

\Bigr] 
E - 1

l+1

\biggl[ 
Fl

0

\biggr] 
(VlR

T
l )

 - 1 =MT
3 Rl.

The product MT
3 Rl requires

\sum l - 1
l\prime =1O(plr

2
l rl\prime ) = O(plrr

2
l ) operations. Thus we get

identity \Bigl[ 
FT
(l - 1) - 0

\Bigr] 
(D(l)L(l)T ) - 1 =

\Bigl[ \Bigl[ 
FT
(l - 1) - 0

\Bigr] 
(D(l+1)L(l+1)T ) - 1 MT

3 Rl

\Bigr] 
.(D.12)

This indicates that constructing a recurrent term at the next level only requires com-
puting MT

3 Rl.
Moreover, by Lemma D.2 the sparsity is

supp
\Bigl( \Bigl[ 

FT
(l - 1) - 0

\Bigr] 
(D(l)L(l)T ) - 1

\Bigr) 
= supp

\Bigl( 
FT
(l - 1) - 

\bigl[ 
D FL - 1 \cdot \cdot \cdot Fl

\bigr] \Bigr) 
.
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FITTING MULTILEVEL FACTOR MODELS 1957

Method. We now describe the algorithm for computing Cholesky factorization
that recursively computes Cholesky factors of EL,EL - 1, . . . ,E1. This process is ac-
companied by the recursive computation of coefficients in \Sigma  - 1; see section 5.1. We
include additional time and space complexities beyond those discussed in section 5.1.

We start with L(L) = In and D(L) =D. Then for each level l=L - 1, . . . ,1 repeat
the following steps.

1. Compute Cholesky decomposition of (D.6), RlVlR
T
l , in O(plr

3
l ), and store its

O(plr
2
l ) coefficients. The coefficients of (D.6) and its inverse are obtained in

section 5.1.
2. Form L(l) and D(l) using stored coefficients of

\bigl[ 
FT
l - 0

\bigr] 
(D(l+1)L(l+1)T ) - 1

according to (D.11).

3. Form [FT
(l - 1) - \bfzero ](D(l)L(l)T ) - 1 using (D.12). This requires computing MT

3 Rl

with O(plrr
2
l ) operations and

\sum l - 1
l\prime =1 rl\prime (n+

\sum L - 1
\~l=l

p\~lr\~l) coefficients. We use\sum l - 1
l\prime =1 plrl\prime rl coefficients of M3 from section 5.1.

Cholesky factor of E, i.e., lower triangular matrix L(1), has less than

n+

1\sum 
l=L - 1

rl(n+ pL - 1rL - 1 + \cdot \cdot \cdot + plrl)\leq nr+ pL - 1r
2

nonzero entries. The total cost for computing the factors is

O(nr) +

1\sum 
l=L - 1

O(plr
3
l + plrr

2
l ) =O(nr+ pL - 1r

3).

D.4. Determinant. Using the Cholesky decomposition of E we can easily com-
pute the determinant of MLR covariance matrix \Sigma . Specifically, using (D.2) we have

det(E) = det(FFT +D)( - 1)s,

since the eigenvalues of a triangular matrix are exactly its diagonal entries and because
the determinant is a multiplicative map. Alternatively, using Cholesky decomposition,

E =L(1)D(1)L(1)T , we have

det(E) = det(L(1))2 det(D(1)) = det(D(1)).

Since

det(D(1)) = ( - 1)s det(D)

L - 1\prod 
l=1

det(Vl),

we obtain

det(FFT +D) =

n+s\prod 
i=1

| D(1)
ii | , log det(FFT +D) =

n+s\sum 
i=1

log | D(1)
ii | .

Remark D.3. The det(\Sigma ) can be computed at no additional cost while recursively
computing the coefficients in \Sigma  - 1; see section 5.1. For every l = L  - 1, . . . ,1 we
compute the eigendecomposition of the matrix

RlVlR
T
l = Iplrl + FT

l \Sigma  - 1
(l+1)+Fl =Ql\Lambda lQ

T
l ,
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1958 T. PARSHAKOVA, T. HASTIE, AND S. BOYD

which implies

det(Vl) = det(RlVlR
T
l ) = det(Ql\Lambda lQ

T
l ) = det(\Lambda l).

Therefore,

det(FFT +D) = det(D)

L - 1\prod 
l=1

det(\Lambda l).(D.13)

Note that, alternatively, determinant (D.13) can be interpreted as relying on the
recursive application of the matrix determinant lemma, which states that if A\in Rn\times n

is invertible, then for any U,V \in Rn\times p, it holds that

det(A+UV T ) = det(A)det(Ip + V TA - 1U).

Appendix E. Factor model with linear covariates. In this section we show
how to apply our fitting method to the factor model with linear covariates. Suppose
we have samples y1, . . . , yN \in Rn along with covariates x1, . . . , xN \in Rp. Then the
factor model with the covariates is given by

yi =Bxi + Fzi + ei,

where B \in Rn\times p is a matrix with regression coefficients. Define

X =

\left[   xT
1
...

xT
N

\right]   \in RN\times p, \~Z =
\bigl[ 
X Z

\bigr] 
\in RN\times (p+s), \~F =

\bigl[ 
B F

\bigr] 
\in Rn\times (p+s).

Similarly to steps in section 4.1, we have yi \sim \scrN (Bxi,\Sigma ), zi \sim \scrN (0, Is), and the
conditional distribution (zi | yi, xi, \~F

0,D0) is Gaussian,

\scrN 
\Bigl( 
F 0T (\Sigma 0) - 1(yi  - B0xi), Is  - F 0T (\Sigma 0) - 1F 0

\Bigr) 
.

Since the log-likelihood of complete data (Y,X,Z) is

\ell ( \~F ,D;Y, \~Z) = - (n+ s)N

2
log(2\pi ) - N

2
logdetD - 1

2
\| (Y  - \~Z \~FT )D - 1/2\| 2F  - 1

2
\| Z\| 2F ,

we have

Q( \~F ,D; \~F 0,D0) =E
\Bigl( 
\ell ( \~F ,D;Y, \~Z) | Y,X, \~F 0,D0

\Bigr) 
= - (n+ s)N

2
log(2\pi ) - N

2
logdetD - 1

2
Tr( \~W )

 - 1

2
Tr

\biggl( 
D - 1

\biggl\{ 
Y TY - 2 \~F

\biggl[ 
XTY
\~V Y

\biggr] 
+ \~F

\biggl[ 
XTX XT \~V T

\~V X \~W

\biggr] 
\~FT

\biggr\} \biggr) 
,

where the matrices \~V and \~W are defined as

\~V = F 0T (\Sigma 0) - 1(Y  - XB0T )T ,

\~W =

N\sum 
i=1

E
\Bigl( 
ziz

T
i | yi, xi, \~F

0,D0
\Bigr) 
=N(Is  - F 0T (\Sigma 0) - 1F 0) + \~V \~V T .

Similarly to (4.2), Q( \~F ,D; \~F 0,D0) is separable across the rows of \~F ; therefore,
our fast EM method can be applied directly.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

7/
25

 to
 1

71
.6

6.
16

1.
18

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FITTING MULTILEVEL FACTOR MODELS 1959

Appendix F. Product of MLR matrices. In this section we show that the
product of two MLR matrices, A with MLR-rank r and A\prime with MLR-rank r\prime , sharing
the same symmetric hierarchical partition, is also an MLR matrix with the same
hierarchical partition and an MLR-rank of (r + r\prime ). We also show that it can be
computed using O(nmax\{ r, r\prime \} 2) operations.

Since the hierarchical partition is symmetric, without loss of generality assume A
and A\prime are contiguous MLR. Define

Al+ =Al + \cdot \cdot \cdot +AL,

then it is easy to check that

AA\prime =

\Biggl( 
L\sum 

l=1

Al

\Biggr) \Biggl( 
L\sum 

l=1

A\prime 
l

\Biggr) 

=

L - 1\sum 
l=1

\bigl( 
AlA

\prime 
l+ +A(l+1)+A

\prime 
l

\bigr) 
+ALA

\prime 
L.(F.1)

We now show that each term in the sum above can be decomposed into a product of
block diagonal matrices, which are the factors of matrix AA\prime on level l.

Recall the notation from [43],

Al = blkdiag(Bl,1C
T
l,1, . . . ,Bl,pl

CT
l,pl

), A\prime 
l = blkdiag(B\prime 

l,1C
\prime T
l,1, . . . ,B

\prime 
l,pl

C
\prime T
l,pl

),

where Bl,k,B
\prime 
l,k,Cl,k,C

\prime 
l,k \in Rnl,k\times rl , for all k= 1, . . . , pl, and l= 1, . . . ,L.

Since for all levels l \leq \~l, supp(A\prime 
\~l
) \subseteq supp(Al), it follows that supp(AlA

\prime 
\~l
) =

supp(Al); see section 5.1.1. Thus we also have supp(AlA
\prime 
l+) = supp(Al). Similarly,

supp(A(l+1)+A
\prime 
l) = supp(A\prime 

l).

Consider levels l\leq \~l. Let the kth group on level l (for k= 1, . . . , pl) be partitioned
into pl,k,\~l groups on level \~l, indexed by \~k, . . . , \~k + pl,k,\~l  - 1. Let the partition of Cl,k

into pl,k,\~l blocks for each group be defined as follows:

Cl,k =

\left[   Cl,k,1

...
Cl,k,pl,k,\~l

\right]   .
Then the kth diagonal block of the AlA

\prime 
\~l
is given by

(AlA
\prime 
\~l
)k =Bl,kC

T
l,kblkdiag

\Bigl( 
B\prime 

\~l,\~k
C

\prime T
\~l,\~k
, . . . ,B\prime 

\~l,pl,k,\~l

C
\prime T
\~l,pl,k,\~l

\Bigr) 
=Bl,k

\Bigl[ 
CT

l,k,1B
\prime 
\~l,\~k
C

\prime T
\~l,\~k

\cdot \cdot \cdot CT
l,k,pl,k,\~l

B\prime 
\~l,\~k+pl,k,\~l - 1

C
\prime T
\~l,\~k+pl,k,\~l - 1

\Bigr] 
=Bl,kC

T

l,k,\~l,

where Bl,k,Cl,k,\~l \in Rnl,k\times rl are left and right factors of (AlA
\prime 
\~l
)k. Computing

(CT
l,k,jB

\prime 
\~l,j
)C

\prime T
\~l,\~k+j - 1

\in Rrl\times n\~l,\~k+j - 1 , j = 1, . . . , pl,k,\~l,

where Cl,k,j \in Rn\~l,\~k+j - 1\times rl and C \prime 
\~l,\~k+j - 1

,B\prime 
\~l,\~k+j - 1

\in Rn\~l,\~k+j - 1\times r\~l , takes

O(n\~l,\~k+j - 1rlr\~l) operations. Computing all coefficients of the right factor of AlA
\prime 
\~l

requires
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p\~l\sum 
\~k=1

pl,k,\~l\sum 
j=1

O(n\~l,\~k+j - 1rlr\~l) =O(nrlr\~l).

Therefore, we have the following factorization:

AlA
\prime 
\~l
= blkdiag(Bl,1C

T

l,1,\~l, . . . ,Bl,pl
C

T

l,pl,\~l
) =BlC

T

l,\~l,

where supp(Cl,\~l) = supp(Bl).

Similarly, for levels l\geq \~l, we have

AlA
\prime 
\~l
= blkdiag(B\~l,1,lC

\prime T
\~l,1
, . . . ,B\~l,p\~l,l

C
\prime T
\~l,p\~l

) =B\~l,lC
\prime T
\~l
,

where supp(B\~l,l) = supp(C\~l), and it can be computed in O(nrlr\~l). Thus AlA
\prime 
\~l
has

the same sparsity as A\prime 
\~l
.

Combining the above we have the following factorization:

AlA
\prime 
l+ +A(l+1)+A

\prime 
l =

L\sum 
\~l=l

BlC
T

l,\~l +

L\sum 
\~l=l+1

Bl,\~lC
\prime T
l

=
\Bigl[ 
Bl

\sum L
\~l=l+1Bl,\~l

\Bigr] \Bigl[ \sum L
\~l=lCl,\~l C \prime 

l

\Bigr] T
,(F.2)

which we can compute in

O

\left(  nrl

L\sum 
\~l=l+1

r\prime \~l + nr\prime l

L\sum 
\~l=l

r\~l

\right)  .

Note that \scrI (\sum L
\~l=l+1Bl,\~l) = \scrI (Bl), and similarly, \scrI (\sum L

\~l=lCl,\~l) = \scrI (C \prime 
l). Therefore,

we can equivalently represent (F.2) as a product of two block diagonal matrices by
permuting the columns in the left and right factors accordingly. The resulting two
block diagonal matrices are the factors of AA\prime on level l, and in the compressed form
have size n\times (rl + r\prime l) each.

Finally, from (F.1) we see that matrix AA\prime is an MLR matrix with MLR-rank
(r+ r\prime ). Moreover, computing factors requires O(nmax\{ r, r\prime \} 2) operations.

Reproducibility of computational results. This paper has been awarded the
``SIAM Reproducibility Badge: Code and data available"" as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
computing community. Code and data that allow readers to reproduce the results
in this paper are available at https://github.com/cvxgrp/multilevel factor model (see
notebooks in /examples folder).
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