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Abstract— This paper addresses the problem of finding
bounds on the optimal maximum a posteriori (or maximum
likelihood) estimate in a linear model under the presence of
model uncertainty. We introduce the novel concepts of at least
as likely as the maximum a posteriori (ALAMAP) estimate, or
at least as likely as the maximum likelihood (ALAML) estimate.
The concept is formulated as a convex optimization problem.
We specifically make use of second-order cone programming
(SOCP) techniques to compute the likelihood bounds in an
efficient manner. The procedure of computing the bounds is
illustrated by examples in state estimation (smoothing/filtering),
and in system identification.

I. INTRODUCTION

Many estimation problems in decision and control are
ill-conditioned. These include state estimation or trending,
identification of the system model parameters, and others.
Reliable estimation in the presence of noise, uncertainty and
ill-conditioning can be achieved by using a prior knowledge
of the unknown state. The maximum a posteriori (MAP)
estimate is based on the concept of using an a priori known
probabilistic distributions of the unknown state. Another
method of reliable computation of the estimates is through
robust estimation, which makes explicit use of the model
uncertainty, see [1], [2], [3], [4]. Tikhonov’s regularization
is another well known technique to overcome ill-conditioning
of the problem, see [5], [6]. The MAP and robust estimation
techniques essentially provide a systematic way of choosing
the regularization for ill-conditioned estimation problems.

A regularized solution of an inverse problem does not
have a ‘bad’ behavior along small singular values of the
forward operator. Yet, it is not clear how reliable is such
a regularized estimate. The solution may be very sensitive
to noise and perturbations in the problem matrices. What
are the confidence bounds for such a solution? The answer
is important to understand how far the real parameters can
be from the MAP or maximum likelihood (ML) estimates.
We provide a novel approach for efficient computation of
the bounds for a MAP (or ML) solution in the presence of
problem perturbations. The main contribution of this work
is to introduce the concept of at least as likely as the
maximum a posteriori (ALAMAP) or at least as likely as

This material is based upon work supported by the National Sci-
ence Foundation under grants #0423905 and (through October 2005)
#0140700, by the Air Force Office of Scientific Research under grant
#F49620-01-1-0365, and by MARCO Focus center for Circuit & System
Solutions contract #2003-CT-888.

the maximum likelihood (ALAML) solution. The proposed
approach is applicable to systems where linear constrained
state estimation is required in the presence of bounded data
and model uncertainty.

A large class of estimation problems result in a quadratic
programming formulation, and can be efficiently solved
using numerical optimization to compute the estimates. The
proposed approach to the ALAMAP (or ALAML) problems
relies on constrained convex optimization based estimation.
It provides upper and lower likelihood bounds for the MAP
(or ML) estimate under uncertainty instead of computing
the robust optimal solution. Constrained estimation using
numerical optimization has been studied extensively, see
[7], [8], [9]. However most previous work in determining
bounds for the ML solution is done in the unconstrained
least squares framework, where ellipsoidal sets of all possible
states consistent with the given measurements are found.
The work presented in this paper is similar in spirit but
the implementation in the constrained framework requires
additional tools that are provided by second-order cone
programming (SOCP) techniques.

The paper is organized as follows. Section II explains the
technical problem statement of finding likelihood bounds
under uncertainty. The concept of at least as likely as the
maximum a posteriori estimate (ALAMAP) is explained us-
ing a simple univariate example in Section III. The problem
is formulated mathematically in Section IV, where we also
propose a solution involving second order conic constraints.
Section V shows the application of the concept to monotonic
trending using constrained state estimation. The proposed
concept is applied to finite impulse response (FIR) model
identification in Section VI. Some concluding remarks are
given in Section VII.

II. TECHNICAL PROBLEM STATEMENT

In this work, we deal with linear state estimation problems
in the presence of sensor noise and data uncertainty. We
consider both the constrained and the unconstrained formula-
tions. The objective is to find meaningful confidence bounds
for the unknown state given the observed parameters. This
paper considers a linear system relating the observed data y
to the unknown state x. This data model can be conveniently
expressed in the form

y = Ax + e, (1)
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where y ∈ Rm is the vector of observations, x ∈ Rn is the
unknown state vector, A ∈ Rm×n is the known data matrix
that defines the linear mapping between the unknown state
and the observed vector, and e ∈ Rm is the observation
noise vector. The noise term in the data model accounts for
modeling errors and sensor noise. The linear data model
in (1) is useful for a wide class of linear state estimation
problems. It appears in many practical applications related
to data trending and system identification.

To obtain a statistically optimal estimate of the unknown
parameter vector x, such as the ML estimate or the MAP
estimate, we make use of the concept of conditional proba-
bility. The MAP estimate of the unknown vector x given y
is

MAP := arg max
x

px|y, (2)

where px|y denotes the conditional probability density of x
given the observed vector y. For px|y �= 0, we define the
loss index J as the negative log-likelihood of the conditional
probability density, i.e.,

J(x) := − log px|y (3)

= − log py|x − log px + c, (4)

where (4) follows from (3) by a direct application of the
Bayes rule. The MAP estimate is obtained by minimizing
the loss index J. The constant c = log py has no role in
determining the MAP estimate. The problem formulation ac-
counts for a probability density on the underlying parameter
x. This density represents the prior information about the
unknown state, and penalizes choices of x that are unlikely
according to this prior density, (i.e., x with px small). The
prior knowledge about the unknown state may also result
in constraints on x (i.e., x with px = 0). The minimization
of the loss index is then subject to these constraints on the
unknown state, which can be expressed as

x ∈ C, (5)

The MAP estimation problem (1)–(5) is a convex opti-
mization problem if the negative log-likelihood function J
is convex, and the set C is described by linear equality
or convex inequality constraints, as is the case in many
estimation problems.

For the purpose of this work, we limit our attention to
the probablity distributions for which the constraints set C
(where px > 0) is a polyhedral set. We also assume that the
noise e in the data model (1) is uncorrelated gaussian with
zero mean and covariance Q, i.e.,

e ∼ N(0, Q). (6)

For the gaussian distributed observation noise e, we can sub-
stitute (6) for the conditional probability density − log py|x
in (4). The MAP estimate is then obtained by minimizing
the loss index

J(x) = [Ax − y]T Q−1[Ax − y] − log px (7)

Other noise distributions that result in a convex loss index
can be handled accordingly. However, the scope of this work
is limited to those probability densities of the noise and the
unknown state that result in a quadratic objective.

A. Models with Uncertainty

The formulation in (7) assumes that the linear map (1)
is known precisely. In most practical applications, there is
always some uncertainty in the assumed linear model A.
This uncertainty can be caused by a variety of reasons.
The most common cause of uncertainty is that all physical
systems are inherently nonlinear. Then, linearized model
(1) is only an approximation of the actual system. It is
therefore natural to deal with the imprecise nature of the
linearization by considering uncertainty in the linear map A.
Our formulation also accounts for uncertainty in the observed
vector y (different from the observation noise).

Assuming that the matrix A and the vector y are not
known precisely, we introduce uncertainty parameters ∆A
and ∆y for the map matrix and the observed data vector
respectively. We assume ∆A to be of the same dimension
as A. The individual columns of the matrix ∆A account for
the uncertainty in the corresponding columns of the matrix
A. For the problem with model uncertainty

y −→ y + ∆y, (8)

A −→ A + ∆A. (9)

We consider the two uncertainty parameters to be norm
bounded, i.e.,

|∆y|p ≤ ry, (10)

|∆A|p ≤ rA, (11)

where p = {1, 2,∞}. The choice of the norm for the
uncertainty bounds on ∆A and ∆y depends on the specific
nature of the problem. The examples in the last two sections
of this paper use the �1 norm bound but in some applications
the �2 or �∞ norm may be more suitable. The question of
how far the solution of the problem with uncertainty can
be off the nominal solution obtained without uncertainty is
addressed in this paper. We consider a novel at least as likely
as the MAP (ALAMAP) or at least as likely as the ML
(ALAML) setting. The difference is that the MAP estimate
uses a prior knowledge about the distribution px, while the
ML estimate of the unknown state assumes no information
about px is available. Assume that the solution of the nominal
problem (no uncertainty) obtained by minimizing the loss
index J(x) in (7) yields the optimal estimate x∗ and the
corresponding minimum value of the loss index J∗. In the
problem with model uncertainty, the loss index (7) becomes
a function of the parameters ∆A and ∆y. We consider a set
W such that

W = {(x,∆A, ∆y) : J(x;∆A, ∆y) ≤ J∗} , (12)

We call it the ALAMAP or the ALAML set. The set contains
all the possible uncertainty parameter values that yield an
estimate of the unknown state which is at least as likely
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as the optimal estimate x∗ for the nominal model (7).
For practical purposes we are interested in the likelihood
bounds or extreme points (worst case solution) for a given
uncertainty. To obtain the lower bound on components of the
estimate vector x for a given uncertainty we do the following
minimization

min
x

cT x (13)

For the upper bound calculation we simply solve
minx −cT x. The row vector cT ∈ R1×n is used to pick
point wise the components of x, and can be thought of
as a unit vector along the corresponding coordinate of x.
The minimization is also subject to any original problem
constraints on the unknown state, as given in (5).

The ALAMAP (or ALAML) problem formulation yields a
set of plausible estimates under uncertainty that are at least as
likely as the original MAP (or ML) estimates. The problem
(13) of finding the likelihood bounds is a minimization of
a linear objective subject to convex (second order conic)
constraints. This convex optimization framework allows for
efficient computations of the bounds.

III. DISCUSSION OF ALAMAP ESTIMATION

We now explain the concept of finding an ALAMAP es-
timate for a one dimensional example. Consider a univariate
case in which y,A, x, and e in (1) are all scalars. The
unknown state x is assumed gaussian with zero mean and
covariance r. This implies that the term − log px in the loss
index (7) is a quadratic penalty of the form rx2, where r
is the covariance of x. We now introduce uncertainty in
this problem setup. We assume the uncertainty ∆A to be
bounded by rA. For the sake of simplicity, we assume no
uncertainty in the measurement y, i.e., ∆y = 0 in this
example. Rewriting the loss index (7) for this case with
uncertainty only in the data matrix A, we get

J(x,∆A) = [(A + ∆A)x − y]T Q−1[(A + ∆A)x − y]
−rx2, (14)

The values chosen for the simulation are; observed parameter
y = 10, A = 1, unit noise covariance for the noise e, i.e.,
Q = 1. We choose r = 10 for the MAP estimate in this
simulation. We assume the uncertainty ∆A to be bounded
by rA = 0.1, i.e., at most than 10% uncertainty in the given
A. The nominal loss index for this case without uncertainty
is plotted using (7) and is shown in Fig. 1. The optimal value
for the nominal loss index naturally occurs at the vortex of
the parabola. In this example x∗ is 0.9 and the corresponding
optimal value of loss index is J∗(x∗) = 90.9. Limiting our
attention to the worst case uncertainty, we first substitute
for ∆A = rA = 0.1, and then ∆A = −rA = −0.1 in the
uncertainty loss index (14). The two corresponding parabolas
are shown in Fig. 1 along with the loss index for the nominal
case. The introduction of the negative uncertainty, ∆A =
−0.1, shifts the parabola upwards. This results in a higher
value of optimal loss index, i.e., J∗(x,∆A = −0.1) > J∗.
In this case our ALAML set W in (12) is empty. On the other
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Fig. 1. Nominal loss index J(x) with positive and negative uncertainty

hand, when we consider the positive worst case uncertainty
∆A = 0.1, the parabola J(x,∆A = 0.1) is shifted below
the nominal parabola J(x). In this case, the ALAML set is
not empty and we have a range of solutions that are at least
as likely as the nominal MAP solution x∗. It is therefore
meaningful to find the worst case likelihood bounds for this
point estimate by performing the minimization in (13).

For the case of positive worst case uncertainty ∆A = 0.1,
when our feasible set W is not empty, it is useful to get an
idea about the convexity of the loss index (14) by plotting
the function J(x,∆A). The result of the plot of J(x,∆A) in
the (x,∆Ax) plane is shown in Fig. 2. The important thing
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Fig. 2. Quadratic J(x, ∆A) surface in the (x, ∆Ax) plane

to note about this region is that it is convex (quadratic).
This makes the constrained minimization (13) of finding
the point wise confidence bounds for the estimate a convex
optimization problem which is computationally feasible.

The problem of finding the ALAML estimate can be easily
explained by Fig 3. We find the level sets of J(x,∆A) that
satisfy J(x,∆A) ≤ J∗ = 90.9. A contour that satisfies the
equality is shown in Fig 3. The uncertainty bound ∆Ax =
rAx is superimposed on the contour J(x,∆A) = J∗ in Fig.
3. The uncertainty bound is satisfied by all the points below
the constraint line ∆Ax = 0.1x. As can be seen, there
is a range of solutions (x,∆A) that satisfy the constraint
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J(x,∆A) ≤ J∗ and the set W is not empty. In other words,
there is a range of possible values for which the estimate is at
least as likely as the nominal MAP estimate, and the extreme
points that give the likelihood bounds can be computed using
the minimization in (13).
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Fig. 3. Feasible quadratic domain in (x, ∆Ax) plane

IV. SOLUTION APPROACH

We now mathematically formulate the general problem of
finding the likelihood bounds for the unknown state given
a prior distribution on x, and bounded uncertainty in the
problem data. Introducing the uncertainty parameters ∆A
and ∆y in the loss index (7), we get

J(x,∆A, ∆y) = [(A + ∆A)x − (y + ∆y)]T Q−1

[(A + ∆A)x − (y + ∆y)] − log px,

(15)

Looking carefully at the above loss index, an alternate
interpretation of the bounded uncertainty problem is to think
of it in a stochastic sense. If we assume that ∆A and ∆y
are independent random variables uniformly distributed in
the constraint set (10)–(11), we get the same loss index up
to an additive constant.

Define a new uncertainty variable z ∈ Rm as

z := ∆Ax − ∆y. (16)

Substituting z in (15) yields

J(x; z) = [Ax + z − y]T Q−1[Ax + z − y]
− log px, (17)

To obtain the likelihood bounds for the individual compo-
nents of the estimate vector x in the presence of uncertainty,
the ALAMAP estimation problem can be formulated as

min
x

cT x, (18)

subject to the following constraints

J(x; z) ≤ J∗ (19)

|z| ≤ rA|x| + ry. (20)

To obtain the upper bound we simply solve minx −cT x.
The minimization is also subject to any original problem
constraints on the unknown state, as determined by the prior
knowledge of the probability distribution of x. The exact
solution of the ALAMAP problem is not convex due to
the constraint (20). To ensure the convexity of the problem,
we replace the decision variable x in constraint (20) by the
optimal x∗ obtained from the nominal problem, i.e.,

|z| ≤ rA|x∗| + ry (21)

The above simplification will yield an approximate solution
of the ALAMAP problem. The approximation can be im-
proved by replacing x∗ with the solution of the minimization
problem (18) in successive iterations.

We now formulate the approximate ALAMAP estimation
as a convex second order conic optimization problem. The
objective (18) is linear. The constraint set in (5) is restricted
to a polyhedron. The uncertainty bound constraint in (21) is
linear. If we can cast (19) as a convex constraint then the
likelihood bounds can be easily obtained by solving a linear
objective subject to the convex constraints. We now show that
(19) can be formulated as a second-order cone constraint.
SOCP problems are well known in optimization theory. For
a detailed description of the SOCP formulation, see [10].
Rewrite the first term in the loss index (17) for the problem
with uncertainty in terms of a new matrix P ∈ Rm×(n+m+1)

and a vector v ∈ Rn+m+1, where

P :=
[

A I −y
]
, (22)

v :=

⎡
⎣

x
z
1

⎤
⎦ , (23)

where I ∈ Rm×m is the identity matrix. For notational
simplicity, assume unit covariance of the noise term e, i.e.,
Q = 1.

The probability distribution of the unknown state deter-
mines the second term in (17). In most cases of practical
interest, an assumed distribution of x results in either a linear
or a quadratic penalty term in the loss index. We define the
function f : Rn → R as

f(x) := − log px, (24)

where f(x) is either a quadratic or a linear function of the un-
known state x. Now the constraint (19) can be conveniently
written as

J(x; z) = ‖Pv‖2 + f(x) ≤ J∗ (25)

In its general form, an SOCP constraint in variable v is
expressed as

‖Pv + b‖ ≤ aT v + d, (26)

where b ∈ Rm, a ∈ Rn+m+1, and d ∈ R can be chosen
according to the problem at hand. It is straight forward to see
that the constraints (21) and (25) can be easily incorporated
as one SOCP constraint of the form (26). The solution to the
approximate ALAMAP (or ALAML) problem can thus be
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efficiently computed using convex optimization techniques.
Several off the bench solvers are available for solving such
problems.

V. APPLICATION TO MONOTONIC TRENDING

We now apply the concept of ALAML estimate to mono-
tonic trending. Monotonic trends are a priori known to
increase (or decrease) with time. This prior knowledge results
in constraints on the unknown trend. Monotonic trends are
particularly common in a fault estimation setting, where they
may represent a gradually accumulating fault state such as
mechanical damage during the course of a system operation.
For details about monotonic trending and its application to
fault estimation, see [11], [12]. This example illustrates the
application of the concept of likelihood bounds to the case of
constrained state estimation, i.e., where the nominal MAP or
ML estimate cannot be obtained using a simple least squares
formulation.
Consider the data sequences y and x in (7) on the interval
t = {1, . . . , N}, i.e.,

y = {y(1), . . . , y(N)}, y(t) ∈ R (27)

x = {x(1), . . . , x(N)}, x(t) ∈ R (28)

The monotonic trending problem is to estimate the unknown
state x given the observed sequence y and the data matrix A.
Each diagonal entry of A represents the linear relationship
between the unknown state x(t) and the observed parameter
y(t) at a particular instant. For a linear time invariant state
estimation problem, all the entries of the diagonal of A
are the same. In monotonic trending, we consider a one
sided exponential distribution for the unknown state x, i.e.,
px = 1

λe−x/λ for x ≥ 0 and 0 otherwise. The penalty term
− log px in the loss index (7) thus reduces to

− log px =
1
λ

N∑
t=2

[x(t) − x(t − 1)] (29)

In this example, we take A to be an identity matrix of
size N. The gaussian noise distribution e is assumed to
have covariance Q = 1. The sequence y (observed raw
data) is generated by adding random noise to an underlying
monotonic trend as shown in Fig. 4. There are N = 25
time samples for this simulation. We choose λ = 1 and
the initial state covariance is assumed large, i.e., no prior
knowledge is available about the state x(0). The loss index
(7) is minimized subject to the monotonic state constraints

x(t + 1) ≥ x(t). (30)

This is a linearly constrained quadratic programming (QP)
problem. Its solution yields the MAP estimate for the nom-
inal uncertain model. The nominal MAP estimate is shown
in Fig. 4.

We now introduce uncertainty parameters ∆A and ∆y
in the given data model. The uncertainty parameters are
considered bounded in the �1 norm, i.e., ‖∆y‖1 ≤ ry and
‖∆A‖1 ≤ rA. The �1 norm of the matrix here is the
maximum absolute column sum norm.
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Fig. 4. Likelihood bounds for constrained state estimation

The ALAMAP estimation problem is to find a region of
plausible estimates that in the presence of norm bounded
uncertainty are at least as likely as the nominal MAP esti-
mate. For this example, we choose ry = 1.2 and rA = 0.01
in (21). The value ry = 1.2 corresponds to about 0.8% of
the �1 norm of vector y. The resulting likelihood bounds
obtained by solving the minimization in (13) subject to the
constraints (19), (21) and the state constraints (30) are shown
in Fig. 4. The likelihood bounds can be made tight or loose
depending upon the magnitude of the allowed uncertainty.
Fig. 5 shows a comparison of the likelihood bounds as ry is
increased from 1.2 to 1.6, where 1.6 corresponds to about
1% of the �1 norm of y. The bounds for ry = 1.2 are tighter
as expected. The uncertainty bounds rA and ry can thus
be used as tuning parameters to obtain different likelihood
bounds.

0 5 10 15 20 25
−2

0

2

4

6

8

10

12

SAMPLE NUMBER

RAW DATA
NOMINAL MAP ESTIMATE
UPPER BOUND r

y
 = 1.2

LOWER BOUND r
y
 = 1.2

UPPER BOUND r
y
 1.6

LOWER BOUND r
y
 1.6

Fig. 5. Likelihood bounds for two uncertainty levels

VI. APPLICATION TO SYSTEM IDENTIFICATION

We now apply the concept of ALAML to estimate a mov-
ing average (MA) or finite impulse response (FIR) model.
We measure input u(t) and output y(t) for t = {0, . . . , N}
of the unknown system. The system identification problem
deals with finding a reasonable model for a system based on
measured input output data u, y. We illustrate the ALAML
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concept by an example where the input u and the output y
are scalars. The multivariable case is handled readily.

Consider a moving average model with n delays

y(t) = h0u(t) + h1u(t − 1) + · · · + hnu(t − n) + e(t) (31)

where {h0, . . . , hn} is the system impulse response. Rewrit-
ing the above model in matrix form yields

⎡
⎢⎢⎢⎣

y(n)
y(n + 1)

.

.

.
y(N)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u(n) · · · u(0)
u(n + 1) · · · u(1)

.

.

.
.
.
.

.

.

.
u(N) · · · u(N − n)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h0
h1

.

.

.
hn

⎤
⎥⎥⎥⎦ + e (32)

The above model is in the standard linear state estimation
form (1). The data matrix in the system identification set-
ting is often referred to as the auto regressor matrix. The
objective is to find the FIR kernel h. We consider gaussian
noise distribution, and assume no prior information about
the probability density of the impulse response model, i.e.,
− log px = 0 in (7). The solution in this case can be easily
obtained by regularized least-squares.

As an example we consider an FIR model with 6 delays
and 100 data points, i.e., n = 6 and N = 100. The excitation
to the system is a pseudo random binary signal (PRBS). The
input-output pair used for the simulation is shown in Fig.
6. Assuming a unit covariance for the nose e, we estimate
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Fig. 6. Input and output sequence for FIR model

the true FIR model h = [1 0.8 0.6 0.4 0.2 0.1]. The
estimate obtained through an over determined least-squares
(LS) solution is shown in Fig. 7.

We now introduce uncertainty in the measurement vector
y and the auto regression matrix of (32). The uncertainty
bounds ry and rA are chosen as 0.5% of the �1 norm of y
and A respectively. The likelihood bounds are obtained by
solving the minimization in (18) subject to the constraints
(19), (21). The upper and lower bounds are shown in Fig. 7
along with the outputs from the actual MA model. In prac-
tice, the model order selection is an important consideration
and may effect the likelihood bounds as well. However here
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Fig. 7. Likelihood bounds for FIR model

we knew the actual model had n = 6 delays and so the issue
of model order selection was not explored.

VII. CONCLUSION

In this paper we introduce the concept of ALAMAP (or
ALAML) estimate in the presence of data uncertainty for
constrained linear state estimation problems. The presented
concepts are illustrated by application to FIR model identi-
fication and monotonic trending. The approach is based on
convex optimization techniques and formulates the problem
in terms of minimization of a linear objective subject to
second order cone constraints. The computed likelihood
bounds can be tuned by varying the uncertainty bounds
specified for a particular problem.

REFERENCES

[1] S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed. Parameter
estimation in the presence of bounded data uncertainties. SIAM
Journal on Matrix Analysis and Applications, 19(01):235–252, 1998.

[2] H. Hindi and S. Boyd. Robust solutions to �1, �2 and �∞ uncertain
linear approximation problems using convex optimization. In Proc.
American Control Conf., volume 6, pages 3487–3491, 1998.

[3] L. El Ghaoui and G. Calafiore. Robust filtering for discrete-time
systems with bounded noise and parametric uncertainty. IEEE Trans-
actions on Automatic Control, 46(07):1084–1089, July 2001.

[4] G. Calafiore and L. El Ghaoui. Robust maximum likelihood estimation
in the linear model. Automatica, 37(04):573–580, March 2001.

[5] A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posed problems.
John Wiley and Sons, 1977.

[6] L. Ljung. System Identification - Theory For the User. Prentice Hall,
1999.

[7] C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state
estimation for nonlinear discrete-time systems: stability and moving
horizon approximations. IEEE Transactions on Automatic Control,
48(2):246–258, February 2003.

[8] G. C. Goodwin, M. M. Seron, and J. A. De Doná. Constrained Control
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