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Fig. 2. Resultant output trajectory by (27).

dress the initial shift problem. The convergence and robustness proper-
ties of the scheme with respect to initial shifts have been presented by
the developed analysis technique. Under certain conditions, the system
output is ensured to converge to a neighborhood of the predefined tra-
jectory and the error bound is proportional to the bound on initial shifts.
The system undertaken has been shown to possess asymptotic tracking
capability and the converged output trajectory can be assessed by the
initial condition. The initial rectifying action has been shown effective
to improve the tracking performance further, by which the complete
tracking with specified transient is guaranteed.

REFERENCES

[1] S. Arimoto, “Learning control theory for robotic motion,”Int. J. Adapt.
Control Signal Processing, vol. 4, pp. 543–564, 1990.

[2] D.-H. Hwang, Z. Bien, and S.-R. Oh, “Iterative learning control method
for discrete-time dynamic systems,”Proc. Inst. Elect. Eng., Part D, vol.
138, no. 2, pp. 139–144, 1991.

[3] S. S. Saab, “Robustness and convergence rate of a discrete-time learning
control algorithm for a class of nonlinear systems,”Int. J. Robust Non-
linear Control, vol. 9, pp. 559–571, 1999.

[4] T.-J. Jang, H.-S. Ahn, and C.-H. Choi, “Iterative learning control for
discrete-time nonlinear systems,”Int. J. Syst. Sci., vol. 25, no. 7, pp.
1179–1189, 1994.

[5] C. J. Chien, “A discrete iterative learning control for a class of non-
linear time-varying systems,”IEEE Trans. Automat. Contr., vol. 43, pp.
748–752, May 1998.

[6] D. Wang, “Convergence and robustness of discrete time nonlinear sys-
tems with iterative learning control,”Automatica, vol. 32, no. 11, pp.
1445–1448, 1998.

[7] J.-X. Xu, “Analysis of iterative learning control for a class of nonlinear
discrete-time systems,”Automatica, vol. 33, no. 10, pp. 1905–1907,
1997.

[8] H.-S. Lee and Z. Bien, “Study on robustness of iterative learning control
with nonzero initial error,”Int. J. Control, vol. 64, no. 3, pp. 345–359,
1996.

[9] K.-H. Park and Z. Bien, “A generalized iterative learning controller
against initial state error,”Int. J. Control, vol. 73, no. 10, pp. 871–881,
2000.

[10] Y. Chen, C. Wen, Z. Gong, and M. Sun, “An iterative learning controller
with initial state learning,”IEEE Trans. Automat. Contr., vol. 44, pp.
371–376, Feb. 1999.

[11] M. Sun and D. Wang, “Iterative learning control with initial rectifying
action,”Automatica, vol. 38, no. 7, pp. 1177–1182, 2002.

[12] , “Closed-loop iterative learning control for nonlinear systems
with initial shifts,” Int. J. Adapt. Control Signal Processing, vol. 16,
pp. 515–538, 2002.

[13] C.-H. Choi and G.-M. Jeong, “Perfect tracking for maximum-phase non-
linear systems by iterative learning control,”Int. J. Syst. Sci., vol. 32, no.
9, pp. 1177–1183, 2001.

[14] S. Hillenbrand and M. Pandit, “An iterative learning controller with re-
duced sampling rate for plants with variations of initial states,”Int. J.
Control, vol. 73, no. 10, pp. 882–889, 2000.

[15] M. Sun and D. Wang, “Analysis of nonlinear discrete-time systems with
higher-order iterative learning control,”Dyna. Control, vol. 11, no. 1,
pp. 81–96, 2001.

[16] , “Robust discrete-time iterative learning control: Initial shift
problem,” in Proc. 40th IEEE Conf. Decision Control, Orlando, FL,
Dec. 2001, pp. 1211–1216.

[17] S. Monaco and D. Normand-Cyrot, “Minimum phase nonlinear
discrete-time systems and feedback stabilization,” inProc. 26th IEEE
Conf. Decision Control, Los Angeles, CA, Dec. 1987, pp. 979–986.

[18] H. Nijmeijer and A. J. van der Schaft,Nonlinear Dynamical Control
Systems. New York: Springer-Verlag, 1990.

Joint Optimization of Communication Rates
and Linear Systems

Lin Xiao, Mikael Johansson, Haitham Hindi, Stephen Boyd, and
Andrea Goldsmith

Abstract—We consider a linear control system in which several signals
are transmitted over communication channels with bit rate limitations.
With the coding and medium access schemes of the communication
system fixed, the achievable bit rates are determined by the allocation of
communications resources such as transmit powers and bandwidths, to
different communication channels. We model the effect of bit rate limited
communication channels by uniform quantization and the quantization
errors are modeled by additive white noises whose variances depend on
the achievable bit rates. We optimize the stationary performance of the
linear system by jointly allocating resources in the communication system
and tuning parameters of the controller.

Index Terms—Communication systems, control over networks, convex
optimization, quantization noise, resource allocation.

I. INTRODUCTION

We consider a linear system in which several signals are transmitted
over wireless communication channels, as illustrated in Fig. 1. All sig-
nals are vector-valued:w is a vector of exogenous signals (such as
disturbances or noises acting on the system);z is a vector of perfor-
mance signals (including error signals and actuator signals); andy and
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Fig. 1. Linear time-invariant (LTI) system closed over communication
network.

Fig. 2. Uniform quantization model of communication links.

yr are the signals transmitted and received over the communication
network, respectively. This general arrangement can represent a va-
riety of systems, for example a controller or estimator in which ac-
tuator and sensor signals are sent over wireless channels. In this note,
we address the problem of optimizing the stationary performance of
the linear system by jointly allocating resources in the communication
network and tuning parameters of the linear system.

Many issues arise in the design of networked controllers, including
bit rate limitations, communication delays, packet loss, transmission
errors and asynchronicity (see, e.g., [1]–[8]). In this note, we consider
problems related to only the first issue, i.e., bit rate limitations. Much of
the work on control with bit rate limitations has concentrated on joint
design of control and coding to find the minimum bit rate required to
stabilize a linear system. For example, [1] and [2] established various
closed-loop stability conditions involving the feedback data rate and
eigenvalues of the open-loop system and [8] and [3] studied control
with communication constraints within the classical linear quadratic
Gaussian (LQG) framework.

Our focus in this note is different. We assume that the source coding,
channel coding and medium access scheme of the communication
system are fixed and we concentrate on finding the allocation of
communications resources such as transmit powers and bandwidths,
that yields the optimal performance of the linear system. For a fixed
sampling frequency of the linear system, the limit on communication
rate translates into a constraint on the number of bits that can be
transmitted over each communication channel during one sampling
period. We assume that the individual signalsyi are coded using
memoryless uniform quantizers, see Fig. 2. We impose lower bounds
on the number of quantization bits, which correspond to lower bounds
on the channel bit rates. These lower bounds ensure that the data
rates are high enough for stabilization (i.e., much higher than lower
bounds given in [1], [2]) and allow us to use the white-noise model for
quantization errors introduced by Widrow (see, e.g., [15] and [16]).
Memoryless uniform quantization is certainly not the optimal source
coding scheme (see, e.g., [3], [8], and [12]), but it is conventional,
easily implemented and leads to a simple model for how the system
performance depends on the bit rates which, in turn, are determined
by the allocation of communications resources to different channels.

Fig. 3. Scaling of the uniform quantizer.

There has been significant research on control with quantized
feedback information (see, e.g., [9]–[14]) and joint optimization
of quantizer and estimator/controller has been considered in, e.g.,
[9]–[11]. However, joint optimization of communications resource
allocation and linear system design, interacting through bit rate
limitations and quantization, has not been addressed before in the
literature. Even in the simplified setting under our assumptions,
the joint optimization problem is quite nontrival and its solution
requires concepts and techniques from communication, control and
optimization. We show that for fixed linear system, the problem of
optimally allocating communication resources is often convex and,
hence, readily solved. We discuss efficient solution methods and
suggest a heuristic for obtaining suboptimal integer solutions. The
problem of jointly designing the linear system and allocating the
communication resources is in general not convex and we present a
iterative heuristic that exploits problem structure and appears to work
very well in practice.

II. L INEAR SYSTEM AND QUANTIZER MODEL

A. Linear System Model

To simplify the presentation we assume a synchronous, single-rate
discrete-time system. The LTI system (see Fig. 1) can be described as

z = G11(')w +G12(')yr y = G21(')w+G22(')yr (1)

whereGij are LTI operators (i.e., convolution systems described by
transfer or impulse matrices). Here,' is the vector of design parame-
ters, such as estimator or controller gains, that can be tuned to optimize
performance. To give lighter notation, we suppress the dependence of
Gij on' except when necessary. We assume that the signals sent (i.e.,
y) and received (i.e.,yr) over the communication links are related by
memoryless scalar quantization.

B. Quantization Model

Unit Uniform Quantizer and Scaling:A unit-range uniform
bi-bit quantizer partitions the range [�1, 1] into 2b intervals of
uniform width 21�b . To each quantization interval a codeword of
bi bits is assigned. Given a received codeword, the input valueyi
is approximated by (or reconstructed as)yri, the midpoint of the
corresponding interval. As long as the quantizer does not overflow,
i.e., jyij < 1, the quantization error lies in the interval�2�b . To
avoid overflow, each signalyi(t) is scaled by a factors�1i > 0
prior to encoding and rescaled bysi after decoding (see Fig. 3).
To minimize quantization error while ensuring no overflow (or
that overflow is rare) the scaling factorsi should be chosen as the
maximum possible value ofjyi(t)j, or as a value that with very high
probability is larger thanjyi(t)j. We will use the so-called 3�-rule,
si = 3 rms(yi), whererms(yi) = (limt!1E yi(t)

2)1=2 denotes
the rms (root-mean-square) value ofyi. For example, ifyi has a
Gaussian distribution, then overflow occurs only about 0.3% of the
time.
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Fig. 4. Additive-white-noise model for quantization errors.

White-Noise Quantization Error Model:We adopt the stochastic
quantization noise model introduced by Widrow (see, e.g., [15]). As-
suming that overflow is rare, we model the quantization errorsqi(t) =
yri(t)� yi(t) as independent random variables, uniformly distributed
on the intervalsi[�2�b ; 2�b ]. In other words, we model the effect
of quantizingyi(t) as an additive white-noise sourceqi(t) with zero
mean and varianceE qi(t)

2 = (1=3)s2i 2
�2b . we will impose a lower

bound on eachbi, which corresponds to a lower bound on the bit rate for
individual communication channels. This lower bound should be high
enough for stabilizing the closed-loop system (cf. [1]–[3]) and make
the white noise model a reasonable assumption in a feedback control
context (cf. [15], [16]).

C. Performance of the Closed-Loop System

Using the white noise quantization error model, we obtain the system
in Fig. 4. The LTI system is driven by exogenous inputsw andq. We
expressz andy in terms ofw andq as

z = Gzww +Gzqq y = Gyww +Gyqq

whereGzw; Gzq; Gyw, andGyq are the closed-loop transfer matrices
fromw andq to z andy, respectively. They can be expressed as linear
fractional transformations of the matricesGij in (1). The variance ofz
induced by the quantization is given by

Vq = E kGzqqk
2 =

M

i=1

kGzqik
2 1

3
s2i 2

�2b (2)

whereGzqi is theith column of the transfer matrixGzq andk � k de-
notes theL2 norm (see [17, Sec. 5.2.3]). This expression shows howVq
depends on the allocation of quantizer bitsb1; . . . ; bM , as well as the
scalingss1; . . . ; sM and the LTI system. We can useVq as a measure
of the effect of quantization on the overall system performance. Ifw is
also modeled as a stationary stochastic process (independent ofq), the
overall variance ofz is given by

V = E kzk
2 = Vq +E kGzwwk

2: (3)

III. COMMUNICATIONS MODEL AND ASSUMPTIONS

A. A Generic Model for Bit Rate Constraints

The capacities of communication channels depend on the media ac-
cess scheme and the selection of certain critical parameters, such as
transmission powers and bandwidths or time-slot fractions allocated
to individual channels (or groups of channels). We refer to these crit-
ical communications parameters collectively ascommunications vari-
ablesand denote the vector of communications variables by�. The
communications variables are themselves limited by various resource
constraints, such as limits on the total power or total bandwidth avail-
able. We will assume that the medium access methods and coding and
modulation schemes are fixed, but that we can optimize over the un-
derlying communications variables�.

We letb 2 RM denote the vector of bits allocated to each quantized
signal. The associated communication rateri (in bits per second) is
proportional tobi and their relationship can be expressed asbi = �ri.
The constant� has the form� = cs=fs, wherefs is the sample fre-
quency of the linear system andcs is the channel coding efficiency (in
source bits per transmission bit) for a fixed coding scheme. This re-
lationship will allow us to express capacity constraints in terms of bit
allocations rather than communication rates.

We will use the following general model to relate the vector of bit
allocationsb and the vector of communications variables�:

fi(b; �) �0; i = 1; . . . ; mf

hTi � �di; i = 1; . . . ;mh

�i �0; i = 1; . . . ; m�

bi � bi �bi; i = 1; . . . ;M: (4)

We make the following assumptions about this generic model.

• The first set of inequalities describe capacity constraints on the
communication channels. The functionsfi are convex in (b; �),
monotone increasing inb and decreasing in�. We will show
below that many classical capacity formula satisfy these assump-
tions.

• The second set of constraints describes resource limitations, such
as a total available power or bandwidth for a group of channels.

• The third constraint specifies that the communications variables
are nonnegative.

• The last group of inequalities specify lower and upper bounds
for each bit allocation. We assume thatbi andbi are nonnegative
integers. The lower bounds are imposed to ensure that the white
noise model for quantization errors is a reasonable assumption
(see Section III-B). The upper bounds can arise from hardware
limitations.

This generic model will allow us to formulate the communication
resource allocation problem, i.e., choosing� to optimize overall system
performance, as a convex optimization problem.

There is also one more important constraint onb not included in the
model above: thebi ’s should all be integers. We ignore this constraint
for now and will return to it in Section IV.

B. Examples of Channel Capacity Constraints

In this section, we describe some classical channel models and
show how they fit the generic model (4). Detailed descriptions of more
channel models can be found in, e.g., [18] and [19]. Channels with
gain variations (fading) as well as rate constraints based on bit-error
rates can be formulated in a similar manner (see, e.g., [20]).

Frequency Division Multiple Access (FDMA) Gaussian Chan-
nels: In the Gaussian broadcast channel with FDMA, a transmitter
sends information ton receivers over disjoint frequency bands
with bandwidthsWi � 0 and assigns a transmit powerPi � 0
to each band. The communications variables arePi and Wi for
each individual channel. The receivers are subject to independent
additive white Gaussian noises with power spectral densitiesNi.
The classical Shannon capacity result (see, e.g. [18]) relates the
achievable bit allocationsbi and the communications variables by
bi � �Wi log2 (1 + (Pi=NiWi)), which is equivalent to

fi(bi;Wi; Pi) =bi � �Wi log2 1 +
Pi

NiWi

� 0;

i =1; . . . ; n: (5)

It is easily verified thatfi is jointly convex in the variables (bi;Wi; Pi),
monotone increasing inbi and monotone decreasing inWi andPi.
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So, (5) is in the generic form of the first set of constraints in (4). The
communications variables are constrained by total resource limits

P1 + � � �+ Pn � Ptot W1 + � � �+Wn �Wtot

which have the generic form for total resource limits (the second set of
constraints) in (4).

In the Gaussian multiple access channel with FDMA,n transmit-
ters send information to a common reveiver, each using powerPi over
bandwidthWi. It has the same set of constraints as for the broadcast
channel, except thatNi = N; i = 1; . . . ; n (since they have a common
receiver).

IV. RESOURCEALLOCATION FOR FIXED LINEAR SYSTEM

In this section, we assume that the linear system is fixed and consider
the problem of choosing the communications variables to optimize the
system performance. We take as the objective (to be minimized) the
variance of the performance signalz, given by (3). Since this variance
consists of a fixed term (related tow) and the variance induced by the
quantization, we can just as well minimize the variance ofz induced
by the quantization error, i.e., the quantityVq defined in (2). This leads
to the optimization problem

minimize
M

i=1

ai2
�2b

subject to fi(b; �) �0; i = 1; . . . ;mf

hTi � �di; i = 1; . . . ;mh

�i �0; i = 1; . . . ;m�

bi �bi � bi; i = 1; . . . ;M (6)

whereai = (1=3)kGzqik
2s2i and the optimization variables are� and

b. We note that while the formula (2) was derived assuming thatbi are
integers, the objective function makes sense forbi 2 R+. Since the
objective function and each constraint in problem (6) are convex, this is
a convex optimization problem. It can be solved globally and efficiently
using a variety of methods, e.g., interior-point methods (e.g., [21]). In
many cases, the problem (6) has an separable structure, which can be
efficiently exploited by dual decomposition (e.g., [21] and [22]).

We now return to the requirement that the bit allocations must be
integers. Since general-purpose integer programming techniques have
high computational complexity, it is of interest to develop efficient
heuristic methods that give good suboptimal integer solutions. We pro-
pose to use a simplevariable threshold rounding: for a given threshold
0 � t � 1, we roundbi down if its fractional part is no larger thant
and round it up otherwise. Given the rounded bit allocations, we find
the associated communications variables� by solving a convex feasi-
bility problem with the constraints in (6). We then find the smallestt
that admits a feasible solution. In [23], we discuessed some theoretical
properties of this scheme and demonstrated its effectiveness on a net-
worked least-squares estimator.

V. JOINT DESIGN OFCOMMUNICATION AND LINEAR SYSTEMS

We have seen that when the linear system is fixed, the problem of op-
timally allocating communication resources is often convex (ignoring
integrality constraints) and can be efficiently solved. In order to achieve
optimal system performance, however, one should optimize the linear
system parametersandthe communications variablesjointly. Unfortu-
nately, this joint design problem is in general not convex.

In some cases, however, the joint design problem is convex in sub-
sets of the variables. For example, the globally optimal communica-
tions variables can be computed very efficiently (ignoring the inte-

grality constraints) when the linear system is fixed. Similarly, when
the communications variables are fixed, it is often possible to compute
the globally optimal linear system variables. Finally, when the linear
system and the communications variables are fixed, it is straightfor-
ward to find the quantizer scalings, e.g., by the 3�-rule. This naturally
leads to an approach where we sequentially fix one set of variables and
optimize over the others.

A. Alternating Optimization for Joint Design

The fact that the joint problem is convex in certain subsets of the
variables while others are fixed can be exploited by the following iter-
ative optimization procedure.

given initial linear system variables ,
communications variables , scalings
repeat
1. Fix , and optimize over . Let

be the optimal value.
2. Fix , and optimize over . Let

be the optimal value.
3. Fix , . Let be appro-
priate scaling factors.
until convergence

Many variations on this basic heuristic method are possible. We can,
for example, add trust region constraints to each of the optimization
steps to limit the variable changes in each step. Another variation is to
convexify (by, for example, linearizing) the jointly nonconvex problem
and solve in each step using linearized versions for the constraints and
objective terms in the remaining variables; see, e.g., [24] and the refer-
ences therein.

Since the joint problem is not convex, there is no guarantee that this
heuristic converges to the global optimum. On the other hand it appears
to work well in practice.

B. Control Over Communication Networks

We consider a system with distributed sensors and actuators. The
sensors send their measurements to a central controller through a mul-
tiple access channel and the controller sends control signals to the ac-
tuators through a broadcast channel, as shown in Fig. 5.

The linear dynamical system has a state-space model

x(t+ 1) =Ax(t) +B (u(t) + w(t) + p(t))

yr(t) =Cx(t) + v(t) + q(t)

whereu(t) 2 Rm andy(t) 2 Rn, w(t) is the process noise,v(t) is
the sensor noise andp(t) andq(t) are quantization noises due to the bit
rate limitations of the communication channels. Assume thatw(t) and
v(t) are independent zero-mean white noises with covariance matrices
Rw andRv , respectively. Using the independent white-noise model for
the quantization noises, we can define the equivalent process noise and
sensor noise

w(t) = w(t) + p(t) v(t) = v(t) + q(t)

with covariance matricesR
w

= Rw + Rp andR
v
= Rv + Rq, re-

spectively, where

Rp =diag
s2a1
3

2�2b ; . . . ;
s2am
3

2�2b

Rq =diag
s2s1
3
2�2b ; . . . ;

s2sn
3

2�2b : (7)
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Fig. 5. Control over communication networks.

Here,bai andbsj are numbers of bits allocated to the actuators and
sensors andsai andssj are corresponding scaling factors for the quan-
tizers, found by the 3�-rule.

Our goal is to design a controller that minimizes the root-mean
square (rms) value ofz = Cx, subject to some upper bound con-
straints on the rms values of the control signals:

minimize rms(z)

subject torms(ui) � �i; i = 1; . . . ;m: (8)

The constraints are added to avoid actuator saturation. It can be shown
that the optimal controller for this problem has the standard estimated
state feedback form

x(t+ 1jt) =Ax(tjt� 1) +Bu(t) + L (y(t)� Cx(tjt� 1))

u(t) =�Kx(tjt� 1)

whereK is the state feedback control gain andL is the estimator gain,
found by solving an appropriately weighted LQG problem. Finding the
appropriate weights, for which the LQG controller solves the problem
(8), can be done via solving the dual problem; see, e.g., [17] and [25].

Iterative Procedures for Controller Design:First, we allocate an
equal number of bits to each actuator and sensor. This means that
we assign power and bandwidth (in the case of FDMA) uniformly
across all channels. We can design a controller for this fixed uniform
resource allocation via an iterative design on the scaling factors and
the controller. The iterative procedure is very similar to the one in
Section V-A, but without the resource allocation step. For the joint
optimization problem, we use the alternating optimization procedure
in Section V-A. Here, the controller parameters' are the state feed-
back gainK and estimator gainL and the communications variables
� are the powers and bandwidths allocated to the multiple access
and broadcast channels. Step 1) of the iterative procedure solves the
resource allocation problem (6); step 2) solves the controller design
problem (8); step 3) computes the rms values ofui andyi and find the
scaling factors using the 3�-rule.

C. Numerical Example: Control of a Mass-Spring System

Now, we consider the system shown in Fig. 6. The position sensors
on each mass send measurementsyi = xi + vi, wherevi is the sensor
noise, to the controller through a Gaussian multiple access channel
using FDMA. The controller receivesyri = xi + vi + qi, whereqi is
the quantization error. The controller sends control signalsuj to actua-
tors on each mass through a Gaussian broadcast channel using FDMA.
The actual force acting on each mass isurj = uj + wj + pj , where
wj is the exogenous disturbance andpj is the quantization error.

Fig. 6. Control of a mass-spring system.

The mechanical system parameters arem1 = 10, m2 = 5, m3 =
20,m4 = 2,m5 = 15, andk = 1. The discrete-time system dynamics
is obtained using a sampling frequency which is five times faster than
the fastest mode of the continuous-time dynamics. The independent
zero-mean white noisesw andv have covariance matricesRw = Rv =
10�6I . The actuators impose rms constraints on the control signals:
rms(ui) � 1; i = 1; . . . ; 5.

The multiple access channel and the broadcast channel have separate
total power limitsPmac;tot = Pbc;tot = 7:5, but they share a total
bandwidth limitWtot = 10. All receivers have the same noise power
densityN = 0:1. The proportional coefficient in the capacity formula
is� = 2. We impose an upper boundb = 12 and a lower boundb = 5
for all quantizers.1

First, we allocate power and bandwidth evenly to all sensors and
actuators, which results in a uniform allocation of eight bits for each
channel. For this fixed resource allocation, the iterative controller and
scaling design yieldsrms(ui) = 1 for all i’s and rms(z) = 0:549.
Then we used the alternating procedure in Section V-A. to do joint op-
timization of bit allocation and controller design. After four iterations,
it resulted inrms(ui) = 1 for all i’s and rms(z) = 0:116. The vari-
able threshold rounding procedure [23] yields the thresholdt? = 0:615
and rms(z) = 0:126, which is quite close to the relaxed noninteger
solution. We see a significant 77% reduction in rms value compared
with the uniform bit allocation.

Fig. 7 shows the rounded resource allocation. We see that more band-
width and, hence, more bits are allocated to the broadcast channel than
to the multiple access channel. This means that the closed-loop per-
formance is more sensitive to the equivalent process noises than to the
equivalent sensor noises.

VI. CONCLUSION

We have addressed the problem of jointly optimizing the parame-
ters of a linear system and allocating resources in the communication
system that is used for transitting sensor and actuator information. We
considered a scenario where the coding and medium access scheme of
the communication system are fixed, but the available communications
resources, such as transmit powers and bandwidths, can be allocated to
different channels in order to influence the achivable communiucation
rates. To model the effect of limited communication rates on the per-
formance of the linear system we assumed conventional uniform quan-
tization and used a simple white-noise model for quantization errors.

1Here the open-loop system is critically stable and the lower bound for sta-
bilization given in [1]–[3] is zero. More generally, if we discretize an unstable
continuous-time open-loop system using a sampling rate which is at least twice
the largest magnitude of the eigenvalues (a traditional rule-of-thumb in design
of digital control systems; see, e.g., [16]), then the lower bound given in [1]–[3]
is less than one bit andb � 3 or 5 is usually high enough for assuming the
white noise model for quantization errors.
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Fig. 7. Allocation of quantization bits and communications resources.

We showed that the problem of allocating communication resources
to optimize the stationary performance of the linear system is often
convex (ignoring the integrality constraint), hence readily solved. The
problem of jointly allocating communication resources and designing
the linear system is in general not convex, but is often convex in sub-
sets of variables while the others are fixed. We suggested an iterative
heuristic for the joint design problem that exploits this special strucutre,
and demonstrated its effectiveness on the design of a multivariable net-
worked LQG controller.
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Control of Integral Processes With Dead Time—
Part 3: Deadbeat Disturbance Response

Qing-Chang Zhong

Abstract—A deadbeat disturbance response of integral processes with
dead-time is obtained by intentionally using two adjustable delay elements
in the controller. These delays are tuning parameters of the controller.
The shorter delay is optimally determined to minimize the robustness
indicator (equivalently, to maximize the allowable uncertainty bound)
while the longer delay (i.e., the deadbeat time itself) is determined with
compromise of robustness. An example with comparison to conventional
control schemes has been given to show the effectiveness of the proposed
controller. Some interesting topics, such as input shaping techniques and
dual-locus diagrams, are involved in this note.

Index Terms—Dead-time compensator, deadbeat, disturbance observer,
input shaping, integral process, robustness.

I. INTRODUCTION

In recent years, the control of processes with an integrator and dead
timehasattractedmuchattentionbecauseof the inherentcriticalstability
or instability. The problem originated from the fact that the well-known
Smith predictor (SP) cannot be applied to these systems because of the
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