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Abstract

We consider the problem of finding a linear it-
eration that yields distributed averaging consen-
sus over a network, i.e., that asymptotically com-
putes the average of some initial values given at the
nodes. When the iteration is assumed symmetric,
the problem of finding the fastest converging linear
iteration can be cast as a semidefinite program, and
therefore efficiently and globally solved. These op-
timal linear iterations are often substantially faster
than several simple heuristics that are based on the
Laplacian matrix of the associated graph.

Keywords: distributed consensus, linear system,
spectral radius, semidefinite program.

1 Introduction

We consider a network (a connected graph) G =
(N , E) consisting of a set of nodes N = {1, . . . , n}
and a set of edges E , where each edge {i, j} ∈ E
is an unordered pair of distinct nodes. The set of
neighbors of node i is denotedNi = {j | {i, j} ∈ E}.
Each node i holds an initial scalar value xi(0) ∈ R,
and x(0) = (x1(0), . . . , xn(0)) denotes the vector
of the initial values on the network. We are inter-
ested in computing the average (1/n)

∑n
i=1 xi(0),

via a distributed algorithm, in which the nodes only
communicate with their neighbors.

Distributed averaging can be done in many ways.
One straightforward method is flooding. Each node
maintains a table of the initial node values of all
the nodes, initialized with its own node value only.
At each step, the nodes exchange information from
their own tables and the tables of their neighbors.
After a number of steps equal to the diameter of the
network, every node knows all the initial values of
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all the nodes, so the average (or any other function
of the initial node values) can be computed.

In this paper, we only consider distributed linear
iterations, which have the form

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t), i = 1, . . . , n,

where t = 0, 1, 2, . . . and Wij is the weight on xj at
node i. Setting Wij = 0 for j /∈ Ni, this iteration
can be written in vector form as

x(t+ 1) = Wx(t). (1)

The constraint on the sparsity pattern of the ma-
trix W can be expressed as W ∈ S, where

S = {W ∈ Rn×n | Wij = 0 if {i, j} /∈ E and i 6= j}.

Equation (1) implies that x(t) = W tx(0) for all t.
We want to choose the weight matrix W so that for
any initial value x(0), x(t) converges to the average
vector x̄ = (1Tx(0)/n)1 = ((1/n)11T )x(0), i.e.,

lim
t→∞

x(t) = lim
t→∞

W tx(0) =
(

(1/n)11T
)

x(0).

(Here 1 denotes the vector with all coefficients one.)
This is equivalent to the matrix equation

lim
t→∞

W t = (1/n)11T . (2)

Assuming this holds, we define the asymptotic con-
vergence factor as

rasym(W ) = sup
x(0)6=x̄

lim
t→∞

(

‖x(t)− x̄‖2
‖x(0)− x̄‖2

)1/t

,

and the associated convergence time

τasym =
1

log(1/rasym)
, (3)

which gives the (asymptotic) number of steps for
the error to decrease by the factor 1/e.
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Another measure of the speed of convergence is the
per-step convergence factor which is defined as

rstep(W ) = sup
x(t)6=x̄

‖x(t+ 1)− x̄‖2
‖x(t)− x̄‖2

.

The convergence time τstep is defined similar to (3).

In this paper we consider the following problem:
find the weight matrix W ∈ S, consistent with the
given network, that makes the convergence as fast
as possible. In terms of the asymptotic convergence
factor, it can be posed as the optimization problem:

minimize rasym(W )

subject to W ∈ S, lim
t→∞

W t= (1/n)11T . (4)

Here W is the optimization variable, and the net-
work is the problem data. We call this problem the
fastest distributed linear averaging (FDLA) prob-
lem. A similar problem can be formulated to min-
imize the per-step convergence factor rstep(W ).

The distributed averaging problem arises in the
context of coordination of networks of autonomous
agents, in particular, the consensus or agreement
problem among the agents (see, e.g., [1] for a treat-
ment in the computer science literature). Recently
it has found a wide range of applications, in areas
such as formation flight of unmanned air vehicles
and clustered satellites, and coordination of mo-
bile robots. The recent paper [2] studies linear and
nonlinear consensus protocols in these applications
with fixed network topology. Related coordination
problems with time-varying topologies have been
studied in [3] using a switched linear system model.
In these previous works, the edge weights used in
the linear iteration are either constant or only de-
pendent on the degrees of their incident nodes.

The rest of this paper is organized as follows. In §2,
we give necessary and sufficient conditions on the
weight matrix for the distributed linear iteration
to converge, and characterize the asymptotic and
per-step convergence factors. In §3, we formulate
the FDLA problem as spectral radius/norm mini-
mization problems, and show how some variations
can be formulated as semidefinite programs (SDP).
In §4, we describe some simple heuristics for choos-
ing the weight matrix, based on the Laplacian ma-
trix of the graph, which at least guarantee conver-
gence. In §5, we give some numerical examples, and
show that the optimal weights often result in sub-
stantially faster convergence than those obtained
from the simple heuristics. In §6, we extend the
FDLA problem to a sparse graph design problem.

2 Convergence conditions

As we have seen, the linear iteration (1) converges
to the average for any initial vector x(0)∈Rn if and
only if (2) holds. We have the following theorem:

Theorem 1 The equation (2) holds if and only if

1TW = 1T , (5)

W1 = 1, (6)

ρ
(

W − (1/n)11T
)

< 1, (7)

where ρ(·) denotes the spectral radius of a matrix.
Moreover,

rasym(W ) = ρ
(

W − (1/n)11T
)

, (8)

rstep(W ) =
∥

∥W − (1/n)11T
∥

∥

2
. (9)

(Here ‖ · ‖2 denotes the spectral norm.)

Before proving the theorem, we first give some in-
terpretations of the above conditions.

• Equation (5) states that 1 is a left eigenvector
ofW associated with the eigenvalue one. This
implies that 1Tx(t+1) = 1Tx(t) for all t, i.e.,
the sum (therefore the average) of the vector
of node values is preserved at each step.

• Equation (6) states that 1 is also a right
eigenvector of W associated with the eigen-
value one. This means that 1 (or any multiple
of it) is a fixed point of the iteration (1).

• Together with the first two conditions, equa-
tion (7) means that one is a simple eigen-
value of W , and that all other eigenvalues are
strictly less than one in magnitude.

Proof: First we prove sufficiency. If W satisfies
conditions (5) and (6), then

W t − (1/n)11T = W t
(

I − (1/n)11T
)

= W t
(

I − (1/n)11T
)t

=
(

W
(

I − (1/n)11T
))t

=
(

W − (1/n)11T
)t

,

where in the second equality, we use the fact that
I− (1/n)11T is a projection matrix. Now applying
condition (7) leads to the desired convergence (2).

To prove necessity, we use the fact that limt→∞W t

exists (i.e., W is semi-convergent) if and only if
there is a nonsingular matrix T such that

W = T

[

Iκ 0
0 Z

]

T−1,
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where Iκ is the κ-dimensional identity matrix (0 ≤
κ ≤ n) and Z is a convergent matrix, i.e., ρ(Z) < 1
(see, e.g., [4]). Let u1, . . . , un be the columns of T
and vT1 , . . . , vTn be the rows of T−1. Then we have

lim
t→∞

W t = lim
t→∞

T

[

Iκ 0
0 Zt

]

T−1

= T

[

Iκ 0
0 0

]

T−1 =

κ
∑

i=1

uiv
T
i . (10)

Since each uiv
T
i is a rank-one matrix and their

sum
∑n

i=1 uiv
T
i = TT−1 = I has rank n, the ma-

trix
∑κ

i=1 uiv
T
i must have rank κ. Comparing (2)

and (10) gives κ = 1 and u1v
T
1 = (1/n)11T , which

implies that both u1 and v1 are multiples of 1. In
other words, one is a simple eigenvalue of W and 1

is its associated left and right eigenvectors. Hence
equations (5) and (6) hold. Moreover,

ρ

(

W−
11T

n

)

= ρ

(

T

[

0 0
0 Z

]

T−1
)

= ρ(Z) < 1,

which is precisely condition (7).

Finally equations (8) and (9) follow directly from
the error dynamics

x(t+ 1)− x̄ =
(

W − (1/n)11T
)

x(t)

=
(

W − (1/n)11T
)

(x(t)− x̄).

In other words, rasym is the spectral radius of
W − (1/n)11T , and rstep is its spectral norm.

3 Fastest distributed linear averaging

problems

Using theorem 1, the FDLA problem (4) can be
formulated a spectral radius minimization problem:

minimize ρ
(

W − (1/n)11T
)

subject to W ∈S, 1TW =1T , W1=1
(11)

with the optimization variable W . Even though
the constraints in problem (11) are linear equali-
ties, the problem in general is very hard. The rea-
son is that the objective function, i.e., the spectral
radius of a matrix, is in general not a convex func-
tion; indeed it is not even Lipschitz continuous (see,
e.g., [5]). Some related spectral radius minimiza-
tion problems are NP-hard [6, 7].

We can also formulate the FDLA problem, with
per-step convergence factor, as the following spec-

tral norm minimization problem:

minimize ‖W − (1/n)11T ‖2
subject to W ∈S, 1TW =1T , W1=1

(12)

In contrast to (11), this problem is convex, and can
be solved globally and efficiently.

Now suppose we add the additional constraint that
weights are symmetric, i.e., Wij = Wji for all
{i, j} ∈ E . In this case the spectral radius mini-
mization problem (11) and the spectral norm min-
imization problem (12) coincide (since the spectral
norm of a symmetric matrix is also its spectral ra-
dius). In this case, both problems can be cast as

minimize ρ(W − (1/n)11T )
subject to W ∈S, W =W T , W1=1

(13)

which is a convex problem. We refer to this prob-
lem as the symmetric FDLA problem.

The spectral norm minimization problem (12) can
be expressed as a semidefinite program, by in-
troducing a scalar variable s to bound the spec-
tral norm ‖W − 11T /n‖2, and expressing the norm
bound constraint as a linear matrix inequality:

minimize s

subject to

[

sI W−(1/n)11T

WT−(1/n)11T sI

]

º0

W ∈ S, 1TW = 1T , W1 = 1.

Here the symbol º denotes matrix inequality, i.e.,
X º Y means that X − Y is positive semidefinite.

Similarly, the symmetric FDLA problem (13) can
be expressed as the SDP

minimize s
subject to −sI ¹W − (1/n)11T ¹ sI

W ∈S, W =WT , W1=1.
(14)

This problem is closely related to the problem
of finding the fastest mixing Markov chain on a
graph [8]; the only difference is that in the FDLA
problem, the weights can be (and the optimal ones
often are) negative.

General background on SDP, eigenvalue optimiza-
tion and associated interior-point methods can be
found in, e.g., [9, 10, 11] and references therein.
In [12], we show how problem structure can be ex-
ploited to speed up interior-point methods for solv-
ing the FDLA problem, for networks with up to a
thousand or so edges; we also describe a simple sub-
gradient method that handles far larger problems,
with up to one hundred thousand edges.
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4 Heuristics based on the Laplacian

In this section we give some simple heuristics for
choosing W that guarantee convergence of the dis-
tributed linear averaging iteration, and sometimes
give reasonably fast convergence. These heuristics
are based on the Laplacian matrix of the associated
graph, and assign symmetric edge weights.

The Laplacian matrix L of the graph is defined as

Lij =







−1 {i, j} ∈ E
di i = j
0 otherwise

where di is the degree of node i (i.e., the number of
neighbors of the node i). The Laplacian matrix is a
useful tool in algebraic graph theory, and its eigen-
structure reveals many important properties of the
graph (e.g., [13, 14]). It appears to be very useful in
the convergence analysis of consensus protocols [2],
and has also been used in control of distributed dy-
namic systems (e.g., [15, 16]). We note for future
use that L is positive semidefinite, and since our
graph is assumed connected, L has a simple eigen-
value zero, with corresponding eigenvector 1.

4.1 Constant edge weights

The simplest approach is to set all the edge weights
(for neighboring nodes) equal to a constant α; the
self-weights on the nodes are then chosen to satisfy
the condition W1 = 1. This choice of weights can
be expressed in terms of the Laplacian matrix

W = I − αL. (15)

In this case, equation (1) becomes the following
commonly used iteration (see, e.g., [2]):

xi(t+1) = xi(t)+α
∑

j∈Ni

(xj(t)−xi(t)), i = 1, . . . , n.

Since L is positive semidefinite, we must have α > 0
for the convergence condition ρ (W − (1/n)11) < 1
to hold. From equation (15) we can express the
eigenvalues of W in terms of those of L:

λi(W ) = 1− αλn−i+1(L), i = 1, . . . , n,

where λi(·) denotes the ith largest eigenvalue of
a symmetric matrix. In particular, the eigenvalue
zero of L corresponds to the eigenvalue one of W
(i.e., λn(L) = 0, λ1(W ) = 1). The spectral radius
of W − (1/n)11T can then be expressed as

ρ
(

W−(1/n)11T
)

= max{λ2(W ), − λn(W )}
= max{1−αλn−1(L), αλ1(L)−1}.

From this we conclude that ρ
(

W − (1/n)11T
)

< 1
if and only if 0 < α < 2/λ1(L). The choice of α
that minimizes ρ

(

W − (1/n)11T
)

is

α? =
2

λ1(L) + λn−1(L)
. (16)

This gives the best possible constant edge weight.

There are some simple bounds that give choices
for α that do not require exact knowledge of
the Laplacian spectrum. For example, we have
λ1(L) ≤ 2dmax, where dmax = maxi∈N di (see,
e.g., [13, 14]). So one easily determined conver-
gence range for α is 0 < α < 1/dmax. In fact, we
can always use the maximum-degree weight

αmd =
1

dmax
(17)

provided the graph is not bipartite.

4.2 Local-degree weights

Another method is to assign the weight on an edge
based on the larger degree of its two incident nodes:

Wij =
1

max{di, dj}
, {i, j} ∈ E ,

and then determine Wii using W1 = 1. We call
these the local-degree weights, since they depend
only on the degrees of the two incident nodes. Simi-
lar to the maximum-degree weight, the local-degree
weights guarantee convergence provided the graph
is not bipartite. This method is particularly suit-
able for distributed implementation.

5 Examples

We first consider the small graph shown in figure 1.
For this graph, the maximum-degree weight given
by (17) is αmd = 1/6, and the best constant edge
weight found from (16) is α? = 0.227. By solv-
ing the SDP (14), we found the optimal symmetric
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Figure 1: A small network with 8 nodes and 17 edges.
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weights, which are labeled in figure 1. Note that
the optimal weights for the two middle nodes, and
the edge connecting them, are negative. To say the
least, this is not an obvious choice of weights.

The asymptotic convergence factors and conver-
gence times of the four choices of weights are

ρ(W−(1/n)11
T ) τ = 1/ log(1/ρ)

max.-degree 0.746 3.413
local-degree 0.743 3.366
best constant 0.655 2.363
optimal symm. 0.600 1.958

For this example the maximum-degree and local-
degree weights result in the slowest convergence,
with the optimal symmetric weights substantially
faster than the best constant weight.

5.1 A larger network

Next we consider the graph shown in figure 2, which
has 50 nodes and 200 edges. This graph was ran-
domly generated as follows. First we randomly gen-
erate 50 nodes, uniformly distributed on the unit
square. Two nodes are connected by an edge if their
distance is less than a specified threshold. Then
we increase the threshold until the total number of
edges is 200. (The resulting graph is connected).

The asymptotic convergence factors and conver-
gence times, for the four different sets of weights,
are summarized below

ρ(W−(1/n)11
T ) τ = 1/ log(1/ρ)

max.-degree 0.971 33.980
local-degree 0.949 19.104
best constant 0.947 18.363
optimal symm. 0.902 9.696

It can be seen that the convergence with the opti-
mal symmetric weights is roughly twice as fast as

Figure 2: A randomly generated network.
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Figure 4: Distribution of optimal symmetric weights.

with the best constant edge weight and the local-
degree weights, and is more than three times faster
than the maximum-degree weights.

Figure 3 shows the eigenvalue distribution for
the four weight matrices. Each of the distribu-
tions has a single eigenvalue at one. For the op-
timal symmetric weights, the eigenvalues (other
than 1) have an approximately symmetric distribu-
tion, with many at or near the two critical values
±ρ(W−(1/n)11T ). Figure 4 shows the distribution
of the optimal symmetric edge and node weights.
It shows that many of the weights are negative.

6 Extension: sparse graph design

An interesting variation on the FDLA problem is
to find a sparse subgraph of the given graph, while
guaranteeing a certain convergence factor. In other
words, we seek a weight matrix with as many zero
entries as possible, subject to a prescribed max-
imum for the convergence factor. This is a dif-
ficult combinatorial problem, but one very effec-
tive heuristic for this problem is to minimize the `1
norm of the vector of edge weights (e.g., [17, §6]).
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Figure 5: Sparse network design. The dotted lines
show edges that are assigned zero weight.
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Figure 6: Weight distribution of sparse graph design.

For example, given the maximum allowed asymp-
totic convergence factor rmax, the `1 heuristic for
the sparse graph design problem (with symmetric
weights) can be posed as the convex problem

minimize
∑

{i,j}∈E |Wij |

subject to −rmaxI ¹W − (1/n)11T ¹ rmaxI
W ∈S, W =WT , W1=1.

More sophisticated heuristics for sparse design and
minimum rank problems can be found in, e.g., [18].

To demonstrate this idea, we applied the `1 heuris-
tic to the example described in §5.1. We set
the guaranteed convergence factor rmax = 0.910,
which is only slightly larger than the minimum fac-
tor 0.902. The resulting edge weight vector is rel-
atively sparse; the number of edges with non-zero
weights is reduced from 200 to 96. This is illus-
trated in figure 5. Figure 6 shows the distribution
of the weights for the sparse network, and should
be compared to the distribution shown in figure 4.

There are many other interesting extensions of the
basic FDLA problem. For example, one can con-
sider criteria other than the asymptotic conver-
gence factor or per-step factor in the selection of
the weight matrix, and the distributed linear iter-
ation needs not to converge to the average vector.
We discuss many such extensions in [12].
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