Disciplined Saddle Programming

Philipp Schiele, Eric Luxenberg, Stephen Boyd

July 12–2023
SciPy Conference, Austin, TX
Disciplined Saddle Programming (DSP)

- Domain specific language for saddle programming.
- Implemented as an extension to CVXPY.
- Method based on recent work by Juditsky and Nemirovski [JN22].
- Natural use case is robust optimization.
CVXPY

CVXPY is a Python-embedded modeling language for convex optimization.
Convex optimization problem

Formally, a *convex optimization problem* is can be written as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- variable \(x \in \mathbb{R}^n \)
- equality constraints are linear
- \(f_0, \ldots, f_m \) are **convex**: for \(\theta \in [0, 1] \),
 \[
 f_i(\theta x + (1 - \theta)y) \leq \theta f_i(x) + (1 - \theta)f_i(y)
 \]
 i.e., \(f_i \) have nonnegative (upward) curvature
CVXPY allows to solve convex optimization problems in a natural way.

```python
import cvxpy as cp

x = cp.Variable(2)
objective = cp.sum_squares(x)
constraints = [-4 <= x, x <= 4]
problem = cp.Problem(cp.Minimize(objective), constraints)
opt_val = problem.solve() # 0.0
solution = x.value # array([0., 0.])
```
Let us consider the simple linear program

\[
\text{maximize} \quad 2x_1 + 3x_2 \\
\text{subject to} \quad x_1 \leq 5 \\
\quad \quad \quad \quad x_2 \leq 4 \\
\quad \quad \quad \quad x_1 + x_2 \leq 7
\]
Finding an upper bound

Can we combine the constraints to find an upper bound?

maximize \(2x_1 + 3x_2 \)
subject to \(x_1 \leq 5 \) \((\ast 1)\)
\(x_2 \leq 4 \) \((\ast 2)\)
\(x_1 + x_2 \leq 7 \) \((\ast 1)\)
\(2x_1 + 3x_2 \leq 20 \)
Finding the smallest upper bound

Can we combine the constraints to find an upper bound?

maximize \(2x_1 + 3x_2 \)
subject to \(x_1 \leq 5 \) \((y_1)\)
\(x_2 \leq 4 \) \((y_2)\)
\(x_1 + x_2 \leq 7 \) \((y_3)\)

This means, we can write the problem as

minimize \(5y_1 + 4y_2 + 7y_3 \)
subject to \(y_1 + y_3 \geq 2 \)
\(y_2 + y_3 \geq 3 \)
\(y_1, y_2, y_3 \geq 0 \)

This is again a linear program.

It is the so-called dual of the original problem.
Saddle function

- Convex optimization deals with functions that have a joint curvature in all their arguments.
- A \textit{(convex-concave) saddle function} $f : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is convex in $f(\cdot, y)$ for any fixed $y \in \mathcal{Y}$, concave in $f(x, \cdot)$ for any fixed $x \in \mathcal{X}$.
A saddle point problem

- A *saddle point problem* is to find a *saddle point* of a saddle function.

- A saddle point \((x^*, y^*) \in \mathcal{X} \times \mathcal{Y}\) is any point that satisfies

\[
f(x^*, y) \leq f(x^*, y^*) \leq f(x, y^*) \text{ for all } x \in \mathcal{X}, \ y \in \mathcal{Y}.
\]

- In other words, \(x^*\) minimizes \(f(x, y^*)\) over \(x \in \mathcal{X}\), and \(y^*\) maximizes \(f(x^*, y)\) over \(y \in \mathcal{Y}\).
A simple example

- A matrix game is a game where two players choose strategies \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \), respectively.

- For a given payoff matrix \(C \), the resulting payment is
 \[f(x, y) = x^T Cy. \]

- The player choosing \(x \) wants to minimize the payment, and the player choosing \(y \) wants to maximize the payment.
Let us consider the following matrix game with variable \(x \in \mathbb{R}^2 \) and \(y \in \mathbb{R}^2 \).

\[
\begin{array}{c|cc}
& y_1 & y_2 \\
\hline
x_1 & 1 & 2 \\
x_2 & 3 & 1 \\
\end{array}
\]

We restrict \(x_1, x_2, y_1, y_2 \geq 0 \) and \(x_1 + x_2 = 1, \ y_1 + y_2 = 1 \). Recall that \(x \) tries to minimize \(x^T Cy \), and \(y \) tries to maximize.
A simple example ctd.

Matrix games can be solved as a convex optimization problem by dualizing the problem.

This solution method goes back to Von Neumann and Morgenstern [MVN53].

However, dualizing the problem requires working knowledge of duality, and is error prone.

DSP allows formulating this problem explicitly as a saddle point problem.
The matrix game in DSP

```python
import dsp

x = cp.Variable(2, nonneg=True)
y = cp.Variable(2, nonneg=True)
C = np.array([[1, 2], [3, 1]])

f = dsp.inner(x, C @ y)
obj = dsp.MinimizeMaximize(f)

constraints = [cp.sum(x) == 1, cp.sum(y) == 1]
prob = dsp.SaddlePointProblem(obj, constraints)
prob.solve()

prob.value  # 1.6666666666666667
x.value     # array([0.66666667, 0.33333333])
y.value     # array([0.33333333, 0.66666667])
```
Conic standard form as an API

- Many convex optimization problems can be written in the following form:

\[
\begin{align*}
& \text{minimize} \quad c^T x \\
& \text{subject to} \quad Ax = b \\
& \quad x \in \mathcal{K}
\end{align*}
\]

- This allows for a separation of concerns between
 - Modeling languages
 - Solvers
 - Research about algorithms
Conic standard form as an API ctd.

- Use CVXPY as a tool to obtain conic representation of saddle functions.
- Apply automated dualization to obtain single minimization problem.
- Use CVXPY to solve the resulting problem.

\[
\Phi(x) = \sup_{y \in \mathcal{Y}} \phi(x, y) \\
= \sup_{y \in \mathcal{Y}} \inf_{f, t, u} \left\{ f^T y + t \mid Pf + tp + Qu + Rx \preceq_K s \right\} \\
= \inf_{f, t, u} \left\{ \sup_{y \in \mathcal{Y}} (f^T y + t) \mid Pf + tp + Qu + Rx \preceq_K s \right\} \\
= \inf_{f, t, u} \left\{ \sup_{y \in \mathcal{Y}} (f^T y) + t \mid Pf + tp + Qu + Rx \preceq_K s \right\} \\
= \inf_{f, t, u} \left\{ \inf_{\lambda} \left\{ \lambda^T e \mid C^T \lambda = f, \ D^T \lambda = 0 \right\} \mid Pf + tp + Qu + Rx \preceq_K s \right\}
\]
Example: Rocket landing

- We showed how to solve a rocket landing problem using CVXPY on Monday.
- The objective was to minimize the fuel used to land a rocket.

```python
V = cp.Variable((K + 1, 3))  # velocity
P = cp.Variable((K + 1, 3))  # position
F = cp.Variable((K, 3))      # thrust

constraints = [...]  

fuel_consumption = gamma * cp.sum(cp.norm(F, axis=1))

problem = cp.Problem(cp.Minimize(fuel_consumption), constraints)
problem.solve()
```
Example: Rocket landing ctd.

This trajectory uses 150t of fuel.
Example: Robust rocket landing

- We now assume γ is the average fuel consumption.
- In each period, $\hat{\gamma}_k$ can be within $\gamma \pm 30\%$.
- We want to find the best trajectory for the worst case $\hat{\gamma}$.

```python
1 gamma_hat = cp.Variable(K)
2 constraints += [  
3     cp.sum(gamma_hat)/K == gamma,
4     0.7 * gamma <= gamma_hat, gamma_hat <= gamma * 1.3
5 ]

6 fuel_consumption_saddle = dsp.saddle_inner(cp.norm(F, axis=1), gamma_hat)
7
8 problem = dsp.SaddlePointProblem(
9     dsp.MinimizeMaximize(fuel_consumption_saddle),
10     constraints
11 )
12 problem.solve()
```
Example: Robust rocket landing ctd.

This trajectory uses 170t of fuel.
Saddle extremum functions

- A saddle extremum (SE) function is a partial supremum or infimum of a saddle function.
- The partial supremum is referred to as a saddle max

\[G(x) = \sup_{y \in Y} f(x, y), \quad x \in \mathcal{X}, \]

with the partial infimum referred to as a saddle min.
- When only the objective is a SE, the problem we have a saddle point problem.
- A saddle problem more generally can include SE functions in its constraints.
- Since SE functions are convex (concave) expressions, they can be used in any CVXPY problem.
Example: Rocket landing with robust constraint

- Use the average fuel consumption γ as the objective.
- Want the worst case fuel consumption to be manageable.

```python
gamma_hat = dsp.LocalVariable(K, nonneg=True)
local_constraints += [
    cp.sum(gamma_hat)/K == gamma,
    0.7 * gamma <= gamma_hat, gamma_hat <= gamma * 1.3
]
fuel_consumption_saddle = dsp.saddle_inner(cp.norm(F, axis=1), gamma_var)
fuel_consumption_wc = dsp.saddle_max(
    fuel_consumption_dsp,
    local_constraints
)

constraints += [fuel_consumption_wc <= 175]
fuel_consumption = gamma * cp.sum(cp.norm(F, axis=1))
problem = cp.Problem(cp.Minimize(fuel_consumption), constraints)
```
Example: Rocket landing with robust constraint ctd.

This trajectory uses 152t of fuel.
Model comparison

Robust constraint gives us a tradeoff between average and worst case fuel consumption.

<table>
<thead>
<tr>
<th>Model</th>
<th>Nominal objective</th>
<th>Worst case objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>150.2t</td>
<td>195.3t</td>
</tr>
<tr>
<td>Worst case</td>
<td>152.8t</td>
<td>170.2t</td>
</tr>
<tr>
<td>Robust constraint</td>
<td>151.7t</td>
<td>175.0t</td>
</tr>
</tbody>
</table>
Applications

- DSP can be used in many applications, including game theory, control, machine learning, and finance.
- Examples include
 - Matrix games.
 - Robust rocket control.
 - Robust Markowitz portfolio optimization.
 - Robust bond portfolio optimization.
 - Robust regression model fitting.
 - ...
- Where else can DSP be used? Let us know!
Getting started

- DSP is available on GitHub cvxgrp/dsp.
- The paper is on arxiv arXiv:2301.13427.
- Try it out now: pip install dsp-cvxpy.
Resources

- Convex Optimization (book)
- EE364a (course slides, videos, code, homework, . . .)
- software CVXPY, CVX, Convex.jl, CVXR
- convex optimization short course
- The Art of Linear Programming [on YouTube]

all available online
References I

Backup slides
Composition rules

- Every DCP function is convex, but not every convex function is DCP.
- Likewise, every DSP function is a saddle function, but not every saddle function is DSP.
- To construct a DSP function, we start from DSP atoms, which includes all DCP atoms.
- Saddle functions can be be scaled and composed by addition.
- When adding two saddle functions, a variable may not appear as a convex variable in one expression and as a concave variable in the other expression.
Manual dualization in CVXPY

▶ Some atoms in CVXPY are implemented as manual dualizations.
▶ As an example, take the *sum of k largest entries* atom.
▶ This atom can be represented as a partial supremum of the saddle function \(f(x, y) = x^Ty \), with \(\mathcal{Y} = \{ y \mid 0 \leq y \leq 1, \ 1^Ty = k \} \).
▶ DSP automates the dualization, such that sum of \(k \) largest entries can be written as

```python
1  x = cp.Variable(n)
2  y = dsp.LocalVariable(n, nonneg=True)
3  f = dsp.inner(x, y)
4  constraints = [y <= 1, cp.sum(y) == k]
5  sum_k_largest = dsp.saddle_max(f, constraints)
```
Thrust, velocity, and position for robust rocket landing

![Graph showing thrust, velocity, and position over time for different axes (x, y, z).]
Thrust, velocity, and position for robust constrained rocket landing