
Embedded Code Generation with CVXPY

Maximilian Schaller? Goran Banjac? Steven Diamond§ Akshay Agrawal∗

Bartolomeo Stellato+ Stephen Boyd∗

?ETH Zurich §Gridmatic ∗Stanford University +Princeton University

ACCESS Seminar, March 24 2022



Outline

Parametrized convex optimization

Code generation

CVXPYgen

2



Parametrized convex optimization

minimize f0(x , θ)
subject to fi (x , θ) ≤ 0, i = 1, . . . ,m

gi (x , θ) = 0, i = 1, . . . , p

I x ∈ Rn is the optimization variable

I f0 is the convex objective function, to be minimized

I f1, . . . , fm are convex inequality constraint functions

I g1 . . . , gp are affine equality constraint functions

I θ ∈ Rd is the parameter

I used in control, signal processing, finance, and many other areas

3



Disciplined convex programming (DCP)

I fi and gi described by expression trees, built from a library of atomic functions

I must follow DCP composition rules from convex analysis (Grant, Ye, Boyd 2006)

I ensures that problem is convex

I example:

f0(x) =
x21

min(x2 − 1, 1)
, x2 > 1

is convex

I express in DCP-compliant form as

f 0 = quad over lin(x[1], min(x[2]-1, 1))

4



Domain-specific languages (DSLs) for convex optimization

DSL for convex optimization

1. translates (canonicalizes) a DCP-compliant problem description to a canonical
form, e.g., a linear program (LP) or quadratic program (QP)

2. calls a standard solver to solve the canonicalized problem

3. retrieves solution of original problem from solution of the canonicalized problem

examples:

I CVX (Grant 2006) and YALMIP (Löfberg 2004) in Matlab

I CVXPY (Diamond 2013) in Python

I Convex.jl (Udell 2014) and JuMP (Dunning 2017) in Julia

I CVXR (Fu 2020) in R

5



Example: Original problem and canonicalized form

I original (nonnegative least squares) problem

minimize ‖Gx − h‖22
subject to x ≥ 0,

with variable x ∈ Rn, parameters θ = (G , h)

I canonicalize to form accepted by QP solver OSQP (Stellato 2020),

minimize 1
2 x̃

TPx̃ + qT x̃
subject to l ≤ Ax̃ ≤ u

with variable x̃ ∈ Rñ, canonical parameters θ̃ = (P, q,A, l , u)

6



Example: Canonicalization and retrieval

I canonicalize original problem using x̃ = x and

P = 2GTG , q = −2GTh, A = I , l = 0, u =∞

I retrieve solution of original problem as x? = x̃?

I this example was simple and could easily be done by hand

I more complex examples much less so

7



Example: CVXPY code

1 import cvxpy as cp
2
3 # declare variable
4 x = cp.Variable(n, name='x')
5
6 # declare parameters
7 G = cp.Parameter((m, n), name='G')
8 h = cp.Parameter(m, name='h')
9

10 # declare problem
11 problem = cp.Problem(cp.Minimize(cp.sum squares(G@x−h)), [x>=0])
12
13 # specify parameter values
14 G.value = numpy.random.randn(m, n)
15 h.value = numpy.random.randn(m)
16
17 # solve
18 problem.solve(solver='OSQP') 8



Outline

Parametrized convex optimization

Code generation

CVXPYgen

9



Parser-solvers

I parser-solvers canonicalize each time the problem is solved

I parser-solvers compile a problem instance into a canonicalized problem instance,
then solve it

I most DSLs are parser-solvers

10



Code generators

I code generators compile a problem family into source code for a custom solver

I useful for

– embedded applications, possibly with hard real-time deadlines
– speeding up the solution of many different problem instances

11



CVXGEN code generator

I developed by Mattingley and Boyd in 2010

I handles problems transformable to QPs

I generates custom interior-point solver in flat, explicit C

I handles problem families with up to a few thousand parameters

I generated code suitable for real-time control systems

I used for autonomous driving, dynamic energy management, real-time trading,
precision landing (e.g., all SpaceX Falcon 9 and Falcon Heavy landings)

12



CVXGEN in action

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/

13

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/


Outline

Parametrized convex optimization

Code generation

CVXPYgen

14



CVXPYgen

I a new open-source code generator built on CVXPY

I developed by Schaller, Banjac, Diamond, Agrawal, Stellato, and Boyd in 2022

I generates custom canonicalizer and retrieval in flat C

I can be used with multiple solvers: OSQP, SCS (O’Donoghue 2016), ECOS
(Domahidi 2013)

I first generic code generator that supports SOCPs

I supports warm-starting, which can give significant speedup

I handles high-dimensional parameters with user-defined sparsity patterns

I compiled CVXPYgen solver can be used as a custom solver for CVXPY (!)

15



Disciplined parametrized programming (DPP)

I restricts how parameters enter problem description, in addition to DCP rules

I for DPP-compliant problems, canonicalization and retrieval can be affine
mappings (Agrawal 2019)

θ̃ = C

[
θ
1

]
, x? = R

[
x̃?

1

]
I C and R are (very) sparse matrices

I CVXPYgen generates flat C code to implement canonicalization and retrieval

I sparse-matrix-vector multiplies, using pointers or avoiding updates when possible

16



Example (again)

I canonicalize original nonnegative least squares problem

minimize ‖Gx − h‖22
subject to x ≥ 0

to OSQP standard form

minimize 1
2 x̃

TPx̃ + qT x̃
subject to l ≤ Ax̃ ≤ u

I canonicalization shown before is not an affine mapping from θ to θ̃

17



Example: Affine canonicalization and retrieval

I first transform to problem

minimize ‖x̃2‖22
subject to x̃2 = Gx̃1 − h, x̃1 ≥ 0,

with variable x̃ = (x̃1, x̃2), x̃1 = x

I canonicalization is affine:

P =

[
0 0
0 2I

]
, q = 0, A =

[
G −I
I 0

]
, l =

[
h
0

]
, u =

[
h
∞

]
I retrieval is affine: x? = [I 0]x̃?

18



Example: CVXPY/CVXPYgen code

1 import cvxpy as cp
2 from cvxpygen import cpg
3
4 # model problem
5 x = cp.Variable(n, name='x')
6 G = cp.Parameter((m, n), name='G')
7 h = cp.Parameter(m, name='h')
8 problem = cp.Problem(cp.Minimize(cp.sum squares(G@x−h)), [x>=0])
9

10 # generate code
11 cpg.generate code(problem)

19



Example: Model predictive control (MPC)

I family of MPC problems for control of a drone

I parametrized by horizon length H ∈ {6, 12, 18, 30, 60}
I number of variables around 10H

I binary sizes and solve times on MacBook Pro 2.3GHz Intel i5, using gcc -O3

20



Comparison with CVXGEN

10 20 30 40 50 60
0.0

0.5

1.0

S
ol

ve
T

im
e

[m
s]

CVXGEN

CVXPYgen

10 20 30 40 50 60
H

0

500

1000

B
in

ar
y

S
iz

e
[k

B
]

21



Deployment in embedded system

I use generated solver to control 14× 14 cm quadcopter

I generated code compiled in a robot operating system (ROS) node

I run on drone’s Intel Atom x5-Z8350 processor at 30Hz

22



Example: Portfolio trading

I family of portfolio optimization problems

I parametrized by number of assets N ∈ {10, 20, 40, 60, 100}
I number of variables around 2N

I solve times with CVXPY and CVXPY interface to CVXPYgen

0 20 40 60 80 100
N

0

2

4

S
ol

ve
T

im
e

[m
s]

CVXPY

CVXPYgen

23



Break-even point

I break-even point: number of instances that need to be solved before CVXPYgen is
faster than CVXPY, when we include the code generation and compilation time

I around 5000, and not too dependent on N

I typical portfolio optimization back-test involves daily trading over multiple years,
with hundreds of different hyper-parameter values

I gives order 100k or more solves, well above the break-even point

24



Conclusions

CVXPYgen

I gives seemless path from prototyping in Python/CVXPY to implementation in C

I handles wider variety of problems than CVXGEN (e.g., SOCPs)
I outperforms CVXGEN in terms of

– allowable problem size
– compiled code size
– solve times

I gives significant speedup on general-purpose machines with many solves
(compared with CVXPY)

25



Try it out!

I https://github.com/cvxgrp/cvxpygen

I pip install cvxpygen

26

https://github.com/cvxgrp/cvxpygen

	Parametrized convex optimization
	Code generation
	CVXPYgen

