
Convex Optimization

Stephen Boyd

Thanks to Giray Ogut and Kasper Johansson

Master’s Forum, CUHK-SZ, November 26 2024

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

2

Optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

▶ x ∈ Rn is (vector) variable to be chosen (n scalar variables x1, . . . , xn)

▶ f0 is the objective function, to be minimized

▶ f1, . . . , fm are the inequality constraint functions

▶ g1, . . . , gp are the equality constraint functions

▶ variations: maximize objective, multiple objectives, . . .

3

Finding good (or best) actions

▶ x represents some action, e.g.,
– trades in a portfolio
– airplane control surface deflections
– schedule or assignment
– resource allocation

▶ constraints limit actions or impose conditions on outcome
▶ the smaller the objective f0(x), the better

– total cost (or negative profit)
– deviation from desired or target outcome
– risk
– fuel use

4

Finding good models

▶ x represents the parameters in a model

▶ constraints impose requirements on model parameters (e.g., nonnegativity)
▶ objective f0(x) is sum of two terms:

– a prediction error (or loss) on some observed data
– a (regularization) term that penalizes model complexity

5

Worst-case analysis

▶ variables are actions or parameters out of our control
(and possibly under the control of an adversary)

▶ constraints limit the possible values of the parameters

▶ minimizing −f0(x) finds worst possible parameter values

▶ if the worst possible value of f0(x) is tolerable, you’re OK

▶ it’s good to know what the worst possible scenario can be

6

Optimization-based models

▶ model an entity as taking actions that solve an optimization problem

– an individual makes choices that maximize expected utility
– an organism acts to maximize its reproductive success
– reaction rates in a cell maximize growth
– currents in a circuit minimize total power

▶ (except the last) these are very crude models

▶ and yet, they often work very well

7

Basic use model for mathematical optimization

▶ instead of saying how to choose (action, model) x

▶ you articulate what you want (by stating the problem)

▶ then let an algorithm decide on (action, model) x

▶ say what you want, not how to get it

8

Can you solve it?

▶ generally, no

▶ but you can try to solve it approximately, and it often doesn’t matter

▶ the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others
– we can solve these problems reliably and efficiently
– comes up in many applications across many fields

9

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

10

Convex optimization

convex optimization problem:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

▶ variable x ∈ Rn

▶ equality constraints are linear

▶ f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature

(x, fi(x))

(y, fi(y))

11

When is an optimization problem hard to solve?

▶ classical view:

– linear (zero curvature) is easy
– nonlinear (nonzero curvature) is hard

▶ the classical view is wrong

▶ the correct view:

– convex (nonnegative curvature) is easy
– nonconvex (negative curvature) is hard

12

Solving convex optimization problems

▶ many different algorithms (that run on many platforms)

– interior-point methods for up to 10000s of variables
– first-order methods for larger problems
– do not require initial point, babysitting, or tuning

▶ can develop and deploy quickly using modeling languages such as CVXPY

▶ solvers are reliable, so can be embedded

▶ code generation yields real-time solvers that execute in milliseconds

13

Application areas

▶ machine learning, statistics

▶ finance

▶ supply chain, revenue management, advertising

▶ control

▶ signal and image processing, vision

▶ networking

▶ circuit design

▶ combinatorial optimization

▶ quantum mechanics

▶ flux-based analysis

▶ many others . . .

14

Modeling languages for convex optimization

▶ domain specific languages (DSLs) for convex optimization

– describe problem in high level human readable language, close to the math
– can automatically verify problem as convex
– can automatically transform problem to standard form, then solve

▶ enables rapid prototyping

▶ it’s now much easier to develop an optimization-based application

▶ ideal for teaching and research (can do a lot with short scripts)

▶ gets close to the basic idea: say what you want, not how to get it

15

Implementations

▶ CVXPY (Python) [Diamond and Boyd, 2014]

▶ Convex.jl (Julia) [Udell et al., 2014]

▶ CVXR (R) [Fu, Narasimhan, and Boyd, 2017]

▶ CVX (Matlab) [Grant and Boyd, 2006]

▶ YALMIP (Matlab) [Lofberg, 2004]

16

CVXPY example: Non-negative least squares

math:

minimize ∥Ax − b∥22
subject to x ≥ 0

▶ A, b given

▶ variable is x

▶ x ≥ 0 means elementwise

CVXPY code:

1 import cvxpy as cp

2

3 A, b = ...

4

5 x = cp.Variable(n)

6 obj = cp.norm2(A @ x - b)**2

7 constr = [x >= 0]

8 prob = cp.Problem(cp.Minimize(obj), constr)

9 prob.solve()

17

CVXPY

▶ open source all the way to the solvers

▶ syntax very similar to NumPy

▶ used in many research projects, courses, companies

▶ tens of thousands of users, including many (if not most) hedge funds

▶ over 27,000,000 downloads on PyPI

18

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

19

Mean-variance (Markowitz) optimization

maximize µTw − γwTΣw
subject to 1Tw = 1

▶ variable w ∈ Rn of portfolio weights

▶ µ ∈ Rn and Σ ∈ Sn
++ are (estimates of) asset return mean and covariance

▶ γ > 0 is risk aversion parameter

▶ basic form goes back to [Markowitz, 1952]

▶ can be sensitive to estimation error

1 w = cp.Variable(n)

2 objective = mu.T @ w - gamma * cp.quad_form(w, Sigma)

3 constraints = [cp.sum(w) == 1]

4 prob = cp.Problem(cp.Maximize(objective), constraints)

5 prob.solve()

20

Adding practical constraints and objective terms

▶ account for trading cost κT |w − wpre|;
wpre is previous holdings, κ > 0 is vector of one half bid-ask spreads

▶ add transaction cost, limit weights and leverage

maximize µTw − γriskwTΣw − γtradeκT |w − wpre|
subject to 1Tw = 1, wmin ≤ w ≤ wmax, ∥w∥1 ≤ Lmax

▶ can be implemented in a few lines in CVXPY

▶ this version is quite practical

▶ see [Boyd et al., 2024] for details, further improvements, reference implementation

21

https://web.stanford.edu/~boyd/papers/markowitz.html

Practical Markowitz in CVXPY

1 risk = cp.quad_form(w, Sigma)

2 t_cost = kappa.T @ cp.abs(w - w_pre)

3

4 objective = mu.T @ w - gamma_risk * risk - gamma_trade * t_cost

5 constraints = [w.sum() == 1, w >= w_min, w <= w_max, cp.norm1(w) <= L_max]

6

7 prob = cp.Problem(cp.Maximize(objective), constraints)

8 prob.solve()

22

Practical Markowitz: Example

▶ S&P 100, simulated but realistic µ, iterated EWMA covariance forecast

▶ γ = 250, γrisk = 35, γtrade = 5 (chosen to attain comparable risks)

Metric Basic Practical

Return -9.8% 38.1%
Risk 11.6% 11.9%
Sharpe -0.8 3.2
Drawdown 99.4% 11.2%

23

Sparse inverse covariance estimation
▶ model random vector x ∈ Rn as x ∼ N (0,Σ)

▶ log-likelihood on data x1, . . . , xN is

l(θ) =
N

2
(log det θ − Tr θS) + c, S =

1

N

N∑
i=1

x i (x i)T

c is a constant and θ = Σ−1 is the precision matrix

▶ sparse inverse covariance estimation problem [Friedman et al., 2007]

maximize l(θ)− λ
∑

i<j |θij |

with variable θ; λ > 0 is a (sparsity) regularization parameter

▶ a convex problem; yields matrix with sparse precision matrix θ

▶ θij = 0 means entries xi , xj are conditionally independent given the others

24

Sparse inverse covariance estimation: CVXPY

1 N, n = X.shape

2 Theta = cp.Variable((n, n), symmetric=True)

3

4 S = X.T @ X / N

5 log_likelihood = N / 2 * (cp.log_det(Theta) - cp.trace(Theta @ S))

6

7 mask = np.triu(np.ones((n, n)), k=1).astype(bool)

8 objective = log_likelihood - lam * cp.norm1(Theta[mask])

9

10 prob = cp.Problem(cp.Maximize(objective))

11 prob.solve()

25

Sparse inverse covariance estimation: Example

▶ daily returns of US, Europe, Asia, and Africa stock indices from 2009 to 2024

▶ yearly sparsity pattern of inverse covariance; white boxes denote zero entries

2009 2010 2011 2012 2013 2014 2015 2016

2017 2018 2019 2020 2021 2022 2023 2024

26

Position control via tensions

m1 m2 m3
k1 k2 k3 k4

d1 d2 d3 d4

u1 u1 u2 u2

▶ masses m1,m2,m3 connected by springs and dampers

▶ position, velocity pt , vt ∈ R3

▶ tensions ut ∈ R2, 0 ≤ ut ≤ Umax

▶ initial state p1 = 0, v1 = 0; terminal state pT = pdes, vT = 0

▶ pdes is the target equilibrium position, with tensions udes

▶ minimize
∑T

t=1

(
∥pt − pdes∥22 + ∥vt∥22

)
+ λ

∑T−1
t=1 ∥ut − udes∥22, λ > 0

27

Position control via tensions: Dynamics

dynamics (discretized with sample time h > 0)

pt+1 − pt
h

= vt , M
vt+1 − vt

h
=

(
−AKATpt − ADAT vt + But

)
M = diag(m1,m2,m3), K = diag(k1, k2, k3, k4), D = diag(d1, d2, d3, d4),

A =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 B =

 1 0
−1 1
0 −1



28

Position control via tensions: CVXPY

minimize
∑T

t=1

(
∥pt − pdes∥22 + ∥vt∥22

)
+ λ

∑T−1
t=1 ∥ut − udes∥22

subject to p1 = 0, v1 = 0, pT = pdes, vT = 0, 0 ≤ u ≤ Umax,
pt+1 = pt + hvt , t = 1, . . . ,T − 1
vt+1 = vt + hM−1

(
−AKATpt − ADAT vt + But

)
, t = 1, . . . ,T − 1

1 import cvxpy as cp

2 A, M_inv, D, K, B, u_max, p_des, u_des, T, lam = ...

3 p, v, u = cp.Variable((T, 3)), cp.Variable((T, 3)), cp.Variable((T-1, 2))

4 obj = cp.sum_squares(p - p_des) + cp.sum_squares(v) + lam * cp.sum_squares(u-u_des)

5 cons = [p[0] == 0, v[0] == 0, p[-1] == p_des[-1], v[-1] == 0, 0 <= u, u <= u_max]

6 cons += [p[t+1] == p[t] + h * v[t] for t in range(T-1)]

7 cons += [v[t+1] == v[t] + h * M_inv @ (-(A @ K @ A.T) @ p[t] -

8 (A @ D @ A.T) @ v[t] + B @ u[t]) for t in range(T-1)]

9 prob = cp.Problem(cp.Minimize(obj), cons)

10 prob.solve()

29

Optimal control via tensions: Example
▶ reaches target position pdes = (0.67, 1.00,−0.33) at t = 3.5

0 1 2 3 4 5
time

0.5

0.0

0.5

1.0

1.5

po
sit

io
n

p1
p2
p3

0 1 2 3 4 5
time

0.0

0.5

1.0

1.5

2.0

2.5

te
ns

io
n

u1
u2

30

Control via constant tensions
▶ use tensions ut = udes, wait for pt → pdes

0 5 10 15 20
time

0.5

0.0

0.5

1.0

1.5

po
sit

io
n

p1
p2
p3

0 5 10 15 20
time

0.0

0.5

1.0

1.5

2.0

2.5

te
ns

io
n

u1
u2

31

Residential energy management
▶ given data (in 15 minute intervals):

– load lt ≥ 0
– utility price pt ≥ 0
– solar capacity St ≥ 0

▶ variables:

– utility power ut ≥ 0
– solar power st , 0 ≤ st ≤ St
– battery power bt , |bt | ≤ B
– battery charge qt , 0 ≤ qt ≤ Q

▶ objective and constraints:

– minimize utility cost
∑T

t=1 ptut
– plus battery wear λ

∑T
t=1 |bt |, λ > 0

– power balance ut + st + bt = lt
– battery dynamics qt+1 = qt − 0.25bt
– qT+1 = q1

battery

load

solar

lt

bt

st

ut

utility
. . .

32

Residential energy management: Data

0

1

2

3

4

5
po

we
r (

kW
)

solar
load

06-01 00:00 06-01 06:00 06-01 12:00 06-01 18:00 06-02 00:00 06-02 06:00 06-02 12:00 06-02 18:00
0.12

0.14

0.16

0.18

0.20

pr
ice

 ($
/k

W
h)

price

33

Residential energy management: CVXPY

minimize
∑T

t=1 (ptut + λ|bt |)
subject to 0 ≤ qt ≤ Q, 0 ≤ ut , |bt | ≤ B, 0 ≤ st ≤ St

ut + st + bt = lt , t = 1, . . . ,T
q1 = qT+1, qt+1 = qt − 0.25bt , t = 1, . . . ,T

1 import cvxpy as cp

2 p, l, B, Q, S, T, lam = ...

3 q, b, u, s = cp.Variable(T+1), cp.Variable(T), cp.Variable(T), cp.Variable(T)

4 obj = p.T @ u + lam * cp.norm(b, 1)

5 cons = [0 <= q, q <= Q, 0 <= u, cp.abs(b) <= B, 0 <= s, s <= S]

6 cons += [u + s + b == l, q[1:] == q[:-1] - 0.25 * b, q[0] == q[-1]]

7 prob = cp.Problem(cp.Minimize(obj), cons)

8 prob.solve()

34

Residential energy management: Results
▶ battery capacity Q = 5 kWh, max charge/discharge B = 1.67 kW

06-01 00 06-01 06 06-01 12 06-01 18 06-02 00 06-02 06 06-02 12 06-02 18 06-03 00
time

0

2

4

st
or

ag
e

(k
W

h)

06-01 00 06-01 06 06-01 12 06-01 18 06-02 00 06-02 06 06-02 12 06-02 18 06-03 00
time

1

0

1

di
sc

ha
rg

e
(k

W
)

06-01 00 06-01 06 06-01 12 06-01 18 06-02 00 06-02 06 06-02 12 06-02 18 06-03 00
time

0

1

2

ut
ilit

y
po

we
r (

kW
)

0.12

0.16

0.21

pr
ice

 ($
/k

W
h)

35

Residential energy management: Storage/cost trade-off

▶ optimal cost vs. battery capacity Q

▶ max charge/discharge B = Q/3

0 2 4 6 8 10 12
battery capacity (kWh)

2

4

6

8

10

12

14

to
ta

l c
os

t (
$)

36

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

37

Showing a function is convex

methods for establishing convexity of a function f

1. verify definition inequality: for all x , y , θ ∈ [0, 1],

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

2. for twice differentiable functions, show ∇2f (x) ≥ 0 (i.e., is PSD)

3. construct f from simple convex functions, using operations that preserve convexity
(e.g., sum, maximum, positive scaling, . . .)

method 3 is by far the most useful in practice

38

Composition rule

▶ composition of g : Rn → Rk and h : Rk → R is

f (x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

▶ f is convex if h is convex and for each i one of the following holds

– gi convex, h nondecreasing in its ith argument
– gi concave, h nonincreasing in its ith argument
– gi affine

▶ there is a similar rule for concave h

▶ composition rule subsumes others, e.g.,

– αf is convex if f is, and α ≥ 0
– sum of convex (concave) functions is convex (concave)
– max (min) of convex (concave) functions is convex (concave)

39

Example

the function

f (x , y) =
(x − y)2

1−max(x , y)
, x < 1, y < 1

is convex

constructive analysis:

▶ (leaves) x , y , and 1 are affine

▶ max(x , y) is convex; x − y is affine

▶ 1−max(x , y) is concave

▶ function u2/v is convex, monotone decreasing in v for v > 0

▶ f is composition of u2/v with u = x − y , v = 1−max(x , y), hence convex

40

Example (from dcp.stanford.edu)

41

Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave
functions as expressions using constructive convex analysis

▶ expressions formed from

– variables,
– constants,
– and atomic functions from a library

▶ atomic functions have known convexity, monotonicity, and sign properties

▶ all subexpressions match general composition rule

▶ a valid DCP function is convex-by-construction

42

CVXPY example

(x − y)2

1−max(x , y)
, x < 1, y < 1

1 import cvxpy as cp

2 x = cp.Variable()

3 y = cp.Variable()

4 expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))

5 expr.curvature # Convex

6 expr.sign # Positive

7 expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)

43

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

44

Real-time embedded optimization

▶ in many applications, need to solve the same problem repeatedly with different
data, often with a real-time constraint

– control: update actions as sensor signals, goals change
– finance: rebalance portfolio as prices, predictions change

▶ requires extreme solver reliability, hard real-time execution

▶ used now when solve times are measured in minutes, hours

– supply chain, chemical process control, trading

▶ (using new techniques) can be used for applications with solve times measured in
milliseconds or microseconds

45

Code generators

CVXGEN [Mattingley and Boyd, 2010]

▶ generates custom QP solver in C

▶ used in many applications, including all of SpaceX first stage landings

CVXPYgen [Schaller et al., 2022]

▶ open-source code generator based on CVXPY

▶ easy prototype to implementation path

▶ generates C

▶ supports multiple solvers, non-QP problems

46

CVXGEN in action

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/

47

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/

Outline

Mathematical optimization

Convex optimization

Examples

Disciplined convex programming

Code generation

Conclusions

48

Summary

convex optimization problems

▶ are optimization problems of a special form

▶ arise in many applications

▶ can be solved effectively

▶ are easy to specify using DSLs such as CVXPY

▶ can be used in embedded systems with hard real-time constraints

49

Resources

many researchers have worked on the topics covered

▶ Convex Optimization (book)

▶ EE364a (lecture slides, videos, code, homework, . . .)
▶ software:

– CVXPY
– Convex.jl
– CVXR
– CVX

▶ code and data for examples in this talk

all available online

50

https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/class/ee364a/
https://www.cvxpy.org/index.html
https://convexjl.readthedocs.io/en/latest/
https://cvxr.rbind.io
https://cvxr.com/cvx/
https://github.com/cvxgrp/cvx_opt_overview_examples

	Mathematical optimization
	Convex optimization
	Examples
	Disciplined convex programming
	Code generation
	Conclusions

