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Optimization problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

▶ x ∈ Rn is (vector) variable to be chosen (n scalar variables x1, . . . , xn)

▶ f0 is the objective function, to be minimized

▶ f1, . . . , fm are the inequality constraint functions

▶ g1, . . . , gp are the equality constraint functions

▶ variations: maximize objective, multiple objectives, . . .
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Finding good (or best) actions

▶ x represents some action, e.g.,
– trades in a portfolio
– airplane control surface deflections
– schedule or assignment
– resource allocation

▶ constraints limit actions or impose conditions on outcome
▶ the smaller the objective f0(x), the better

– total cost (or negative profit)
– deviation from desired or target outcome
– risk
– fuel use
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Finding good models

▶ x represents the parameters in a model

▶ constraints impose requirements on model parameters (e.g., nonnegativity)
▶ objective f0(x) is sum of two terms:

– a prediction error (or loss) on some observed data
– a (regularization) term that penalizes model complexity
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Worst-case analysis

▶ variables are actions or parameters out of our control
(and possibly under the control of an adversary)

▶ constraints limit the possible values of the parameters

▶ minimizing −f0(x) finds worst possible parameter values

▶ if the worst possible value of f0(x) is tolerable, you’re OK

▶ it’s good to know what the worst possible scenario can be
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Optimization-based models

▶ model an entity as taking actions that solve an optimization problem

– an individual makes choices that maximize expected utility
– an organism acts to maximize its reproductive success
– reaction rates in a cell maximize growth
– currents in a circuit minimize total power

▶ (except the last) these are very crude models

▶ and yet, they often work very well
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Basic use model for mathematical optimization

▶ instead of saying how to choose (action, model) x

▶ you articulate what you want (by stating the problem)

▶ then let an algorithm decide on (action, model) x

▶ say what you want, not how to get it
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Can you solve it?

▶ generally, no

▶ but you can try to solve it approximately, and it often doesn’t matter

▶ the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others
– we can solve these problems reliably and efficiently
– comes up in many applications across many fields
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Convex optimization

convex optimization problem:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

▶ variable x ∈ Rn

▶ equality constraints are linear

▶ f0, . . . , fm are convex: for θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., fi have nonnegative (upward) curvature

(x, fi(x))

(y, fi(y))
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When is an optimization problem hard to solve?

▶ classical view:

– linear (zero curvature) is easy
– nonlinear (nonzero curvature) is hard

▶ the classical view is wrong

▶ the correct view:

– convex (nonnegative curvature) is easy
– nonconvex (negative curvature) is hard
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Solving convex optimization problems

▶ many different algorithms (that run on many platforms)

– interior-point methods for up to 10000s of variables
– first-order methods for larger problems
– do not require initial point, babysitting, or tuning

▶ can develop and deploy quickly using modeling languages such as CVXPY

▶ solvers are reliable, so can be embedded

▶ code generation yields real-time solvers that execute in milliseconds
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Application areas

▶ machine learning, statistics

▶ finance

▶ supply chain, revenue management, advertising

▶ control

▶ signal and image processing, vision

▶ networking

▶ circuit design

▶ combinatorial optimization

▶ quantum mechanics

▶ flux-based analysis

▶ many others . . .
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Modeling languages for convex optimization

▶ domain specific languages (DSLs) for convex optimization

– describe problem in high level human readable language, close to the math
– can automatically verify problem as convex
– can automatically transform problem to standard form, then solve

▶ enables rapid prototyping

▶ it’s now much easier to develop an optimization-based application

▶ ideal for teaching and research (can do a lot with short scripts)

▶ gets close to the basic idea: say what you want, not how to get it
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Implementations

▶ CVXPY (Python) [Diamond and Boyd, 2014]

▶ Convex.jl (Julia) [Udell et al., 2014]

▶ CVXR (R) [Fu, Narasimhan, and Boyd, 2017]

▶ CVX (Matlab) [Grant and Boyd, 2006]

▶ YALMIP (Matlab) [Lofberg, 2004]
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CVXPY example: Non-negative least squares

math:

minimize ∥Ax − b∥22
subject to x ≥ 0

▶ A, b given

▶ variable is x

▶ x ≥ 0 means elementwise

CVXPY code:

1 import cvxpy as cp

2

3 A, b = ...

4

5 x = cp.Variable(n)

6 obj = cp.norm2(A @ x - b)**2

7 constr = [x >= 0]

8 prob = cp.Problem(cp.Minimize(obj), constr)

9 prob.solve()

17



CVXPY

▶ open source all the way to the solvers

▶ syntax very similar to NumPy

▶ used in many research projects, courses, companies

▶ tens of thousands of users, including many (if not most) hedge funds

▶ over 27,000,000 downloads on PyPI
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Mean-variance (Markowitz) optimization

maximize µTw − γwTΣw
subject to 1Tw = 1

▶ variable w ∈ Rn of portfolio weights

▶ µ ∈ Rn and Σ ∈ Sn
++ are (estimates of) asset return mean and covariance

▶ γ > 0 is risk aversion parameter

▶ basic form goes back to [Markowitz, 1952]

▶ can be sensitive to estimation error

1 w = cp.Variable(n)

2 objective = mu.T @ w - gamma * cp.quad_form(w, Sigma)

3 constraints = [cp.sum(w) == 1]

4 prob = cp.Problem(cp.Maximize(objective), constraints)

5 prob.solve()
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Adding practical constraints and objective terms

▶ account for trading cost κT |w − wpre|;
wpre is previous holdings, κ > 0 is vector of one half bid-ask spreads

▶ add transaction cost, limit weights and leverage

maximize µTw − γriskwTΣw − γtradeκT |w − wpre|
subject to 1Tw = 1, wmin ≤ w ≤ wmax, ∥w∥1 ≤ Lmax

▶ can be implemented in a few lines in CVXPY

▶ this version is quite practical

▶ see [Boyd et al., 2024] for details, further improvements, reference implementation

21

https://web.stanford.edu/~boyd/papers/markowitz.html


Practical Markowitz in CVXPY

1 risk = cp.quad_form(w, Sigma)

2 t_cost = kappa.T @ cp.abs(w - w_pre)

3

4 objective = mu.T @ w - gamma_risk * risk - gamma_trade * t_cost

5 constraints = [w.sum() == 1, w >= w_min, w <= w_max, cp.norm1(w) <= L_max]

6

7 prob = cp.Problem(cp.Maximize(objective), constraints)

8 prob.solve()
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Practical Markowitz: Example

▶ S&P 100, simulated but realistic µ, iterated EWMA covariance forecast

▶ γ = 250, γrisk = 35, γtrade = 5 (chosen to attain comparable risks)

Metric Basic Practical

Return -9.8% 38.1%
Risk 11.6% 11.9%
Sharpe -0.8 3.2
Drawdown 99.4% 11.2%
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Sparse inverse covariance estimation
▶ model random vector x ∈ Rn as x ∼ N (0,Σ)

▶ log-likelihood on data x1, . . . , xN is

l(θ) =
N

2
(log det θ − Tr θS) + c, S =

1

N

N∑
i=1

x i (x i )T

c is a constant and θ = Σ−1 is the precision matrix

▶ sparse inverse covariance estimation problem [Friedman et al., 2007]

maximize l(θ)− λ
∑

i<j |θij |

with variable θ; λ > 0 is a (sparsity) regularization parameter

▶ a convex problem; yields matrix with sparse precision matrix θ

▶ θij = 0 means entries xi , xj are conditionally independent given the others
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Sparse inverse covariance estimation: CVXPY

1 N, n = X.shape

2 Theta = cp.Variable((n, n), symmetric=True)

3

4 S = X.T @ X / N

5 log_likelihood = N / 2 * (cp.log_det(Theta) - cp.trace(Theta @ S))

6

7 mask = np.triu(np.ones((n, n)), k=1).astype(bool)

8 objective = log_likelihood - lam * cp.norm1(Theta[mask])

9

10 prob = cp.Problem(cp.Maximize(objective))

11 prob.solve()
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Sparse inverse covariance estimation: Example

▶ daily returns of US, Europe, Asia, and Africa stock indices from 2009 to 2024

▶ yearly sparsity pattern of inverse covariance; white boxes denote zero entries

2009 2010 2011 2012 2013 2014 2015 2016

2017 2018 2019 2020 2021 2022 2023 2024
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Position control via tensions

m1 m2 m3
k1 k2 k3 k4

d1 d2 d3 d4

u1 u1 u2 u2

▶ masses m1,m2,m3 connected by springs and dampers

▶ position, velocity pt , vt ∈ R3

▶ tensions ut ∈ R2, 0 ≤ ut ≤ Umax

▶ initial state p1 = 0, v1 = 0; terminal state pT = pdes, vT = 0

▶ pdes is the target equilibrium position, with tensions udes

▶ minimize
∑T

t=1

(
∥pt − pdes∥22 + ∥vt∥22

)
+ λ

∑T−1
t=1 ∥ut − udes∥22, λ > 0
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Position control via tensions: Dynamics

dynamics (discretized with sample time h > 0)

pt+1 − pt
h

= vt , M
vt+1 − vt

h
=

(
−AKATpt − ADAT vt + But

)
M = diag(m1,m2,m3), K = diag(k1, k2, k3, k4), D = diag(d1, d2, d3, d4),

A =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 B =

 1 0
−1 1
0 −1


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Position control via tensions: CVXPY

minimize
∑T

t=1

(
∥pt − pdes∥22 + ∥vt∥22

)
+ λ

∑T−1
t=1 ∥ut − udes∥22

subject to p1 = 0, v1 = 0, pT = pdes, vT = 0, 0 ≤ u ≤ Umax,
pt+1 = pt + hvt , t = 1, . . . ,T − 1
vt+1 = vt + hM−1

(
−AKATpt − ADAT vt + But

)
, t = 1, . . . ,T − 1

1 import cvxpy as cp

2 A, M_inv, D, K, B, u_max, p_des, u_des, T, lam = ...

3 p, v, u = cp.Variable((T, 3)), cp.Variable((T, 3)), cp.Variable((T-1, 2))

4 obj = cp.sum_squares(p - p_des) + cp.sum_squares(v) + lam * cp.sum_squares(u-u_des)

5 cons = [p[0] == 0, v[0] == 0, p[-1] == p_des[-1], v[-1] == 0, 0 <= u, u <= u_max]

6 cons += [p[t+1] == p[t] + h * v[t] for t in range(T-1)]

7 cons += [v[t+1] == v[t] + h * M_inv @ (-(A @ K @ A.T) @ p[t] -

8 (A @ D @ A.T) @ v[t] + B @ u[t]) for t in range(T-1)]

9 prob = cp.Problem(cp.Minimize(obj), cons)

10 prob.solve()
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Optimal control via tensions: Example
▶ reaches target position pdes = (0.67, 1.00,−0.33) at t = 3.5
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Control via constant tensions
▶ use tensions ut = udes, wait for pt → pdes
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Residential energy management
▶ given data (in 15 minute intervals):

– load lt ≥ 0
– utility price pt ≥ 0
– solar capacity St ≥ 0

▶ variables:

– utility power ut ≥ 0
– solar power st , 0 ≤ st ≤ St
– battery power bt , |bt | ≤ B
– battery charge qt , 0 ≤ qt ≤ Q

▶ objective and constraints:

– minimize utility cost
∑T

t=1 ptut
– plus battery wear λ

∑T
t=1 |bt |, λ > 0

– power balance ut + st + bt = lt
– battery dynamics qt+1 = qt − 0.25bt
– qT+1 = q1

battery

load

solar

lt

bt

st

ut

utility
. . .
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Residential energy management: Data
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Residential energy management: CVXPY

minimize
∑T

t=1 (ptut + λ|bt |)
subject to 0 ≤ qt ≤ Q, 0 ≤ ut , |bt | ≤ B, 0 ≤ st ≤ St

ut + st + bt = lt , t = 1, . . . ,T
q1 = qT+1, qt+1 = qt − 0.25bt , t = 1, . . . ,T

1 import cvxpy as cp

2 p, l, B, Q, S, T, lam = ...

3 q, b, u, s = cp.Variable(T+1), cp.Variable(T), cp.Variable(T), cp.Variable(T)

4 obj = p.T @ u + lam * cp.norm(b, 1)

5 cons = [0 <= q, q <= Q, 0 <= u, cp.abs(b) <= B, 0 <= s, s <= S]

6 cons += [u + s + b == l, q[1:] == q[:-1] - 0.25 * b, q[0] == q[-1]]

7 prob = cp.Problem(cp.Minimize(obj), cons)

8 prob.solve()
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Residential energy management: Results
▶ battery capacity Q = 5 kWh, max charge/discharge B = 1.67 kW
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Residential energy management: Storage/cost trade-off

▶ optimal cost vs. battery capacity Q

▶ max charge/discharge B = Q/3
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Showing a function is convex

methods for establishing convexity of a function f

1. verify definition inequality: for all x , y , θ ∈ [0, 1],

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

2. for twice differentiable functions, show ∇2f (x) ≥ 0 (i.e., is PSD)

3. construct f from simple convex functions, using operations that preserve convexity
(e.g., sum, maximum, positive scaling, . . . )

method 3 is by far the most useful in practice
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Composition rule

▶ composition of g : Rn → Rk and h : Rk → R is

f (x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

▶ f is convex if h is convex and for each i one of the following holds

– gi convex, h nondecreasing in its ith argument
– gi concave, h nonincreasing in its ith argument
– gi affine

▶ there is a similar rule for concave h

▶ composition rule subsumes others, e.g.,

– αf is convex if f is, and α ≥ 0
– sum of convex (concave) functions is convex (concave)
– max (min) of convex (concave) functions is convex (concave)
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Example

the function

f (x , y) =
(x − y)2

1−max(x , y)
, x < 1, y < 1

is convex

constructive analysis:

▶ (leaves) x , y , and 1 are affine

▶ max(x , y) is convex; x − y is affine

▶ 1−max(x , y) is concave

▶ function u2/v is convex, monotone decreasing in v for v > 0

▶ f is composition of u2/v with u = x − y , v = 1−max(x , y), hence convex
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Example (from dcp.stanford.edu)
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Disciplined convex programming

in disciplined convex programming (DCP) users construct convex and concave
functions as expressions using constructive convex analysis

▶ expressions formed from

– variables,
– constants,
– and atomic functions from a library

▶ atomic functions have known convexity, monotonicity, and sign properties

▶ all subexpressions match general composition rule

▶ a valid DCP function is convex-by-construction
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CVXPY example

(x − y)2

1−max(x , y)
, x < 1, y < 1

1 import cvxpy as cp

2 x = cp.Variable()

3 y = cp.Variable()

4 expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))

5 expr.curvature # Convex

6 expr.sign # Positive

7 expr.is_dcp() # True

(atom quad_over_lin(u,v) includes domain constraint v>0)
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Real-time embedded optimization

▶ in many applications, need to solve the same problem repeatedly with different
data, often with a real-time constraint

– control: update actions as sensor signals, goals change
– finance: rebalance portfolio as prices, predictions change

▶ requires extreme solver reliability, hard real-time execution

▶ used now when solve times are measured in minutes, hours

– supply chain, chemical process control, trading

▶ (using new techniques) can be used for applications with solve times measured in
milliseconds or microseconds
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Code generators

CVXGEN [Mattingley and Boyd, 2010]

▶ generates custom QP solver in C

▶ used in many applications, including all of SpaceX first stage landings

CVXPYgen [Schaller et al., 2022]

▶ open-source code generator based on CVXPY

▶ easy prototype to implementation path

▶ generates C

▶ supports multiple solvers, non-QP problems
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CVXGEN in action

https://blogs.nasa.gov/spacex/2019/06/25/side-boosters-have-landed/
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Summary

convex optimization problems

▶ are optimization problems of a special form

▶ arise in many applications

▶ can be solved effectively

▶ are easy to specify using DSLs such as CVXPY

▶ can be used in embedded systems with hard real-time constraints
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Resources

many researchers have worked on the topics covered

▶ Convex Optimization (book)

▶ EE364a (lecture slides, videos, code, homework, . . . )
▶ software:

– CVXPY
– Convex.jl
– CVXR
– CVX

▶ code and data for examples in this talk

all available online
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