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We consider the problem of constructing a portfolio that 
combines traditional financial assets with crypto assets. We 
show that despite the documented attributes of crypto as-
sets, such as high volatility, heavy tails, excess kurtosis, and 
skewness, a simple extension of traditional risk allocation 
provides robust solutions for integrating these emerging as-
sets into broader investment strategies. Examination of the 
risk allocation holdings suggests an even simpler method, 
analogous to the traditional 60/40 stocks/bonds allocation, 
involving a fixed allocation to crypto and traditional assets, 
dynamically diluted with cash to achieve a target risk level.
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Figure 1: Normalized prices of BTC, ETH, and SP500.

Table 1: Performance metrics for BTC, ETH, and SP500.

BTC ETH SP500

Return (%) 43.3 47.0 13.7

Volatility (%) 58.1 71.6 19.5

Sharpe 0.75 0.66 0.70

Drawdown (%) 83.3 93.9 33.9
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INTRODUCTION

Since the introduction of cryptocurrencies in 2009,2 the field 
of crypto trading has rapidly grown. In this note we consider 
the problem of constructing a portfolio of assets, including 

2  S. Nakamoto. A peer-to-peer electronic cash system. Bitcoin.–URL: https://bitcoin.org/bitcoin.pdf, 4(2):15, 2008.

3  Y. Liu & A. Tsyvinski. Risks and returns of cryptocurrency. The Review of Financial Studies, 34(6):2689–2727, 2021. 
Y. Hu, S. Rachev, & F. Fabozzi. Modelling crypto asset price dynamics, optimal crypto portfolio, and crypto option valuation. arXiv preprint 
arXiv:1908.05419, 2019. 
M. Karim, Mohamed E. Rasid, A. Noman, & L. Yarovaya. Exploring asymmetries in cryptocurrency intraday returns and implied volatility: New 
evidence for high-frequency traders. International Review of Financial Analysis, page 103617, 2024.

4  J. Yarow. Paul Krugman responds to all the people throwing around his old internet quote. Business Insider, 2013. 
P. Krugman. Adam Smith hates bitcoin. Business Insider, 2013. P. Krugman. Golden cyberfetters. The New York Times, 2011. 
J. Ciolli & J. Kara. Paul Krugman: Bitcoin is a more obvious bubble than housing was. Business Insider, 2013.

5  O. Holovatiuk. Cryptocurrencies as an asset class in portfolio optimisation. Central European Economic Journal, 7(54):33–55, 2020. 
A. Brauneis & R. Mestel. Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28:259–264, 2019. 
T. Burggraf. Risk-based portfolio optimization in the cryptocurrency world. Available at SSRN 3454764, 2019. Y. Hu, S. Rachev, & F. Fabozzi. 
Modelling crypto asset price dynamics, optimal crypto portfolio, and crypto option valuation. arXiv preprint arXiv:1908.05419, 2019.

a combination of traditional financial assets such as stocks 
and bonds with crypto assets such as Bitcoin and Ethere-
um. Our conclusion is that despite the well-known extreme 
swings of cryptocurrency values, simple standard portfolio 
construction methods suffice to realize the benefits of in-
cluding crypto assets in a portfolio.

Figure 1 shows the normalized prices of Bitcoin (BTC), 
Ethereum (ETH), and the S&P 500 index (SP500) over the 
past six years. To the eye it reasonably seems that crypto 
returns are quite different from traditional returns. Table 1 
lists some metrics for these asset returns over the same 
period, which also suggest that crypto asset returns fun-
damentally differ from traditional asset returns. For ex-
ample, ETH at one point dropped in value by a factor of 
almost 20×, while the maximum drop in value of SP500 is 
only one third.

Stylized facts of crypto returns, such as extreme volatil-
ity, heavy tails, excess kurtosis, and skewness, have been 
well documented.3 Figure 2 shows quantile-quantile (QQ) 
plots of the log returns of BTC, ETH, and SP500 over the 
last six years. All three return distributions have tails that 
deviate significantly from the normal distribution, with the 
crypto asset returns exhibiting more extreme tail behavior 
than the market index. The 1st and 99th return percentiles 
are shown in the plots as dashed green lines; here too we 
see that crypto asset returns have considerably bigger tails 
than the market index, even when normalized to have the 
same volatility.

The documented characteristics of crypto asset returns 
have made conventional investors hesitant to include them 
in their portfolios, due to perceptions of risk and unpredict-
ability. While asset managers may have additional con-
cerns, such as legislative risk and other fundamental factors 
like the ongoing debate about the legitimacy of crypto as a 
real asset,4 we will focus here on the concerns related to the 
statistical properties of crypto asset returns.

These characteristics of crypto asset returns have also led 
to a wealth of research on how to extend traditional portfo-
lio construction methods to include crypto assets, includ-
ing methods similar to those used for traditional assets,5 

https://bitcoin.org/bitcoin.pdf
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as well as more complex machine learning driven meth-
ods.6

Despite the documented differences between crypto and 
conventional asset returns, some authors have argued 
that the two asset classes are fundamentally similar,7 
even though the crypto asset returns and volatilities are 
much higher. We agree with this perspective. In this note 
we show a simple method for constructing a portfolio of 
traditional and crypto assets using a risk allocation frame-
work, (hopefully) debunking the idea that novel and com-
plex machine learning approaches are necessary to man-
age a portfolio that includes crypto assets. Based on a 
back-test of the risk allocation method, we propose an 
even simpler portfolio construction method, reminiscent 
of the traditional 60/40 stocks/bonds split, which consists 
of a 90/10 split of traditional and crypto assets, followed 
by dynamic (time-varying) dilution with cash, to achieve 
a given ex-ante risk. We refer to this simple portfolio as 
DD90/10.

Outline. In Section II we review previous and related work. 
We introduce in Section III an approach for constructing a 
portfolio that combines traditional and crypto assets within 
a risk allocation framework. We illustrate the performance of 
this method on historical data in Section IV. Finally, in Sec-
tion V we propose the DD90/10 portfolio allocation strategy, 
and show that it has performance similar to the risk alloca-
tion strategy.

The documented characteristics of crypto as-
set returns have made conventional investors 
hesitant to include them in their portfolios, due 
to perceptions of risk and unpredictability"

6  I. Ruiz Roque da Silva, E. Junior, & P. Balbi. Cryptocurrencies trading algorithms: A review. Journal of Forecasting, 41(8):1661–1668, 2022. 
Z. Jiang & J. Liang. Cryptocurrency portfolio management with deep reinforcement learning. In 2017 Intelligent systems conference (Intel-
liSys), pages 905–913. IEEE, 2017. 
G. Lucarelli & M. Borrotti. A deep Q-learning portfolio management framework for the cryptocurrency market. Neural Computing and Appli-
cations, 32:17229–17244, 2020. 
Z. Jiang, D. Xu, & J. Liang. A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arX-
iv:1706.10059, 2017. 
G. Ramkumar. Cryptocurrency portfolio construction using machine learning models. In Contemporary Trends and Challenges in Finance: 
Proceedings from the 6th Wroclaw International Conference in Finance, pages 103–122. Springer, 2021. I. Ruiz Roque da Silva, E. Junior, & 
P. Balbi. Cryptocurrencies trading algorithms: A review. Journal of Forecasting, 41(8):1661–1668, 2022. 

7  D. Palomar. Portfolio Optimization. Cambridge University Press, 2024, Chapter 2.

Figure 2: Quantile-quantile plot of log returns of BTC, ETH, 
and SP500.
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02
RELATED WORK

A. Stylized Facts of Financial Return Data

Stylized facts of financial return series refer to a set of em-
pirical observations that are consistently observed across 
different financial markets and asset classes. We review 
some of the most prominent stylized facts for financial as-
sets, and refer the reader to Palomar for a more compre-
hensive overview.8

Equities. Stylized facts for equity returns include the non-
normal distribution of returns, characterized by heavy tails 
and excess kurtosis.9 Another fact is volatility clustering, 
where large price movements tend to be followed by ad-
ditional large movements, regardless of direction. While re-
turns themselves are generally uncorrelated over time, the 
absolute or squared returns often display strong autocor-
relation, highlighting a pattern in the magnitude of fluctua-
tions. Furthermore, the leverage effect is a notable feature, 
where negative returns increase future volatility to a greater 
extent than positive returns of the same size. Equity return 
distributions have also been shown to exhibit asymmetry 
between positive and negative returns.10

8  D. Palomar. Portfolio Optimization. Cambridge University Press, 2024.

9  H. Malmsten & T. Ter¨asvirta. Stylized facts of financial time series and three popular models of volatility. European Journal of pure and 
applied mathematics, 3(3):443–477, 2010. J. Bulla and I. Bulla. Stylized facts of financial time series and hidden semi-Markov models. Com-
putational statistics & data analysis, 51(4):2192–2209, 2006.

10  L. Jiang, K. Wu, G. Zhou, & Y. Zhu. Stock return asymmetry: Beyond skewness. Journal of Financial and Quantitative Analysis, 55(2):357–
386, 2020.

11  A. Hu, C. Parlour & U. Rajan. Cryptocurrencies: Stylized facts on a new investible instrument. Financial Management, 48(4):1049–1068, 
2019.  
B. Ghosh, E. Bouri, J. Bum Wee, & N. Zulfiqar. Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs. 
Research in International Business and Finance, 65:101945, 2023. 

12  M. Karim, Mohamed E. Rasid, A. Noman, & L. Yarovaya. Exploring asymmetries in cryptocurrency intraday returns and implied volatility: 
New evidence for high-frequency traders. International Review of Financial Analysis, page 103617, 2024. 

13  R. Grinold & R. Kahn. Active portfolio management. McGraw-Hill, 2000.

14  R. Narang. Inside the Black Box: A Simple Guide to Systematic Investing. J. Wiley & Sons, 2024, Chapter 6. 

15  G. Cornuejols & R. T¨ut¨unc¨u. Optimization methods in finance, volume 5. Cambridge University Press, 2006.

16  P. Kolm, R. T¨ut¨unc¨u, & F. Fabozzi. 60 years of portfolio optimization: Practical challenges and current trends. European Journal of 
Operational Research, 234(2):356–371, 2014.

17  A. Gunjan & S. Bhattacharyya. A brief review of portfolio optimization techniques. Artificial Intelligence Review, 56(5):3847–3886, 2023.

18  S. Boyd, K. Johansson, R. Kahn, P. Schiele & T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio Manage-
ment, 50(8):117–160, 2024.

19  H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

Cryptocurrencies. Cryptocurrencies exhibit several pat-
terns similar to traditional financial assets, but with more 
extreme behavior.11 They are highly volatile, with large 
price fluctuations and heavy-tailed return distributions. 
Volatility tends to cluster, with periods of high volatility 
followed by more volatility. While returns show no auto-
correlation in the short term, return magnitudes do exhibit 
autocorrelation. Cryptocurrencies also exhibit asymmetry 
in returns.12

B. Portfolio Construction

Portfolio construction involves selecting a combination of 
assets by balancing the trade-off between expected return 
and portfolio risk. Here we discuss key historical contribu-
tions to the field, along with some recent advancements. 
For more extensive overviews, refer to texts such as Gri-
nold & Kahn,13 Narang,14 and the studies by Cornuejols & 
Tutuncu,15 P. Kolm, R. Tutuncu & F. Fabozzi, S. Chakrabarty 
& A. Kanaujiya,16 A. Gunjan & S. Bhattacharyya,17 S. Boyd, 
K. Johansson, R. Kahn, P. Schiele & T. Schmelzer.18

Markowitz portfolio construction. Before Markowitz’s 
seminal work in 1952, portfolio construction was largely 
based on heuristics and rules of thumb. Markowitz intro-
duced a quantitative framework for portfolio construction, 
where the return of a portfolio is modeled as a random vari-
able, and the expected return is maximized for a desired 
level of risk.19 Despite its simplicity, and having over 70 
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years of history, the Markowitz model remains the founda-
tion of quantitative investing to this day.20

Portfolio construction involves selecting a 
combination of assets by balancing the trade-
off between expected return and portfolio 
risk"

Extensions of the Markowitz model include the Black-
Litterman model,21 fully flexible views,22 and conditional 
value-at-risk (CvaR) optimization,23 to name a few. The 
Black-Litterman model is a Bayesian approach to portfolio 
construction, where the prior distribution is based on the 
equilibrium market portfolio, and the posterior distribution is 
updated with user-specific views on the expected returns of 
the assets. Fully flexible views is a generalization of Black-
Litterman, allowing for nonlinear views on the returns. CVaR 
optimization replaces the variance in the Markowitz model 
with the conditional value-at-risk of the portfolio, penalizing 
the tail risk of the portfolio, and directly addresses the issue 
of a non-normal return distribution.

Machine learning based portfolio construction. Typically, 
portfolio construction is split into two parts: data modelling 
and portfolio optimization.24 Data modelling is concerned 
with predicting the expected returns and covariances of 
the assets, and portfolio optimization concerns selecting a 

20  S. Boyd, K. Johansson, R. Kahn, P. Schiele, & T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio Manage-
ment, 50(8):117–160, 2024.

21   F. Black & R. Litterman. Asset allocation: Combining investor views with market equilibrium. Goldman Sachs Fixed Income Research, 
115(1):7–18, 1990. 
F. Black & R. Litterman. Global portfolio optimization. Financial analysts journal, 48(5):28–43, 1992. 
F. Black. Universal hedging: Optimizing currency risk and reward in international equity portfolios. Financial Analysts Journal, 45(4):16–22, 
1989. 

22   A. Meucci. Fully flexible views: Theory and practice. arXiv preprint, arXiv:1012.2848, 2010.

23   T. Rockafellar & S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2:21–42, 2000.

24   D. Palomar. Portfolio Optimization. Cambridge University Press, 2024, Chapter 21.

25   R. Michaud. The Markowitz optimization enigma: Is ‘optimized’ optimal? Financial analysts journal, 45(1):31–42, 1989.

26   I. Gurrib. Machine learning and portfolio management: A review. Annals of Mathematics and Computer Science, 5:31–43, 2022. 
S. Bartram, J. Branke, G. De Rossi, & M. Motahari. Machine learning for active portfolio management. Journal of Financial Data Science, 
3(3):9–30, 2021.

27   B. Kelly & D. Xiu. Financial machine learning. Foundations and Trends® in Finance, 13(3-4):205–363, 2023, Section 5.

28   S. Boyd, K. Johansson, R. Kahn, P. Schiele & T. Schmelzer. Markowitz portfolio construction at seventy. Journal of Portfolio Manage-
ment, 50(8):117–160, 2024.

29  B. Kelly & D. Xiu. Financial machine learning. Foundations and Trends® in Finance, 13(3-4):205–363, 2023.

30   E. Qian. Risk parity and diversification. The Journal of Investing, 20(1):119–127, 2011.

portfolio of assets that trades off expected return and risk. 
However, with the growing popularity of machine learning, 
and documented criticism of the Markowitz model,25 in re-
cent years several studies have proposed machine learning 
based portfolio construction methods as alternatives to this 
traditional framework.26 In particular, it has become popular 
to combine the two parts of portfolio construction into a 
single end-to-end machine learning model, where market 
features are fed into the model, and the model outputs a 
trade list. The argument for this has been that splitting port-
folio construction into two parts is suboptimal, as there are 
uncertainties in the return forecasts that are not accounted 
for in the portfolio optimization component of portfolio con-
struction.27 Although theoretically appealing, we have yet to 
see a wide-spread adoption of these methods in practice, 
and the Markowitz model remains the dominant framework 
for portfolio construction.28 We refer the reader to Kelly & 
Xiu for a detailed review of end-to-end machine learning 
models for portfolio construction.29

Risk-based portfolio construction. Risk-based portfolio 
construction methods rely on estimates of the asset return 
covariances, but do not require an estimate of the expected 
returns of the assets, making them attractive for practitio-
ners who do not have access to data sources for estimating 
expected returns reliably. A trivial example of a risk-based 
portfolio construction method is the equally weighted port-
folio. Another popular portfolio is the minimum variance 
portfolio, which is also the mean-variance efficient portfolio 
when expected returns are equal. Other risk-based portfolio 
construction methods include risk parity,30 where the risk 
contribution of each asset is equal, and maximum diversi-
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fication portfolios.31 These portfolios can all be computed 
via convex optimization,32 which makes them reliable, fast, 
and practical.33 These portfolio construction methods can 
be implemented in just a few lines in a domain specific lan-
guage for convex optimization such as CVXPY.34

Risk and covariance estimation. Risk-based portfolio 
construction methods rely on estimates of the portfolio risk. 
There are in general two ways to estimate portfolio risk. The 
first is to use a realized measure of the variance of the port-
folio. There are many such methods, including the exponen-
tially weighted moving average (EWMA), methods based on 
mean absolute deviation or the rolling median,35 as well as 
autoregressive conditional heteroskedasticity (ARCH) and 
generalized ARCH (GARCH) models.36 The second way to 
estimate portfolio risk is to leverage a covariance matrix of 
the asset returns. The literature on covariance estimating in 
finance is vast, but probably the most popular method is to 
use an iterated covariance matrix.37 This method decom-
poses the covariance Σ as Σ = VRV, where V is a diagonal 
matrix with the asset standard deviations on the diagonal 
and R is the correlation matrix. Typically, V and R are esti-
mated separately, using EWMAs with different half-lives. We 
will refer to this method as the iterated EWMA (IEWMA).38 It 

31   Y. Choueifaty & Y. Coignard. Toward maximum diversification. The Journal of Portfolio Management, 35(1):40–51, 2008.

32   K. Johansson, G. Ogut, M. Pelger, T. Schmelzer, & S. Boyd. A simple method for predicting covariance matrices of financial returns. 
Foundations and Trends in Econometrics, 12(4):324–407, 2023.

33   S. Boyd & L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

34   S. Diamond & S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Re-
search, 17(83):1–5, 2016.

35  R. Geary. Moments of the ratio of the mean deviation to the standard deviation for normal samples. Biometrika, pages 295–307, 1936. 
R. Geary. Testing for normality. Biometrika, 34(3/4):209–242, 1947.

36  R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Jour-
nal of the econometric society, pages 987–1007, 1982. 
T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307–327, 1986. 
R. Engle & T. Bollerslev. Modelling the persistence of conditional variances. Econometric reviews, 5(1):1–50, 1986.

37  R. Engle. Dynamic conditional correlation. Journal of Business & Economic Statistics, 20(3):339–350, 2002. 
S. Barratt & S. Boyd. Covariance prediction via convex optimization. Optimization and Engineering, 2022.

38  K. Johansson, G. Ogut, M. Pelger, T. Schmelzer & S. Boyd. A simple method for predicting covariance matrices of financial returns. 
Foundations and Trends in Econometrics, 12(4):324–407, 2023.

39  Ibid.

40  W. Bakry, A. Rashid, S. Al-Mohamad & N. El-Kanj. Bitcoin and portfolio diversification: A portfolio optimization approach. Journal of Risk 
and Financial Management, 14(7):282, 2021. 
D. Yermack. Is bitcoin a real currency? An economic appraisal. In Handbook of digital currency, pages 29–40. Elsevier, 2024. 
O. Holovatiuk. Cryptocurrencies as an asset class in portfolio optimisation. Central European Economic Journal, 7(54):33–55, 2020.

41  Ibid.

42  I. Ruiz Roque da Silva, E. Junior & P. Balbi. Cryptocurrencies tradinalgorithms: A review. Journal of Forecasting, 41(8):1661–1668, 2022.

43  Z. Jiang & J. Liang. Cryptocurrency portfolio management with deep reinforcement learning. In 2017 Intelligent systems conference 
(IntelliSys), pages 905–913. IEEE, 2017. 

44  G. Lucarelli & M. Borrotti. A deep Q-learning portfolio management frame- work for the cryptocurrency market. Neural Computing and 
Applications, 32:17229–17244, 2020.

is also possible to dynamically adjust the half-lives of the 
EWMAs, to account for time-varying market conditions.39

C. Crypto Trading

Several methods to managing portfolios of cryptocurren-
cies have been proposed, and these tend to be separated 
from investment strategies proposed for traditional assets.

Diversification. Many studies have noted that the returns 
of cryptocurrencies are uncorrelated with traditional as-
sets.40 This means that they can be leveraged to diversify 
a portfolio of traditional assets, and thus increase the risk-
adjusted return of the portfolio.41

Portfolio construction. Much of the literature on crypto-
currency trading is focused on machine learning or deep 
learning.42 Jiang and Liang propose an end-to-end con-
volutional neural network, taking in raw price data and 
outputting a trade list.43 A deep Q-learning portfolio man-
agement framework is proposed by Lucarelli & Borrot-
ti.44 Jiang, Xu, & Liang introduce a financial-model-free 
reinforcement learning framework, incorporating con-
volutional neural networks, recurrent neural networks, 
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and long short-term memory models.45 Ramkumar uses 
ARIMA models, convolutional neural networks, and long 
short-term memory methods for cryptocurrency price 
forecasting and multiple portfolio construction strategies 
are evaluated with the forecasted prices as input.46 For a 
more detailed review of machine learning in cryptocur-
rency portfolio management, see e.g. Roque da Silva, 
Junior & Balbi (2022).47

Some crypto studies use traditional portfolio construction 
methods, such as the Markowitz framework. Holovatiuk 
shows that crypto assets can improve the performance of 
a mean-variance optimized portfolio.48 Brauneis & Mestel 
show how to implement a mean-variance optimized port-
folio of cryptocurrencies and that it outperforms an equally 
weighted portfolio as well as single cryptocurrencies.49 Gi-
udici, Pagnottoni, & Polines propose an extension of the 
Markowitz model, combining random matrix theory and 
network measures to manage a portfolio of crypto assets.50 
Platanakis & Urquhart design crypto portfolios using vari-
ance-based constraints in the Black-Litterman model, to 
account for estimation uncertainties.51

Other studies focus on risk-based portfolio construction 
methods, i.e. those that do not rely on an estimate of the 
expected returns of the assets. Burggraf evaluates multi-
ple risk-based portfolio construction methods, finding that 
most of them outperform single cryptocurrencies and the 
equally weighted portfolio.52 Rachev & Fabozzi find that 
minimizing the variance and conditional value-at-risk of a 
portfolio of cryptocurrencies yields a portfolio that outper-
forms the market.53

45  Z. Jiang, D. Xu, & J. Liang. A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprintarX-
iv:1706.10059, 2017.

46  G. Ramkumar. Cryptocurrency portfolio construction using machine learning models. In Contemporary Trends and Challenges in Fi-
nance: Proceedings from the 6th Wroclaw International Conference in Finance, pages 103–122. Springer, 2021

47  I. Ruiz Roque da Silva, E. Junior & P. Balbi. Cryptocurrencies trading algorithms: A review. Journal of Forecasting, 41(8):1661–1668, 
2022.

48  O. Holovatiuk. Cryptocurrencies as an asset class in portfolio optimisation. Central European Economic Journal, 7(54):33–55, 2020.

49  A. Brauneis & R. Mestel. Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28:259–264, 2019.

50  P. Giudici, P. Pagnottoni & G. Polinesi. Network models to enhance automated cryptocurrency portfolio management. Frontiers in arti-
ficial intelligence, 3:22, 2020.

51  E. Platanakis & A. Urquhart. Portfolio management with cryptocurrencies: The role of estimation risk. Economics Letters, 177:76–80, 
2019. 

52  T. Burggraf. Risk-based portfolio optimization in the cryptocurrency world. Available at SSRN 3454764, 2019. 

53  Y. Hu, S. Rachev & F. Fabozzi. Modelling crypto asset price dynamics, optimal crypto portfolio, and crypto option valuation. arXiv pre-
print arXiv:1908.05419, 2019.

54  H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

55  D. Palomar. Portfolio Optimization. Cambridge University Press, 2024.

56  E. Qian. Risk parity and diversification. The Journal of Investing, 20(1):119–127, 2011.

03
CONSTRAINED RISK 
ALLOCATION

The most common approach to portfolio construction is 
to formulate the problem as a trade-off between expect-
ed return and risk, as suggested by Markowitz in 1952.54 
The main practical challenge with this framework is that it 
requires estimating expected returns of the assets. These 
are very difficult to estimate and, for obvious reasons, suc-
cessful estimation techniques are proprietary; large hedge 
funds and asset managers have entire teams dedicated to 
estimating expected returns, using data sources for which 
they pay large premiums.55 Here we describe a risk alloca-
tion approach, which does not require an estimate of the 
expected returns of the assets. It is based on the idea of risk 
parity,56 with additional constraints on the portfolio weights 
and a risk limit. We refer to this method as constrained risk 
allocation (CRA).

A. Constrained Risk Allocation Problem

We consider a portfolio of n non-cash assets, plus cash. We 
denote the asset weights as w ∈ Rn, with w ≥ 0, where wi is 
the fraction of the total portfolio value held in asset i. We let 
c ≥ 0 denote the fraction of the portfolio value held in cash, 
so we have 1T w + c = 1, where 1 is the vector with all entries 
one. We refer to 1Tw as our asset exposure.
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Let Σ denote the n×n (estimated) covariance matrix of the 
returns. Assuming cash is risk-free, the portfolio risk is 
wTΣw. (The volatility is the squareroot of this.) Inspired by 
the identity

we define the risk contribution of asset i as wi(Σw)i. In risk al-
location we specify the fraction of risk to be held in each as-
set as the vector ρ ∈ Rn, with ρ > 0 and 1Tρ = 1. We interpret 
ρi as the fraction of total portfolio risk contributed by asset 
i. (We assume that all entries of ρ are positive; if any were 
zero, we simply would not include that asset in the portfo-
lio.) Thus, we have

    
(1)

The special case ρ = (1/n)1 corresponds to risk parity, where 
all assets contribute an equal fraction of the risk.

The CRA problem is defined as

   

(2)

where w ∈ Rn and c ∈ R are the variables, σ2 is the maxi-
mum allowed risk, and F ∈ Rm×n and g ∈ Rm describe 
constraints on the portfolio. In words: We choose the 
portfolio to minimize cash holdings (or equivalently, 
maximize asset exposure), subject to a given risk alloca-
tion, a total risk limit, and some additional constraints on 
the weights.

We will assume that g > 0 and F ≥ 0 (elementwise), with 
each row of F nonzero. We will soon see that this implies the 
CRA problem (2) always has a unique solution. The weight 
constraints can be used to enforce a maximum weight on 
each asset, or a maximum weight on a subset of assets, 
e.g. crypto assets.

B. Solution via Convex Optimization

The CRA problem (2) is not itself a convex optimization 
problem, but it can be solved efficiently via convex optimi-
zation. We first consider the risk allocation constraints (1) 
alone, together with w ≥ 0. It can be shown that w satisfies 
these constraints if and only if it has the form

57  S. Boyd and L. Vandenberghe. Convex optimization additional exercises. https://github.com/cvxgrp/cvxbook_additional_exercises, 
2024.

where α ≥ 0 and x* ∈ Rn is the unique solution of the convex 
optimization problem

     
(3)

with variable x ∈ Rn (and implicit constraint x > 0).57 Thus, 
the set of weights that satisfy the risk allocation constraints 
is a ray, with a direction that can be found by solving a con-
vex optimization problem.

Now we take this very specific form for w and substitute it 
back into the original CRA problem (2), dropping the risk al-
location constraints and w ≥ 0 since they are automatically 
satisfied. This gives us the problem

with scalar variables α and c. Note that the quantities 1T x*, 
(x*)T Σx*, and F x* are constants in this problem.

We can solve this simple problem analytically. Minimizing 
c is the same as maximizing α. Along with α ≥ 0, all con-
straints on α are (positive) upper limits:

(Each of the denominators is positive due to our assump-
tions and x* > 0.) It follows that the solution is

 
(4)

Roughly speaking: Scale the unconstrained risk allo-
cation weights as large as possible with all constraints 
holding.

Summary. The two step solution procedure is summarized 
as follows:

1. Solve the optimization problem (3) to obtain x*.
2. The unique solution of the CRA problem is then given 

by w* = α*x* where α* is given by (4).
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We note that Feng & Palomar have suggested a more so-
phisticated formulation of the CRA problem, in which the 
risk allocations need only hold approximately.58 This formu-
lation can be approximately solved by solving a sequence 
of convex problems. Our simple formulation is, however, 
good enough for us to make our main point.

Variation. We can modify the way α* is computed in (4). 
Instead of estimating the standard deviation of the uncon-
strained risk allocation portfolio x* as (x*)TΣx* 1/2, we compute 
the realized return trajectory of the portfolio x*, i.e. (x*)Trt, t 
= 1, 2, . . ., where rt is the vector of asset returns at time t. 
We then compute an estimate of the standard deviation of 
the portfolio return trajectory, using, e.g., a EWMA. Thus, 
to compute the scaling (which sets the cash dilution) we 
directly estimate the standard deviation of the return trajec-
tory with the unconstrained risk allocation weights, rather 
than find it from our estimated covariance matrix (which we 
use to compute the risk allocation weights x* in step 1.) We 
have found that leads to a modest but significant improve-
ment in portfolio performance.

04
CRA RESULTS

A. Data and Experimental Setup

Data. We consider daily close prices of two crypto assets, 
BTC and ETH, with data from LSEG Data and Analytics. We 
also consider four daily traded industry portfolios: consumer 
goods and services, manufacturing and utilities, technol-
ogy and communications, as well as health-care, medical 
equipment, and drugs; these were obtained from Kenneth 
French’s data library.59 The data spans from September 8th, 
2017, to September 22nd, 2024, for a total of 2565 days, or 
1729 trading days. (Although crypto assets are traded every 
day, we rebalance our portfolios only on market trading days; 
we do, however, realize gains and losses on crypto assets 
on weekends and holidays.) Figure 3 shows the normalized 
price evolution of the six assets, and table 2 lists some met-
rics for them. The data and code to reproduce the results are 
available at https://github.com/cvxgrp/crypto_portfolio.

58  Y. Feng & D. Palomar. Scrip: Successive convex optimization methods for risk parity portfolio design. IEEE Transactions on Signal 
Processing, 63(19):5285–5300, 2015. 
L. Wu, Y. Feng, & D. Palomar. General sparse risk parity portfolio design via successive convex optimization. Signal Processing, 170:107433, 
2020. 
D. Palomar. Portfolio Optimization. Cambridge University Press, 2024, Chapter 11.

59  K. French. Kenneth french data library. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research, 2024.

Figure 3: Normalized prices of BTC, ETH, and four industry 
portfolios.

Table 2: Performance metrics for the six assets.

Metric BTC ETH Cnsmr Manuf HiTec Hlth

Return (%) 43.5 47.1 14.1 11.4 20.7 10.8

Volatility (%) 58.1 71.6 19.3 20.5 23.9 18.0

Sharpe 0.73 0.60 0.76 0.58 0.90 0.62

Drawdown (%) 83.3 93.9 28.5 42.7 35.4 26.8

Figure 4: Estimated annualized volatilities of the six assets.
 

https://github.com/cvxgrp/crypto_portfolio
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Risk model. We estimate the covariance matrix of the as-
sets using an iterated EWMA, described in detail by Jo-
hansson et al.60 We use a 63-day half-life for the volatility 
estimate and a 125-day half-life for the correlation estimate. 
The estimated volatilities of the six assets are shown in fig-
ure 4. Two examples (from different time-periods) of the es-
timated correlation matrix are shown in figure 5.

Simulation and parameters. We simulate three portfolios.

• Industries contains only the four industry portfolios 
and cash.

• Crypto contains only the two crypto assets and cash.

• Combined contains all six assets and cash.

We rebalance the portfolios every trading day, using risk 
parity. We impose a 10 percent annualized risk limit on the 
portfolio, i.e. σ = 0.1D1/2, where D = 250 is the number of 
trading days in a year. To estimate the risk of the uncon-
strained risk parity portfolio x*, we use a 10-day half-life 
EWMA of the portfolio return. We also impose a 10 percent 
maximum weight constraint on crypto assets, i.e. for BTC 
and ETH combined. These limits were chosen as reason-
able values that one might use in practice; the results are 
not sensitive to these choices.

B. Metrics

We describe the metrics used to evaluate the performance 
of the portfolios over the time interval t = 1, . . ., T.

Figure 5: Estimated correlation matrices on two different 
dates.

(a) March 1st, 2020.

60  K. Johansson, G. Ogut, M. Pelger, T. Schmelzer & S. Boyd. A simple method for predicting covariance matrices of financial returns. 
Foundations and Trends in Econometrics, 12(4):324–407, 2023

(b) May 1st, 2023.

Return. The (realized) return of the portfolio at time t is giv-
en by

where rt and wt are the vector of (realized) asset returns and 
the portfolio weights at time t, respectively. The annualized 
(realized) return is given by

Volatility. The (realized) annualized volatility of the portfolio 
is given by

Sharpe ratio. The Sharpe ratio is the ratio of the annualized 
return to the annualized volatility.

Drawdown. Let Vt denote the portfolio value in time pe-
riod t, starting from V1 = 1, with returns compounded or 
re-invested. These are found from the recursion Vt+1 = (1 + 
wt

Trt)Vt, t = 1, . . . , T−1. The (maximum) drawdown of the 
portfolio is defined as
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i.e. the maximum fractional drop in value from a previous 
high.

Table 3: Portfolio performance metrics.

Industries Crypto Combined

Return (%) 6.0 4.5 8.2

Volatility (%) 8.2 6.0 8.2

Sharpe 0.73 0.75 1.00

Drawdown (%) 12.5 15.9 19.6

C. Results

Portfolio weights. The portfolio weights of the three port-
folios are shown in figure 6. As expected, the crypto port-
folio holds mostly cash, due to the 10 percent crypto limit. 
The industry and combined portfolios have more diversified 
weights, varying over time. As expected these portfolios 
hold a lot of cash during the turbulent 2020 period. On aver-
age, the industry portfolio holds 25 percent cash, the crypto 
portfolio 90 percent cash, and the combined portfolio 33 
percent cash.

Performance. Figure 7 shows the value of the three portfo-
lios over time, normalized to one at the start of the simula-
tion. (SR denotes Sharpe ratio.) The aggregate performance 
of the three portfolios is shown in table 3. Including crypto 
assets in the portfolio clearly gives a noticeable boost, de-
spite allocating less than 10 percent of the portfolio to them. 
The combined portfolio has a higher return and Sharpe ra-
tio than the industry portfolio, while having similar volatility 
and drawdown. To get a better understanding of the per-
formance differences, figure 8 shows the return, volatility, 
and Sharpe ratio of the three portfolios over each year of 
the simulation.

The industry and combined portfolios have 
more diversified weights, varying over time"

Figure 6: Portfolio weights of the three portfo-
lios. The cash weight is shown as uncolored.

(a) Industry portfolio.

(b) Crypto portfolio.

(C) Combined portfolio.

Figure 7: Portfolio values of the three portfolios.
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Figure 8: Annual performance metrics of the three port-
folios.

Table 4: Shapley attributions by asset category.

Cnsmr Manuf HiTec Hlth Crypto Total

Return (%) 1.8 0.7 2.5 0.8 2.5              8.2

Volatility (%) 1.8 1.8 2.0 1.9 0.7    8.2

Sharpe 0.20 0.06 0.26 0.08 0.40    1.0

Drawdown (%) 3.3 2.4 3.2 3.5 7.3       19.6

61  L. Shapley. A value for n-person games. Contribution to the Theory of Games, 2, 1953. F. Huettner & M. Sunder. Axiomatic arguments 
for decomposing goodness of fit according to Shapley and Owen values. 2012.
H. Zhang, H. Singh, M. Ghassemi & S. Joshi. Why did the model fail? Attributing model performance changes to distribution shifts. 2023.
D. Fryer, I. Str¨umke, & H. Nguyen. Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access, 9:144352–144360, 
2021.
A. Owen & C. Prieur. On Shapley value for measuring importance of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification, 
5(1):986–1002, 2017.
N. Moehle, S. Boyd & A. Ang. Portfolio performance attribution via shapley value. arXiv preprint arXiv:2102.05799, 2021.

Figure 9: Relative weights of the combined portfolio.

D. Shapley Attributions

We would like to attribute the performance of the portfo-
lio to the different asset classes. Shapley values account 
for each assets’ contribution to the portfolio, ensuring a 
fair allocation. They are uniquely characterized by satis-
fying a collection of desirable properties, including fair-
ness, monotonicity, and full attribution.61 We will now look 
at the Shapley attributions to each industry and to crypto 
as a whole, for the combined portfolio. The Shapley at-
tributions of the different asset classes for the combined 
portfolio are shown in table 4. Crypto assets have the 
highest attribution to return and Sharpe. All assets oth-
er than crypto have around a 2 percent contribution to 
volatility; crypto has a noticeably lower volatility contri-
bution. Crypto assets have the highest contribution to 
drawdown.

All assets other than crypto have around a 2 
percent contribution to volatility; crypto has a 
noticeably lower volatility contribution"
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05
DYNAMICALLY DILUTED 
90/10 PORTFOLIO

Figure 9 shows the relative non-cash weights, i.e. w/1T w for 
the combined portfolio over time. We see that, apart from 
2020, the relative weights are relatively stable and evenly 
distributed with about 10 percent in crypto assets (equally 
split between BTC and ETH), and 90 percent roughly equal-
ly split between the four industry portfolios. This motivates 
an even simpler portfolio construction method, akin to the 
popular 60/40 stocks/bonds allocation.

Figure 10: Annualized volatility estimates of the 90/10 
portfolio.

•	 90/10 portfolio. Construct a portfolio consisting of 
90 percent equities (e.g. the four industries with equal 
weights) and 10 percent crypto (e.g. equally split be-
tween BTC and ETH).

•	 Dynamic cash dilution. Based on an estimate of 
the recent volatility of the 90/10 portfolio, dilute the 
90/10 portfolio with cash to achieve the target risk σ 
and respect weight limits. We refer to this portfolio 
as the dynamically diluted 90/10 (DD90/10) portfo-
lio.

62  K. Sheppard. Arch documentation. 2024.

A. DD90/10 Results

Volatility estimators. We evaluate the performance of the 
DD90/10 portfolio using two different volatility estimators: 
a 10-day half-life EWMA, and a GARCH(1,1) model refitted 
every day on the last 250 days of data, using the arch pack-
age in Python.62 (We tried several other volatility estimators; 
all gave similar results.) The volatility estimates of the 90/10 
portfolio are shown in figure 10.

Weights. The weights of the DD90/10 portfolios are shown 
in figure 11. The weights are quite similar, with the GARCH 
estimator being noticeably more reactive during some pe-
riods.

Performance. The performance of the DD90/10, com-
pared to the (combined) CRA portfolio, is shown in table 
5. Figure 12 shows the value of the three portfolios over 
time.

We see that, apart from 2020, the relative 
weights are relatively stable and evenly dis-
tributed with about 10 percent in crypto as-
sets (equally split between BTC and ETH), and 
90 percent roughly equally split between the 
four industry portfolios"
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06
CONCLUSIONS

We have illustrated that, despite the documented extreme 
behaviors of crypto assets, simple traditional portfolio con-
struction techniques can be used to include them in a di-
versified portfolio. We show this using two standard port-
folio construction methods, one based on risk parity, and 
the other a fixed set of relative weights, with each one dy-
namically diluted with cash to achieve a target ex-ante risk. 
The addition of even a modest crypto weight of 10 percent 
increases the return and Sharpe ratio of the portfolio sig-
nificantly, without significantly increasing volatility or draw-
down.

We have illustrated that, despite the docu-
mented extreme behaviors of crypto assets, 
simple traditional portfolio construction tech-
niques can be used to include them in a diver-
sified portfolio"

Figure 11: Portfolio weights of the DD90/10 portfolios with 
EWMA and GARCH volatility estimators.

(a) EWMA volatility estimator.

(b) GARCH volatility estimator.
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Table 5: Performance metrics DD90/10 and CRA.

DD90/10 (EWMA) DD90/10 (GARCH) CRA

Return (%) 10.4 10.1 8.2

Volatility (%) 9.8 9.7 8.2

Sharpe 1.06 1.04 1.00

Drawdown (%) 19.9 19.7 19.6

Figure 12: Portfolio values of the DD90/10 and CRA port-
folios.
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