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ABSTRACT In this paper, we address the problem of compact model parameter extraction to simultaneously
extract tens of parameters via derivative-free optimization. Traditionally, parameter extraction is performed
manually by dividing the complete set of parameters into smaller subsets, each targeting different operational
regions of the device, a process that can take several days or weeks. Our approach streamlines this process
by employing derivative-free optimization to identify a good parameter set that best fits the compact model
without performing an exhaustive number of simulations. We further enhance the optimization process
to address three critical issues in device modeling by carefully choosing a loss function that focuses
on relative errors rather than absolute errors to ensure consistent performance across different orders of
magnitude, prioritizes accuracy in key operational regions above a specific threshold, and reduces sensitivity
to outliers. Furthermore, we utilize the concept of train-test split to assess the model fit and avoid overfitting.
We demonstrate the effectiveness of our approach by successfully modeling a diamond Schottky diode
with the SPICE diode model and a GaN-on-SiC HEMT with the ASM-HEMT model. For the latter, which
involves extracting 35 parameters for the ASM-HEMT DC model, we identified the best set of parameters
in under 6,000 trials. Additional examples using both devices are provided to demonstrate robustness to
outliers, showing that an excellent fit is achieved even with over 25% of the data purposely corrupted.
These examples demonstrate the practicality of our approach, highlighting the benefits of derivative-free
optimization in device modeling.

INDEX TERMS ASM-HEMT, compact model, derivative-free optimization, device modeling, diamond
Schottky diode, GaN HEMTs, parameter extraction, SPICE diode model.

I. INTRODUCTION
Semiconductor device compact models play a crucial role in
the design and development of integrated circuits and sys-
tems, serving as the bridge between physical semiconductor
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devices and electronic design automation (EDA) tools. These
models represent mathematically the electrical (and, in some
instances, thermal) behavior of semiconductor devices (i.e.,
charges and currents) such as transistors and diodes as
a function of electrical bias. Compact models maintain a
sufficient level of simplicity to be seamlessly integrated
into circuit simulators, offering faster simulation times than
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Technology Computer-Aided Design (TCAD) models while
still providing the accuracy required to deliver reliable and
valuable results for circuit designers. Before employing these
models to design circuits and systems, it is essential to
diligently extract the relevant model parameters tailored
to the chosen semiconductor process, ensuring that the
compact model can accurately reproduce the characteristics
of a specific semiconductor device. This process involves
adjusting the parameters of the compact model to align
with data from the semiconductor device, whether obtained
through experimental measurements or simulated using
TCAD tools. However, parameter extraction has become
increasingly complicated as modern compact models contain
hundreds of model parameters, which are required to model
the non-idealities of emerging Silicon (Si) devices such as
FinFETs or III-V devices such as Gallium Nitride (GaN)
high-electron-mobility transistors (HEMTs). For example,
the latest version of the Berkeley Short-Channel IGFET
Model (BSIM)-Common Multi-Gate (CMG) features over
a thousand model parameters [1], whereas the most recent
version of the Advanced SPICE Model for GaN HEMTs
(ASM-HEMT) includes more than 200model parameters [2].
Traditionally, manual fitting has been the default approach

for parameter extraction in compact models. Given the exten-
sive number of model parameters in modern compact models,
a common strategy is to divide the complete parameter
set into several smaller subsets [3]. These subsets usually
correspond to specific physical elements of the device, such
as drain/gate currents or junction capacitances. However, this
approach typically involves a series of iterative steps and can
extend over several days or weeks just to extract a single
model card. It also frequently leaves engineers uncertain
whether the resulting model card represents a near-optimal
set of parameters or if there is room for further improvement.

Another common approach to reducing manual adjustment
efforts is using gradient-based optimization methods. This
involves employing a numerical nonlinear optimizer in
conjunction with the Levenberg-Marquardt algorithm [4],
[5] to extract model parameters [6]. However, obtaining
gradient information in this context is exceptionally
challenging. When conducting actual experiments, it is
simply not possible to get gradients. Additionally, when
simulations involve TCAD or SPICE, this task becomes
very complicated. Gradient-based approaches are typically
computationally inefficient, as calculating gradients (i.e.,
determining how a small change in each parameter affects the
output) usually requires computationally intensive numerical
approximations.

Since extracting model parameters in semiconductor
devices is a complex and time-consuming task, several
approaches have been proposed due to the lack of a
universal method applicable across different semiconductor
technologies. Among the proposed solutions, a notable deep
learning approach involves training a neural network to
output the desired model parameters using the device’s
characteristics as inputs [7], [8], [9], [11], [12]. The device

characteristics (or inputs) may include data that is either
measured or simulated using TCAD, encompassing I −

V characteristics, S-parameters, or large-signal load-pull
data. While this approach is generally practical, it demands
substantial computational resources, requiring thousands of
simulations to train the neural network just to extract the
parameters of one type of device. This becomes particularly
inefficient when fitting a new type of semiconductor device
each time. The complexity of this approach is further
increased by the necessity of prior parameter extraction
experience to define the variation ranges of the model
parameters, which is essential for generating training data for
the desired device.

We propose adopting derivative-free optimization (DFO)
to address the issues above. DFO methods approximately
minimize a function only using the objective value (i.e.,
no gradients are required). They are also straightforward to
implement and more computationally efficient. The primary
advantage of our approach lies in its ability to identify a set
of model parameters that achieves a near-optimal fit with
significantly fewer simulations than would be required for a
full-grid search. This approach not only mitigates the curse
of dimensionality often encountered when considering tens
of parameters but also allows us to explore a relatively wide
range of plausible parameter values.

To further enhance the optimization process, we carefully
select a loss function that addresses three key issues:
1) ensuring consistent model performance across different
orders of magnitude by focusing on relative errors rather
than absolute errors; 2) guiding the optimization process to
prioritize regions of particular interest while deprioritizing
less critical regions of operation; and 3) reducing sensitivity
to outliers and measurement errors. Moreover, we utilize
a standard model assessment method (train/test split) used
in Statistics and machine learning (ML) to judge the fit of
our extracted model [13]. This method is unlike traditional
approaches in devicemodeling that fits themodel to the entire
dataset, potentially leading to overfitting.

The remaining paper is structured as follows: Section II
formulates the problem we are trying to solve (i.e., model
parameter extraction) as an optimization problem in a more
general form and introduces the DFO framework we used in
the present work. Section III describes our proposed approach
and the loss function we chose to tackle this problem. It also
includes a straightforward example of fitting a simple two-
terminal device, specifically a diamond Schottky diode,
to clearly outline and effectively demonstrate the issues we
are addressing. Section IV presents the modeling of a 150-nm
gate length (LG) GaN-on-SiC HEMT using the ASM-HEMT
DCmodel, a task that involves extracting more than 30 model
parameters simultaneously. Lastly, Section V concludes this
article.

II. DFO FOR MODEL PARAMETER EXTRACTION
In this work, we focus on extracting semiconductor compact
model parameters. This process involves identifying a set of
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parameter values that precisely replicate a device’s charac-
teristics, which may derive from various experiments on a
fabricated device or TCAD simulations. These characteristics
can be static (e.g., I − V characteristics or S-parameters),
dynamic (e.g., dynamic load-lines), or a combination of both
(i.e., heterogeneous).

In the context of the present work, each experiment
involves collecting one or more measurements from the
device. Considering k measurements, each yi corresponds
to a distinct measurement obtained from an experiment.
For example, in the case of a diode, a single experiment
might involve measuring multiple points on the I -V curve,
where each measurement captures the current Ii for a given
voltage Vi. Collectively, these measurements represent the
I -V characteristics of the diode. The output of the compact
model is denoted by ŷi and parameterized by a p-vector
θ = (θ1, . . . , θp), where θ is a vector of length p (i.e., θ is
a vector with p parameters), and lies within a subset 2 ⊆ Rp

that represents the selected model parameters from a feasible
set. Each model parameter in θ has a range of plausible
values. In some cases, it is more convenient to work with
the logarithm of the parameter’s range (e.g., the saturation
current in a diode). We seek to solve the optimization
problem:

minimize
1
k

k∑
i=1

L(ŷi, yi)

subject to θ ∈ 2, (1)

where L(ŷi, yi) is the loss function we want to minimize over
the model parameters θ . Here, θ represents the variable in
the optimization problem, ŷi is the predicted or simulated
value obtained from the compact model, and yi is the true
value that has been experimentally measured or simulated
using TCAD.

The complexity of solving this optimization problem is
that the model’s output is not given by simple expressions
but rather by running a SPICE simulation. This implies
that obtaining gradient information is generally challenging
and prohibitively expensive. This difficulty is compounded
when considering tens of model parameters, which turns this
task into a computationally intensive endeavor. This is a
classic case of the curse of dimensionality, where exploring
every potential combination of parameter values becomes
impractically costly in terms of time and computational
resources. In such scenarios, DFO excels at finding near-
optimal solutions as this approach does not require gradients
and directs the optimization effort towards promising zones
of the parameter space that are more likely to yield the most
accurate model fits. This significantly reduces the compu-
tational overhead by eliminating the need for calculating
gradients and decreasing the number of simulations required
to obtain a good fit [14].

DFOmethods have also shown promise inML, particularly
in hyperparameter tuning. In the context of ML, hyperparam-
eters are settings or configurations that control the behavior of

a machine learning algorithm, such as the learning rate or the
number of hidden layers in a neural network. DFO methods
are effective at identifying a good set of hyperparameters
that significantly enhance ML model performance [15], [16],
[17], [18].

Two drawbacks of DFO methods are their reduced effec-
tiveness when dealing with hundreds of parameters and their
inability to guarantee the attainment of a global solution [19].
This is primarily due to the curse of dimensionality, which
makes it challenging to sample points close to the global
optimum unless a large number of samples are taken.
Additionally, DFO methods employ stochastic or heuristic
sampling methods to explore the design space, which could
lead to settling on local optima without guaranteeing a
global solution. Nevertheless, the problem we are addressing
is in the order of tens of parameters and results in a
nearly optimal fit with far fewer simulations than what
would be required by a full-grid search. This represents a
clear advantage over the deep learning approaches used in
previous works by [7], [8], [9], [10], and [12], which require
thousands of simulations to generate their training and test
datasets.

It is also worth noting that the problem we are trying
to solve is analogous to calibrating a TCAD model, which
involves matching experimental data with the simulated
results from a TCAD device simulator by adjusting TCAD
model parameters. Given that TCAD simulations are gen-
erally more expensive and time-consuming, our proposed
approach is particularly advantageous. In such scenarios,
DFO methods excel at finding a nearly optimal fit with far
fewer simulations than a full-grid search, which is a clear
advantage over manually tuning TCAD model parameters,
which can take weeks or, in some instances, months to
achieve a good fit.

A. DERIVATIVE-FREE OPTIMIZATION FRAMEWORK
We resort to open-source hyperparameter optimization
frameworks in the present work since they employ DFO
methods. Some of them include Autotune [15], HOLA [16],
Hyperopt [17], and Optuna [18], to name a few. A primary
advantage of these frameworks is their streamlined appli-
cation programming interface (API), which enables users
to configure a parameter search space with minimal coding
effort. This allows for quick adjustments to the loss function
or to constraints related to model parameters. The choice of
optimization framework is entirely up to the user, as each
framework is relatively similar and shares common features.
In this work, we employed Optuna and its default sampler, the
Tree-structured Parzen Estimator (TPE), for model fitting due
to its capability to efficiently explore large parameter spaces.
Under these settings, Optuna has demonstrated effectiveness
in prior studies, navigating spaces that encompass up to
34 parameters [18], which aligns with the complexity of our
task.

Most DFO frameworks follow a structured approach
to improve model performance through parameter tuning.
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Initially, they use a sampling method to explore the parameter
space and identify promising regions for optimal settings.
As the process advances, these frameworks adopt refined
sampling strategies, focusing on the top 20-30% of param-
eters that have shown the best performance. This strategic
refinement enables the algorithm to gradually learn and
adapt to the distribution of the most effective parameter
values. As more data points are accumulated, the accuracy
of identifying a superior set of parameters increases, resulting
in enhanced model performance. In particular, Optuna allows
the user to choose among various sampling strategies, with
the default option being the TPE sampler. This sampling
approach uses past outcomes to predict which parameter
settings might lead to better outcomes by employing two
Gaussian Mixture Models: one looks at a set of parameter
values with the best results and the other looks at the
remaining parameters. The TPE algorithm then decides
whether to try new and untested parameter values or use
the ones already shown to work well. By balancing the
search for new parameters with known effective values, this
strategy enhances the likelihood of finding the best set of
parameters [18]. One of the limitations of the TPE algorithm
is that its performance can be influenced by the quality of the
initial random sampling used to initialize the algorithm [20].
Therefore, it is suggested performing multiple independent
TPE runs. Despite this limitation, the algorithm consistently
delivers strong performance across various independent runs.
Interested readers may refer to [20] for a comprehensive
tutorial on TPE.

FIGURE 1. (a) Proposed approach to extract DC model parameters using
our derivative-free optimization framework, and (b) Manual approach for
extracting DC model parameters in the ASM-HEMT model
(after [21]).

III. PROPOSED APPROACH FOR PARAMETER
EXTRACTION
In our proposed approach, we begin by setting the device
dimensions, if necessary. Following this initial step, we define
the loss functions for one or more experiments along with
any choice of hyperparameters. We also set a plausible wide
range of values for each model parameter, with some ranges
in the log scale, if appropriate. Subsequently, we partition
the data of each experiment, allocating 80% for training
and the remaining 20% for testing. After completing these
steps, we begin the optimization process by using Optuna
as the hyperparameter optimization (HPO) framework, along
with the TPE sampling strategy. Within the HPO framework,
a set of parameters is sent to a simulator (in the context
of this work, that would be Keysight Device Modeling IC-
CAP [22]). The loss function is evaluated based on the
simulator’s output for the provided set of model parameters,
and an error is returned. Using this information, the HPO
framework makes an informed decision to choose the
parameters of the subsequent trial. This procedure is repeated
for a predetermined number of trials. The model extraction
is then judged using the data allocated for testing. If the
performance is not satisfactory, we can try a different choice
of model, loss function, or hyperparameters to check if
any of these settings are more suitable than others. Once
we have established the choice of model, loss function,
and hyperparameters, we retrain on the entire dataset. This
time, however, we further tighten the upper and lower
limits on the parameter ranges to be closer to the best set
of model parameters identified during the train/test split.
We also initiate the optimization process using the best set of
parameters we have previously found. Re-training generally
requires fewer trials since we already have prior knowledge
of where a good set of model parameters can be found. The
reasoning behind re-training on the complete dataset is to
maximize the model’s exposure to all available data. This
allows the model to learn from the full spectrum of device
behaviors and characteristics, which were withheld during
the testing phase. It is especially beneficial in semiconductor
modeling, where data may be limited, as it can significantly
enhance the model’s accuracy. This step can also be done
when data from a new experiment becomes available from
another device fabrication run (which can alter the device
characteristics due to process variations) or when the foundry
improves the device performance. The steps of our extraction
process are summarized in Fig. 1(a). Furthermore, our
proposed approach is compared against the conventional
extraction flow of the ASM-HEMT model, as shown in
Fig. 1(b), which consists of several manual iterative steps,
as outlined in [21].

A. SELECTION OF LOSS FUNCTION
In device modeling, selecting the appropriate loss function
is critical to obtaining a reasonable percent error over the
range of interest, ensuring a good model fit. Our proposed
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loss function is chosen carefully to address three significant
issues in device modeling. We start with the absolute error
(or L1 loss) function as a foundation and then incrementally
enhance it to tackle these issues comprehensively, as given
by:

L1(ŷi, yi) = |ŷi − yi|. (2)

First, we want to ensure consistent model performance across
different orders of magnitude. For example, we aim to fit the
model across a wide range of current values, ranging from
small to large (e.g., 10 µA to 100 mA). To achieve this,
we perform a log transformation, shifting the focus of the loss
function from absolute errors to relative errors. This provides
a uniform assessment across different scales of data, resulting
in the following equation:

Llog(ŷi, yi) = | log(ŷi) − log(yi)|. (3)

Second, we are interested in fitting our model in key

FIGURE 2. Transformation of the loss function that effectively excludes
any current values below a threshold ϵ from the fitting process. The left
y-axis (red) represents the current values without the transformation,
whereas the right y-axis (blue) represents the current values after the
transformation.

operational regions of the device. This implies that we are not
interested in fitting the model in less critical regions below
some threshold, as spending effort to fit a model to irrelevant
values or below the experimental or simulation noise floor
will lead to a much worse model. To effectively address this,
we transform the loss function once more as follows:

u(ŷi, yi) =

∣∣∣∣log(
1 +

ŷi
ϵi

)
− log

(
1 +

yi
ϵi

)∣∣∣∣ . (4)

In this second transformation, the hyperparameter ϵi denotes
a threshold below which the values of ŷ and y are considered
negligible. This can be exemplified in Fig. 2 by considering
the I − V characteristics of a diamond Schottky diode.
In Fig. 2, the current values on the left y-axis are represented
linearly without the transformation, whereas the right y-
axis represents the current values after the transformation.
We observe that below the threshold ϵi, any current values
below 10−10 A are effectively excluded from the fitting
process (i.e., their contribution is close to zero).

Lastly, we would like a fitting method that is robust to
outliers and measurement errors. This is because, in both

measurements and simulations, there are some experiments
that are simply corrupted, which can occur from hitting the
instrument compliance at random or when poor accuracy
is obtained at higher frequencies, such as in S-parameter
measurements. If proper care is not taken, outliers and
measurement errors can significantly destroy the quality
of the fit. Preferably, it is desired to identify potential
outliers and reduce their impact on the fitting process rather
than completely excluding them. This can be addressed by
incorporating a clipped (non-convex) penalty function on top
of (4), which is represented mathematically as

Lclip(ŷi, yi) =

{
u2 if |u| ≤ δi,

δ2i if |u| > δi.
(5)

Here, u is the transformed error term from (4), which
addresses the previously discussed issues. The hyperparam-
eter δi is a predefined threshold that sets the maximum
allowable error. This implies that the penalty function puts
a fixed cap on |u| larger than δi, regardless of size, i.e.,
we disregard any |u| exceeding δi, treating them as outliers
or flawed data [23]. Furthermore, to maintain consistency
with this methodology, we select constant values for the
hyperparameters ϵi and δi for each experiment. Consequently,
unless stated otherwise, the loss function defined in (5) will
be the primary loss function used for fitting throughout the
remainder of this work. It incorporates the enhancements
and transformations previously detailed to ensure robust and
accurate model fitting across various regions of operation.

FIGURE 3. Error⋆ progression across 750 trials, illustrating train and test
curves. In this example, 35 model parameters were adjusted to fit
35 measurements, with 80% of the data allocated for training and the
remaining for testing.

B. IMPORTANCE OF MODEL ASSESSMENT
When performing model parameter extraction with tens of
model parameters, the concept of model assessment becomes
essential to ensure the efficacy of our extracted model.
This principle is straightforward: the compact model should
perform reliably within SPICE simulations under various
voltages, currents, and conditions that may differ from our
original measurements used to extract the model. We aim
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for the model to excel in scenarios it has not previously
encountered. This is a common problem in Statistics andML,
where the objective is not to match the data used to train these
models but to accurately predict new, unseen data [13].
A simple example illustrating the importance of model

assessment can be seen in scenarios where we have
35 model parameters that need to be adjusted based only on
35 measurements. Here, we will use the ASM-HEMT model
and 35 ID −VD measurements of a 150-nm gate length GaN-
on-SiC HEMT, selected randomly. We then split the data
into 80% training and the remaining 20% for testing. The
results show that the model does an excellent job fitting the
training data as the minimum error observed to date (Error⋆)
keeps decreasing as the number of trials increases. However,
when evaluated against the testing data, the Error⋆ reaches a
plateau relatively early. This indicates that the model, while
improving on the training dataset withmore trials, shows little
to no improvement on the testing dataset after 30 trials. These
results are summarized in Fig. 3.
For these reasons, we adopted the concept of model

assessment to judge our model’s fit. In all of the fitting
examples presented later in the text, we have performed this
approach by splitting the data from each experiment into
80% for training and the remaining 20% for testing. The
results also show that in most cases, the test curve for the
minimum error observed to date is lower than the training
curve. As such, this implies that our model generalizes well
even for data that it has not seen.

C. DIAMOND SCHOTTKY DIODE FITTING EXAMPLE
Having established the parameter extraction approach and
the proposed loss function, we initially focus on applying
these methods to a simple two-terminal device, specifically
a diamond Schottky diode, using the SPICE Diode Model
[24]. This demonstration aims to illustrate the effectiveness
of our approach in a straightforward setting before tackling
the complexities of a more sophisticated compact model.
The two-terminal device we are considering is a diamond
pseudo-vertical Schottky barrier diode with a diameter of
100 µm. Interested readers may refer to [25] for a more
in-depth discussion on the characteristics and performance
of these devices, where additional insights into diamond
Schottky diodes are presented. The diamond Schottky diode
was fabricated on a single crystalline diamond structure
consisting of MPCVD-grown p-type epilayers on a type Ib
(100) diamond substrate. Additional details of the fabrication
and structure of the Schottky diode can be found in [26],
where it is referred to as Sample A. Additionally, Mo was
used as the Schottky contact metal for the diode measured in
this study.

The SPICE diode model is fitted by adjusting three
parameters: n (ideality factor), IS (saturation current), and RS
(series resistance). The parameter ranges for the SPICE diode
model used during the train/test split are provided in Table 1.
The model was trained with hyperparameters set to ϵ = 10−10

FIGURE 4. Error⋆ progression across 250 trials, illustrating the train and
test curves, along with the error curve when retraining on the entire
dataset, in the modeling of the diamond Schottky diode. The loss function
employed hyperparameter values of ϵ = 10−10 and δ =

√
0.15.

TABLE 1. Parameter ranges in the SPICE diode model.

and δ =
√
0.15. Having established the loss function and

the hyperparameter values, the model was then re-trained for
50 trials to further adjust the model parameters on the entire
dataset, starting from the best parameters found during the
train/test split. The minimum error observed to date is plotted
in Fig. 4 as a function of the number of trials for both train and
test curves, along with the error curve when retraining on the
entire dataset. The I −V characteristics of the simulated data
against measurements are displayed in Fig. 5. The fit was then
evaluated by considering all current values > 10−10 A using
the loss function defined in (5), yielding an error of 0.010.

FIGURE 5. Measured and simulated I − V characteristics of a diamond
Schottky diode. The voltage sweep ranged from 0.48 to 2 V in 40 mV
steps, resulting in 39 measurements.

To showcase the efficacy of our proposed loss function
against measurement outliers, we intentionally corrupt 50%
of the diode’s measurements (in practice, this would not
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occur, but our goal with this example is to show that our fitting
is resilient to measurement anomalies). We consider the loss
function defined in (5), which is robust to outliers, as well as
a separate non-robust loss function given by

L2,u(ŷi, yi) =

∣∣∣∣log(
1 +

ŷi
ϵi

)
− log

(
1 +

yi
ϵi

)∣∣∣∣2 . (6)

This loss function is similar to (5), but without the addition
of the penalty function. Both loss functions are then
used to repeat the model extraction procedure with the
same hyperparameter values and settings as the previous
diode example without data corruption. The minimum error
observed to date is plotted in Fig. 6(a) as a function of the
number of trials for both train and test curves, along with
the error curve when re-training on the entire dataset, for
the robust loss function given by (5). Similarly, Fig. 6(b)
showcases the train and test curves, along with the error
curve when re-training on the entire dataset, for the non-
robust function without the penalty function as defined in (6).
The I − V characteristics of the measured (corrupted) and
simulated data using the robust and non-robust loss functions
are displayed in Fig. 7. Despite the data corruption, the robust
loss function accurately fitted themodel to themeasurements,
showing an error of 0.011 for currents above 10−10 A when
compared against the non-corrupted data. Conversely, using
the non-robust loss function resulted in a poor fit since it
was heavily affected by outliers, yielding an error of 0.756
for currents > 10−10 A when compared against the non-
corrupted data.

IV. 150-nm GaN-ON-SiC HEMT FITTING EXAMPLE
After successfully modeling a diode using our proposed
approach for parameter extraction, we then shifted our focus
to fitting measured DC data of a GaN-on-SiC HEMT to the
ASM-HEMT DC model [2]. For an in-depth description of
the broader implications and technical details of RF GaN
HEMT devices and their significance in 5G and beyond-
5G wireless communications, interested readers may refer
to [27]. The GaN-on-SiC HEMT device we are modeling
features a 150-nm gate length and a gate width (WG) of 4×50
µm.We have previously reported other modeling approaches
utilizing the same GaN process in [28] and [29]. In this
example, we focus on the ASM-HEMT model, an industry-
standard compact model for GaN HEMTs.

The ASM-HEMT model effectively captures a range
of device non-idealities, including self-heating and tem-
perature dependence, mobility degradation, drain-induced-
barrier-lowering (DIBL), velocity saturation, and trapping
effects [2]. The parameter extraction process for this model
begins with extracting the DC model parameters, which
are fundamental for determining the device’s operation as a
whole. Considering its importance, it is crucial to pay close
attention during this initial stage to obtain an overall good
model fitting. The conventional approach to extracting the
ASM- HEMT DC model (as described in [21] and [30])
considers splitting the set of DC model parameters into

FIGURE 6. Error⋆ progression over 250 trials, illustrating the train and test
curves, along with the error curve when retraining on the entire dataset,
in the modeling of the diamond Schottky diode for the (a) robust and (b)
non-robust loss functions, with 50% of the data being corrupted. A value
of ϵ = 10−10 was used for both loss functions, while a value of δ =

√
0.15

was employed for the robust loss function.

smaller subsets to fit certain regions of operation in the I −V
plane through a series of iterative steps. On the other hand,
our proposed DFO approach allows us to simultaneously
consider 35 relevant parameters in the DC model across a
relatively wide range of plausible parameter values and fit
them to measured I − V characteristics in a straightforward
manner.

FIGURE 7. Measured and simulated I − V characteristics of a diamond
Schottky diode using both robust and non-robust loss functions. The
voltage sweep ranged from 0.48 to 2 V in 40 mV steps, totaling
39 measurements. Here, 50% of the measurements were randomly
corrupted to evaluate the performance of the loss functions.
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TABLE 2. Parameter ranges in the ASM-HEMT model.

In the present work, we used version 101.4.0 of the ASM-
HEMT model [21]. To account for the reverse gate leakage
current in GaN HEMTs caused by the Poole-Frenkel effect,
we set the GATEMOD parameter to 2. This setting enables
themodel formulations to represent the Poole-Frenkel reverse
current. Moreover, the self-heating model was incorporated,
whereas the trapping and field-plate models were not. For the
device’s resistance characteristics, the bias-dependent access
region resistance and source contact resistance were modeled
by setting RDSMOD to 1. A sophisticated gate resistance
model was also enabled by setting RGATEMOD to 2 [21].
For our optimization process, we selected 35 model

parameters to model the DC characteristics of a GaN-on-SiC
HEMT. These 35 model parameters are crucial to modeling
the GaN HEMT’s DC characteristics. It includes the basic
core model parameters, which consist of 14 parameters:
VOFF (cut-off voltage), U0 (low-field mobility), UA (mobil-
ity degradation coefficient), UB (second-order mobility
degradation coefficient), VSAT (saturation velocity), DELTA
(effective drain voltage exponent), LAMBDA (channel
length modulation coefficient), ETA0 (DIBL parameter),
VDSCALE (DIBL scaling drain-source voltage), THESAT

(velocity saturation parameter), NFACTOR (subthreshold
slope parameter), CDSCD (subthreshold slope change due to
drain voltage), IMIN (minimum drain current), and GDSMIN
(shunt conductance across the channel and field plates).

FIGURE 8. Error⋆ progression across 7,500 trials, illustrating the train and
test curves, along with the error curve when retraining on the entire
dataset, in the modeling of the GaN-on-SiC HEMT. The loss function
utilized hyperparameter values of ϵ = 10−4 for ID and ϵ = 10−3 for gm,
with a value of δ =

√
0.15 used for both ID and gm.

The parameters of the access region resistance model
were also taken into account. In GaN HEMTs, access region
resistances are significant because the distances between
the gate edge and the source and drain edges can be
a few micrometers, which can be modeled as a bias-
dependent resistance [21]. Specifically, the access region
resistance model parameters include VSATACCS (access
region saturation velocity), NS0ACCD (2DEG density in
the drain access region), NS0ACCS (2DEG density in the
source access region), U0ACCD (drain side access region
mobility), U0ACCS (source side access region mobility),
MEXPACCD (drain access region resistance exponent),
MEXPACCS (source access region resistance exponent),
RDC (drain contact resistance), and RSC (source contact
resistance).

Self-heating parameters were included to account for self-
heating effects in the transistor, as observed in I − V
characteristics. These parameters consist of RTH0 (thermal
resistance), UTE (temperature dependence of mobility),
UTED (drain access region mobility temperature depen-
dence), and UTES (source access region mobility tempera-
ture dependence).

Lastly, the gate current model parameters were included
as they directly affect the reverse leakage current of the
transistor, specifically, IGDDIO (gate-drain junction diode
saturation current), IGSDIO (gate-source junction diode
saturation current), NJGD (gate-drain junction diode current
ideality factor), NJGS (gate-source junction diode current
ideality factor), RIGDDIO (gate-drain junction reverse diode
current multiplier), RIGSDIO (gate-source junction reverse
diode current multiplier), RNJGD (reverse bias slope factor
of the gate-drain junction diode current), and RNJGS (reverse
bias slope factor of the gate-source junction diode current).
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FIGURE 9. Measured and simulated (a) ID and (b) gm characteristics of
the GaN HEMT. For (a), the drain voltage VD was swept from 0 to 20 V
with a step size of 100 mV, and VG was swept from −2.9 to −0.1 V with a
step size of 200 mV. For (b), the gate voltage VG was swept from −3 to
−0.5 V with a step size of 100 mV, and the drain voltage VD was swept
from 0.1 to 18.1 V with a step size of 2 V.

We followed the steps outlined in our proposed approach,
as shown in Fig. 1(a), to fit the ASM-HEMTDCmodel to the
measured device’s drain current (ID) and transconductance
(gm) characteristics as functions of the gate voltage (VG) and
drain voltage (VD). The voltages of the two experiments were
swept from 0 to 20 V (1VD = 100 mV) and −3 to −0.1 V
(1VG = 100 mV) for VD and VG, respectively. This results in
a total of 6,030measurements for ID and 6,030measurements
for gm. The range of the model parameters is chosen to cover
a wide range of plausible values, except RTH0, which was
extracted utilizing the technique outlined in [31], and VOFF,
which can be extracted with relative ease. The parameter
ranges for the ASM- HEMT model used during the train/test
split are provided in Table 2. Given that we are dealing with
a multi-objective optimization problem, as it involves two
experiments (i.e., ID and gm), we apply a simple scalarizer to
transform the multi-objective problem into a single-objective
problem. This weighted sum scalarizer is given by

φ(u) = wT v, (7)

where w ∈ Rn is a set of weights, with wi ≥ 0, and vi are the
various loss functions or objectives.

After performing a test/train split, the model was initially
trained for 10,000 trials using hyperparameters set to δ =
√
0.15, ϵID = 10−4, and ϵgm = 10−3, where ϵID

and ϵgm correspond to hyperparameter ϵ for ID and gm,

FIGURE 10. Error⋆ progression across 4,000 trials, illustrating the train
and test curves, along with the error curve when retraining on the entire
dataset, in the modeling of the GaN-on-SiC HEMT for the (a) robust and
(b) non-robust loss functions, with 25% of the data being corrupted. Both
loss functions utilized hyperparameter values of ϵ = 10−4 for ID and
ϵ = 10−3 for gm, while a value of δ =

√
0.15 was employed for the robust

loss function in both ID and gm.

respectively. The weights were set to w1 = 0.50 and
w2 = 0.50, representing the weighted sums of the errors
for ID and gm, respectively. Having established the loss
function and its corresponding hyperparameter values, the
model was re-trained for an additional 2,500 trials on the
entire dataset, starting with the best parameters identified
during the train/test split step. The minimum error observed
to date is plotted in Fig. 8 as a function of the number of
trials, showing the train and test curves, along with the error
curve when retraining on the entire dataset. We note that the
best set of model parameters was found in under 6,000 trials,
resulting in an excellent fit with an error of 1.25e-3 for current
values> 10−4 A and an error of 2.17e-3 for transconductance
values > 10−3 S. The measured and simulated ID and gm
characteristics are shown in Fig. 9.
As in the diode example, we assess robustness by

intentionally corrupting 25% of the measurements randomly.
In this instance, we introduce outliers by transforming the
DC characteristics from the linear domain to the logarithmic
domain, corrupting the data, and then reverting it to the
linear domain. These outliers follow a normal (Gaussian)
distribution with a mean (µ) of 0 and a standard deviation (σ )
of 10. We follow the same procedure as in the diode example,
where we use the loss functions from (5) and (6) to test
their robustness against measurement outliers. The minimum
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FIGURE 11. Measured and simulated ID characteristics of the GaN HEMT
in the (a) log and (b) linear regimes using both robust and non-robust
loss functions. The drain voltage VD was swept from 0 to 20 V with a step
size of 100 mV, and the gate voltage VG was swept from −2.9 to −0.1 V
with a step size of 200 mV. Here, 25% of the measurements were
randomly corrupted based on a normal distribution (µ = 0 and σ = 10).

error observed to date for both loss functions is plotted in
Figs. 10(a) and 10(b) as a function of the number of trials.
This includes the train and test curves and the error curve
when re-training on the entire dataset (for 2,500 trials). The
logarithmic and linear representations of the measured and
simulated ID characteristics are displayed in Fig. 11. Once
again, this shows that our method is robust against outliers.
By using the robust loss function defined in (5), our extracted
model achieved an error of 1.27e-3 for currents > 10−4 A
and an error of 2.53e-3 for transconductance values> 10−3 S
when compared against the non-corrupted data. On the other
hand, the non-robust loss function, as defined in (6), resulted
in a poor fit, with an error of 0.325 for currents > 10−4 A
and an error of 0.238 for transconductance values > 10−3 S
when compared against the non-corrupted data.

V. CONCLUSION
In this paper, we have addressed the problem ofmodel param-
eter extraction via derivative-free optimization. We propose
using a loss function that ensures consistent model perfor-
mance across different orders of magnitude, prioritizes accu-
racy above a specific measurement or simulation threshold,
and remains robust against outliers and measurement errors.
To demonstrate how we address these three critical issues,
we consider two examples, beginning with the modeling
of a diamond Schottky diode. Our focus is then shifted

to extracting the ASM-HEMT DC model in a 150-nm
GaN-on-SiC HEMT by simultaneously extracting 35 model
parameters. Our proposed approach yields good results in a
fraction of the simulations required by other approaches in
the literature. For instance, the work in [8] demands 120,000
simulation runs for training and testing while considering
only 10 ASM-HEMT model parameters. This deep learning
approach takes a significant amount of time to gather the
required training and testing data and could require an even
more substantial number of simulations if additional model
parameters are considered. On the other hand, our approach
achieved a good fit in a fraction of that amount (i.e., < 5%),
demonstrating the usefulness of DFO in device modeling.

The present work opens up several avenues for future
research. One potential direction is to explore the parameter
extraction of compact models beyond GaN, particularly
considering models that require adjusting more than 50
parameters (e.g., BSIM-CMG). Although DFO methods
typically become less efficient as the number of parameters
increases, the limit of the exact number of parameters
in the context of compact model parameter extraction is
yet to be established, as this is an emerging area of
study. A logical pathway for further investigation would
be to explore other derivative-free optimization algorithms
beyond TPE and systematically quantify their performance
in this context. Comparing the performance of various
derivative-free optimization algorithms could provide deeper
insights and potentially identify more effective approaches
for handling high-dimensional parameter spaces. Another
promising pathway within the scope of this research is
calibrating TCADmodels using our proposed approach. This
could be highly beneficial for TCAD engineers, as such
calibrations generally require weeks or months due to the
long simulation times. Lastly, to foster further exploration of
our approach within the device modeling community, we are
making our code open-source. It is implemented to support
both commercial and fully open-source tools and is available
in our GitHub repository.1
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