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ABSTRACT In this paper, we address the problem of compact model parameter extraction to simultaneously
extract tens of parameters via derivative-free optimization. Traditionally, parameter extraction is performed
manually by dividing the complete set of parameters into smaller subsets, each targeting different operational
regions of the device, a process that can take several days or even weeks. Our approach streamlines this
process by employing derivative-free optimization to identify a good parameter set that best fits the compact
model without performing an exhaustive number of simulations.We further enhance the optimization process
to address critical issues in device modeling by carefully choosing a loss function that evaluates model
performance consistently across varying magnitudes by focusing on relative errors (as opposed to absolute
errors), prioritizing accuracy in key operational regions of the device above a certain threshold, and reducing
sensitivity to outliers. Furthermore, we utilize the concept of train-test split to assess the model fit and avoid
overfitting. This is done by fitting 80% of the data and testing the model efficacy with the remaining 20%.
We demonstrate the effectiveness of our methodology by successfully modeling two semiconductor devices:
a diamond Schottky diode and a GaN-on-SiC HEMT, with the latter involving the ASM-HEMT DC model,
which requires simultaneously extracting 35 model parameters to fit the model to the measured data. These
examples demonstrate the effectiveness of our approach and showcase the practical benefits of derivative-
free optimization in device modeling.

INDEX TERMS ASM-HEMT, Compact Model, Derivative-Free Optimization, Device Modeling, Diamond
Schottky Diode, GaN HEMTs, Parameter Extraction, SPICE Diode Model

I. INTRODUCTION

SEMICONDUCTOR device compact models play a cru-
cial role in the design and development of integrated

circuits and systems, serving as the bridge between phys-
ical semiconductor devices and electronic design automa-
tion (EDA) tools. These models represent mathematically
the electrical (and, in some instances, thermal) behavior of
semiconductor devices (i.e., charges and currents) such as
transistors and diodes as a function of electrical bias. Before
employing these models to design circuits and systems, it is
essential to diligently extract the relevant model parameters
tailored to the chosen semiconductor process, ensuring that

the compact model can accurately reproduce the character-
istics of a specific semiconductor device. This process in-
volves adjusting the parameters of the compact model to align
with data from the semiconductor device, whether obtained
through experimental measurements or simulated using Tech-
nology Computer Aided Design (TCAD) tools. However,
parameter extraction has become increasingly complicated as
modern compact models contain hundreds of model parame-
ters, which are required to model the non-idealities of emerg-
ing Silicon (Si) devices such as FinFETs or III-V devices
such as Gallium Nitride (GaN) high-electron-mobility tran-
sistors (HEMTs). For example, the latest version of the Berke-
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ley Short-Channel IGFET Model (BSIM)-Common Multi-
Gate (CMG) features over a thousand model parameters [1],
whereas the most recent version of the Advanced SPICE
Model for GaN HEMTs (ASM-HEMT) includes more than
200 model parameters [2].

Traditionally, manual fitting has been the default approach
for parameter extraction in compact models. Given the exten-
sive number of model parameters in modern compact models,
a common strategy is to divide the complete parameter set into
several smaller subsets [3]. These subsets usually correspond
to specific physical elements of the device, such as drain/gate
currents or junction capacitances. However, this approach
typically involves a series of iterative steps and can extend
over several days or weeks just to extract a single model
card. It also frequently leaves engineers uncertain whether
the resulting model card represents a near-optimal set of
parameters or if there is room for further improvement.

Another common approach to reducing manual adjustment
efforts is using gradient-based optimization methods. This
involves employing a numerical nonlinear optimizer in con-
junction with the Levenberg–Marquardt algorithm [4], [5] to
extract model parameters [6]. However, obtaining gradient in-
formation in this context is exceptionally challenging. When
conducting actual experiments, it is simply not possible to
get gradients. Additionally, when simulations involve TCAD
or SPICE, this task becomes very complicated. Gradient-
based approaches are typically computationally inefficient, as
calculating gradients (i.e., determining how a small change in
each parameter affects the output) usually requires prohibitive
numerical approximations.

Since extracting model parameters in semiconductor de-
vices is a complex and time-consuming task, several ap-
proaches have been proposed due to the lack of a universal
method applicable across different semiconductor technolo-
gies. Among the proposed solutions, a notable deep learning
approach involves training a neural network to output the
desired model parameters using the device’s characteristics
as inputs [7]–[12]. The device characteristics (or inputs) may
include data that is eithermeasured or simulated using TCAD,
encompassing I − V characteristics, S-parameters, or large-
signal load-pull data. While this approach is generally ef-
fective, it demands substantial computational resources, re-
quiring thousands of simulations to train the neural network
just to extract the parameters of one type of device. This
becomes particularly inefficient when fitting a new type of
semiconductor device each time. The complexity of this ap-
proach is further increased by the necessity of prior parameter
extraction experience to define the variation ranges of the
model parameters, which is essential for generating training
data for the desired device.

We propose adopting derivative-free optimization (DFO)
to address the issues above. DFO methods approximately
minimize a function only using the objective value (i.e.,
no gradients are required). They are also straightforward to
implement and more computationally efficient. The primary
advantage of our approach lies in its ability to identify a set

of model parameters that achieves a near-optimal fit with
significantly fewer simulations than would be required for a
full-grid search. This approach not only mitigates the curse
of dimensionality often encountered when considering tens
of parameters but also allows us to explore a relatively wide
range of plausible parameter values.
To further enhance the optimization process, we carefully

select a loss function that addresses three key issues: 1) en-
suring model performance consistently across varying mag-
nitudes by focusing on relative errors, as opposed to absolute
errors; 2) guiding the optimization process to prioritize re-
gions of particular interest while deprioritizing less critical
regions of operation; and 3) reducing sensitivity to outliers
and measurement errors. Moreover, we utilize a standard
model assessment method (train/test split) used in Statistics
and machine learning (ML) to judge the fit of our extracted
model. This method is unlike traditional approaches in device
modeling that fit the model to the entire dataset, potentially
leading to overfitting.
The remaining paper is structured as follows: Section II

formulates the problem we are trying to solve (i.e., model
parameter extraction) as an optimization problem in a more
general form and introduces the DFO framework we used in
the present work. Section III describes our proposed approach
and the loss function we chose to tackle this problem. It also
includes a straightforward example of fitting a simple two-
terminal device, specifically a diamond Schottky diode, to
clearly outline and effectively demonstrate the issues we are
addressing. Section IV presents the modeling of a 150-nm
gate length (LG) GaN-on-SiC HEMT using the ASM-HEMT
DCmodel, a task that involves extracting more than 30 model
parameters simultaneously. Lastly, Section V concludes this
article.

II. DFO FOR MODEL PARAMETER EXTRACTION
In this work, we focus on extracting semiconductor com-
pact model parameters. This process involves identifying a
set of parameter values that precisely replicate a device’s
characteristics, which may derive from various experiments
on a fabricated device or from TCAD simulations. These
characteristics can be static (e.g., I − V characteristics or S-
parameters), dynamic (e.g., dynamic load-lines), or a combi-
nation of both (i.e., heterogeneous).
In the context of the present work, each experiment in-

volves collecting one or more measurements from the device.
Considering k measurements, each yi corresponds to a distinct
measurement obtained from an experiment. For example,
in the case of a diode, a single experiment might involve
measuring multiple points on the I -V curve, where each mea-
surement captures the current Ii for a given voltage Vi. Collec-
tively, these measurements represent the I -V characteristics
of the diode. The output of the compact model is denoted by
ŷi and parameterized by a p-vector θ = (θ1, . . . , θp), where θ
is within a subset Θ ∈ Rp that represents the selected model
parameters from a feasible set. Each model parameter in θ
has a range of plausible values. In some cases, it is more
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convenient to work with the logarithm of the parameter’s
range (e.g., the saturation current in a diode).We seek to solve
the optimization problem:

minimize
1

k

k∑
i=1

L(ŷi, yi)

subject to θ ∈ Θ,

(1)

where L(ŷ, y) is the loss function we want to minimize over
the model parameters θ. Here, θ represents the variable in the
optimization problem, ŷ is the predicted or simulated value
obtained from the compact model, and y is the true value that
has been experimentally measured or simulated using TCAD.

The complexity of solving this optimization problem is
that the model’s output is not given by simple expressions
but rather by running a SPICE simulation. This implies that
obtaining gradient information is generally challenging and
prohibitively expensive. This difficulty is compounded when
considering tens of model parameters, which turns this task
into a computationally intensive endeavor. This is a classic
case of the curse of dimensionality, where exploring every
potential combination of parameter values becomes imprac-
tically costly in terms of time and computational resources. In
such scenarios, DFO excels at finding near-optimal solutions
as this approach does not require gradients and directs the
optimization effort towards promising zones of the parameter
space that are more likely to yield the most accurate model
fits. This significantly reduces the computational overhead by
eliminating the need for calculating gradients and decreasing
the number of simulations required to obtain a good fit [13].

DFOmethods have also shown promise inML, particularly
in hyperparameter tuning. In the context of ML, hyperparam-
eters are settings or configurations that control the behavior of
a machine learning algorithm, such as the learning rate or the
number of hidden layers in a neural network. DFO methods
are effective at identifying a good set of hyperparameters that
significantly enhance ML model performance [14]–[17].

Two drawbacks of DFO methods are their reduced ef-
fectiveness when dealing with hundreds of parameters and
their inability to guarantee the attainment of a global solution
[18]. This is primarily due to the curse of dimensionality,
which makes it challenging to sample points close to the
global optimum unless a large number of samples are taken.
Additionally, DFO methods employ stochastic or heuristic
sampling methods to explore the design space, which could
lead to settling on local optima without guaranteeing a global
solution. Nevertheless, the problem we are addressing is in
the order of tens of parameters and results in a nearly optimal
fit with far fewer simulations than what would be required
by a full-grid search. This represents a clear advantage over
the deep learning approaches used in previous works by [7]–
[12], which require thousands of simulations to generate their
training and testing datasets.

It is also worth noting that the problem we are trying to
solve is analogous to calibrating a TCAD model, which in-
volves matching experimental data with the simulated results

from a TCAD device simulator by adjusting TCAD model
parameters. Given that TCAD simulations are generally more
expensive and time-consuming, our proposed approach is
particularly advantageous. In such scenarios, DFO methods
excel at finding a nearly optimal fit with far fewer simulations
than a full-grid search, which is a clear advantage over man-
ually tuning TCAD model parameters, which can take weeks
or, in some instances, months to achieve a good fit.

A. DERIVATIVE-FREE OPTIMIZATION FRAMEWORK
We resort to open-source hyperparameter optimization frame-
works in the present work since they employ DFO methods.
Some of them include Autotune [14], HOLA [15], Hyperopt
[16], and Optuna [17], to name a few. A primary advan-
tage of these frameworks is their streamlined application
programming interface (API), which enables users to con-
figure a parameter search space with minimal coding effort.
This allows for quick adjustments to the loss function or
to constraints related to model parameters. The choice of
optimization framework is entirely up to the user, as each
framework is relatively similar and shares common features.
In this work, we employed Optuna and its default sampler, the
Tree-structured Parzen Estimator (TPE), for model fitting due
to its capability to efficiently explore large parameter spaces.
Under these settings, Optuna has demonstrated effectiveness
in prior studies, navigating spaces that encompass up to 34
parameters [17], which aligns with the complexity of our task.
Most DFO frameworks follow a structured approach to im-

prove model performance through parameter tuning. Initially,
they use a sampling method to explore the parameter space
and identify promising regions for optimal settings. As the
process advances, these frameworks adopt refined sampling
strategies, focusing on the top 20–30% of parameters that
have shown the best performance. This strategic refinement
enables the algorithm to gradually learn and adapt to the
distribution of the most effective parameter values. As more
data points are accumulated, the accuracy of identifying a
superior set of parameters increases, resulting in enhanced
model performance. In particular, Optuna allows the user to
choose among various sampling strategies, with the default
option being the TPE sampler. This sampling approach uses
past outcomes to predict which parameter settings might
lead to better outcomes by employing two Gaussian Mixture
Models: one looks at a set of parameter values with the best
results, and the other looks at the remaining parameters. The
TPE algorithm then decides whether to try new and untested
parameter values or use the ones already shown to work well.
By balancing the search for new parameters with known ef-
fective values, this strategy enhances the likelihood of finding
the best set of parameters [17]. Interested readers may refer
to [19] for a comprehensive tutorial on TPE.

III. PROPOSED APPROACH FOR PARAMETER
EXTRACTION
In our proposed approach, we begin by setting the device
dimensions, if necessary. Following this initial step, we define
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Fine-tune

Set device dimensions

Extract Voff and subthreshold 
slope parameters for the 

low current region

Extract mobility and vertical 
field dependence parameters

for the high current region

Extract DIBL, subthreshold 
degradation parameters for 

the high VD region

Extract vsat, output 
conductance parameters for 
the high ID and VD regions

Fine-tune parameters to 
improve ID-VD fitting

Manual Approach(b)

Set device dimensions

Proposed Approach(a)

Set
Parameters

Evaluate 
Objective

Run Sim.

HPO

Fine-tune

Perform train-test split

Set loss functions and ranges 
for model parameters

No

Re-train using all data

Yes

Is performance 
satisfactory?

Check model extraction 
against test data

Extract the best set 
of model parameters

FIGURE 1. (a) Proposed approach to extract DC model parameters using
derivative-free optimization framework, and (b) Manual approach for
extracting DC model parameters in the ASM-HEMT model (after [20]).

the loss functions for one or more experiments along with
any choice of hyperparameters. We also set a plausible wide
range of values for each model parameter, with some ranges
in the log scale, if appropriate. Subsequently, we partition the
data of each experiment, allocating 80% for training and the
remaining 20% for testing. After completing these steps, we
begin the optimization process by using Optuna as the opti-
mization framework, along with the TPE sampling strategy.
Within the optimization framework, a set of parameters is
sent to a simulator (in the context of this work, that would
be Keysight EDA Device Modeling (IC-CAP) [21]). The loss
function is evaluated based on the simulator’s output for the
provided set of model parameters, and an error is returned.
Using this information, the optimization framework makes an
informed decision to choose the parameters of the subsequent
trial. This procedure is repeated for a predetermined number
of trials. The model extraction is then judged using the data
allocated for testing. If the performance is not satisfactory,
we can try a different choice of model, loss function, or
hyperparameters to check if any of these settings are more
suitable than others. Once we have established the choice of
model, loss function, and hyperparameters, we retrain using
all available data. This time, however, we further tighten
the upper and lower limits on the parameter ranges to be
closer to the best set of model parameters identified during
the train/test split. We also initiate the optimization process
using the best set of parameters we have previously found. Re-
training generally requires fewer trials since we already have
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FIGURE 2. Transformation of the loss function that effectively excludes
any current values below a threshold ϵ from the fitting process. The left
y-axis (red) represents the current values without the transformation,
whereas the right y-axis (blue) represents the current values after the
transformation.

prior knowledge of where a good set of model parameters can
be found. The reasoning behind re-training on the complete
dataset is to maximize the model’s exposure to all of the
available data. This allows the model to learn from the full
spectrum of device behaviors and characteristics, which were
withheld during the testing phase. It is especially beneficial
in semiconductor modeling, where data may be limited, as
it can significantly enhance the model’s accuracy. This step
is also particularly useful when data from a new experiment
becomes available from another device fabrication run (which
can alter the device characteristics due to process variations)
or when the foundry improves the device performance. The
steps of our extraction process are summarized in Fig. 1(a).
Furthermore, our proposed approach is compared against the
conventional extraction flow of the ASM-HEMT model as
shown in Fig 1(b), which consists of several manual iterative
steps, as outlined in [20].

A. SELECTION OF LOSS FUNCTION
In the context of device modeling, selecting the appropriate
loss function is critical to obtaining a reasonable percent error
over a range of interest, which ensures a good model fit.
Our proposed loss function is chosen carefully to address
three significant issues in device modeling. We start with the
absolute error (or L1 loss) function as a foundation and then
incrementally enhance it to tackle these issues comprehen-
sively, as given by:

L1(ŷi, yi) = |ŷi − yi|. (2)

First, we want to ensure consistent model performance across
different orders of magnitude. For example, we aim to fit the
model across a wide range of current values, ranging from
small to large (e.g., 10 µA to 100 mA). To achieve this, we
perform a log transformation, shifting the focus of the loss
function from absolute errors to relative errors. This provides
a uniform assessment across different scales of data, resulting
in the following equation:

Llog(ŷi, yi) = | log(ŷi)− log(yi)|. (3)
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Second, we are interested in fitting our model in key oper-
ational regions of the device. This implies that we are not
interested in fitting the model in less critical regions below
some threshold, as spending effort to fit a model to irrelevant
values or below the experimental or simulation noise floor
will lead to a much worse model. To effectively address this,
we transform the loss function once more as follows:

u(ŷi, yi) =

∣∣∣∣log(1 + ŷi
ϵi

)
− log

(
1 +

yi
ϵi

)∣∣∣∣ . (4)

In this second transformation, the hyperparameter ϵi denotes
a threshold below which the values of ŷ and y are considered
negligible. This can be exemplified in Fig. 2 by considering
the I − V characteristics of a diamond Schottky diode. In
Fig. 2, the current values on the left y-axis are represented
linearly without the transformation, whereas the right y-axis
represents the current values after the transformation. We
observe that below the threshold ϵi, any current values below
10−10 A are effectively excluded from the fitting process (i.e.,
their contribution is close to zero).

Lastly, we would like a fitting method that is robust to out-
liers and measurement errors. This is because, in both mea-
surements or simulations, there are some experiments that are
simply corrupted, which can occur from hitting instrument
compliance at random or when poor accuracy is obtained
at higher frequencies, such as in S-parameter measurements.
If proper care is not taken, outliers and measurement errors
can significantly destroy the quality of the fit. Preferably,
it is desired to identify potential outliers and reduce their
impact on the fitting process rather than completely excluding
them. This can be addressed by incorporating a clipped (non-
convex) penalty function on top of equation (4), which is
represented mathematically as

Lclip(ŷi, yi) =

{
u2 if |u| ≤ δi,

δ2i if |u| > δi.
(5)

Here, u is the transformed error term from (4), which ad-
dresses the two previously discussed issues. The hyperpa-
rameter δi is a predefined threshold that sets the maximum
allowable error. This implies that the penalty function puts
a fixed cap on |u| larger than δi, regardless of size, i.e.,
we disregard any |u| exceeding δi, treating them as outliers
or flawed data [22]. Furthermore, to maintain consistency
with this methodology, we typically select constant values
for the hyperparameters ϵi and δi for each experiment. For
the remainder of this work, unless stated otherwise, the loss
function defined in equation (5) will be the primary loss
function used for fitting. It incorporates the enhancements
and transformations previously detailed to ensure robust and
accurate model fitting across various regions of operation.

B. IMPORTANCE OF MODEL ASSESSMENT
When performing model parameter extraction with tens of
model parameters, the concept of model assessment becomes
essential to ensure the efficacy of our extracted model. This

80% Train
20% Test
ϵID = 10-4

δ = 0.15

FIGURE 3. Error⋆ versus the number of trials, depicting the minimum
error achieved across 750 trials for both train and test curves. In this case,
35 model parameters were optimized to fit 35 measurements, with 80%
of the data used for training and the rest for testing.

principle is straightforward: the compact model should per-
form reliably within SPICE simulations under a variety of
voltages, currents, and conditions that may differ from our
original measurements used to extract the model. We aim
for the model to excel in scenarios it has not previously
encountered. This is a common problem in Statistics andML,
where the objective is not to match the data used to train these
models but to accurately predict new, unseen data [23].
A simple example illustrating the importance of model

assessment can be seen in scenarios where we have 35 model
parameters that need to be adjusted based only on 35 mea-
surements. Here, we will use the ASM-HEMT model and
35 ID − VD measurements of a 150 nm gate length GaN-on-
SiC HEMT, selected randomly. We then split the data into
80% training and the remaining 20% for testing purposes.
The results show that the model does an excellent job fitting
the training data as the minimum error found to date (Error⋆)
keeps decreasing as the number of trials increases. However,
when evaluated against the testing data, the Error⋆ reaches
a plateau relatively early. This indicates that the model while
improving on the training dataset with more trials, shows little
to no improvement on the testing dataset after 30 trials. These
results are summarized in Fig. 3.
For these reasons, we adopted the concept of model assess-

ment to judge our model’s fit. In all of the fitting examples
we will show in the remaining text, we have performed this
approach by splitting the data from each experiment into
80% for training and the remaining 20% for testing. The
results also show that in most cases, the testing curve for the
minimum error found to date is lower than the training curve.
As such, this implies that our model generalizes well even for
data that it has not seen.

C. DIAMOND SCHOTTKY DIODE FITTING EXAMPLE
Having established the parameter extraction approach and
the proposed loss function, we initially focus on applying
these methods to a simple two-terminal device, specifically
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ϵ = 10-10

δ = 0.15

FIGURE 4. The progression of the minimum Error⋆ observed to date
across 250 trials. It displays the train and test curves, as well as the error
curve for the entire dataset in the modeling of the diamond Schottky
diode over an increasing number of trials. The loss function employed
hyperparameter values of ϵ = 10−10 and δ =

√
0.15.

a diamond Schottky diode, using the SPICE Diode Model
[24]. This demonstration aims to illustrate the effectiveness
of our approach in a straightforward setting before tackling
the complexities of a more sophisticated compact model.
The two-terminal device we are considering is a diamond
pseudo-vertical Schottky barrier diode with a diameter of 100
µm. Interested readers may refer to [25] for a more in-depth
discussion on the characteristics and performance of these
devices, where additional insights into diamond Schottky
diodes are presented. The diamond Schottky diode was fabri-
cated on a single crystalline diamond structure consisting of
MPCVD-grown p-type epilayers on a type Ib (100) diamond
substrate. Additional details of the fabrication and structure of
the Schottky diode can be found in [26], where it is referred
to as Sample A. Additionally, Mo was used as the Schottky
contact metal for the diode measured in this study.

The SPICE diode model is fitted by adjusting three pa-
rameters: n (ideality factor), IS (saturation current), and RS
(series resistance). The parameter ranges for the SPICE diode
model used during the train/test split are provided in Table
1. The model was trained with hyperparameters set to an
ϵ of 10−10 and a δ of

√
0.15. Having established the loss

function and the hyperparameter values, the model was then
re-trained for 50 trials to further adjust the model parameters
on the entire dataset, starting from the best parameters found
during the train/test split. The minimum error found to date
is plotted in Fig. 4 as a function of the number of trials for
both train and test curves, as well as the error curve for the
entire dataset. The I −V characteristics of the simulated data
against measurements are displayed in Fig. 5. The fit was then
evaluated by considering all current values > 10−10 A using
the loss function defined in (5), yielding an error of 0.010.

To showcase the efficacy of our proposed loss function
against measurement outliers, we intentionally corrupt 50%
of the diode’s measurements (in practice, this would not
occur, but our goal with this example is to show that our fitting
is resilient to measurement anomalies). We consider the loss

TABLE 1. Parameter Ranges in the SPICE Diode Model

Parameter Lower Limit Upper Limit
IS∗ 1× 10−25 1× 10−22

n 0.5 1.5
RS 100 150

∗Log-spacing

V = 0.48 – 2 V
ΔV = 400 mV
SPICE Diode 
Model

FIGURE 5. Measured and simulated I − V characteristics of a diamond
Schottky diode. The voltage sweep ranged from 0.48 to 2 V at increments
of 40 mV, resulting in 39 measurements.

function defined in (5), which is robust to outliers, as well as
a separate non-robust loss function given by

L2,u(ŷi, yi) =

∣∣∣∣log(1 + ŷi
ϵi

)
− log

(
1 +

yi
ϵi

)∣∣∣∣2 . (6)

This loss function is similar to (5), but without the addition
of the penalty function. Both loss functions are then used to
repeat the model extraction procedure with the same hyper-
parameter values and settings as the previous diode example
without data corruption. The minimum error found to date is
plotted in Fig. 6(a) as a function of the number of trials for
both train and test curves, as well as the error curve when
re-training on the entire dataset, for the robust loss function
given by (5). Similarly, Fig. 6(b) showcases the train and
test curves, along with the error curve when re-training on
the entire dataset, for the non-robust function without the
penalty function as defined in (6). The I − V characteristics
of the simulated data (with corruption) compared to the non-
corrupted measurements are displayed in Fig. 7. Despite the
data corruption, the robust loss function accurately fitted the
model to the measurements, showing an error of 0.011 for
currents above 10−10 A when compared against the non-
corrupted data. Conversely, using the non-robust loss function
resulted in a poor fit since it was heavily affected by outliers,
yielding an error of 0.756 for currents > 10−10 A when
compared against the non-corrupted data.

IV. 150-NM GAN-ON-SIC HEMT FITTING EXAMPLE
Having successfully modeled a diode with our proposed ap-
proach for parameter extraction, we then shifted our focus
to fitting measured DC data of a GaN-on-SiC HEMT to the
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ϵ = 10-10

δ = 0.15

(a)

ϵ = 10-10

(b)

FIGURE 6. The progression of the minimum Error⋆ observed to date over
250 trials. It showcases the train and test curves, as well as the error curve
for the entire dataset in the modeling of the diamond Schottky diode for
the (a) robust and (b) non-robust loss functions, with 50% of the data
being corrupted. An ϵ = 10−10 was utilized for both loss functions, while
a δ =

√
0.15 was specifically employed for the robust loss function.

ASM-HEMT DC model [2]. For an in-depth description of
the broader implications and technical details of RF GaN
HEMT devices and their significance in 5G and beyond-
5G wireless communications, interested readers may refer
to [27]. The GaN-on-SiC HEMT device we are modeling
features a 150-nm gate length and a gate width (WG) of 4×50
µm. We have previously reported other modeling approaches
utilizing the same GaN process in [28], [29]. In this example,
we focus on the ASM-HEMT model, an industry-standard
compact model for GaN HEMTs. The ASM-HEMT model
effectively captures a range of device non-idealities, including
self-heating and temperature dependence, mobility degrada-
tion, drain-induced-barrier-lowering (DIBL), velocity satu-
ration, and trapping effects [2]. The parameter extraction
process for this model begins with extracting DC model pa-
rameters, which are fundamental for determining the device’s
operation as a whole. Considering its importance, it is crucial
to pay close attention during this initial stage to obtain an
overall good model fitting. The conventional approach to ex-
tracting the ASM-HEMTDCmodel (as described in [20] and
[30]) considers splitting the set of DC model parameters into
smaller subsets to fit certain regions of operation in the I −V
plane through a series of iterative steps. On the other hand, our
proposedDFO approach allows us to simultaneously consider

V = 0.48 – 2 V
ΔV = 400 mV
50% of Data 
Corrupted

FIGURE 7. Measured and simulated I − V characteristics of a diamond
Schottky diode using robust and non-robust loss functions. Voltage sweep
ranged from 0.48 to 2 V in 40 mV steps, totaling 39 measurements. 50% of
the measurements were randomly corrupted to evaluate the performance
of the loss functions.

35 relevant parameters in the DC model across a relatively
wide range of plausible parameter values and fit them to
measured I − V characteristics in a straightforward manner.
In the present work, we used version 101.4.0 of the ASM-

HEMT model [20]. To accommodate reverse gate leak-
age current, we set the GATEMOD parameter to 2. The
self-heating model was incorporated, whereas the trapping
and field-plate models were not. For the device’s resis-
tance characteristics, we modeled the bias-dependent access
region resistance and source contact resistance by setting
RDSMOD to 1. Additionally, we enabled a sophisticated
gate resistance model by setting RGATEMOD to 2 [20]. For
our optimization process, we selected 35 model parameters
to model the DC characteristics of a GaN-on-SiC HEMT.
The particular parameters of the ASM-HEMT model that
were modified include CDSCD, DELTA, ETA0, GDSMIN,
IGDDIO, IGSDIO, IMIN, LAMBDA, MEXPACCD, MEX-
PACCS, NFACTOR, NJGD, NJGS, NS0ACCD, NS0ACCS,
RDC, RIGDDIO, RIGSDIO, RNJGD, RNJGS, RSC, RTH0,
THESAT, U0, U0ACCD, U0ACCS, UA, UB, UTE, UTED,
UTES, VDSCALE, VOFF, VSAT, and VSATACCS.
We followed the steps in our proposed approach, as high-

lighted in Fig. 1(a). We then fit the ASM-HEMT DC model
to the device’s drain current (ID) and transconductance (gm)
characteristics as a function of the gate voltage (VG) and drain
voltage (VD), corresponding to two different experiments. The
voltages of the two experiments were swept from 0 to 20
V (step size of 100 mV) and −3 to −0.1 V (step size of
100 mV) for VD and VG, respectively. This results in a total
of 6,030 measurements for ID and 6,030 measurements for
gm. The range of the model parameters is chosen to cover a
wide range of plausible values, with the exception of RTH0,
which was extracted utilizing the technique outlined in [31],
and VOFF, which can be extracted with relative ease. The
parameter ranges for the ASM-HEMT model used during the
train/test split are provided in Table 2.
Given that we are dealing with a multi-objective optimiza-
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TABLE 2. Parameter Ranges in the ASM-HEMT Model

Parameter Lower Limit Upper Limit
CDSCD 1× 10−3 150× 10−3

ETA0 10× 10−3 100× 10−3

DELTA 2 5
GDSMIN∗ 1× 10−12 1× 10−6

IGDDIO 7.5 15
IGSDIO 2.5 10
IMIN∗ 1× 10−15 1× 10−12

LAMBDA 100× 10−6 1500× 10−6

MEXPACCS 1 5
MEXPACCD 1 5
NFACTOR 0.2 0.5
NJGD 2.5 20
NJGS 2.5 20

NS0ACCD∗ 5× 1015 5× 1020

NS0ACCS∗ 5× 1015 5× 1020

RDC 100× 10−6 1500× 10−6

RIGDDIO 10× 10−9 100× 10−9

RIGSDIO 10× 10−9 100× 10−9

RNJGD 15 30
RNJGS 5 15
RSC 100× 10−6 1500× 10−6

RTH0 31.5 32.5
THESAT 1 4
U0 150× 10−3 300× 10−3

U0ACCD 50× 10−3 250× 10−3

U0ACCS 50× 10−3 250× 10−3

UA 1× 10−8 50× 10−8

UB∗ 1× 10−21 1× 10−18

UTE −1 −0.1
UTED −17.5 −5
UTES −17.5 −5

VDSCALE 2 6
VOFF −2.1 −1.9
VSAT 150× 103 250× 103

VSATACCS 10× 103 150× 103
∗Log-spacing

tion problem, as it involves two experiments (i.e., ID and gm),
we apply a simple scalarizer to transform the multi-objective
problem into a single-objective problem. This weighted sum
scalarizer is given by

ϕ(u) = wT v, (7)

where w ∈ Rn is a set of weights, with wi ≥ 0, and vi
are the various loss functions or objectives. The model was
initially trained for 10,000 trials after conducting a test/train
split, with hyperparameters set to an ϵ of 10−10, a δ of

√
0.15,

and weights w1 = 0.50 and w2 = 0.50, corresponding to
the weighted sums of the errors for ID and gm, respectively.
After establishing the loss function and setting the hyperpa-
rameters, the model was re-trained for an additional 2,500
trials on the entire dataset, beginning with the best parameters
identified during the train/test split step. The minimum error
found to date is plotted in Fig. 8 as a function of the number
of trials, showing both the train and test curves as well as
the error curve for the entire dataset. We note that the best
set of model parameters was found in less than 6,000 trials,
resulting in an excellent fit with an error of 1.25e-3 for current
values> 10−4 A and an error of 2.17e-3 for transconductance

ϵID = 10-4

ϵgm = 10-3

δ = 0.15

FIGURE 8. The progression of the minimum Error⋆ observed to date for
an increasing number of trials. It showcases the train and test curves and
the error curve for the entire dataset in the modeling of the GaN-on-SiC
HEMT. The loss functions employed hyperparameter values of ϵ = 10−4

for ID and ϵ = 10−3 for gm. A δ =
√

0.15 was used for both experiments.

(a)

VD = 0.1 – 18.1 V 
∆VD = 2 V

VG = -2.9 to -0.1 V 
∆VG = 200 m V

(b)

FIGURE 9. Measured and simulated (a) ID and (b) gm characteristics of
the GaN HEMT. For (a), the drain voltage VD was swept from 0 to 20 V
(step size of 100 mV), and VG was swept from −2.9 to −0.1 V (step size of
200 mV). For (b), the gate voltage VG was swept from −3 to −0.5 V (step
size of 100 mV), and VD was swept from 0.1 to 18.1 V (step size of 2 V).

values > 10−3 S. The measured and simulated ID and gm
characteristics are shown in Fig. 9.
Just as in the diode example, we assess robustness by

intentionally corrupting 25% of the measurements randomly.
In this instance, we introduce outliers by transforming the
DC characteristics from the linear domain to the logarithmic
domain, corrupting the data, and then reverting back to the
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ϵID = 10-4

ϵgm = 10-3

δ = 0.15

ϵID = 10-4

ϵgm = 10-3

(a)

(b)

FIGURE 10. The progression of the minimum Error⋆ observed to date over
an increasing number of trials. It showcases the train and test curves, as
well as the error curve for the entire dataset in the modeling of the
GaN-on-SiC HEMT for the (a) robust and (b) non-robust loss functions,
with 25% of the data being corrupted. The loss functions employed
hyperparameter values of ϵ = 10−4 for ID and ϵ = 10−3 for gm. For the
robust loss function, a δ =

√
0.15 was used for both experiments.

linear domain. These outliers follow a normal (Gaussian)
distribution with a mean (µ) of 0 and a standard deviation (σ)
of 10. The logarithmic and linear representations of the mea-
sured and simulated ID characteristics are displayed in Fig.
11. We follow the same procedure as in the diode example,
where we use the loss functions from (5) and (6) to test their
robustness against measurement outliers. The minimum error
found to date for both loss functions is plotted in Figs. 10(a)
and (b) as a function of the number of trials. This includes
both the train and test curves, as well as the error curve
when re-training (for 2,500 trials) on the entire dataset. The
measured and simulated corrupted ID and gm characteristics
are also displayed in Fig. 11. Once again, this shows that our
method is robust against outliers, as our extractedmodel using
the robust loss function as defined in (5) achieved an error of
1.27e-3 for currents > 10−4 A and an error of 2.53e-3 for
transconductance values > 10−3 S when compared against
the non-corrupted data. On the other hand, the non-robust loss
function as defined in (6) resulted in a poor fit, with an error
of 0.325 for currents > 10−4 A and an error of 0.238 for
transconductance values > 10−3 S when compared against
the non-corrupted data.

(a)VG = -2.9 to -0.1 V 
∆VG = 200 m V

(b)

FIGURE 11. Measured and simulated output (ID) characteristics of the
GaN-on-SiC HEMT in the (a) log and (b) linear regime. The VD was swept
from 0 to 20 V (step size of mV), and VG was swept from −2.9 to −0.1 V
(step size of 200 mV). 25% of the measurements were corrupted at
random based on a normal (Gaussian) distribution with µ = 0 and σ = 10.

V. CONCLUSION
In this paper, we have addressed the problem of model param-
eter extraction via derivative-free optimization. We propose
using a loss function that focuses on relative errors to ensure
consistent model performance across varying magnitudes,
prioritizes the accuracy above a certain measurement or sim-
ulation threshold, and is robust against outliers and measure-
ment. We then considered two examples, starting with the
modeling of a diamond Schottky diode, to showcase how we
address these three critical issues. Our focus is then shifted to
extracting the ASM-HEMT DC model in a 150-nm GaN-on-
SiC HEMT by simultaneously extracting 35 model parame-
ters. Our proposed approach yields good results in a fraction
of the simulations that are required by other approaches in
the literature. For instance, the work in [8] demands 120,000
simulation runs for training and testing while considering
only 10 ASM-HEMT model parameters. This deep learning
approach takes a significant amount of time to gather the
required training and testing data and could require an even
more substantial number of simulations if additional model
parameters are considered. On the other hand, our approach
achieved a good fit in a fraction of that amount (i.e., <5%),
demonstrating the usefulness of DFO in device modeling.
Lastly, to foster further exploration of our approach within
the devicemodeling community, wewill make our code open-
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source, which can be found in our GitHub repository.1
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