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Abstract—We present a method for modeling the power gen-
erated by a photovoltaic (PV) system that takes into account
seasonal variation. The method is interpretable and auditable,
and works directly from observed PV output data, which can
include missing data. It relies on multiperiodic basis functions
and convex optimization, and so is reliable and efficient. The
first step is to model the variation in PV sunrise and sunset times
across the year. We then time dilate the original PV signals, given
in uniform time segments, into uniform ‘PV days’, which start at
PV sunrise and end at PV sunset, which vary over the year. A 3D
plot of this time dilated data shows the variations of cloud and
obstruction effects across a year, and resembles a Bundt cake,
which gives the method its name. We can then use a multiperiodic
basis to fit marginal quantiles of PV output, taking into account
variation over the year and within one PV day. These quantiles
can be used for several applications, such as anomaly detection
or automatic clear sky modeling.

Index Terms—convex optimization, time dilation, quantile
estimation, clear sky detection

I. INTRODUCTION

Given the growing amount of data produced by photovoltaic
(PV) power generation systems, there is a need for data driven
methods for modeling, analyzing, predicting, and controlling
PV systems. Classic approaches rely on physical models,
as described in [1], and typically only provide point, not
distributional, estimates. Other data driven approaches, such as
those based on neural networks, are black-box and not inter-
pretable or auditable [2]. In this paper we present a white-box
machine learning method based on convex optimization [3] for
modeling the time dependent statistics in measured PV power
signals. This model describes the probability of observing a
certain power output from the PV system on a particular date
and time. We demonstrate an application of this model here for
detecting ‘clear sky’ periods, when the system was unaffected
by cloud occlusions. However, our future application of this
method will be as a step in a pipeline for estimating the joint
probability distributions of a fleet of PV systems. This work
is a continuation of our previous work on modeling PV power
signals [4], [5] and modeling smooth, periodic processes [6].
Novel to this work is the introduction of a ‘time dilation’
which removes nighttime values and creates daily signals with
an equal number of measurements, from sunrise to sunset.

A. Related work

a) Time dilation: Time dilation, also known as dynamic
time warping, is a technique used to align two time series
by warping time to minimize distortions, allowing for the
comparison of signals that may vary in speed [7]. Time dilation
is employed in various fields such as biology, economics,

signal processing, finance, and robotics for tasks including
pattern recognition, signal prediction, and measuring similari-
ties between time series [8]–[11]. Despite its versatility, time
dilation can produce sharp irregularities, known as singulari-
ties, where multiple points in one signal map to a single point
in another [12]. To address these issues, recent advancements
like Generalized Dynamic Time Warping (GDTW) frame time
dilation as a continuous optimization problem, penalizing
misalignments and smoothing the warping function [13].

b) Quantile estimation: The quantile or pinball loss
has been long used to estimate the conditional quantiles in
statistical fitting problems [14], [15], and empirical quantile
estimation continues to be an active area of research [16].
This research belongs to the broader domain of nonparametric
probability models [17]. The fitting of time-varying quantiles,
specifically related to seasonality (i.e., with periodic structure),
has been explored in hydrological sciences [18], but remains
relatively unexplored in the PV space.

c) Clear sky detection: Clear sky detection is the task of
labeling time series power or irradiance data when no clouds
were occluding the system, and is typically carried out by
comparing the measured signal to a physical model of clear
sky irradiance [19]. There exist at least 70 models published
in the literature for estimating the clear sky solar irradiance at
a given location [20]. These models determine the local solar
position and influence of atmospheric conditions at the site
based on a variety of parameters that can be generally grouped
into two categories: solar geometry inputs and atmospheric
parameters inputs. These methods require significant inputs
besides a power (or irradiance) time series and are not robust
to issues like site shading. Additionally, these models can
be difficult to tune for local site conditions [21]. Our work
here is follows in the spirit of our previous work on directly
estimating clear sky models from data, by assuming smooth,
multiperiodic statistics and minimizing a quantile loss [22].

d) PV sunrise/sunset estimation: Traditional methods for
PV sunrise/sunset estimation use geographic coordinates and
date to compute solar position angles [23], and these methods
are implemented in popular software tools like pvlib [24]
and PVsyst [25].

Data driven methods have been increasingly applied to
estimate PV sunrise and sunset times, and the time dilation
work presented here is in this category. Packages such as
solar-data-tools [26] use signal decomposition frame-
work to find PV sunrise and sunset times [27]. The advantage
of these approaches is that system location (i.e., latitude and
longitude) are not required; the analysis can be carried out



directly on the power time series of interest without the need
for external data. These approaches also capture the effects of
occlusions.

II. BUNDT CAKE REPRESENTATION

We are given a time series (or signal) of power output of a
single PV system

y = (y1, . . . , yT ) ∈ (R+ ∪ {?})T ,

where R+ denotes the nonnegative real numbers, and yt =?
means that the value yt is missing. The time index t =
1, . . . , T corresponds to a fixed time interval such as 15, 5, or
1 minutes, and yt is the average power over that interval. We
let P denote the number ot time periods in one 24 hour period,
so the examples above correspond to P = 96, P = 288, and
P = 1440. When indexing data the index t is an integer, but
we will also use it to refer to times in between the time interval
boundaries, where it is a real number. For example t = 123.4
refers to the time instant 40% of the way through the 123rd
time interval.

When converting to absolute date/time, t represents the be-
ginning of the time interval. For example if t = 0 corresponds
to midnight, and P = 96, then t = 5 refers to the 15 minute
time interval from 1:15–1:30, p5 is the average PV power over
that interval, and t = 5.33 corresponds to 1:20.

When t corresponds to night, we have yt = 0. During day,
the PV signal varies over a day, with a pattern that changes
over the year due to varying geometry (including possible
obstructions), and in addition is subject to changes (mostly
reductions) due to cloud cover. The statistics of the weather
induced PV output changes also varies over the year. We seek
to model these patterns directly and more or less automatically
from the observed data.

Our first step is to estimate the PV sunrise and PV sunset
over the year, defined as the time when the PV output typically
first rises above zero and the time when the PV output reduces
to zero, in the absence of clouds. The PV sunrise and sunset
vary smoothly over the year, and are given by values of t
that need not be integers. We define the PV day as the period
between the PV sunrise and sunset. The length of the PV day
varies over the year.

We then transform the data from a time series indexed by
time index t into a matrix where each row represents one PV
day, divided into M uniform time segments. We denote these
row vectors as (xd)

T
m, where xd ∈ RM . The index d represents

a day (date), which ranges from d = 1 to d = D = ⌈T/P ⌉.
The index m = 1, . . . ,M denotes the PV day time index. We
interpret (xd)m as the PV output in day d in the interval m of
the PV day, i.e., at a time that is the fraction m/M through
the PV day. Since the length of the PV day varies over the
year, the time interval represented by the index m corresponds
to different amounts of (real) time over the year. We denote
the dilated data as a matrix

X ∈ (R+ ∪ {?})D×M .
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Fig. 1: Bundt cake plot of time dilated PV output from
07/01/2015 to 06/30/2016.

We expect the dilated data X to have approximate annual
periodicity, i.e., we expect Xd+365,m ≈ Xd,m. We also expect
the rows to begin and end near zero, i.e., Xd,m is small when
m is small or near M . On a clear day we expect Xd,m to rise
as m increases to PV noon, m ≈ M/2, and decrease after that
as t increases to PV sunset, m = M .

The time dilated PV output can be visualized by plotting
X in 3D with height denoting PV output on an annulus, with
radius corresponding to the PV time, and angle corresponding
to the day. An example (with no missing data) is shown in
figure 1. (We describe the details of this data later.) The outer
ring corresponds to PV sunrise and the inner ring corresponds
to PV sunset. The angle corresponds to the day of the year. For
obvious reasons we call this a Bundt cake plot. An alternative
2D visualization uses a heat map on an annulus, shown in
figure 2. In the next subsections we describe the details of
how to carry out this time dilation.

A. PV sunrise/sunset estimation

In this section we describe a simple method for automat-
ically modeling PV sunrise and sunset as a smooth periodic
function of the day of the year d. We denote these times as
T rise
d and T set

d , for d = 1, . . . , 365. These are real numbers, not
integers, measured in the original time series interval units. We
expect successive values to be offset by around one day, and
to be periodic over the year, i.e.,

T rise
d+1 ≈ T rise

d + P, T rise
d+365 = T rise

d + 365P,

and similarly for T set
d .

We will model these as the alternating zero crossings of an
annually periodic function f which has one increasing zero
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Fig. 2: Heat map annulus plot of time dilated PV output
from 07/01/2015 to 06/30/2016.

crossing and one decreasing zero crossing each day. Roughly
speaking f(t) > 0 corresponds to PV day and f(t) < 0
corresponds to PV night.

We now decribe how to construct the function f from the
given data. We start by forming a Boolean time series z from
our original one y, that indicates whether there is nonzero PV
output:

zt =

 1 yt ≥ ϵ
0 yt < ϵ
? yt = ?,

for t = 1, . . . , T . Here ϵ is a positive threshold such as ϵ =
0.005maxt yt, i.e., we consider PV output as nonzero if it
exceeds 0.5% of the maximum observed value.

To capture the desired properties of f , i.e., that it have
one increasing and one decreasing zero crossing per day,
which vary smoothly over the year, we define a set of N
basis functions, ϕi : R → R, for i = 1, . . . , N , and take
f(t) =

∑N
i=1 αiϕi(t). We use N = 9, with basis functions

the constant function 1, the daily Fourier basis functions

cos(2πkt/P ), sin(2πkt/P ), k = 1, 2,

and the yearly Fourier basis functions

cos(2πkt/(365P )), sin(2πkt/(365P )), k = 1, 2.

More sophisticated bases can also be used, but we have found
this basis gives good results.
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Fig. 3: Actual signal and time dilated signal correspond-
ing to the same time interval.

We find the N coefficients αi by minimizing the logistic
loss over the known data,∑

t ̸=?

{
−f(t) + log(1 + exp(f(t))) zt = 1
log(1 + exp f(t) zt = 0.

This is a smooth convex function and readily minimized. We
can include a regularization term when fitting, but given the
small number of parameters (N = 9), this is not needed in
practice.

To approximate the zero crossings of f we use simple linear
interpolation. To find the PV sunrise times we identify integers
t with f(t) < 0 and f(t+ 1) > 0 and take

T rise
d = t− f(t)

f(t+ 1)− f(t)

(which lies between t and t + 1) as the sunrise time, where
d is the day corresponding to t. To identify sunset times we
indenify integers t with f(t) > 0 and f(t− 1) < 0, and use a
similar interpolation.

B. Time dilation

For each day d = 1, . . . , D, we define a set of M + 1
uniformly spaced time points between T rise

d and T set
d ,

τm = T rise
d +

m

M − 1
(T set

d − T rise
d ), m = 1, . . . ,M.

These define M intervals over the PV day, [τm, τm+1], m =
0, . . . ,M−1. We take Xd,m as the integral over the (m−1)th
interval of the PV output, assumed constant with value yt over
the interval [t, t+ 1]. (This ensures that the total energy over
a day is preserved in the time dilation.) If at any time in the
interval the PV output data is missing, we assign Xd,m =?.

Figure 3 illustrates how a 15-minute average power signal
(aligned on quarter hours) is time dilated into a signal of length
100 over the PV day. Here we show dilation between 12:45
and 15:00 on 07/01/2015. Estimated PV daytime on that day
was ≈ 813 minutes, so each interval of the dilated PV signal
corresponds to around 8.13 minutes.



III. SMOOTH MULTIPERIODIC MARGINAL QUANTILE
ESTIMATION

In this section show how to estimate marginal quantiles of
PV output over the PV days. Let

0 < η1 < · · · < ηL < 1

denote the L quantiles we wish to estimate. We will find the
quantile estimates as Qi

d,m, i = 1, . . . , L. We interpret Qi
d,m

as our estimate of the ηi-quantile of PV output in time period
given by d,m.

We add the constraint

Qi+1
d,m ≥ Qi

d,m, d = 1, . . . , D, m = 1, . . . ,M,

to prevent the quantile crossing problem, i.e., Qi+1
d,m < Qi

d,m.
We also enforce

Qi
d,m ≥ 0, d = 1, . . . , D, m = 1, . . . ,M,

so that all quantiles have nonnegative values.
We model the quantiles using smooth multiperiodic func-

tions as

Qi
d,m = c0 +

N∑
j=1

cjB
j
d,m,

with Bj
d,m denoting the jth basis function evaluated for entry

(d,m). Here c0, . . . , cN are coefficients that we will fit.
Daily basis functions are

sin

(
πkm

M

)
, k = 1, . . . , 10.

Note that we just use sines as our basis functions for daily
periodicity, and start with a period that is twice the overall
interval width. This is justified by expanding a Fourier series
of a function over an interval that is zero at each endpoint.
Yearly basis functions are

cos

(
2πkd

365

)
, sin

(
2πkd

365

)
, k = 1, 2, 3.

We also consider products of daily and yearly basis functions,
i.e., cross terms, which allows us to model a daily pattern that
varies over the year. An example of a cross term is

cos

(
2π2d

365

)
sin

(
π3m

M

)
.

Cross terms help us capture joint daily and yearly variations in
the signal. For instance, a clear sky noon in winter is expected
to be different than a clear sky noon in summer especially if
there are seasonal shading effects. An additive model without
cross terms would not be able to capture this difference. All
together we have 10 daily basis functions, 6 yearly basis
functions and 60 cross terms, so N = 76. Including the
constant coefficient c0 we have 77 parameters to fit for each
quantile.

To fit all quantiles using known entries Xd,m ̸= ?, we solve
the problem

minimize
∑L

l=1

∑D
d=1

∑M
m=1 ℓ

pin
l (Xd,m −Ql

d,m),

subject to Ql+1
d,m ≥ Ql

d,m, l = 1, . . . , L− 1,

Q1
d,m ≥ 0, d = 1, . . . , D, m = 1, . . . ,M.

Here,

ℓpin
ηj
(u) =

{
(ηj − 1) (u) u ≥ 0
ηj (u) u < 0

is the pinball or quantile loss for quantile ηj .
We denote the tensor of estimated quantiles as Q ∈

RD×M×L
+ . The goodness of fit of our marginal quantiles can

be measured using the continuous ranked probability score
(CRPS).

IV. CLEAR SKY DETECTION

Clear sky detection is a binary classification task with

Cd,m =

 1 clear sky interval
0 non clear sky interval
? missing data.

The naı̈ve method is to take

Cnaı̈ve
d,m =

{
1 Xd,m ≥ 0.8Qd,m,L

0 otherwise,

i.e., if the average power is at least 80% of the highest quantile
estimated for that time interval, and 0 otherwise. This naı̈ve
method leads to many transitions between clear and non clear
sky intervals, making interpretation harder. To alleviate this
problem we introduce a post-processing step that smooths our
clear sky estimate.

We form a graph with two nodes per time interval, cor-
responding to clear and non clear intervals. We have edges
between each pair of nodes of adjacent time steps. All together
then we have 2M nodes and 4(M − 1) edges. We attach zero
weight to each horizontal edge, i.e., an edge that connects
two adjacent clear sky or non clear sky edges. We attach a
positive weight σ to each non horizontal edge, i.e., an edge
that represents a transition between clear sky and non clear
sky edges. We attach losses to each node that correspond
to the naı̈ve clear sky estimates. If Cnaı̈ve

d,m = 1 we attach
a loss 0 for the node corresponding to clear sky, and 1
for the node corresponding to non clear sky. If Cnaı̈ve

d,m = 0
we attach a loss 1 for the node corresponding to clear sky,
and 0 for the node corresponding to non clear sky. A path
through the graph, from one of the nodes corresponding to
m = 1 to one of the nodes corresponding to m = M ,
corresponds to a clear sky estimate Cd,m. The weighted cost of
the path is exactly equal to the number of intervals for which
Cdm ̸= Cnaı̈ve

d,m , plus σ times the number of transitions between
a clear sky and a non clear sky. A shortest path corresponds to
an estimate that minimizes this cost function. Larger values of
σ yield estimates that are smoother, i.e., have fewer transitions
between clear sky and non clear sky. Such a path is readily
found via dynamic programming in O(M) operations. This is
illustrated in figure 4.
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Fig. 4: A path from left to right corresponds to a clear
sky estimate. Horizontal edges have no weight, and
diagonal edges have weight σ. The nodes have weight
zero or one, depending on the naı̈ve clear sky value.
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Fig. 5: Subdaily PV output during three consecutive
days. Top. Summer. Bottom. Winter.

V. RESULTS

a) Data: We consider a single residential PV system
in Southern California and use data from 07/01/2015 to
06/30/2017 (i.e. 731 days), at 15 minute intervals, with no
missing data. Figure 5 shows subdaily data for 3 days in
summer and 3 days in winter. During daytime the power
output is highly variable due to the effect of weather but is
mostly similar between consecutive days. We clearly see that
the winter days do not look like the summer days. We also
see that there is a drop in power output in the middle of the
day for winter days, caused by the shading of the PV system
by a nearby building.

b) Estimated PV sunrise and sunset times: Figure 6
shows estimated sunrise and sunset times across all days in
the dataset. We observe that PV sunrise and sunset times
vary throughout the year and are not symmetric around noon.
(Recall that PV sunrise and sunset mean the times when the
PV output first becomes nonzero, and last is nonzero, and
so are affected bu siting and obstructions.) As expected, PV
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Fig. 6: Estimated PV sunrise and sunset times over entire
dataset. The shaded region indicates PV daytime.
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Fig. 7: Time dilation of PV output. Top. Summer.
Bottom. Winter.

sunrise is earlier and sunset is later in summer, resulting in
longer PV daytime in summer than in winter.

c) Time dilation: Figure 7 shows time dilation of daytime
data for one day in summer and one day in winter, resolved
to M = 100 samples during the PV day. The lefthand plots
show the original data, with time stamps. The righthand plots
show the time dilated data versus m = 1, . . . ,M = 100. Time
dilation ‘stretches’ time more in winter than in summer.

d) Smooth multiperiodic quantiles: Figure 8 shows the
estimated smooth multiperiodic quantiles on undilated PV
output. We see that the quantiles are higher in summer than
in winter. But not only the scale but also the shape of
the quantiles change between different seasons. Also, the
distance between quantiles is larger in summer than in winter,
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Fig. 8: Estimated quantiles shown on undilated PV
output. Top. Summer. Bottom. Winter.

indicating more variability in PV output.
e) Clear sky detection: Figure 9 shows the detected clear

sky time intervals, obtained using σ = 2, which means that
a transition between clear and non clear sky costs a factor of
2 compared to disagreeing with the naı̈ve clear sky estimate.
In the plot day time clear sky is shaded white, non clear sky
is shaded gray, and night is shaded blue. In these examples
we observe that clear sky time intervals are typically longer
in summer than in winter.

VI. CONCLUSIONS

We have developed an analysis method for PV output data
that takes into account the variation in PV sunrise and sunset
over the year, time dilating each day’s PV output to a fixed
length signal, so the PV output fits into a data matrix with
columns corresponding to a fixed fraction through the PV day.
From this we can form smooth marginal quantile estimates
that take into account the variation in the shape of the daily
PV over the year, due to trajectory of the sun, obstructions,
and weather. We show how to detect clear sky time intervals,
trading off deviating from the immediate (naı̈ve) clear sky
estimate and excessive transitions between clear and non clear
sky. Our methods are based on convex optimization and are
therefore reliable, fast, and entirely interpetable and auditable.
The methods gracefully handle missing data.

All data and code described in this paper are available at
https://github.com/cvxgrp/pv bundt cake.
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Fig. 9: Detected clear sky time intervals. Top. Summer.
Bottom. Winter.
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