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Abstract
We consider the task of controlling a battery while balancing two competing objec-
tives that evolve over different time scales. The primary objective, such as generating
revenue by exploiting time varying energy prices or smoothing out the load of a com-
putation center, operates on the scale of hours or days. The long term objective is to
maximize the lifetime of the battery, which operates on a time scale of months and
years. These objectives conflict; roughly speaking, the primary objective improves
with cycling the battery more, which ages the battery faster. Using an existing model
for battery aging, we formulate the problem of controlling the battery under these
competing objectives as a convex optimization problem. We demonstrate the tradeoff
between the primary objective and battery lifetime through numerical simulations.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Setting and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Cell aging model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Cell charge and current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Cell aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Battery aging model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Mehmet Giray Ogut
giray98@stanford.edu

Obidike Nnorom Jr.
obdk@stanford.edu

Stephen Boyd
boyd@stanford.edu

Philip Levis
pal@cs.stanford.edu

1 Department of Electrical Engineering, Stanford University, Palo Alto, USA

2 Department of Computer Science, Stanford University, Palo Alto, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-025-10050-9&domain=pdf


O. Nnorom Jr. et al.

3.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Short term MPC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Load smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Short term MPC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Load forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

1.1 Setting and tasks

In the last decade, battery storage, whether retail or grid scale, has become increas-
ingly common. The ability to store energy and discharge it at a later time allows for
temporal decoupling of energy production and consumption. Providing this service
can be lucrative, as the price of electricity can vary by orders of magnitude depending
on the time of day and the season. In other basic applications, a battery can be used to
smooth out the power produced by a renewable source, or consumed by a load such
as a computation center.

Like any physical system, batteries degrade over time. The more a battery is cycled,
meaning charged and discharged, themore it ages, and the shorter its lifetime becomes.
The trade-off between short term tasks such as arbitrage and renewable smoothing,
and a long term task of maximizing battery lifetime, is the focus of this paper.
Short term objectives.We consider two applications, as simple examples of short term
objectives.

1. Energy arbitrage. The battery is charged when electricity is cheap and discharged
when it is expensive. We evaluate the performance of the system by its revenue.

2. Load smoothing.The battery is used to smooth out the electric power demand (i.e.,
load) consumed by a computation center, so the net power varies more smoothly
over time. We evaluate the performance of the system using the root mean square
difference between the load and its previous value.

These are just two simple illustrative examples of short term objectives; many others
could be handled by the methods we describe in this paper.

Long term objective. The battery has a finite lifetime, which is determined primarily
by the number of cycles it undergoes. We want to maximize the lifetime of the bat-
tery, defined as the time the battery capacity drops below some fraction of its initial
value such as 80% or 90%. Without considering battery aging, the two short term
tasks described above involve aggressive cycling of the battery, leading to a shortened
lifetime. We show how to operate the battery so as to achieve an optimal trade-off of
the short term objective and the long term objective.
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1.2 Related work

Battery agingmodels.Battery aging is often split into twomain effects: calendar aging,
which happens when the battery is resting (no charge or discharge), and cycle aging,
which happens during active charge–discharge cycles (Vermeer et al. 2021). Both
processes are sensitive to temperature (especially above 30◦C), high current rates, and
usage patterns like depth of discharge or state of charge (SoC) (Xiong et al. 2020).

When it comes to modeling these effects, three main approaches appear in the
literature. Electrochemical models (Keil and Jossen 2020; Li et al. 2020; Allam and
Onori 2020) try to describe the internal reactions mathematically (for instance, using
the Butler–Volmer equations (Latz and Zausch 2013)) and can be quite detailed but
hard to implement in practice. At the other extreme, empirical models fit observed data
to capture aging trends, but these can fail outside their specific test conditions and often
need large datasets (Pelletier et al. 2017). Semi-empirical models (Serrao et al. 2009;
Suri and Onori 2016; Marano et al. 2009; Torregrosa et al. 2024) blend theoretical
ideas with curve-fitting so that the most critical aging drivers (like temperature, SoC,
or C-rate) are handled without the complexity of a full electrochemical model or the
narrow scope of an entirely data-driven approach.

Calendar agingmainly depends on how batteries are stored (in terms of temperature
and SoC),with slow chemical reactions gradually eating away at capacity. Cycle aging,
on the other hand, is tied to how often and how aggressively the battery is charged or
discharged. In actual operation, both processes happen at the same time, so an aging
model typically combines or overlays both (Liu et al. 2020). Semi-empirical models
are especially attractive in this setting because they balance realism and simplicity,
letting us capture key aging behaviors in a way that can be used in practical control
algorithms (Jin et al. 2018; Miller et al. 2022).

Optimization in batteries. Current optimization techniques used in battery longevity
do not directly focus on working with aging models of the batteries. Liu et al. (2018)
focuses on optimizing charging behavior of both CC-CV charging andmulti stage CC-
CV charging. Nonlinear optimization techniques are used to determine the optimal
current and voltage values to balance between aging, efficiency loss, and charge time.
Chung et al. (2020) focuses on reducing the calendar aging of a PEV battery through
an optimal charging scheme. This paper argues that calendar aging is most important
for PEV batteries, and proposes a nonlinear interior point method to determine an
optimal overnight charging scheme for the PEV battery.

Bashir et al. (2017) tackles lifetime maximization of lead-acid batteries by formu-
lating key aging characteristics of the battery as convex formulas. Bad recharge, the
time since last full charge, and the lowest state of charge since last recharge are the
three primary factors in their objective function.Amulti-objective convex optimization
problem is then solved to maximize the lifetime of these batteries.

Aging aware optimization methods. The adoption of batteries as a power source in
many systems has led to increased focus on degradation. Researchers have focused
on characterizing the aging of battery cells through a variety of different aging mod-
els. Simple approaches model battery aging based on a few factors such as depth of
discharge (DOD) while more advanced models, such as physics based models, cap-

123



O. Nnorom Jr. et al.

ture internal degradation mechanisms through coupled differential equations (Franco
et al. 2016). Simple models are inadequate for accurately representing battery aging
in most of the applications in which aging is relevant to consider while the complexity
of physics based models make them hard to use in real-time applications (Franco
et al. 2016). Semi-empirical models, on the other hand, are guided by physics but are
simplified. As a result, these models can still accurately capture aging behavior while
working more seamlessly under real-time applications.

The consideration of battery aging has increasingly become a concern during long
term battery control. Optimization techniques such as Mixed Integer Linear Pro-
grams (MILPs) are frequently used for aging-aware BESS scheduling in the literature.
Maheshwari et al. developed a nonlinear Li-ion degradation model from experiment
data and cast it as an MILP (Maheshwari et al. 2020). Xu et al. constructs a convex
function to represent aging but uses binary variables to determine when the battery
charges and discharges causing the entire optimization problem to be an MILP (Xu
et al. 2018). Although MILPs are popular in the literature, solving an MILP is an
NP hard problem and thus the solve time can scale exponentially with the number of
variables in the problem (Garey and Johnson 1990; Collath et al. 2022).

Dynamic programming (DP) and related decomposition methods are classical tools
for sequential decision problems and have been used in battery scheduling. Abdulla et.
al employs a stochastic DP for a PV-battery system, where the immediate cost function
includes a penalty for capacity loss and the state transition accounts for degradation
(Abdulla et al. 2018). The paper reports a significant extension (up to 160%) of battery
lifetime through this technique compared to naive approaches. Dynamic programs are
capable of finding true optimal policies for a given model, but are not inadequate for
problems with long time horizons (Bellman 1957). Exact DP becomes computation-
ally expensive as the number of timesteps or state granularity increase. This paper gets
around this limitation by assuming there are a finite number of discrete SOCs possible
which is not the case in practice.

Besides the two techniques mentioned above, numerous hueristics based models
have been applied to aging-aware dispatch. These heuristics include rule-based strate-
gies (e.g. simple rules like "avoid discharge below 20% SOC). Bashir et. al uses this
method effectively in their work by identifying the three most important factors that
lead to aging based on the Shiffer model for lead acid batteries (Bashir et al. 2017).
The authors are able to take these rules and represent as convex functions that they
plug into their model. Weitzel et al. provides an analysis of heuristic based models for
aging (Weitzel and Glock 2018). Heuristic models are great for capturing large trends
through simple functions, but don’t fully capture aging like a physics based model or
semi-empirical model can.

Model predictive control (MPC).Model predictive control goes by several other names,
such as rolling-horizon planning, receding-horizon control, dynamic matrix control,
and dynamic linear programming. Originally developed in the 1960s, MPC offers a
powerful framework for managing constraints on states, inputs, and outputs. It has
a long history and large literature, and is widely used. Some early work is Cutler
(1979); Garcia et al. (1989); for more recent surveys see the papers (Holkar and
Waghmare 2010;Mayne 2014; Abughalieh andAlawneh 2019; Schwenzer et al. 2021)
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or books (Camacho et al. 2007; Borrelli et al. 2017; Grüne et al. 2017; Rawlings et al.
2017; Rakovic and Levine 2018).

Papers describing applications of MPC in specific areas include HEVs (Huang
et al. 2017) data center cooling (Lazic et al. 2018), building HVAC control (Afram
and Janabi-Sharifi 2014), wind power systems (Hovgaard et al. 2015), microgrids (Hu
et al. 2021), pandemic management (Carli et al. 2020; Péni et al. 2020), dynamic
hedging (Primbs 2009), revenue management (Talluri and Ryzin 2006; Bertsimas and
Popescu 2003), railway systems (Felez et al. 2019), aerospace systems (Eren et al.
2017), and agriculture (Ding et al. 2018). With appropriate forecasting (which in
many applications is typically simple) and choice of cost function, MPC can work
well, even though it does not explicitly take into account uncertainty in the dynamics
and cost, or more precisely, since it is based on a single forecast of these quantities.

There are many extensions of MPC that attempt to improve performance by taking
into account uncertainty in the future dynamics and cost. Examples include robust
MPC (Bemporad and Morari 2007; Campo and Morari 1987), min-max MPC (Rai-
mondo et al. 2009), tube MPC (Mayne et al. 2005), stochastic MPC (Heirung et al.
2018; Mesbah 2016) and multi-forecast MPC (MF-MPC) (Shen and Boyd 2021).

A widely recognized shortcoming of MPC is that it can usually only be used in
applications with slow dynamics, where the sample time is measured in seconds or
minutes. However there exist methods to speed up MPC, such as computing the entire
control law offline or using online optimization (Wang and Boyd 2009).

Since it integrates constraint handling, future forecasting, and feedback adjustment,
MPC is often viewed as a middle ground between exhaustive search methods like
dynamic programming (DP) and simpler real-time strategies such as the equivalent
consumptionminimization strategy (ECMS) (Zhang et al. 2015). This balance between
computational tractability and robust performancehasmadeMPC increasingly popular
in both academic and industrial settings for battery management systems.

Energy arbitrage. In economics and finance, arbitrage is the practice of taking advan-
tage of a price difference by buying energy from the grid at a low price and selling it
back to the grid at a higher price (Zafirakis et al. 2016). Although it is often assumed
to occur in the day-ahead markets (Staffell and Rustomji 2016; Wilson et al. 2018),
arbitrage strategies for intraday markets have also been considered (Metz and Saraiva
2018). Multiple studies assessed how to maximize arbitrage profits (Sioshansi et al.
2009), but the consistent finding is that the attainable revenues are on their own insuffi-
cient to repay investment in battery storage. Bradbury et al. (2014) showed that Li-ion
batteries often fail to surpass 0% IRR in U.S. markets, though short charge times,
lower capital costs, and ancillary services could enhance returns. Sioshansi et al.
(2009) found that arbitrage value in PJM depends on round-trip efficiency, location,
and fuel mix, noting that lower natural gas prices warrant re-evaluation. McConnell
et al. (2015) highlighted possible profitability in 5-minute dispatch markets and poten-
tial peaker displacement, suggesting that as renewable penetration depresses prices,
arbitrage opportunities may grow in the United States.

The economic value that a battery operator can obtain from arbitrage rests on
both technical and market elements. Among the technical considerations, round-trip
efficiency stands out for its influence on marginal operating costs (Critchlow and
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Denman 2017). Another crucial factor is the discharge capacity, or energy-to-power
ratio, which determines how much energy a battery can store. Because physical and
operational stresses cause capacity fade over the asset’s lifetime (Schmidt et al. 2017),
they significantly affect profitability (He et al. 2020). Although the replacement cost of
a battery is typically incurred only at the end of its lifespan, Xu et al. (2017) notes that
aging–driven by operational choices–should still factor intomarginal cost calculations,
as it can alter the operating strategy itself.On themarket side, price volatility rather than
average price levels is generally acknowledged as the main determinant of arbitrage
value (Wilson et al. 2018).

Renewable generation and load smoothing.A key challenge for large-scale renewable
integration is the inherent fluctuation in power generation, which can cause frequency
deviations, voltage inconsistencies, and high peak loads. A common solution is to pair
wind turbines with batteries to smooth out these variations, store surplus energy during
periods of high generation, and feed it back when generation drops (Díaz-González
et al. 2013).

The issues caused by wind power fluctuations were first discussed in the literature
in the early 1980s, when commercial wind turbines started being installed more reg-
ularly. In the first studies, the authors proposed less sophisticated methods of power
smoothing (Suvire et al. 2012). In the late 1990s, however, more studies began to con-
sider storage systems (mainly fly-wheel and lead-acid batteries) to smooth the output
power from wind turbines (Jerbi et al. 2009; El-Naga et al. 2017; Elkomy et al. 2017).

In 2009, Khalid and Savkin (2009, 2010) presented a controller design for wind
power smoothing purposes based on model predictive control. They noted that predic-
tion could help improve the economy and security of wind integration into electrical
grids. Thus, a wind power prediction system combined with a battery was proposed
based on measurements from different observation points and communication chan-
nels. The effectiveness of this approach was assessed through real wind speed data
from an Australian wind farm comprising 37 wind turbines. The results show the
capability of the controller to smooth the wind power, optimize the maximum ramp
rate requirement, and also the state of charge of the battery. The study accounted for
inefficiencies in batteries in terms of energy conversion but did not consider the battery
aging.

An analogous problem tackles the challenge of smoothing a load that varies rapidly
over time, such as one that might appear in a data computation center while pro-
cessing a job such as training a large language model (Li et al. 2024). The existing
literature explores the use of energy storage that is either integrated in datacenter
uninterruptible power supply (UPS) systems or deployed as standalone battery banks
to enable demand response services (Urgaonkar et al. 2011; Govindan et al. 2011,
2012; Mamun et al. 2015). Most studies concentrate on minimizing the total cost
of ownership (TCO) (Wang et al. 2014; Kontorinis et al. 2012), defined as the sum
of amortized capital expenditures and operating costs over a prescribed time hori-
zon (Barroso et al. 2019). Queueing-theoretic Lyapunov optimization has also been
used to derive policies that nearly minimize monthly electricity bills (Urgaonkar et al.
2011; Guo et al. 2011). While these analyses predominantly assume lead-acid bat-
teries, a subset of work considers lithium-ion technology. In such demand response
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formulations, lithium-ion units are typically modelled as ideal charge integrators,
and aging is captured through depth-of-discharge (DoD) charts or charge throughput
heuristics (Kontorinis et al. 2012; Wang et al. 2012; Aksanli et al. 2013; Ren et al.
2012).

In 2016,Mamun et al. (2016) formulated amulti-objective framework for datacentre
demand response that couples a nonlinear equivalent circuit model with SEI based
aging and tunes feedforward feedback controllers on a lithium-ion battery pack. Their
results reveal an inherent tradeoff between cost savings and battery health; dead-band
PI controlmitigates this compromise and remains robust to load uncertainty and battery
pack size.

1.3 Outline

We describe the battery model in §2 where we use an existing semi-empirical aging
model from Serrao et al. (2009); Suri and Onori (2016) and come up with a convex
approximation of the aging rate. Next, we describe two applications in §3 and §4
where we use model predictive control for price arbitrage and load smoothing and
give numerical examples.

2 Cell agingmodel

This section explains battery aging, a mathematical model of how a single battery cell
ages (Serrao et al. 2009; Suri and Onori 2016), and how we use this model to predict
the aging of a larger, multi-cell battery. To distinguish these two cases we refer to the
former as a “cell” and the latter as a “battery”.

We consider a lithium iron phosphate (LiFePO4)-graphite battery. Cells operate
by storing chemical potential energy. When a voltage is applied across the battery
terminals, the electrical field causes ions to move through the battery’s electrolyte,
converting the electrical potential into chemical potential. This process decays the
material of the cell, especially the cathode and anode. They can crack and oxidize;
films can form on them; ions can become embedded in them. There are complex and
detailed physical models for this process, as predicting lifetime is important in battery
management.

2.1 Cell charge and current

We use Suri et al.’s model of lithium-iron phosphate cell aging (Suri and Onori 2016).
Thismodel is for a single, 2.5Ampere-hour (Ah), 3.3Volt (V) lithium-ion cell. Physical
models such as thesemodel a cell using charging current in (A) andmodel capacity and
charge in (Ah). When we model a multi-cell battery, we switch to the more convenient
power and energy units, Watts (W) and Watt-hours (Wh).

We model the cell charging current as constant over time intervals of length δ

hours, so, e.g., δ = 0.25 means 15 minute intervals. We denote the time periods as
t = 1, 2, . . .. We denote the (instantaneous) charge in the cell at the beginning of
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interval t as q̃t , in units of (Ah). The charge satisfies 0 ≤ q̃t ≤ Q̃t , where Q̃t > 0
is the capacity in (Ah) of the cell at time in interval t . We assume that Q̃t is known
(or measured) at time t . We refer to Q̃1 as the initial cell capacity, and Q̃t as the cell
capacity at time t . The values q̃t = 0 and q̃t = Q̃t mean that the cell is empty and
full, respectively. The empty cell charge q̃t = 0 refers to the lowest charge of the cell
over its useful range, and not absolute zero cell charge. Similarly, q̃t = Q̃t refers to
the largest charge of the cell over its useful range.

The cell (discharge) current in interval t is denoted b̃t , in (A). Positive values of b̃t
correspond to discharging the cell, and negative values of b̃t correspond to charging
the cell. The cell current b̃t must satisfy |b̃t | ≤ B̃, where B̃ > 0 is the maximum
cell charge and discharge current in (A), given by B̃ = Q̃1C , where C > 0 is the
maximum C-rate of the cell, in inverse hours (1/h). The cell dynamics are given by
q̃t+1 = q̃t − δb̃t . Note that δb̃t is the total charge, in (Ah), removed from the cell in
interval t .

Short and long term quantities. We refer to b̃t and q̃t as short term quantities, since
they can vary considerably from interval to interval. We refer to Q̃t as a long term
(aging) quantity, since it changes very slowly, with appreciable change only over
a time period measured in months or longer. In particular, Q̃t can be considered
approximately constant over a period on the order of days.

2.2 Cell aging

Loss and loss rate. As the cell is used its capacity Q̃t decreases, i.e., Q̃t+1 ≤ Q̃t . The
lifetime L of the cell in (h) is the time L when the cell capacity drops below some
fixed fraction of its initial value, such as 90%, i.e., Q̃L−1 ≥ 0.9Q1 and Q̃L < 0.9Q1.
(It is also common to define lifetime using 80% of the initial capacity.) We define

the normalized capacity loss as lt =
(
Q1 − Q̃t

)
/Q1, which we can express as a

percentage, so, e.g., lt = 0.07 means the cell has experienced 7% capacity loss. The
normalized capacity loss starts at l1 = 0 (no capacity loss), and rises until lt > 0.1,
corresponding to cell lifetime.

The cell aging rate is defined as ρt = (lt+1 − lt )/δ, so we have

lt = δ

t−1∑
τ=1

ρτ .

The aging rate gives the increase in normalized capacity loss per hour, and has units
(1/h). A cell with a constant aging rate ρ has a lifetime around L = 0.2/δ hours, which
is 2.28 × 10−5/δ in years, a more commonly used time unit for cell lifetime. Typical
values of ρt are on the order of 10−6 or 10−5, corresponding to cell lifetime ranging
from around 2 to 20 years.
Loss rate model. The aging rate ρt depends on how the cell is used, i.e., its history of
charging and discharging up to period t . In this paper we use the semi-empirical aging
model for a lithium iron phosphate (LiFePO4)-graphite cell frequently used in hybrid
electric vehicle batteries, given in Suri and Onori (2016). (But our methods can be
used with any other specific cell aging model.) The model is
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ρt = z

(
t∑

τ=1

|b̃τ |δ
)z−1

|b̃t |
(

α
q̃t

Q̃t
+ β

)
exp

⎛
⎝−Ea + η

|b̃t |
Q̃t

RgT

⎞
⎠ . (1)

Here
∑t

τ=1 |b̃τ |δ is the accumulated (absolute) charge throughput, up to time t , with
units (Ah). We note that q̃t/Q̃t is the cell charge normalized to its capacity (between
0 and 1), and |b̃t |/Q̃t is the instantaneous C-rate of the cell, which is between 0 and
C .

The terms and constants appearing in (1) are as follows.

– The first term models the effect of accumulated charge on aging. The (unitless)
power law exponent is z = 0.60.

– The second term models the effect of instantanous cell charge of aging rate. We
take α = 28.966 and β = 74.112, with units (1/Ahz).

– The last term comes from the Arrhenius equation and gives the dependence of
aging on temperature and instantaneous charging rate. Here Ea = 31500 is the
activation energy with units (Jmol−1), Rg = 8.314 is the universal gas constant
with units (Jmol−1K−1), and η = 152.500, with units (Jmol−1h). The absolute
temperature T is given in degrees Kelvin (K).

The accumulated charge and cell capacity Q̃t are long term quantities, which do
not change much over periods of a few days (after the initial few months, in the case
of the accumulated charge). Combining the long term quantities we can rewrite the
capacity loss rate (1) as a function of the short term quantities as

ρt = μt |b̃t |(1 + νt q̃t ) exp λt |b̃t |, (2)

where

μt = β exp

(−Ea

RgT

)
z

(
t∑

τ=1

|b̃τ |δ
)z−1

, νt = α

β Q̃t
, λt = η

RgT Q̃t

are long term, slowly varying quantities, known at time t . Over short time periods (e.g.,
a few days), the coefficientsμt , νt , and λt can be considered constant, so the aging loss
rate depends only on |b̃t | and q̃t . It increases with |b̃t | proportional to |b̃t | exp λt |b̃t |,
and proportional to 1 + νt q̃t with q̃t .
Short term approximation. We develop here a convex approximation of ρt in (2) that
can be used in the short term. Taking the first order Taylor expansion of (2) with respect
to |b̃t | and q̃t , around the point |b̃t | = 0 and q̃t = Q̃t/2, we obtain

ρ̂t = μt

(
1 + νt

Q̃t

2

)
|b̃t |. (3)

This approximation seems crude, but given the recommended C-rate usage of the bat-
tery and our current applications, the Taylor expansion chosenwasmore than sufficient
to accurately represent the semi-empirical aging model. A Taylor expansion could be
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taken about other points, but the points chosen allow for a convex approximation of
the semi-empirical model that accurately represent the true aging model.

The convex approximation technique used in this work is tailored for models that
use the Arrhenius equation to represent aging as shown in (1) and extensively in the
literature. The methods to convexify the formula, however, can be applied to a variety
of semi-empirical aging models to represent these models in a form that works within
a convex framework.

2.3 Battery agingmodel

The abovemodel is for a single battery cell. Larger batteries aremade up ofmany cells.
We consider amulti-cell battery consisting of N cells, either passivelywired in a series-
parallel arrangement, or with active battery power control, or any combination. We
model the multi-cell battery with capacity given in energy (Wh) and charge/discharge
given in power (W). We assume that the battery cells work in a balanced way, i.e., all
have the same current, charge, and capacity at each time.

We denote the cell charging current as b̃t in (A), cell charge as q̃t in (Ah), and cell
capacity as Q̃t in (Ah), as above. We denote the battery charging power in (W) as bt ,
the battery charge as qt in (Wh), and the battery capacity as Qt in (Wh). These are
related as

bt = 3.3Nb̃t , qt = 3.3Nq̃t , Qt = 3.3N Q̃t ,

where 3.3 (V) is the cell voltage. (Here we make the reasonable approximation that
the cell voltage is constant over its useful charge range.) The maximum C-rate of the
battery is the same as that of a single cell.

2.4 Numerical example

In this section we demonstrate the aging model (2) and the short-term approximation
(3) with examples. The battery has N = 5000000 cells, corresponding to a capacity
Q1 = 4.125 (MWh). ThemaximumC-rate is set to 0.33 (1/h) whichmeans the battery
can completely charge or discharge in 3 hours. We consider two simple charging
profiles, shown in Figure 1. The first one fully charges and discharges the battery,
with constant charge/discharge current, with 2 cycles per day. The second one does
the same, with 4 cycles per day.

The associated capacity losses are shown in Figure 2. In these plots we show the
aging capacity loss calculated using the exact aging model (2) and the approximate
aging model (3). The approximate aging model matches the exact aging model well:
Table 1 shows it predicts lifetimes within a few percent of the more accurate model.

123



Aging-aware battery control via convex optimization

Fig. 1 Charging profiles. Top. 2 cycles per day. Bottom. 4 cycles per day

Fig. 2 Actual and approximate aging. Top. 2 cycles per day. Bottom. 4 cycles per day
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Table 1 Lifetime for different
charging profiles, calculated
using exact and the approximate
aging models

Charging profile Actual lifetime Approximate lifetime
(cycles/day) (years) (years)

2 5.60 5.70

4 2.75 2.85

3 Arbitrage

3.1 Problem setup

In our first example the short term task is arbitrage with time-varying energy prices.
The (nonnegative) price of electricity in period t is pt in (USD/MWh). The battery
is connected to the grid, and a payment of ptbtδ is received in period t ; negative
payments are amounts we pay to the grid operator. The objective is to choose bt to

maximize the average (net) payment over a day given by 1
T day

∑T day

τ=1 pτbτ δ, where

T day is the number of time periods in a day and δ is the period length in hours (h). The
prices are known far enough ahead of time (e.g., on day), that we can consider them
known.

Without considering battery aging, the greedy strategy is to discharge the battery
as much as possible when the price is high, and charge it as much as possible when
the price is low. In that case, we are only subject to physical limits such as maximum
discharge rate, battery capacity, current storage, etc. However this strategy will lead
to aggressive cycling of the battery and will shorten its lifetime. That is why we also

consider the total revenue over the lifetime of the battery,
∑T EOL

τ=1 pτbτ δ, where T EOL

is the end of life of the battery.

3.2 Short termMPCmethod

At time t we are given battery storage qt , battery capacity Qt , and compute the approx-
imate aging rate coefficient μt (1 + νt

Qt
2 ) using the battery model in §2. We consider

a horizon of H periods, and assume that together with Qt , the aging rate coefficient is
constant over this horizon. We assume that the price of electricity pt is known for the
next H periods and that they are nonnegative. To find the optimal battery discharge
bτ , and storage qτ for τ = t + 1, . . . , t + H , we solve the problem

minimize 1
H

∑t+H
τ=t+1

(
−pτbτ δ + γμt (1 + νt

Qt
2 )|bτ |

)
+ η

(
qt+H − Qt

2

)2

subject to qτ = qτ−1 − δbτ−1, τ = t + 1, . . . , t + H
|bτ | ≤ CQt , τ = t + 1, . . . , t + H
0 ≤ qτ ≤ Qt , τ = t + 1, . . . , t + H

where γ > 0 is a trade-off parameter between revenue and battery aging, and η > 0
is a parameter that penalizes deviation of the terminal battery charge from Qt/2, half
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Fig. 3 ERCOT hourly local marginal prices for day-ahead market in 2012. The dashed lines show the mean
and the maximum

capacity. Solving this optimization problem gives us a plan for operating the battery
over the next H periods. Our policy uses the first battery power bt in our plan.

We use the open source package CVXPY (Diamond and Boyd 2016) to formulate
the problem, and the specific solver CLARABEL (Goulart and Chen 2024) to solve
the problems.

3.3 Data

We use hourly local marginal prices (LMP) data for the day-ahead market in the
Electric Reliability Council of Texas (ERCOT) North Hub for the year 2012. The data
is available at ERCOT (2012). We use data from January 1, 2012 to December 31,
2012 and have 8784 data points.We run simulations until the battery end of life, which
ranges from 6 to 22 years.

To simulate multiple years, we repeat the data from 2012, removing the data from
February 29th for non-leap years. Repeating the same data for multiple years removes
yearly variations in the data, which varies considerably from year to year. For instance,
in February 2021, the price of electricity in Texas spiked to∼ 9000 (USD/MWh), two
orders of magnitude higher than the average price in 2012, due to a winter storm.
To reduce the effect of such outliers and yearly variations, we use the same data for
multiple years.

To visualize seasonal variation, we first look at prices at the yearly scale, shown
in Figure 3. The mean is 27.58 (USD/MWh) and its standard deviation is 39.36
(USD/MWh). The maximum price is 1524.42 (USD/MWh). We observe that there
are 2 major peaks, both in summer months.

Next, we look at the data at a finer scale. Figure 4 shows the prices for the first
week of January 2012 and the first week of June 2012. We observe several expected
phenomena, e.g., prices are higher during the day than at night, and a bit higher inwinter
than in summer. We can also see some small variation over a week. One interesting
observation is that the shape of the daily demand in winter differs considerably from
the shape of the daily demand in summer. In winter we see a double bump, with peaks
in the morning and afternoon, while in summer we see a smoother daily variation with
one peak in the early afternoon. We interpret this as the effect of heating in winter,
which causes a peak in the morning, and air conditioning in summer, which causes a
peak in the afternoon. Also, even if the daily demand curves are similar for the same
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Fig. 4 Two different weeks of price data. Top. January 2012. Bottom. June 2012

season, they show some variation. For instance, the daily demand on 06-04-2012 is
higher with a sharper peak around noon compared to the other days of the week.

We assume that we know the prices for the next H periods beforehand regardless
of the time of day, so we do not need to rely on a forecasting model to predict the
prices. However, in practice, day-ahead market prices in ERCOT are only available
at around 1:00 PM for 00:00 AM to 11:00 PM on the next day. As a result, we would
need to use a forecaster for at least some of the hours.

3.4 Simulation results

Using the MPC method in §3.2 and data in §3.3, we change the cost of battery aging
γ and simulate hourly (i.e., δ = 1 (h)) until the end of life of the battery. We take
horizon H = 24, i.e., one day. We found that the results are not sensitive to the value
of η, and use η = 1. Each subproblem takes on the order of milliseconds to solve.

The total revenue and average revenue versus battery lifetime is shown in Figure 5.
We observe that the total revenue increases with increasing battery lifetime while the
average revenue decreases. This is expected, since with a shorter battery lifetime, the
battery is allowed to cycle more aggressively, which increases the hourly revenue.
However, this comes at the cost of a shorter battery lifetime and lower total revenue.
Hence there is a trade-off between the total revenue and the average revenue.

Since total revenue is a monotonically increasing function of battery lifetime, and
we would get higher revenue with a longer battery lifetime, we focus on the net
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Fig. 5 Average hourly revenue versus battery lifetime

Fig. 6 Net present value of revenue versus battery lifetime

present value (NPV) of the revenue over the lifetime of the battery. The NPV is a
discounted sum of the revenue over the lifetime of the battery, where the interest
rate corresponds to the cost of capital. For a given interest rate i , NPV is given by

NPV(i) = ∑T EOL

τ=1
pτ bτ δ
(1+i)τ .

We plot the NPV versus battery lifetime in Figure 6 and show for interest rates
i = 0%, 10%, 20%. We observe that with 20% interest rate, the NPV is maximized
with a battery lifetime of around 10 years.

Next, we focus on discharge profiles at a smaller timeframe and look at the weekly
discharge profile for a battery with an 8.75 year lifetime in Figure 7. As expected, we
observe that discharge periods coincide with high price periods, and charge periods
coincide with low price periods. In fact, during the summer the battery is discharged
almost every day around noon, where the price is highest, and charged in the early
morning, where the price is lowest. In winter, the battery is idle most of the time, and
is discharged/charged only a few times a week.
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Fig. 7 Weekly discharge profile for a battery with 8.75 years lifetime. Top. January 2012. Bottom. June
2012

4 Load smoothing

4.1 Problem setup

In our second example the short term task is to smooth out a time-varying load. We
have a load wt in Watts (W), and we operate the battery in parallel, so the total power
is zt = wt + bt . We want zt to be smooth, as judged by the RMS difference

D =
(

1

T − 1

T−1∑
t=1

(zt+1 − zt )
2

)1/2

,

with smaller values better. At time period t , the load wt is known; future values
zt+1, zt+2, . . . are not known, but can be forecasted.

4.2 Short termMPCmethod

We use an MPC policy. At time t , we are given battery storage qt , battery capacity

Qt , load wt , and aging parameter μt

(
1 + νt

Qt
2

)
. We assume the battery capacity

and aging parameter are constant over our short term horizon H . We also have load
forecasts ŵτ |t for τ = t+1, . . . , t+H . We will discuss howwe obtain these forecasts
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later in §4.4. We solve the short term planning problem

minimize 1
H

∑t+H
τ=t+1

(
(zτ − zτ−1)

2 + γμt (1 + νt
Qt
2 )|bτ |

)
+ η

(
qt+H − Qt

2

)2

subject to zτ = ŵτ |t + bτ , τ = t + 1, . . . , t + H
zt = wt + bt
0 ≤ zτ , τ = t + 1, . . . , t + H
qτ = qτ−1 − δbτ−1, τ = t + 1, . . . , t + H
|bτ | ≤ CQt , τ = t + 1, . . . , t + H
0 ≤ qτ ≤ Qt , τ = t + 1, . . . , t + H

where γ > 0 is a trade-off parameter between smoothing and battery aging, and η > 0
penalizes deviation of the final battery storage from half capacity. The solution of this
problem gives us a plan for bt , . . . , bt+H ; we use as bt the first battery charge in this
plan.

4.3 Data

We use a battery with N = 15000 cells, corresponding to 123.75 (kWh) initial battery
capacity. Given that most commercial residential batteries have a capacity of 13.5
(kWh), this is equivalent to having 9 batteries. Maximum charge/discharge rate is
C = 0.3 (1/h) which implies that the battery can completely charge/discharge in
around 3 hours. We use simulated data modeled after the consumption of a large
language model (LLM) training job in the MIT Supercloud Dataset as described in
Li et al. (2024, Figure 6). We use 20 minute periods, and three discrete values of
load: 5 (kW), 20 (kW), and 35 (kW), corresponding to different computation states.
We refer to these as the low, medium, and high power states, respectively. We use a
Markov model for the computation states, taken (roughly) from (2024, Figure 6), with
transition matrix

P =
⎡
⎣
0.79 0.22 0.00
0.05 0.72 0.40
0.16 0.06 0.60

⎤
⎦

where Pi j is the probability of transitioning from state j to state i . We generate 25
years of data starting from 01-01-2018 00:00 PST, which gives 657000 data points.
The asymptotic state probabilities are 0.40, 0.38, and 0.22. The asymptotic average
load power is 17.25 (kW). Figure 8 shows the simulated load data for January 1st
2020.

4.4 Load forecasts

We use a simple conditional mean forecast ŵτ |t for τ = t + 1, . . . , t + H , obtained
as

ŵτ |t = (5, 20, 35)Pt−τ st , τ = t + 1, . . . , t + H ,
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Fig. 8 Simulated load data for January 1st 2020

Fig. 9 Actual load and forecasts on January 1st 2020

where st is the current state, i.e., st = (1, 0, 0) in the low power state, st = (0, 1, 0)
is the medium power state, and st = (0, 0, 1) in the high power state.

We show the load data and 6 hour ahead forecasts for January 1st 2020 in Figure 9.
We observe that the forecasts converge to steady state after around 2 hours.

4.5 Simulation results

Using the MPC method in §4.2, data in §4.3 and forecast in §4.4, we change the cost
of battery aging γ and simulate in 20 minute intervals (i.e., δ = 1/3 (h)) until the end
of life of the battery. Horizon H is set to 6 hours. We observed that the choice of η did
not affect the results significantly and we set it to η = 0.5 for all simulations.

RMSD (i.e.,D) of the smoothed load versus battery lifetime is shown in Figure 10.
D = 10.29 (kW) for 25 years of simulated load.We observe that with a battery lifetime
of 11 years,D = 0.44 (kW) and load is smoothed out approximately 23 times. On the
other hand, with a battery lifetime of 22 years, D = 6.20 (kW) and load is smoothed
out approximately 1.7 times. HenceD increases with increasing battery lifetime. This
is expected, since with a shorter battery lifetime, the battery is allowed to cycle more
aggressively, which results in a smoother signal and lower D. However, this comes at
the cost of a shorter battery lifetime.
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Fig. 10 D versus battery lifetime

Fig. 11 Daily smoothing profile using forecasts. Top. 11 years battery lifetime. Bottom. 15 years battery
lifetime

We focus on smoothing profiles at a smaller timeframe and look at the daily load
smoothing profile for a battery with an 11 year lifetime and 15 year lifetime in Fig-
ure 11. The smoothed load changes more slowly than the original load, and as the
battery lifetime increases, the smoothing decreases.

5 Conclusion

In this paper we formulated the battery management problem considering two com-
peting objectives: short term goals (with specific examples energy arbitrage and load
smoothing) and long term battery lifetime maximization. We adopted an existing

123



O. Nnorom Jr. et al.

semi-empirical battery aging model for lithium iron phosphate cells and developed
a convex optimization-based control strategy using a simplified yet accurate convex
approximation of the aging rate.

Our approach employs MPC, leveraging known future prices or load forecasts to
optimally balance short term task performance and battery longevity. Through exten-
sive numerical simulations, we clearly demonstrated the trade-off between aggressive
short term battery cycling and battery lifetime. We observed that aggressive cycling
significantly increased hourly revenues and reduced load fluctuations, but at the cost
of a shorter battery lifetime. Conversely, conservative strategies prolonged battery life
but yielded lower short term performance gains.

Key novelties of our work include the convex approximation of the battery aging
model, enabling computationally efficient optimization within the MPC framework,
and systematic quantification of the lifetime-performance trade-off under realistic con-
ditions. Our results underscore the importance of aging-aware optimization strategies,
providing a practical and scalable solution that bridges the gap between detailed bat-
tery aging models and real-time battery management. Open source implementation
and data used in this work are available at ON (2025).
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Mayne D, Seron M, Raković S (2005) Robust model predictive control of constrained linear systems with
bounded disturbances. Automatica 41(2):219–224

McConnell D, Forcey T, Sandiford M (2015) Estimating the value of electricity storage in an energy-only
wholesale market. Appl Energy 159:422–432

Mesbah A (2016) Stochastic model predictive control: An overview and perspectives for future research.
IEEE Control Syst Mag 36(6):30–44

Metz D, Saraiva J (2018) Use of battery storage systems for price arbitrage operations in the 15-and 60-min
German intraday markets. Electric Power Systems Research 160:27–36

Miller C, Goutham M, Chen X, Hanumalagutti P, Blaser R, Stockar S (2022) A semi-empirical approach
to a physically based aging model for home energy management systems. In: 2022 IEEE Conference
on Control Technology and Applications (CCTA), pp. 165–170. IEEE

Pelletier S, Jabali O, Laporte G, Veneroni M (2017) Battery degradation and behaviour for electric vehicles:
Review and numerical analyses of several models. Transportation Research Part B Methodological
103:158–187

Péni T, Csutak B, Szederkényi G, Röst G (2020) Nonlinear model predictive control with logic constraints
for Covid-19 management. Nonlinear Dyn 102:1965–1986

Primbs J (2009) Dynamic hedging of basket options under proportional transaction costs using receding
horizon control. Int J Control 82(10):1841–1855

Raimondo D, Limon D, Lazar M, Magni L, Camacho E (2009) Min-max model predictive control of
nonlinear systems: A unifying overview on stability. Eur J Control 15(1):5–21

Rakovic S, Levine W (2018) Handbook of Model Predictive Control. Springer, Berlin
Rawlings J, Mayne D, Diehl M (2017) Model Predictive Control: Theory, Computation, and Design, vol 2.

Nob Hill Publishing Madison, WI
Ren C, Wang D, Urgaonkar B, Sivasubramaniam A (2012) Carbon-aware energy capacity planning for

datacenters. In: Proceedings of the 2012 IEEE 20th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, pp. 391–400. IEEE

Schmidt O, Hawkes A, Gambhir A, Staffell I (2017) The future cost of electrical energy storage based on
experience rates. Nat Energy 2(8):1–8

Schwenzer M, Ay M, Bergs T, Abel D (2021) Review on model predictive control: An engineering per-
spective. The International Journal of Advanced Manufacturing Technology 117(5):1327–1349

Serrao L, Onori S, Rizzoni G, Guezennec Y (2009) A novel model-based algorithm for battery progno-
sis. IFAC Proceedings Volumes 42(8):923–928. https://doi.org/10.3182/20090630-4-es-2003.00152.
https://www.sciencedirect.com/science/article/pii/s1474667016358955

Shen X, Boyd S (2021) Incremental proximal multi-forecast model predictive control. arXiv Preprint
arXiv:2111.14728

123

https://doi.org/10.1109/tii.2018.2866493
https://doi.org/10.1109/tii.2018.2866493
https://ieeexplore.ieee.org/document/8444057/?arnumber=8444057
https://doi.org/10.1016/j.apenergy.2019.114360
https://www.sciencedirect.com/science/article/pii/s0306261919320471
https://www.sciencedirect.com/science/article/pii/s0306261919320471
https://doi.org/10.1016/j.est.2016.08.002
https://www.sciencedirect.com/science/article/pii/s2352152x16301025
https://www.sciencedirect.com/science/article/pii/s2352152x16301025
https://doi.org/10.3182/20090630-4-es-2003.00152
https://www.sciencedirect.com/science/article/pii/s1474667016358955
http://arxiv.org/abs/2111.14728


O. Nnorom Jr. et al.

Sioshansi R, Denholm P, Jenkin T, Weiss J (2009) Estimating the value of electricity storage in PJM:
Arbitrage and some welfare effects. Energy Economics 31(2):269–277

Staffell I, Rustomji M (2016) Maximising the value of electricity storage. Journal of Energy Storage 8:212–
225

Suri G, Onori S (2016) A control-oriented cycle-life model for hybrid electric vehicle lithium-ion bat-
teries. Energy 96:644–653. https://doi.org/10.1016/j.energy.2015.11.075. https://www.sciencedirect.
com/science/article/pii/s0360544215016382

Suvire G, Molina M, Mercado P (2012) Improving the integration of wind power generation into AC
microgrids using flywheel energy storage. IEEE Transactions on Smart Grid 3(4):1945–1954

Talluri K, Ryzin GV (2006) The Theory and Practice of Revenue Management, vol 68. Springer Science
& Business Media, Berlin

Torregrosa A, Broatch A, Olmeda P, Agizza L (2024) A semi-empirical model of the calendar ageing of
lithium-ion batteries aimed at automotive and deep-space applications. Journal of Energy Storage
80:110388

Urgaonkar R, Urgaonkar B, Neely M, Sivasubramaniam A (2011) Optimal power cost management using
stored energy in data centers. In: Proceedings of the ACM Sigmetrics Joint International Conference
on Measurement and Modeling of Computer Systems, pp. 221–232

Vermeer W, Mouli G, Bauer P (2021) A comprehensive review on the characteristics and modeling of
lithium-ion battery aging. IEEE Transactions on Transportation Electrification 8(2):2205–2232

Wang D, Govindan S, Sivasubramaniam A, Kansal A, Liu J, Khessib B (2014) Underprovisioning backup
power infrastructure for datacenters. In: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pp. 177–192

Wang D, Ren C, Sivasubramaniam A, Urgaonkar B, Fathy H (2012) Energy storage in datacenters: What,
where, and how much? In: Proceedings of the 12th ACM Sigmetrics/performance Joint International
Conference on Measurement and Modeling of Computer Systems, pp. 187–198

Wang Y, Boyd S (2009) Fast model predictive control using online optimization. IEEE Trans Control Syst
Technol 18(2):267–278

Weitzel T, Glock C (2018) Energy management for stationary electric energy storage systems: A systematic
literature review. Eur J Oper Res 264(2):582–606. https://doi.org/10.1016/j.ejor.2017.06.052. https://
www.sciencedirect.com/science/article/pii/s0377221717305933

Wilson I, Barbour E, Ketelaer T, Kuckshinrichs W (2018) An analysis of storage revenues from the time-
shifting of electrical energy in Germany and Great Britain from 2010 to 2016. Journal of Energy
Storage 17:446–456

XiongR, PanY, ShenW,LiH, SunF (2020)Lithium-ion battery agingmechanisms and diagnosismethod for
automotive applications: Recent advances and perspectives. Renew Sustain Energy Rev 131:110048

XuB,Zhao J, ZhengT,LitvinovE,KirschenD (2017) Factoring the cycle aging cost of batteries participating
in electricity markets. IEEE Trans Power Syst 33(2):2248–2259

XuB,Zhao J, ZhengT,LitvinovE,KirschenD (2018) Factoring the cycle aging cost of batteries participating
in electricity markets. IEEE Trans Power Syst 33(2):2248–2259. https://doi.org/10.1109/tpwrs.2017.
2733339

Zafirakis D, Chalvatzis K, Baiocchi G, Daskalakis G (2016) The value of arbitrage for energy storage:
Evidence from European electricity markets. Appl Energy 184:971–986

Zhang P, Yan F, Du C (2015) A comprehensive analysis of energy management strategies for hybrid electric
vehicles based on bibliometrics. Renew Sustain Energy Rev 48:88–104

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.energy.2015.11.075
https://www.sciencedirect.com/science/article/pii/s0360544215016382
https://www.sciencedirect.com/science/article/pii/s0360544215016382
https://doi.org/10.1016/j.ejor.2017.06.052
https://www.sciencedirect.com/science/article/pii/s0377221717305933
https://www.sciencedirect.com/science/article/pii/s0377221717305933
https://doi.org/10.1109/tpwrs.2017.2733339
https://doi.org/10.1109/tpwrs.2017.2733339

	Aging-aware battery control via convex optimization
	Abstract
	1 Introduction
	1.1 Setting and tasks
	1.2 Related work
	1.3 Outline

	2 Cell aging model
	2.1 Cell charge and current
	2.2 Cell aging
	2.3 Battery aging model
	2.4 Numerical example

	3 Arbitrage
	3.1 Problem setup
	3.2 Short term MPC method
	3.3 Data
	3.4 Simulation results

	4 Load smoothing
	4.1 Problem setup
	4.2 Short term MPC method
	4.3 Data
	4.4 Load forecasts
	4.5 Simulation results

	5 Conclusion
	Acknowledgements
	References


