Contents
function [z, history] = logreg(A, b, mu, rho, alpha)
t_start = tic;
Global constants and defaults
QUIET = 0;
MAX_ITER = 1000;
ABSTOL = 1e-4;
RELTOL = 1e-2;
Data preprocessing
[m, n] = size(A);
ADMM solver
x = zeros(n+1,1);
z = zeros(n+1,1);
u = zeros(n+1,1);
if ~QUIET
fprintf('%3s\t%10s\t%10s\t%10s\t%10s\t%10s\n', 'iter', ...
'r norm', 'eps pri', 's norm', 'eps dual', 'objective');
end
for k = 1:MAX_ITER
x = update_x(A, b, u, z, rho);
zold = z;
x_hat = alpha*x + (1-alpha)*zold;
z = x_hat + u;
z(2:end) = shrinkage(z(2:end), (m*mu)/rho);
u = u + (x_hat - z);
history.objval(k) = objective(A, b, mu, x, z);
history.r_norm(k) = norm(x - z);
history.s_norm(k) = norm(rho*(z - zold));
history.eps_pri(k) = sqrt(n)*ABSTOL + RELTOL*max(norm(x), norm(z));
history.eps_dual(k)= sqrt(n)*ABSTOL + RELTOL*norm(rho*u);
if ~QUIET
fprintf('%3d\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.2f\n', k, ...
history.r_norm(k), history.eps_pri(k), ...
history.s_norm(k), history.eps_dual(k), history.objval(k));
end
if history.r_norm(k) < history.eps_pri(k) && ...
history.s_norm(k) < history.eps_dual(k)
break;
end
end
if ~QUIET
toc(t_start);
end
end
function obj = objective(A, b, mu, x, z)
m = size(A,1);
obj = sum(log(1 + exp(-A*x(2:end) - b*x(1)))) + m*mu*norm(z,1);
end
function x = update_x(A, b, u, z, rho, x0)
alpha = 0.1;
BETA = 0.5;
TOLERANCE = 1e-5;
MAX_ITER = 50;
[m n] = size(A);
I = eye(n+1);
if exist('x0', 'var')
x = x0;
else
x = zeros(n+1,1);
end
C = [-b -A];
f = @(w) (sum(log(1 + exp(C*w))) + (rho/2)*norm(w - z + u).^2);
for iter = 1:MAX_ITER
fx = f(x);
g = C'*(exp(C*x)./(1 + exp(C*x))) + rho*(x - z + u);
H = C' * diag(exp(C*x)./(1 + exp(C*x)).^2) * C + rho*I;
dx = -H\g;
dfx = g'*dx;
if abs(dfx) < TOLERANCE
break;
end
t = 1;
while f(x + t*dx) > fx + alpha*t*dfx
t = BETA*t;
end
x = x + t*dx;
end
end
function z = shrinkage(a, kappa)
z = max(0, a-kappa) - max(0, -a-kappa);
end