Contents
function [z, history] = lasso_lsqr(A, b, lambda, rho, alpha)
t_start = tic;
Global constants and defaults
QUIET = 0;
MAX_ITER = 1000;
ABSTOL = 1e-4;
RELTOL = 1e-2;
Data preprocessing
[m, n] = size(A);
ADMM solver
x = zeros(n,1);
z = zeros(n,1);
u = zeros(n,1);
if ~QUIET
fprintf('%3s\t%10s\t%10s\t%10s\t%10s\t%10s\t%10s\n', 'iter', ...
'lsqr iters', 'r norm', 'eps pri', 's norm', 'eps dual', 'objective');
end
for k = 1:MAX_ITER
[x, flag, relres, iters] = lsqr([A; sqrt(rho)*speye(n)], ...
[b; sqrt(rho)*(z-u)], [], [], [], [], x);
if(flag ~=0)
error('LSQR problem...\n');
end
zold = z;
x_hat = alpha*x + (1 - alpha)*zold;
z = shrinkage(x_hat + u, lambda/rho);
u = u + (x_hat - z);
history.objval(k) = objective(A, b, lambda, x, z);
history.lsqr_iters(k) = iters;
history.r_norm(k) = norm(x - z);
history.s_norm(k) = norm(-rho*(z - zold));
history.eps_pri(k) = sqrt(n)*ABSTOL + RELTOL*max(norm(x), norm(-z));
history.eps_dual(k)= sqrt(n)*ABSTOL + RELTOL*norm(rho*u);
if ~QUIET
fprintf('%3d\t%10d\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.2f\n', k, ...
sum(history.lsqr_iters), history.r_norm(k), history.eps_pri(k), ...
history.s_norm(k), history.eps_dual(k), history.objval(k));
end
if (history.r_norm(k) < history.eps_pri(k) && ...
history.s_norm(k) < history.eps_dual(k))
break;
end
end
if ~QUIET
toc(t_start);
end
end
function p = objective(A, b, lambda, x, z)
p = ( 1/2*sum((A*x - b).^2) + lambda*norm(z,1) );
end
function z = shrinkage(x, kappa)
z = max( 0, x - kappa ) - max( 0, -x - kappa );
end