Contents
function [z, history] = basis_pursuit(A, b, rho, alpha)
t_start = tic;
Global constants and defaults
QUIET = 0;
MAX_ITER = 1000;
ABSTOL = 1e-4;
RELTOL = 1e-2;
Data preprocessing
[m n] = size(A);
ADMM solver
x = zeros(n,1);
z = zeros(n,1);
u = zeros(n,1);
if ~QUIET
fprintf('%3s\t%10s\t%10s\t%10s\t%10s\t%10s\n', 'iter', ...
'r norm', 'eps pri', 's norm', 'eps dual', 'objective');
end
AAt = A*A';
P = eye(n) - A' * (AAt \ A);
q = A' * (AAt \ b);
for k = 1:MAX_ITER
x = P*(z - u) + q;
zold = z;
x_hat = alpha*x + (1 - alpha)*zold;
z = shrinkage(x_hat + u, 1/rho);
u = u + (x_hat - z);
history.objval(k) = objective(A, b, x);
history.r_norm(k) = norm(x - z);
history.s_norm(k) = norm(-rho*(z - zold));
history.eps_pri(k) = sqrt(n)*ABSTOL + RELTOL*max(norm(x), norm(-z));
history.eps_dual(k)= sqrt(n)*ABSTOL + RELTOL*norm(rho*u);
if ~QUIET
fprintf('%3d\t%10.4f\t%10.4f\t%10.4f\t%10.4f\t%10.2f\n', k, ...
history.r_norm(k), history.eps_pri(k), ...
history.s_norm(k), history.eps_dual(k), history.objval(k));
end
if (history.r_norm(k) < history.eps_pri(k) && ...
history.s_norm(k) < history.eps_dual(k))
break;
end
end
if ~QUIET
toc(t_start);
end
end
function obj = objective(A, b, x)
obj = norm(x,1);
end
function y = shrinkage(a, kappa)
y = max(0, a-kappa) - max(0, -a-kappa);
end