clear all; close all;
PLOT_TRADEOFF = 1;
N = 6;
parent(1) = 0;
parent(2) = 1;
parent(3) = 2;
parent(4) = 3;
parent(5) = 2;
parent(6) = 5;
Rsource = 0.1;
l = 1*ones(N-1,1);
alpha = 1*ones(N-1,1);
beta = 1*ones(N-1,1);
gamma = 1*ones(N-1,1);
C1 = 10; C2 = 10; C3 = 10; C4 = 10; C5 = 10;
Cload = [0 C1 C2 C3 C4 C5];
Wmin = 1;
Wmax = 10;
Amax = 15;
children = cell(N,1);
leafs = [];
for node = [1:N]
children{node} = find(parent == node);
if isempty(children{node})
leafs(end+1) = node;
end
end
gpvar w(N-1)
gpvar T(N)
R = alpha.*l./w;
R = [Rsource; R];
C_bar = beta.*l.*w + gamma.*l;
C_bar = [0; C_bar];
C_tilde = posynomial;
for node = [1:N]
C_tilde(node,1) = Cload(node);
for k = parent(node)
if k > 0; C_tilde(node,1) = C_tilde(node,1) + C_bar(k); end;
end
for k = children{node}
C_tilde(node,1) = C_tilde(node,1) + C_bar(k);
end
end
C_total = posynomial;
for node = N:-1:1
C_total(node,1) = C_tilde(node);
for k = children{node}
C_total(node,1) = C_total(node,1) + C_total(k,1);
end
end
elm_delay_constr = [R(1)*C_total(1) <= T(1,1)];
for node = 2:N
elm_delay_constr = [elm_delay_constr; ...
R(node)*C_total(node) + T(parent(node),1) <= T(node,1)];
end
area = sum(w.*l);
constr(1) = area <= Amax;
constr = [constr; Wmin*ones(N-1,1) <= w; w <= Wmax*ones(N-1,1)];
constr = [constr; elm_delay_constr];
D = max( T(leafs) );
[D_value, solution, status] = gpsolve(D, constr);
assign(solution);
ckt_delay_plot = D_value;
Amax_plot = Amax;
fprintf(1,'\nOptimal Elmore delay for Amax = %d is %3.4f.\n', ...
Amax, D_value)
disp('Optimal wire widths are: '), w
if( PLOT_TRADEOFF )
global QUIET; QUIET = 1;
disp('generating the tradeoff curve')
Darray = []; Duniform = [];
for Amax = [5.05 5.25 5.5 5.75 6:25]
constr(1) = area <= Amax;
[D_value, solution, status] = gpsolve(D, constr);
Darray = [Darray D_value];
D_to_3 = C_tilde(4)*(R(1) + R(2) + R(3) + R(4)) + ...
C_tilde(3)*(R(1) + R(2) + R(3)) + C_tilde(1)*R(1) + ...
(C_tilde(2) + C_tilde(5) + C_tilde(6))*(R(1) + R(2));
D_to_5 = C_tilde(6)*(R(1) + R(2) + R(5) + R(6)) + ...
C_tilde(5)*(R(1) + R(2) + R(5)) + C_tilde(1)*R(1) + ...
(C_tilde(2) + C_tilde(3) + C_tilde(4))*(R(1) + R(2));
D_3_5 = max(D_to_3,D_to_5);
Duniform = [Duniform eval(D_3_5, {'w' Amax/(N-1)*ones(N-1,1)}) ];
end
global QUIET; QUIET = 0;
Amax = [5.05 5.25 5.5 5.75 6:25];
plot(Darray,Amax,Duniform,Amax,'--',ckt_delay_plot,Amax_plot,'bo');
xlabel('Elmore delay D'); ylabel('Amax');
legend('optimal','uniform')
end
Iteration primal obj. gap dual residual previous step.
1 5.20469e+00 4.30000e+01 2.24e+01 Inf
2 5.26444e+00 1.79498e+01 6.76e-03 9.90311e-01
3 2.13759e+00 9.81860e+00 4.80e-04 7.95102e-01
4 1.81684e-01 4.50566e+00 5.37e-06 1.00000e+00
5 -2.58233e-01 2.23499e+00 3.75e-06 1.00000e+00
Iteration primal obj. gap dual residual previous step.
1 1.92704e+02 4.30000e+01 1.00e+00 Inf
2 1.56156e+02 4.10528e+01 9.36e-01 3.36318e-02
3 6.53202e+01 3.78461e+01 8.81e-01 3.00259e-02
4 2.36201e+01 3.45175e+01 7.77e-01 6.05599e-02
5 9.13300e+00 3.12913e+01 6.01e-01 1.25000e-01
6 6.68741e+00 2.54784e+01 1.67e-01 5.00000e-01
7 8.28682e+00 2.20511e+01 1.12e-03 1.00000e+00
8 5.89151e+00 1.10608e+01 7.15e-04 1.00000e+00
9 4.89862e+00 5.56656e+00 1.17e-04 1.00000e+00
10 4.34698e+00 2.79801e+00 2.33e-05 1.00000e+00
11 4.05803e+00 1.40475e+00 2.75e-06 1.00000e+00
12 3.91054e+00 7.04238e-01 2.87e-07 1.00000e+00
13 3.83696e+00 3.52660e-01 2.48e-08 1.00000e+00
14 3.80014e+00 1.76474e-01 1.81e-09 1.00000e+00
15 3.78170e+00 8.82735e-02 1.20e-10 1.00000e+00
16 3.77247e+00 4.41459e-02 7.65e-12 1.00000e+00
17 3.76785e+00 2.20752e-02 4.83e-13 1.00000e+00
18 3.76554e+00 1.10382e-02 3.03e-14 1.00000e+00
19 3.76439e+00 5.51924e-03 1.90e-15 1.00000e+00
20 3.76381e+00 2.75966e-03 1.19e-16 1.00000e+00
21 3.76352e+00 1.37984e-03 7.42e-18 1.00000e+00
22 3.76338e+00 6.89921e-04 4.64e-19 1.00000e+00
23 3.76331e+00 3.44961e-04 2.90e-20 1.00000e+00
24 3.76327e+00 1.72481e-04 1.81e-21 1.00000e+00
25 3.76325e+00 8.62404e-05 1.13e-22 1.00000e+00
26 3.76324e+00 4.31202e-05 7.08e-24 1.00000e+00
27 3.76324e+00 2.15601e-05 4.43e-25 1.00000e+00
28 3.76324e+00 1.07800e-05 2.77e-26 1.00000e+00
29 3.76324e+00 5.39002e-06 1.74e-27 1.00000e+00
30 3.76324e+00 2.69501e-06 1.09e-28 1.00000e+00
31 3.76323e+00 1.34751e-06 5.93e-30 1.00000e+00
32 3.76323e+00 6.73753e-07 1.79e-30 1.00000e+00
33 3.76323e+00 3.36877e-07 1.99e-31 1.00000e+00
34 3.76323e+00 1.68438e-07 3.99e-31 1.00000e+00
35 3.76323e+00 8.42191e-08 3.88e-31 1.00000e+00
36 3.76323e+00 4.21096e-08 3.35e-31 1.00000e+00
37 3.76323e+00 2.10548e-08 1.93e-31 1.00000e+00
38 3.76323e+00 1.05274e-08 5.81e-32 1.00000e+00
39 3.76323e+00 5.26370e-09 2.92e-31 1.00000e+00
Solved
Problem succesfully solved.
Optimal Elmore delay for Amax = 15 is 43.0876.
Optimal wire widths are:
w =
5.8924
2.6416
1.9122
2.6416
1.9122
generating the tradeoff curve
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.
Problem succesfully solved.