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Abstract—Convex optimization has been used in signal process- design applications, the optimization must merely be fast
ing for a long time, to choose coefficients for use in fast (linear) enough to not slow the designer; thus, optimization times
algorithms, such as in filter or array design; more recently, it has measured in seconds, or even minutes, are usually suffigient

been used to carry out (nonlinear) processing on the signal itself. th d cat timization i dt b
Examples of the latter case include total variation de-noising, € second category, convex optimization IS used to pratess

compressed sensing, fault detection, and image classification. Insignal itself, which (generally) yields a nonlinear algiom;
both scenarios, the optimization is carried out on time scales of an early example i§, regularization for sparse reconstruction
seconds or minutes, and without strict time constraints. Convex in geophysics [25], [26]. Most applications in this categare
optimization has traditionally been considered computationally (currently) off-line, as in geophysics reconstruction,veiile

expensive, so its use has been limited to applications where plenty . T . . .
of time is available. Such restrictions are no longer justified. faster is better, the optimization is not subject to thecstri

The combination of dramatically increased computational power, €al-time deadlines that would arise in an on-line appbeat
modern algorithms, and new coding approaches has delivered Recent advances in algorithms for solving convex optimiza-
an enormous speed increase, which makes it possible to solveion problems, along with great advances in processor power
modest-sized convex optimization problems on microsecond or paye dramatically reduced solution times. Another sigaific
millisecond time scales, and with strict deadlines. This enables Lo . . . .
real-time convex optimization in signal processing. reducthn in solution 'Flme may be obta|r_1ed by_us_mg a solver
customized for a particular problem family. (This is delsed
in 8lll.) As a result, convex optimization problems that 20
|. INTRODUCTION years ago might have taken minutes to solve can now be solved

Convex optimization [1] refers to a broad class of optin microseconds.
mization problems, which includes, for example, leastasgs, This opens up several new possibilities. In the design
linear programming (LP), quadratic programming (QP), amzbntext, algorithm weights can be re-designed or updated
the more modern second-order cone programming (SOCH), fast time scales (say, kHz). Perhaps more exciting is the
semidefinite progamming (SDP), and the minimization at possibility that convex optimization can be emdedded diyec
the core of compressed sensing [2], [3]. Unlike many geneiit signal processing algorithms that run on-line, with citri
optimization problems, convex optimization problems can breal-time deadlines, even at rates of tens of kHz. We will see
efficiently solved, both in theoryi.e., via algorithms with that solving 10000 modest sized convex optimization proisle
worst-case polynomial complexity) [4] and in practice [1]per second is entirely possible on a generic processor. This
[5]. It is widely used in application areas like control [6]js quite remarkable, since solving an optimization problem
[7], [8], circuit design [9], [10], [11], economics and finee is generally considered a computationally challenging,tas
[12], [13], networking [14], [15], [16], statistics and nf@ioe and few engineers would consider an on-line algorithm, that
learning [17], [18], quantum information theory [19], [2@nd requires the solution of an optimization problem at each,ste
combinatorial optimization [21], to hame just a few. to be feasible for signal rates measured in kHz.

Convex optimization has a long history in signal processing Of course, for high-throughput or fast signal processing
dating back to the 1960s. The history is described below in(say, an equalizer running at GHz rates) it is not feasible to
little more detail; for some more recent applications, sae fsolve an optimization problem in each step, and it may never
example the special issue of theEE Journal on Selected be. But a large number of applications are now potentially
Topics in Signal Processingn convex optimization methodswithin reach of new algorithms in which an optimization
for signal processing [22]. problem is solved in each step, or every few steps. We imagine

Signal processing applications may be split into two cathat in the future, more and more signal processing algosth
egories. In the first, optimization is used for desige,, to will involve embedded optimization, running at rates up to o
choose the weights or algorithm parameters for later use @rceeding tens of kHz. (We believe the same trend will take
a (typically linear) signal processing algorithm. A clasdi place in automatic control; see,g, [27], [28].)
example is the design of finite impulse response (FIR) filter In this article, we briefly describe two recent advances that
coefficients via linear programming (LP) [23], [24]. In tlees make it easier to design and implement algorithms for such



applications. The first, described in 8ll, is disciplinecheex FIR filters. This was later extended to the design of weights
programming, which simplifies problem specification and afer 2-D filters [32], and filter banks [33]. Using spectral
lows the transformation to a standard form to be automatddctorization, LP and SOCP can be used to design filters with
This makes it possible to rapidly prototype applicationsdsh magnitude specifications [34], [35].
on convex optimization. The second advance, describedlin §1 Weight design via convex optimization can also be carried
is convex optimization code generation, in which (sourcgecoout for (some) nonlinear signal processing algorithms; for
for) a custom solver that runs at the required high speeddgample, in a decision-feedback equalizer [36]. Convex opt
automatically generated from a high level description @& thmization can also be used to choose the weights in arraylsigna
problem family. processing, in which multiple sensor outputs are combined
In the final three sections, we illustrate the idea of raakti linearly to form a composite array output. Here the weights a
embedded convex optimization with three simple examplashosen to give a desirable response pattern [37], [38]. More
In the first example (8IV), we show how to implement aecently, convex optimization has been used to design array
nonlinear pre-equalizer for a system with input saturatioweights that are robust to variations in the signal stagstir
It pre-distorts the input signal so that the output signal aprray response [39], [40].
proximately matches the output of a reference linear systemMany classification algorithms from machine learning in-
Our equalizer is based on a method called model predictivelve what is essentially weight design via convex optimiza
control [29], which has been widely used in the process obnttion [41]. For example, objects (say, images or email mes-
industry for more than a decade. It requires the solution shges) might be classified into two groups by first computing
a QP at each step. It would not surprise anyone to knawvector of features)(z) € R”", then, in real-time, using a
that such an algorithm could be run at, say, 1 Hz (procesisnple linear threshold to classify the objects: we assign
control applications typically run with sample times measu to one group ifw” ¢(x) > v, and to the other group if not.
in minutes); but we will show that it can easily be run at 1 kH4dere w € R™ andv € R are weights, chosen by training
This example illustrates how our ability to solve QPs witlfrom objects whose true classification is known. This aftli
extreme reliability and speed has made new signal proagssiraining step often involves convex optimization. One Wjde
methods possible. used method is the support vector machine (SVM), in which
In the second example (8V), we show how a standatde weights are found by solving a large QP [17], [18]. While
Kalman filter can be modified to handle occasional largais involves solving a (possibly large) optimization plerh to
sensor noises (such as those due to sensor failure or ortahti determine the weights, only minimal computation is recgiire
jamming), using now standa¥d-based methods. Those famil-at run-time to compute the features and form the inner prioduc
iar with the ideas behind compressed sensing (or severat otthat classifies any given object.
related techniques) will not be surprised at the effectigsn
of these methods, which require the solution of a QP at e
time step. What is surprising is that such an algorithm can
run at tens of kHz. Recently introduced applications use convex optimization
Our final example (§VI) is one from the design category: ® carry out (nonlinear) processing of the signal itselfeTh
standard array signal processing weight selection prabiem crucial difference from the previous category is that spised
which, however, the sensor positions drift with time. Hére t now of critical importance. Convex optimization problente a
problem reduces to the solution of an SOCP at each time stepw solved in the main loop of the processing algorithm, and
the surprise is that this can be carried out in a few milliselsp the total processing time depends on how fast these problems
which means that the weights can be re-optimized at hundre&@ be solved.
of Hz. With some of these applications, processing time again
In the next two subsections we describe some previomatters only in the sense that ‘faster is better’. These fire o
and current applications of convex optimization, in the twtne applications where data is being analyzed withouttstri
just-described categories of weight design and directasigriime constraints. More challenging applications involve- o
processing. Before preceeding we note that the distindten line solution, with strict real-time deadlines. Only retigras
tween the two categories—optimization for algorithm weigthe last category become possible, with the development of
design versus optimization directly in the algorithm itsels  reliable, efficient solvers and the recent increase in camgu
not sharp. For example, widely used adaptive signal praugssPOWEr.
techniques [30], [31] adjust parameters in an algorithue, (  One of the first applications where convex optimization was
carry out re-design) on-line, based on the data or signaised directly on the signal is in geophysics [25], [26], vener
themselves. £ minimization was used for sparse reconstruction of signals
Similar ¢, -techniques are widely used in total variation noise
removal in image processing [42], [43], [44]. Other image
processing applications include deblurring [45] and, nége
Convex optimization was first used in signal processing asutomatic face recognition [46]. Other signal identifioati
design,i.e., selecting weights or coefficients for use in simplealgorithms usef; minimization or regularization to recover
fast, typically linear, signal processing algorithms. 186%, signals from incomplete or noisy measurements [47], [48],
[23] showed how to use LP to design symmetric linear phaf®. Within statistics, feature selection via the Lassooailipm

h . . . o
age Signal processing via convex optimization

A. Weight design via convex optimization



[49] uses similar techniques. The same ideas are applied A = [.]; b = [.]; Q = [..];
to reconstructing signals with sparse derivative (or gmtli 2  cyx_pegin

more generally) in total variation de-noising, and in signag variable x(5)

with sparse second derivative (or Laplacian) [50]. A redate, minimize (quad_form (x, Q))

problem is parameter estimation where we fit a model tp subject to

data. One example of this is fitting MA or ARMA models;g abs(x) <= 1; sum(x) == 10; A *x >= 0
here parameter estimation can be carried out with convex cyx end

optimization [51], [52], [53]. 8  cvx status

Convex optimization is also used as a relaxation technique
for problems that are essentially Boolean, as in the detecti 1) proplem data is specified within Matlab as ordinary
of faults [54], [55] or in decoding a bit string from a receive matrices and vectors. Herd is a 3 x 5 matrix, b is
noisy signal. In these applications a convex problem isexhlv a 3-vector, andQ is a5 x 5 matrix.
after which some kind of rounding takes place to guess the2) Changes from ordinary Matlab mode @VX model
fault pattern or transmitted bit string [56], [57], [58]. specification mode.
~ Many methods of state estimation can be interpreted as3) .. RS js an optimization variable object. After solution,
involving convex optimization. (Basic Kalman filtering and 2 is replaced with a solution (numerical vector).

least-squares fall in this category, but since the objestare 4) Recognized as convex objectivd Qz (provided Q >
guadratic, the optimization problems can be solved arcallyi 0). -
using linear algebra.) In the 1970s, ellipsoidal calculussw 5) Does nothing, but enhances readability.

used to develop a state estimator less sensitive to statisti 6) In CVX model specification mode, equalities and in-
assumptiops than the Kalman filter, by propagating elligsoi equalities specify constraints.

that contain the state [59], [60]. The standard approack her 7y completes model specification, initiates transfornmtio
is to work out a conservative update for the ellipsoid; bet th 1, standard form, and calls solver: solution is written to
most sophisticated methods for ellipsoidal approximatiely -

on convex optimization [1, 88.4]. Another recently develdp 8) Reports statug.g, Solved or Infeasible

estimation method is minimax regret estimation [61], which
relies on convex optimization.

Convex optimization algorithms have also been used in
wireless systems. Some examples here include on-line pulse
shape design for reducing the peak or average power of a .. . T
signgl [62],?eceive antenn% selegtion in MIMO %ystpems ’[Gﬁpemfylng the convex optimization problem

Fig. 1: CVXcode segment (above) and explanations (below).

and performing demodulation by solving convex problems minimize 27 Qux )
(64]. subject to [z| <1, Y, z; =10, Az >0, @
II. DISCIPLINED CONVEX PROGRAMMING with variablez € R®, where@ € R>*® satisfiesQ) = Q7 > 0

A standard trick in convex optimization, used since th@.e. is symmetric positive semidefinite) antle R**°. Here
origins of LP [65], is to transform the problem that must bgoth inequalities are elementwise, so the problem reqthiegs
solved into an equivalent problem, which is in a standarthfor|x;| < 1, and (Az); > 0. This simple problem could be
that can be solved by a generic solver. A good example of tiifgnsformed to standard QP form by ha@/Xand CVXMOD
is the reduction of af; minimization problem to an LP; seedo it automatically. The advantage of a parser-solver like
[1, Chap. 4] for many more examples. Recently developédvVXwould be much clearer for a larger more complicated
parser-solvers such as YALMIP [66],CVX [67], CVXMOD problem. To add further (convex) constraints to this proble
[68], and Pyomo [69] automate this reduction process. Tie& additional (convex) terms to the objective, is easyCMX
user specifies the problem in a natural form by declarift quite a task when the reduction to standard form is done
optimization variables, defining an objective, and spéoify by hand.
constraints. A general approach callelisciplined convex
programming(DCP) [70], [71] has emerged as an effective
methodology for organizing and implementing parser-sslve
for convex optimization. In DCP, the user combines built- Designing and prototyping a convex optimization-based
in functions in specific, convexity-preserving ways. The-co algorithm requires choosing a suitable problem formatnthe
straints and objective must also follow certain rules. Aglas testing and adjusting it for good application performarice.
the user conforms to these requirements, the parser cdp eabis prototyping stage, the speed of the solver is oftenlyear
verify convexity of the problem and automatically transfior irrelevant; simulations can usually take place at signifiiya
it to a standard form, for transfer to the solver. The parsereduced speeds. In prototyping and algorithm design, tige ke
solvers CVX (which runs in Matlab) andCVXMOPython) is the ability to rapidly change the problem formulation and
use the DCP approach. test the application performance, often using real data Th

A very simple example of such a scheme is @éXcode parser-solvers described in the previous section are ideal
shown in Figure 1, which shows the requir€¥X code for such use, and reduce development time by freeing the user

IIl. CODE GENERATION



from the need to translate their problem into the restricted p
standard form required by the solver. 2 b param ('b' , 3, 1)

Once prototyping is complete, however, the final code must Q = param('Q' , 5, 5, psd=True)
often run much faster. Thus, a serious challenge in using rega  y = optvar ('x' , 5, 1)

param (‘A" , 3, 5)

time convex optimization is the creation of a fast, reliablg objv = quadform (X, Q)
solver for a particular application. It is possible to hands constr = [ abs(x) <= 1, sum(x) == 10,
code solvers that take advantage of the special structure of Axx >= 0]

a problem family, but such work is tedious and difficult to gef  prop = problem (minimize (objv), constr)
exactly right. Given the success of parser-solvers folioé- g codegen (prob).gen()
applications, one option is to try a similar approach to the

problem of generating fast custom solvers. 1) Ais specified irCVXMORs a3 x 5 parameter. No values

It is s_ometlmeS _p055|ble_ to use the (slow) code from the * .o (typically) assigned at problem specification time;
prototyping stage in the final algorithm. For example, the  perea js acting as a placeholder for later replacement
acceptable time frame for a fault detection algorithm may be  iih problem instance data.

measured in minutes, in which case the above prototype isz) b is specified as &-vector parameter.

likely adequate. Often, though, there are still advantages 3) Qs specified as a symmetric, positive-definite< 5
having code that is independent of the particular modeling parameter.

framework like CVXor CVXMODON the other hand (and as 4) r € R® is an optimization variable.

previously mentioned), some applications may require timeg Recognized as a convex objective, sir€@éXMODMas
scales that are faster than those achievable even with a very” paen told tha) > 0 in line 3.

good generic solver; here explicit methods may be the onlyg) saves the affine equalities and convex inequalities to a
option. We are left with a large category of problems where ° gt

a fast, automatically-generated solver would be extremely7)
useful.

This introduces automatic code generation, where a useig
who is not necessarily an expert in algorithms for convex-opt
mization can formulate and test a convex optimization bl
within a familiar high level environment, and then request R
custom solver. An automatic code generation system armlyze
and processes the problem, (possibly) spending a sigrifican
amount of time testing or analyzing various methods. TheQ e fectly suited for inclusion in a real-time signal pessing
it produces code highly optimized for the particular proble algorithm.
family, including auxiliary code and files. This code mayrthe
be embedded in the user’s signal processing algorithm.

We have developed an early, preliminary version of an
automatic code generator. It is built on top 6VXMODa Many types of nonlinear pre- and post-equalizers can be
convex optimization modeling layer written in Python. Afteimplemented using convex optimization. In this section we
defining a problem (family)CVXMORnalyzes the problem’s focus on one example, a nonlinear pre-equalizer for a neatin
structure, and creates C code for a fast solver. Figure 2shaystem with Hammerstein [72] structure, a unit saturation
how the problem family (1) can be specified@vXMODNote, nonlinearity followed by a stable linear time-invarianssm,
in particular, that no parameter values are given at thig;stimshown in Figure 4. Our equalizer, shown in Figure 5, will
they are specified at solve time, when the problem family hhave access to the scalar input sigmalwith a lookahead
been instantiated and a particular problem instance isadkai of 7' samples (or, equivalently, with an additional delay of

CVXMODproduces a variety of output files. These in? samples), and will generate the equalized input signal
cludesolver.h , which includes prototypes for all necessaryhat is applied to the system, resulting in output signarlhe
functions; initsolver.c , which allocates memory andgoal is to choose so that the actual output signalmatches
initializes variables, andgolver.c , which actually solves the reference output, which is the output signal that would
an instance of the problem. Figure 3 shows some of thave resulted without the saturation nonlinearity. Thishiswn
key lines of code which would be used within a userm the block diagram in Figure 6, which includes the error
signal processing algorithm. In an embedded applicatios, tsignale = y — y™f. If the error signal is small, then our pre-
initializations (lines 2—4) are called when the applicatis equalizer followed by the system gives nearly the same outpu
starting up; the solver (line 5) is called each time a probleas the reference system, which is linear; thus, our prelezgua
instance is to be solved, for example in a real-time loop. has linearized the system.

Generating and then compiling code for a modest sizedWhen the input peak does not exceed the saturation level
convex optimization problem can take far longer than it wloulthe error signal is zero; our equalizer will come into playyon
take the solve a problem instance using a parser-solver. Bufien the input signal peak exceeds one. A baseline choice of
once we have the compiled code, we can solve instances of fris-equalizer is none: We simply take= «. We will use this
specific problem at extremely high speeds. This compile@ cosimple equalizer as a basis for comparison with the nonlinea

Builds the (convex) minimization problem from the
convex objective and list of convex constraints.

) Creates a code generator object based on the given
problem, which then generates code.

ig. 2. CVXMOI2ode segment (above) and explanations (below).

IV. LINEARIZING PRE-EQUALIZATION
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Fig. 5: Our pre-equalizer processes the incoming sign@lith a look-ahead of’ samples) to produce the
input v applied to the system.
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Fig. 6: The top signal path is the reference system, a copy of the system bututvitie saturation. The
bottom signal path is the equalized system, the pre-equalizer followed tgy#tem, shown in the dashed
box. Our goal is to make the errersmall.

equalizer we describe here. We'll refer to the output preducWe can assume that; is available to the equalizer; indeed,
without pre-equalization ag*°"¢, and the corresponding errorby stability of A, the simple estimator
aS 61’101’16.
We now describe the system, and the pre-equalizer, in more
detail. We use a state-space model for the linear system, will satisfy &; — &, ast — oo, SO we can usé; in place
of Z,. In addition toZ,, our equalizer will use a look-ahead

.ft+1 = A.f?t + B(Ut — Ut)

Tip1 = Axy + Bsat(vy), yr = Cuy, of T samples on the input signale., v; will be formed with
] ) ) . knowledge ofu,, ..., us .
with stater, € R"™, where the unit saturation function is given \we will use a standard technique from control, called
by sat(z) = z for |2| <1, sat(z) = 1for z > 1, andsat(2) =  model predictive control [29], in which at time we solve
—1 for z < —1. The reference system is then an optimization problem to ‘plan’ our input signal over the

next T steps, and use only the first sample of our plan as the

ref ref ref _ ref
iy = Azy® + Buy, o = Cx”, actual equalizer output. At time we solve the optimization

with statex?*f € R™. Subtracting these two equations we cafroblem

express the error signal=y — y™' via the system minimize 3777 €2 + &7, 1 Pivyr i
- - ~ subject to i, 1 = A%, + B(v, —u;), e; =Ci,
Tpp1 = AZy + B(sat(ve) —ug), e = Cly, A = Ur r @)

- . . <1, =t{,...t+T,
where; = z; — zi*f € R" is the state tracking error. -] < T *

We now come to the main (and simple) trick: We will aswith variablesu,, ..., v,y € Randziy, ..., Trpr € R™
sume that (or more accurately, our pre-equalizer will g The initial (error) state in this planning probleay, is known.
that) |v,| < 1. In this caseat(v;) can be replaced by, above, The matrixP, which is a parameter, is symmetric and positive

and we have semdefinite.
The first term in the objective is the sum of squares of

Tip1 = Az + By —wy), e = Ciy. the tracking errors over the time horizan...,t + T; the



#include  "solver.h" from the QP, as our pre-equalizer output. We then update the
int  main( int argc, char o argv ) { error state asi41 = A% + B(v — w).

Params params = init_params ();

Vars vars = init_var_s_ 0; A. Example

Workspace work = init_work  (vars);

We illustrate the linearizing pre-equalization methodwah

for (;; . X . . .
uéd?’;\t{e params (params); example, in which the linear system is a third-order lowpass
status =  solve (params, vars, work): system with bandwidtli.17, with impulse response that lasts

O©CoO~NOOOUOTA,WNBEP

1 for (about) 35 samples. Our pre-equalizer uses a look-ahead
horizon T = 10 samples, and we chooge as the output

g;damian. We use smoothing regularization with- 0.01. The

| éjut u a is lowpass filtered random signal, which saturates

export_vars  (vars);

1) The automatically generated data structures are load
2) CVXM ner ndar for n aran .
) ch platgr[?fs erates standard C code for use on a ra .., has|u,| > 1) around 20% of the time.

3) Theparams structure is used to set problem parrclmev—vThe unequalized and equallged |n-puts are shqwn n Flg_urg £
ters. e can see that the pre-equalized input signal is quite aimil

4) After solution, thevars structure will provide accessto the unequalized input when there is no saturation, but

to optimal values for each of the original optimizatiorfjhcfers considerably when there is. The corresponding utsip
variables Including the reference output, are shown in Figure 8, along

5) An additionalwork structure is used for working mem-W'EPhthe ssszome;ed OUtp?t trac_klngherrogrz. iables. 63 |
ory. Its size is fixed, and known at compilation time. This € QP (2), after transformation, has 96 variables, 63 equa

means thagll memory requirements and structures ardy constraints, and 48 |nequall|ty constraints, .Usmg baroun
known at compile time. an Intel Core Duo 1.7 GHz, it takes approximately 508

6) Once the initialization is complete, we enter the real® solve usingCVXMOMenerated code, which compares well
) time loop P with the standard SOCP solver SDPT3 [73], [74], whose solve
7) Updated parameter values are retrieved from the siglji'gl]e is approximately 300 ms.

processing system.

8) Actual solution requires just one command. This com- V. ROBUSTKALMAN FILTERING
mand executes in a bounded amount of time. _ Kalman filtering is a well known and widely used method
9) After solution, the resulting variable values are used @ estimating the state of a linear dynamical system driven
the signal processing system. by noise. When the process and measurement noises are
independent identically distributed (1ID) Gaussian, theran
Fig. 3: C code generated b§VXMOD filter recursively computes the posterior distribution bt

state, given the measurements.

) ) ) In this section we consider a variation on the Kalman filter,
second term is a penalty for the final state error; it servggsigned to handle an additional measurement noise tetm tha
as a surrogate for the tracking error past our horizon, whigfl snarsei e, whose components are often zero. This term
we cannot know since we do not know the input beyond the, e used to model (unknown) sensor failures, measurement
horizon. One reasonable choice ris the output Grammian qgjiers, or even intentional jamming. The robust Kalmatefil

of the linear system, is obtained by replacing the standard measurement update,
o0 o _ which can be interpreted as solving a quadratic minimizatio
P = Z (Ai) CTCA, problem, with the solution of a similar convex minimization
i=0 problem, that includes afy term to handle the sparse noise.
in which case we have Thus the robust Kalman filter requires the solution of a canve
o optimization problem in each time step. (The standard Kalma
& Pryyrys = Z e2, filter requires the solution of a quadratic optimization ke

at each step, which has an analytical solution express#itgu
basic linear algebra operations.)
We will work with the system

T=t+T+1

providedv, = u, for 7 > ¢+ T + 1.
The problem above is a QP. It can be modified in several
ways; for example, we can add a (regularization) term such as X1 = Az +wy,  yr = Cay + v + 24,

s wherez;, € R™ is the state (to be estimated) apd € R™

p Z (Ur1 = vr)?, is the measurement available to us at time steps in the
T standard setup for Kalman filtering, the process naises
wherep > 0 is a parameter, to give a smoother post-equalizéd N (0,7), and the measurement noise temm is 11D
signal. N(0,V). The termz; is an additional noise term, which we
Our pre-equalizer works as follows. At time stepve solve assume is sparse (meaning, most of its entries are zero) and
the QP above. We then usg, which is one of the variables centered around zero. Without the additional sparse neise t
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Fig. 7: Input without pre-equalization (reds), and with linearizing pre-equalization (blue,).
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Fig. 8: Left: Output y without pre-equalization (red), and with nonlinear pre-equalization Yblliee
reference outpuy™f is shown as the dashed curve (bladR)ght: Tracking errore with no pre-equalization
(red) and with nonlinear pre-equalization (blue).

2, our system is identical to the standard one used in KalmanTo (approximately) handle the additional sparse noise term

filtering. z¢, we will modify the Kalman filter measurement update (4).
We will use the standard notation from the Kalman filterTo motivate the modification, we first note thaf, can be

#y, and &,,_,; denote the estimates of the statg given expressed as the solution of a quadratic optimization prabl

the measurements up tp, and X denotes the steady-state o —— . e .

error covariance associated with predicting the next state ~ Minimize vy V=" v, + (2 = Zyjp1)" 570 (2 — yp—1)

the standard Kalman filteri.¢., without the additional noise ~ Subjectto y; = C + vy,

termz,), all variables are jointly Gaussian, so the (conditiona{),ith variablesz andw,.

) . L A We can interpret, as our estimate of
mean and covariance specify the conditional distributiohs pres

ditioned h q the sensor noise; the first term in the objective is a loss term
oy, conditioned on the measurements up g0 and y; 1, corresponding to the sensor noise, and the second is a loss

respectively. , . L tgrm associated with our estimate deviating from the prior.
The standard Kalman filter consists of alternating time an In the robust Kalman filter, we take,, to be the solution
) ,|i

measurement updates. The time update, of the convex optimization problem

Tyjp—1 = AZy_1)4—1, ©)) minimize o7V "lv, + (2 — &y 1)TS " (@ — Frppr)
propagates forward the state estimate at timel, after the + |2 ||1
measuremeny,—1, to the state estimate at tinte but before subject to y; = Cz + v, + 2,
the measuremeny; is known. The measurement update, (5)

N N T T _1 . with variablesz, v;, and z;. (Standard methods can be used
Tyje = Fyje—r + BCT(CRCT V)T e = Ce—1)s () g transform this problem i(nto an equivalent QP.) Here we
then gives the state estimate at timaiven the measurementinterpretv, and z; as our estimates of the Gaussian and the
yt, Starting from the state estimate at time before the sparse measurement noises, respectively. The parametér
measurement is known. In the standard Kalman filtg, ; is adjusted so that the sparsity of our estimate coincidéis wi
andi,, are the conditional means, and so can be interpretedr assumed sparsity af. For A large enough, the solution
as the minimum mean-square error estimates,pfjiven the of this optimization problem has, = 0, and so isexactlythe
measurements up t@_; andy;, respectively. same as the solution of the quadratic problem above; in this



case, the robust Kalman filter measurement update coincigg@gng uniform rejection for signal parameters in some det o
with the standard Kalman filter measurement update. values©,.;. We formulate this as the optimization problem,
In the robust Kalman filter, we use the standard time updatéth variablew € C",
(3), and the modified measurement update (5), which requires la(6)*w|
solving a (nonquadratic) convex optimization problem. Wit 1 wew
this time update, the estimation error is not Gaussian, so th ’ ’
estimates&tl75 andit\t—l are no longer conditional means (andf the weight constraint setV is convex, this is a convex
¥ is not the steady-state state estimation error covarianceptimization problem [38], [76].
Instead we interpret them as merely (robust) state estimate In some cases the objective, which involves a maximum
over an infinite set of signal parameter values, can be hdndle
exactly; but we will take a simple discretization approach.
We find appropriate pointd;, ..., 0y € ©,.;, and replace the
maximum over all values i®,.; with the maximum over these
values to obtain the problem

minimize maxyco,,;
subject to a(0%")*w =

A. Example

For this example, we randomly generate matrickse
R50%%0 and ' € R'5*5Y, We scaleA so its spectral radius is
0.98. We generate a random matri € R°**® with entries
~ N(0,1), and useW = BBT andV = I. The sparse noise minimize max;—; . n |a(6;) w|
z, was generated as follows: with probabiliy)5, component subject to a(0**)*w =1, weW.

(42)i is setto(v,);; i.e., the signal component is removed. Thigyhen )y is convex, this is a (tractable) constrained complex
means that # 0 with probability0.54, or, roughly, one in two /... norm minimization problem:
measurement vectors contains at least one bogus element. We o
compare the performance of a traditional Kalman filter tuned minimize || Aw|[» ©6)
to W and V' with the robust Kalman filter described above. subject o a(fgar) w =1, weW,
For this example the time update (5) is transformed inWhereA c cNxn

a Q.P with 95 var?ables, 15 _equality, and 30 inequalit)_/ Cor&bmplex&)o norm. It is common to add some regularization to
straints. By analytically optimizing over some of the vates the weight design problem, by addingw|? to the objective,

that a;l)lpearFf) ncl:y guadraticall;(/j, éhexﬂg%erln canh.be reglmedv&here)\ is a (typically small) positive weight. This can be
a smaller QP. Code generated @Y olves this problem intrepeted as a term related to noise power in the combined

in approximatelyl 20 us, which allows meausurement update rray output, or as a regularization term that results kéeps

athr_?tes bettzr tZaIQSI kHz.f?qutmg with SkDPT3 takes 120 m\ﬁeights small, which makes the combined array response less
while a standard Kalman filter update takes i) sensitive to small changes in the array manifold.

With or without regularization, the problem (6) can be
VI. ON-LINE ARRAY WEIGHT DESIGN transformed to an SOCP. Standard SOCP methods can be used
In this example, fast optimization is used to adapt th® determinew when the array manifold or target parameter
weights to changes in the transmission model, target sigwal, do not change, or change slowly or infrequently. We are
characteristics, or objective. Thus, the optimizationsgsdito interested here in the case when they change frequentlghwhi
adapt or re-configure the array. In traditional adaptiveyarrrequires solving the problem (6) rapidly.
signal processing [75], the weights are adapted directynfr
the combined signal output; here we consider the case Wk}gn
this is not possible. ' _ _ )
We consider a generic array of sensors, each of which Ve consider an example of an array in 2-D with= 15
produces as output a complex number (baseband resporf§&)SOrs with positions,, ..., p, € R” that change or drift
that depends on a parametee © (which can be a vector in OVer time. The §|gnal model is a hqrmomc plane wave with
the general case) that characterizes the signal. In theesimpavelength\ arriving from angled, with © = [—m, 7). The
case/ is a scalar that specifies the angle of arrival of a sign@fray manifold has the simple form
in 2—D;. put it can in.clude other paramfater_s that give the eang a(6); = exp (—2m’(cos 0, sin H)Tpi/)\> _
or position of the signal source, polarization, wavelengiid
so on. The sensor outputs are combined linearly with a 38 takef... = 0 as our (constant) target look (or transmit)
of array weightsw € C™ to produce the (complex scalar)direction, and the rejection set as

combined output signal Orey = [, —7/9] U [r/9,7)

y(0) = a(0)"w. (which corresponds to a beamwidth ¢6°). We discretize
Herea : © — C" is called the array response function oarrival angles uniformly oveé,.; with N = 100 points.

, with ith row a(6;)*, and || - || is the

Example

array manifold. The initial sensor positions aresa 3 grid with \/2 spacing.
The weight vectorw is to be chosen, subject to someEach of these undergoes a random walk, witly + 1) —
constraints expressed ase W, so that the combined signalp;(t) ~ N (0,A/10), fort = 0,1, ...,49. Tracks of the sensor

output signal (also called the array response) has desimbitions overt = 0,...,50 are shown in Figure 10.
characteristics. A generic form for this problem is to gudea For each sensor position we solve the weight design
unit array response for some target signal parameter, whilblem, which results in a rejection ratio (relative gain o
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Fig. 9: The robust Kalman filter (blue) has significantly lower error (left) than stendard Kalman filter

(red), and tracksrgl) (right) more closely.
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Fig. 10: Tracks of sensor positions, each of which is a random walk.

(14]

target direction to rejected directions) ranging fram dB [15]
to 11.9 dB. The resulting array responseg., |y(6)| versus
t, is shown on the left in Figure 11. The same figure shows
the array responses obtained using the optimal weight$éor {16!
initial sensor positionsi.e., without re-designing the weights
as the sensor positions drift. In this case the rejectioio rat
goes up tol.3 dB, i.e, the gain in a rejection direction is[17]
almost the same as the gain in the target direction.
This problem can be transformed to an SOCP with 30 vari-
ables and approximately 200 constraints. The current aersi
of CVXMOMoes not handle SOCPs, but a simple implemeR!
tation coded by hand solves this problem in approximately
2 ms, which means that we can update our weight®@tHz. [20]
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