
1

Real-Time Convex Optimization in Signal
Processing

Jacob Mattingley and Stephen Boyd
Information Systems Laboratory, Electrical Engineering Department, Stanford University

Working draft.
Comments tojacobm or boyd@stanford.edu are welcome.

Abstract—Convex optimization has been used in signal process-
ing for a long time, to choose coefficients for use in fast (linear)
algorithms, such as in filter or array design; more recently, it has
been used to carry out (nonlinear) processing on the signal itself.
Examples of the latter case include total variation de-noising,
compressed sensing, fault detection, and image classification. In
both scenarios, the optimization is carried out on time scales of
seconds or minutes, and without strict time constraints. Convex
optimization has traditionally been considered computationally
expensive, so its use has been limited to applications where plenty
of time is available. Such restrictions are no longer justified.
The combination of dramatically increased computational power,
modern algorithms, and new coding approaches has delivered
an enormous speed increase, which makes it possible to solve
modest-sized convex optimization problems on microsecond or
millisecond time scales, and with strict deadlines. This enables
real-time convex optimization in signal processing.

I. I NTRODUCTION

Convex optimization [1] refers to a broad class of opti-
mization problems, which includes, for example, least-squares,
linear programming (LP), quadratic programming (QP), and
the more modern second-order cone programming (SOCP),
semidefinite progamming (SDP), and theℓ1 minimization at
the core of compressed sensing [2], [3]. Unlike many generic
optimization problems, convex optimization problems can be
efficiently solved, both in theory (i.e., via algorithms with
worst-case polynomial complexity) [4] and in practice [1],
[5]. It is widely used in application areas like control [6],
[7], [8], circuit design [9], [10], [11], economics and finance
[12], [13], networking [14], [15], [16], statistics and machine
learning [17], [18], quantum information theory [19], [20], and
combinatorial optimization [21], to name just a few.

Convex optimization has a long history in signal processing,
dating back to the 1960s. The history is described below in a
little more detail; for some more recent applications, see for
example the special issue of theIEEE Journal on Selected
Topics in Signal Processingon convex optimization methods
for signal processing [22].

Signal processing applications may be split into two cat-
egories. In the first, optimization is used for design,i.e., to
choose the weights or algorithm parameters for later use in
a (typically linear) signal processing algorithm. A classical
example is the design of finite impulse response (FIR) filter
coefficients via linear programming (LP) [23], [24]. In these

design applications, the optimization must merely be fast
enough to not slow the designer; thus, optimization times
measured in seconds, or even minutes, are usually sufficient. In
the second category, convex optimization is used to processthe
signal itself, which (generally) yields a nonlinear algorithm;
an early example isℓ1 regularization for sparse reconstruction
in geophysics [25], [26]. Most applications in this category are
(currently) off-line, as in geophysics reconstruction, sowhile
faster is better, the optimization is not subject to the strict
real-time deadlines that would arise in an on-line application.

Recent advances in algorithms for solving convex optimiza-
tion problems, along with great advances in processor power,
have dramatically reduced solution times. Another significant
reduction in solution time may be obtained by using a solver
customized for a particular problem family. (This is described
in §III.) As a result, convex optimization problems that 20
years ago might have taken minutes to solve can now be solved
in microseconds.

This opens up several new possibilities. In the design
context, algorithm weights can be re-designed or updated
on fast time scales (say, kHz). Perhaps more exciting is the
possibility that convex optimization can be emdedded directly
in signal processing algorithms that run on-line, with strict
real-time deadlines, even at rates of tens of kHz. We will see
that solving 10000 modest sized convex optimization problems
per second is entirely possible on a generic processor. This
is quite remarkable, since solving an optimization problem
is generally considered a computationally challenging task,
and few engineers would consider an on-line algorithm, that
requires the solution of an optimization problem at each step,
to be feasible for signal rates measured in kHz.

Of course, for high-throughput or fast signal processing
(say, an equalizer running at GHz rates) it is not feasible to
solve an optimization problem in each step, and it may never
be. But a large number of applications are now potentially
within reach of new algorithms in which an optimization
problem is solved in each step, or every few steps. We imagine
that in the future, more and more signal processing algorithms
will involve embedded optimization, running at rates up to or
exceeding tens of kHz. (We believe the same trend will take
place in automatic control; see,e.g., [27], [28].)

In this article, we briefly describe two recent advances that
make it easier to design and implement algorithms for such

2

applications. The first, described in §II, is disciplined convex
programming, which simplifies problem specification and al-
lows the transformation to a standard form to be automated.
This makes it possible to rapidly prototype applications based
on convex optimization. The second advance, described in §III,
is convex optimization code generation, in which (source code
for) a custom solver that runs at the required high speed is
automatically generated from a high level description of the
problem family.

In the final three sections, we illustrate the idea of real-time
embedded convex optimization with three simple examples.
In the first example (§IV), we show how to implement a
nonlinear pre-equalizer for a system with input saturation.
It pre-distorts the input signal so that the output signal ap-
proximately matches the output of a reference linear system.
Our equalizer is based on a method called model predictive
control [29], which has been widely used in the process control
industry for more than a decade. It requires the solution of
a QP at each step. It would not surprise anyone to know
that such an algorithm could be run at, say, 1 Hz (process
control applications typically run with sample times measured
in minutes); but we will show that it can easily be run at 1 kHz.
This example illustrates how our ability to solve QPs with
extreme reliability and speed has made new signal processing
methods possible.

In the second example (§V), we show how a standard
Kalman filter can be modified to handle occasional large
sensor noises (such as those due to sensor failure or intentional
jamming), using now standardℓ1-based methods. Those famil-
iar with the ideas behind compressed sensing (or several other
related techniques) will not be surprised at the effectiveness
of these methods, which require the solution of a QP at each
time step. What is surprising is that such an algorithm can be
run at tens of kHz.

Our final example (§VI) is one from the design category: a
standard array signal processing weight selection problem, in
which, however, the sensor positions drift with time. Here the
problem reduces to the solution of an SOCP at each time step;
the surprise is that this can be carried out in a few milliseconds,
which means that the weights can be re-optimized at hundreds
of Hz.

In the next two subsections we describe some previous
and current applications of convex optimization, in the two
just-described categories of weight design and direct signal
processing. Before preceeding we note that the distinctionbe-
tween the two categories—optimization for algorithm weight
design versus optimization directly in the algorithm itself—is
not sharp. For example, widely used adaptive signal processing
techniques [30], [31] adjust parameters in an algorithm (i.e.,
carry out re-design) on-line, based on the data or signals
themselves.

A. Weight design via convex optimization

Convex optimization was first used in signal processing in
design,i.e., selecting weights or coefficients for use in simple,
fast, typically linear, signal processing algorithms. In 1969,
[23] showed how to use LP to design symmetric linear phase

FIR filters. This was later extended to the design of weights
for 2-D filters [32], and filter banks [33]. Using spectral
factorization, LP and SOCP can be used to design filters with
magnitude specifications [34], [35].

Weight design via convex optimization can also be carried
out for (some) nonlinear signal processing algorithms; for
example, in a decision-feedback equalizer [36]. Convex opti-
mization can also be used to choose the weights in array signal
processing, in which multiple sensor outputs are combined
linearly to form a composite array output. Here the weights are
chosen to give a desirable response pattern [37], [38]. More
recently, convex optimization has been used to design array
weights that are robust to variations in the signal statistics or
array response [39], [40].

Many classification algorithms from machine learning in-
volve what is essentially weight design via convex optimiza-
tion [41]. For example, objectsx (say, images or email mes-
sages) might be classified into two groups by first computing
a vector of featuresφ(x) ∈ Rn, then, in real-time, using a
simple linear threshold to classify the objects: we assignx
to one group ifwT φ(x) ≥ v, and to the other group if not.
Here w ∈ Rn and v ∈ R are weights, chosen by training
from objects whose true classification is known. This off-line
training step often involves convex optimization. One widely
used method is the support vector machine (SVM), in which
the weights are found by solving a large QP [17], [18]. While
this involves solving a (possibly large) optimization problem to
determine the weights, only minimal computation is required
at run-time to compute the features and form the inner product
that classifies any given object.

B. Signal processing via convex optimization

Recently introduced applications use convex optimization
to carry out (nonlinear) processing of the signal itself. The
crucial difference from the previous category is that speedis
now of critical importance. Convex optimization problems are
now solved in the main loop of the processing algorithm, and
the total processing time depends on how fast these problems
can be solved.

With some of these applications, processing time again
matters only in the sense that ‘faster is better’. These are off-
line applications where data is being analyzed without strict
time constraints. More challenging applications involve on-
line solution, with strict real-time deadlines. Only recently has
the last category become possible, with the development of
reliable, efficient solvers and the recent increase in computing
power.

One of the first applications where convex optimization was
used directly on the signal is in geophysics [25], [26], where
ℓ1 minimization was used for sparse reconstruction of signals.
Similar ℓ1-techniques are widely used in total variation noise
removal in image processing [42], [43], [44]. Other image
processing applications include deblurring [45] and, recently,
automatic face recognition [46]. Other signal identification
algorithms useℓ1 minimization or regularization to recover
signals from incomplete or noisy measurements [47], [48],
[2]. Within statistics, feature selection via the Lasso algorithm

3

[49] uses similar techniques. The same ideas are applied
to reconstructing signals with sparse derivative (or gradient,
more generally) in total variation de-noising, and in signals
with sparse second derivative (or Laplacian) [50]. A related
problem is parameter estimation where we fit a model to
data. One example of this is fitting MA or ARMA models;
here parameter estimation can be carried out with convex
optimization [51], [52], [53].

Convex optimization is also used as a relaxation technique
for problems that are essentially Boolean, as in the detection
of faults [54], [55] or in decoding a bit string from a received
noisy signal. In these applications a convex problem is solved,
after which some kind of rounding takes place to guess the
fault pattern or transmitted bit string [56], [57], [58].

Many methods of state estimation can be interpreted as
involving convex optimization. (Basic Kalman filtering and
least-squares fall in this category, but since the objectives are
quadratic, the optimization problems can be solved analytically
using linear algebra.) In the 1970s, ellipsoidal calculus was
used to develop a state estimator less sensitive to statistical
assumptions than the Kalman filter, by propagating ellipsoids
that contain the state [59], [60]. The standard approach here
is to work out a conservative update for the ellipsoid; but the
most sophisticated methods for ellipsoidal approximationrely
on convex optimization [1, §8.4]. Another recently developed
estimation method is minimax regret estimation [61], which
relies on convex optimization.

Convex optimization algorithms have also been used in
wireless systems. Some examples here include on-line pulse
shape design for reducing the peak or average power of a
signal [62], receive antenna selection in MIMO systems [63],
and performing demodulation by solving convex problems
[64].

II. D ISCIPLINED CONVEX PROGRAMMING

A standard trick in convex optimization, used since the
origins of LP [65], is to transform the problem that must be
solved into an equivalent problem, which is in a standard form
that can be solved by a generic solver. A good example of this
is the reduction of anℓ1 minimization problem to an LP; see
[1, Chap. 4] for many more examples. Recently developed
parser-solvers, such as YALMIP [66],CVX [67], CVXMOD
[68], and Pyomo [69] automate this reduction process. The
user specifies the problem in a natural form by declaring
optimization variables, defining an objective, and specifying
constraints. A general approach calleddisciplined convex
programming(DCP) [70], [71] has emerged as an effective
methodology for organizing and implementing parser-solvers
for convex optimization. In DCP, the user combines built-
in functions in specific, convexity-preserving ways. The con-
straints and objective must also follow certain rules. As long as
the user conforms to these requirements, the parser can easily
verify convexity of the problem and automatically transform
it to a standard form, for transfer to the solver. The parser-
solversCVX (which runs in Matlab) andCVXMOD(Python)
use the DCP approach.

A very simple example of such a scheme is theCVXcode
shown in Figure 1, which shows the requiredCVX code for

1 A = [...]; b = [...]; Q = [...];
2 cvx_begin
3 variable x(5)
4 minimize (quad_form (x, Q))
5 subject to
6 abs (x) <= 1; sum(x) == 10; A * x >= 0
7 cvx_end
8 cvx_status

1) Problem data is specified within Matlab as ordinary
matrices and vectors. HereA is a 3 × 5 matrix, b is
a 3-vector, andQ is a 5 × 5 matrix.

2) Changes from ordinary Matlab mode toCVX model
specification mode.

3) x ∈ R5 is an optimization variable object. After solution,
x is replaced with a solution (numerical vector).

4) Recognized as convex objectivexT Qx (providedQ ≥
0).

5) Does nothing, but enhances readability.
6) In CVX model specification mode, equalities and in-

equalities specify constraints.
7) Completes model specification, initiates transformation

to standard form, and calls solver; solution is written to
x.

8) Reports status,e.g., Solved or Infeasible .

Fig. 1: CVXcode segment (above) and explanations (below).

specifying the convex optimization problem

minimize xT Qx
subject to |x| ≤ 1,

∑

i xi = 10, Ax ≥ 0,
(1)

with variablex ∈ R5, whereQ ∈ R5×5 satisfiesQ = QT ≥ 0
(i.e., is symmetric positive semidefinite) andA ∈ R3×5. Here
both inequalities are elementwise, so the problem requiresthat
|xi| ≤ 1, and (Ax)i ≥ 0. This simple problem could be
transformed to standard QP form by hand;CVXandCVXMOD
do it automatically. The advantage of a parser-solver like
CVX would be much clearer for a larger more complicated
problem. To add further (convex) constraints to this problem,
or additional (convex) terms to the objective, is easy inCVX;
but quite a task when the reduction to standard form is done
by hand.

III. C ODE GENERATION

Designing and prototyping a convex optimization-based
algorithm requires choosing a suitable problem format, then
testing and adjusting it for good application performance.In
this prototyping stage, the speed of the solver is often nearly
irrelevant; simulations can usually take place at significantly
reduced speeds. In prototyping and algorithm design, the key
is the ability to rapidly change the problem formulation and
test the application performance, often using real data. The
parser-solvers described in the previous section are idealfor
such use, and reduce development time by freeing the user

4

from the need to translate their problem into the restricted
standard form required by the solver.

Once prototyping is complete, however, the final code must
often run much faster. Thus, a serious challenge in using real-
time convex optimization is the creation of a fast, reliable
solver for a particular application. It is possible to hand-
code solvers that take advantage of the special structure of
a problem family, but such work is tedious and difficult to get
exactly right. Given the success of parser-solvers for off-line
applications, one option is to try a similar approach to the
problem of generating fast custom solvers.

It is sometimes possible to use the (slow) code from the
prototyping stage in the final algorithm. For example, the
acceptable time frame for a fault detection algorithm may be
measured in minutes, in which case the above prototype is
likely adequate. Often, though, there are still advantagesin
having code that is independent of the particular modeling
framework likeCVXor CVXMOD. On the other hand (and as
previously mentioned), some applications may require time
scales that are faster than those achievable even with a very
good generic solver; here explicit methods may be the only
option. We are left with a large category of problems where
a fast, automatically-generated solver would be extremely
useful.

This introduces automatic code generation, where a user
who is not necessarily an expert in algorithms for convex opti-
mization can formulate and test a convex optimization problem
within a familiar high level environment, and then request a
custom solver. An automatic code generation system analyzes
and processes the problem, (possibly) spending a significant
amount of time testing or analyzing various methods. Then
it produces code highly optimized for the particular problem
family, including auxiliary code and files. This code may then
be embedded in the user’s signal processing algorithm.

We have developed an early, preliminary version of an
automatic code generator. It is built on top ofCVXMOD, a
convex optimization modeling layer written in Python. After
defining a problem (family),CVXMODanalyzes the problem’s
structure, and creates C code for a fast solver. Figure 2 shows
how the problem family (1) can be specified inCVXMOD. Note,
in particular, that no parameter values are given at this time;
they are specified at solve time, when the problem family has
been instantiated and a particular problem instance is available.

CVXMODproduces a variety of output files. These in-
cludesolver.h , which includes prototypes for all necessary
functions; initsolver.c , which allocates memory and
initializes variables, andsolver.c , which actually solves
an instance of the problem. Figure 3 shows some of the
key lines of code which would be used within a user’s
signal processing algorithm. In an embedded application, the
initializations (lines 2–4) are called when the application is
starting up; the solver (line 5) is called each time a problem
instance is to be solved, for example in a real-time loop.

Generating and then compiling code for a modest sized
convex optimization problem can take far longer than it would
take the solve a problem instance using a parser-solver. But
once we have the compiled code, we can solve instances of this
specific problem at extremely high speeds. This compiled code

1 A = param ('A' , 3, 5)
2 b = param ('b' , 3, 1)
3 Q = param ('Q' , 5, 5, psd=True)
4 x = optvar ('x' , 5, 1)
5 objv = quadform (x, Q)
6 constr = [abs (x) <= 1, sum(x) == 10,

A* x >= 0]
7 prob = problem (minimize (objv), constr)
8 codegen (prob).gen()

1) A is specified inCVXMODas a3×5 parameter. No values
are (typically) assigned at problem specification time;
hereA is acting as a placeholder for later replacement
with problem instance data.

2) b is specified as a3-vector parameter.
3) Q is specified as a symmetric, positive-definite5 × 5

parameter.
4) x ∈ R5 is an optimization variable.
5) Recognized as a convex objective, sinceCVXMODhas

been told thatQ ≥ 0 in line 3.
6) Saves the affine equalities and convex inequalities to a

list.
7) Builds the (convex) minimization problem from the

convex objective and list of convex constraints.
8) Creates a code generator object based on the given

problem, which then generates code.

Fig. 2: CVXMODcode segment (above) and explanations (below).

is perfectly suited for inclusion in a real-time signal processing
algorithm.

IV. L INEARIZING PRE-EQUALIZATION

Many types of nonlinear pre- and post-equalizers can be
implemented using convex optimization. In this section we
focus on one example, a nonlinear pre-equalizer for a nonlinear
system with Hammerstein [72] structure, a unit saturation
nonlinearity followed by a stable linear time-invariant system,
shown in Figure 4. Our equalizer, shown in Figure 5, will
have access to the scalar input signalu, with a lookahead
of T samples (or, equivalently, with an additional delay of
T samples), and will generate the equalized input signalv,
that is applied to the system, resulting in output signaly. The
goal is to choosev so that the actual output signaly matches
the reference outputyref , which is the output signal that would
have resulted without the saturation nonlinearity. This isshown
in the block diagram in Figure 6, which includes the error
signale = y − yref . If the error signal is small, then our pre-
equalizer followed by the system gives nearly the same output
as the reference system, which is linear; thus, our pre-equalizer
has linearized the system.

When the input peak does not exceed the saturation level1,
the error signal is zero; our equalizer will come into play only
when the input signal peak exceeds one. A baseline choice of
pre-equalizer is none: We simply takev = u. We will use this
simple equalizer as a basis for comparison with the nonlinear

5

∗h
yu

Fig. 4: Nonlinear system consisting of unit saturation followed by linear time-invariant system.

equalizer ∗h
yu v

Fig. 5: Our pre-equalizer processes the incoming signalu (with a look-ahead ofT samples) to produce the
input v applied to the system.

equalizer v

u e

∗h

∗h

reference system

system

Fig. 6: The top signal path is the reference system, a copy of the system but without the saturation. The
bottom signal path is the equalized system, the pre-equalizer followed by thesystem, shown in the dashed
box. Our goal is to make the errore small.

equalizer we describe here. We’ll refer to the output produced
without pre-equalization asynone, and the corresponding error
asenone.

We now describe the system, and the pre-equalizer, in more
detail. We use a state-space model for the linear system,

xt+1 = Axt + Bsat(vt), yt = Cxt,

with statext ∈ Rn, where the unit saturation function is given
by sat(z) = z for |z| ≤ 1, sat(z) = 1 for z > 1, andsat(z) =
−1 for z < −1. The reference system is then

xref
t+1 = Axref

t + But, yref
t = Cxref

t ,

with statexref
t ∈ Rn. Subtracting these two equations we can

express the error signale = y − yref via the system

x̃t+1 = Ax̃t + B(sat(vt) − ut), et = Cx̃t,

wherex̃t = xt − xref
t ∈ Rn is the state tracking error.

We now come to the main (and simple) trick: We will as-
sume that (or more accurately, our pre-equalizer will guarantee
that) |vt| ≤ 1. In this casesat(vt) can be replaced byvt above,
and we have

x̃t+1 = Ax̃t + B(vt − ut), et = Cx̃t.

We can assume that̃xt is available to the equalizer; indeed,
by stability of A, the simple estimator

x̂t+1 = Ax̂t + B(vt − ut)

will satisfy x̂t → x̃t as t → ∞, so we can usêxt in place
of x̃t. In addition to x̃t, our equalizer will use a look-ahead
of T samples on the input signal,i.e., vt will be formed with
knowledge ofut, . . . , ut+T .

We will use a standard technique from control, called
model predictive control [29], in which at timet we solve
an optimization problem to ‘plan’ our input signal over the
next T steps, and use only the first sample of our plan as the
actual equalizer output. At timet we solve the optimization
problem

minimize
∑t+T

τ=t e2
τ + x̃T

t+T+1P x̃t+T+1

subject to x̃τ+1 = Ax̃τ + B(vτ − uτ), eτ = Cx̃τ

τ = t, . . . , t + T
|vτ | ≤ 1, τ = t, . . . , t + T,

(2)

with variablesvt, . . . , vt+T ∈ R and x̃t+1, . . . , x̃t+T+1 ∈ Rn.
The initial (error) state in this planning problem,x̃t, is known.
The matrixP , which is a parameter, is symmetric and positive
semdefinite.

The first term in the objective is the sum of squares of
the tracking errors over the time horizont, . . . , t + T ; the

6

1 #include "solver.h"
2 int main(int argc, char ** argv) {
3 Params params = init_params ();
4 Vars vars = init_vars ();
5 Workspace work = init_work (vars);
6 for (;;) {
7 update_params (params);
8 status = solve (params, vars, work);
9 export_vars (vars); }}

1) The automatically generated data structures are loaded.
2) CVXMODgenerates standard C code for use on a range

of platforms.
3) The params structure is used to set problem parame-

ters.
4) After solution, thevars structure will provide access

to optimal values for each of the original optimization
variables.

5) An additionalwork structure is used for working mem-
ory. Its size is fixed, and known at compilation time. This
means thatall memory requirements and structures are
known at compile time.

6) Once the initialization is complete, we enter the real-
time loop.

7) Updated parameter values are retrieved from the signal
processing system.

8) Actual solution requires just one command. This com-
mand executes in a bounded amount of time.

9) After solution, the resulting variable values are used in
the signal processing system.

Fig. 3: C code generated byCVXMOD.

second term is a penalty for the final state error; it serves
as a surrogate for the tracking error past our horizon, which
we cannot know since we do not know the input beyond the
horizon. One reasonable choice forP is the output Grammian
of the linear system,

P =

∞
∑

i=0

(

Ai
)T

CT CAi,

in which case we have

x̃T
t+T+1Pxt+T+1 =

∞
∑

τ=t+T+1

e2
τ ,

providedvτ = uτ for τ ≥ t + T + 1.
The problem above is a QP. It can be modified in several

ways; for example, we can add a (regularization) term such as

ρ

T+1
∑

τ=t+1

(vτ+1 − vτ)2,

whereρ > 0 is a parameter, to give a smoother post-equalized
signal.

Our pre-equalizer works as follows. At time stept, we solve
the QP above. We then usevt, which is one of the variables

from the QP, as our pre-equalizer output. We then update the
error state as̃xt+1 = Ax̃t + B(vt − ut).

A. Example

We illustrate the linearizing pre-equalization method with an
example, in which the linear system is a third-order lowpass
system with bandwidth0.1π, with impulse response that lasts
for (about)35 samples. Our pre-equalizer uses a look-ahead
horizon T = 10 samples, and we chooseP as the output
Gramian. We use smoothing regularization withρ = 0.01. The
input u a is lowpass filtered random signal, which saturates
(i.e., has|ut| > 1) around 20% of the time.

The unequalized and equalized inputs are shown in Figure 7.
We can see that the pre-equalized input signal is quite similar
to the unequalized input when there is no saturation, but
differs considerably when there is. The corresponding outputs,
including the reference output, are shown in Figure 8, along
with the associated output tracking errors.

The QP (2), after transformation, has 96 variables, 63 equal-
ity constraints, and 48 inequality constraints. Using Linux on
an Intel Core Duo 1.7 GHz, it takes approximately 500µs
to solve usingCVXMOD-generated code, which compares well
with the standard SOCP solver SDPT3 [73], [74], whose solve
time is approximately 300 ms.

V. ROBUST KALMAN FILTERING

Kalman filtering is a well known and widely used method
for estimating the state of a linear dynamical system driven
by noise. When the process and measurement noises are
independent identically distributed (IID) Gaussian, the Kalman
filter recursively computes the posterior distribution of the
state, given the measurements.

In this section we consider a variation on the Kalman filter,
designed to handle an additional measurement noise term that
is sparse,i.e., whose components are often zero. This term
can be used to model (unknown) sensor failures, measurement
outliers, or even intentional jamming. The robust Kalman filter
is obtained by replacing the standard measurement update,
which can be interpreted as solving a quadratic minimization
problem, with the solution of a similar convex minimization
problem, that includes anℓ1 term to handle the sparse noise.
Thus the robust Kalman filter requires the solution of a convex
optimization problem in each time step. (The standard Kalman
filter requires the solution of a quadratic optimization problem
at each step, which has an analytical solution expressible using
basic linear algebra operations.)

We will work with the system

xt+1 = Axt + wt, yt = Cxt + vt + zt,

wherext ∈ Rn is the state (to be estimated) andyt ∈ Rm

is the measurement available to us at time stept. As in the
standard setup for Kalman filtering, the process noisewt is
IID N (0,W), and the measurement noise termvt is IID
N (0, V). The termzt is an additional noise term, which we
assume is sparse (meaning, most of its entries are zero) and
centered around zero. Without the additional sparse noise term

7

−2.5

0

2.5

Fig. 7: Input without pre-equalization (red,ut), and with linearizing pre-equalization (blue,vt).

−2.5

0

2.5

−0.75

0

0.75

Fig. 8: Left: Output y without pre-equalization (red), and with nonlinear pre-equalization (blue). The
reference outputyref is shown as the dashed curve (black).Right: Tracking errore with no pre-equalization
(red) and with nonlinear pre-equalization (blue).

zt, our system is identical to the standard one used in Kalman
filtering.

We will use the standard notation from the Kalman filter:
x̂t|t and x̂t|t−1 denote the estimates of the statext, given
the measurements up toyt, and Σ denotes the steady-state
error covariance associated with predicting the next state. In
the standard Kalman filter (i.e., without the additional noise
termzt), all variables are jointly Gaussian, so the (conditional)
mean and covariance specify the conditional distributionsof
xt, conditioned on the measurements up toyt and yt−1,
respectively.

The standard Kalman filter consists of alternating time and
measurement updates. The time update,

x̂t|t−1 = Ax̂t−1|t−1, (3)

propagates forward the state estimate at timet − 1, after the
measurementyt=1, to the state estimate at timet, but before
the measurementyt is known. The measurement update,

x̂t|t = x̂t|t−1 + ΣCT (CΣCT + V)−1(yt − Cx̂t|t−1), (4)

then gives the state estimate at timet, given the measurement
yt, starting from the state estimate at timet, before the
measurement is known. In the standard Kalman filter,x̂t|t−1

and x̂t|t are the conditional means, and so can be interpreted
as the minimum mean-square error estimates ofxt, given the
measurements up toyt−1 andyt, respectively.

To (approximately) handle the additional sparse noise term
zt, we will modify the Kalman filter measurement update (4).
To motivate the modification, we first note thatx̂t|t can be
expressed as the solution of a quadratic optimization problem,

minimize vT
t V −1vt + (x − x̂t|t−1)

T Σ−1(x − x̂t|t−1)
subject to yt = Cx + vt,

with variablesx andvt. We can interpretvt as our estimate of
the sensor noise; the first term in the objective is a loss term
corresponding to the sensor noise, and the second is a loss
term associated with our estimate deviating from the prior.

In the robust Kalman filter, we takêxt|t to be the solution
of the convex optimization problem

minimize vT
t V −1vt + (x − x̂t|t−1)

T Σ−1(x − x̂t|t−1)
+λ‖zt‖1

subject to yt = Cx + vt + zt,
(5)

with variablesx, vt, and zt. (Standard methods can be used
to transform this problem into an equivalent QP.) Here we
interpretvt and zt as our estimates of the Gaussian and the
sparse measurement noises, respectively. The parameterλ ≥ 0
is adjusted so that the sparsity of our estimate coincides with
our assumed sparsity ofzt. For λ large enough, the solution
of this optimization problem haszt = 0, and so isexactlythe
same as the solution of the quadratic problem above; in this

8

case, the robust Kalman filter measurement update coincides
with the standard Kalman filter measurement update.

In the robust Kalman filter, we use the standard time update
(3), and the modified measurement update (5), which requires
solving a (nonquadratic) convex optimization problem. With
this time update, the estimation error is not Gaussian, so the
estimateŝxt|t andx̂t|t−1 are no longer conditional means (and
Σ is not the steady-state state estimation error covariance).
Instead we interpret them as merely (robust) state estimates.

A. Example

For this example, we randomly generate matricesA ∈
R50×50 andC ∈ R15×50. We scaleA so its spectral radius is
0.98. We generate a random matrixB ∈ R50×5 with entries
∼ N (0, 1), and useW = BBT andV = I. The sparse noise
zt was generated as follows: with probability0.05, component
(yt)i is set to(vt)i; i.e., the signal component is removed. This
means thatz 6= 0 with probability0.54, or, roughly, one in two
measurement vectors contains at least one bogus element. We
compare the performance of a traditional Kalman filter tuned
to W andV with the robust Kalman filter described above.

For this example the time update (5) is transformed into
a QP with 95 variables, 15 equality, and 30 inequality con-
straints. By analytically optimizing over some of the variables
that appear only quadratically, the problem can be reduced to
a smaller QP. Code generated byCVXMODsolves this problem
in approximately120 µs, which allows meausurement updates
at rates better than 5 kHz. Solution with SDPT3 takes 120 ms,
while a standard Kalman filter update takes 10µs.

VI. ON-LINE ARRAY WEIGHT DESIGN

In this example, fast optimization is used to adapt the
weights to changes in the transmission model, target signal
characteristics, or objective. Thus, the optimization is used to
adapt or re-configure the array. In traditional adaptive array
signal processing [75], the weights are adapted directly from
the combined signal output; here we consider the case when
this is not possible.

We consider a generic array ofn sensors, each of which
produces as output a complex number (baseband response)
that depends on a parameterθ ∈ Θ (which can be a vector in
the general case) that characterizes the signal. In the simplest
case,θ is a scalar that specifies the angle of arrival of a signal
in 2-D; but it can include other parameters that give the range
or position of the signal source, polarization, wavelength, and
so on. The sensor outputs are combined linearly with a set
of array weightsw ∈ Cn to produce the (complex scalar)
combined output signal

y(θ) = a(θ)∗w.

Here a : Θ → Cn is called the array response function or
array manifold.

The weight vectorw is to be chosen, subject to some
constraints expressed asw ∈ W, so that the combined signal
output signal (also called the array response) has desired
characteristics. A generic form for this problem is to guarantee
unit array response for some target signal parameter, while

giving uniform rejection for signal parameters in some set of
valuesΘrej. We formulate this as the optimization problem,
with variablew ∈ Cn,

minimize maxθ∈Θrej
|a(θ)∗w|

subject to a(θtar)∗w = 1, w ∈ W.

If the weight constraint setW is convex, this is a convex
optimization problem [38], [76].

In some cases the objective, which involves a maximum
over an infinite set of signal parameter values, can be handled
exactly; but we will take a simple discretization approach.
We find appropriate pointsθ1, . . . , θN ∈ Θrej, and replace the
maximum over all values inΘrej with the maximum over these
values to obtain the problem

minimize maxi=1,...,N |a(θi)
∗w|

subject to a(θtar)∗w = 1, w ∈ W.

WhenW is convex, this is a (tractable) constrained complex
ℓ∞ norm minimization problem:

minimize ‖Aw‖∞
subject to a(θtar)

∗w = 1, w ∈ W,
(6)

where A ∈ CN×n, with ith row a(θi)
∗, and ‖ · ‖∞ is the

complexℓ∞ norm. It is common to add some regularization to
the weight design problem, by addingλ‖w‖2 to the objective,
where λ is a (typically small) positive weight. This can be
intrepeted as a term related to noise power in the combined
array output, or as a regularization term that results keepsthe
weights small, which makes the combined array response less
sensitive to small changes in the array manifold.

With or without regularization, the problem (6) can be
transformed to an SOCP. Standard SOCP methods can be used
to determinew when the array manifold or target parameter
θtar do not change, or change slowly or infrequently. We are
interested here in the case when they change frequently, which
requires solving the problem (6) rapidly.

A. Example

We consider an example of an array in 2-D withn = 15
sensors with positionsp1, . . . , pn ∈ R2 that change or drift
over time. The signal model is a harmonic plane wave with
wavelengthλ arriving from angleθ, with Θ = [−π, π). The
array manifold has the simple form

a(θ)i = exp
(

−2πi(cos θ, sin θ)T pi/λ
)

.

We takeθtar = 0 as our (constant) target look (or transmit)
direction, and the rejection set as

Θrej = [−π,−π/9] ∪ [π/9, π)

(which corresponds to a beamwidth of40◦). We discretize
arrival angles uniformly overθrej with N = 100 points.

The initial sensor positions are a5×3 grid with λ/2 spacing.
Each of these undergoes a random walk, withpi(t + 1) −
pi(t) ∼ N (0, λ/10), for t = 0, 1, . . . , 49. Tracks of the sensor
positions overt = 0, . . . , 50 are shown in Figure 10.

For each sensor position we solve the weight design
problem, which results in a rejection ratio (relative gain of

9

0.5

−20

0

20

Fig. 9: The robust Kalman filter (blue) has significantly lower error (left) than thestandard Kalman filter
(red), and tracksx(1)

t
(right) more closely.

Fig. 10: Tracks of sensor positions, each of which is a random walk.

target direction to rejected directions) ranging from7.4 dB
to 11.9 dB. The resulting array response,i.e., |y(θ)| versus
t, is shown on the left in Figure 11. The same figure shows
the array responses obtained using the optimal weights for the
initial sensor positions,i.e., without re-designing the weights
as the sensor positions drift. In this case the rejection ratio
goes up to1.3 dB, i.e., the gain in a rejection direction is
almost the same as the gain in the target direction.

This problem can be transformed to an SOCP with 30 vari-
ables and approximately 200 constraints. The current version
of CVXMODdoes not handle SOCPs, but a simple implemen-
tation coded by hand solves this problem in approximately
2 ms, which means that we can update our weights at500 Hz.

REFERENCES

[1] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[2] D. Donoho, “Compressed sensing,”IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[3] E. J. Cand̀es and M. B. Wakin, “An introduction to compressive
sampling,”IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30,
2008.

[4] Y. Nesterov and A. Nemirovskii,Interior Point Polynomial Algorithms
in Convex Programming. SIAM, 1994, vol. 13.

[5] S. J. Wright,Primal-Dual Interior-Point Methods. SIAM, 1997.
[6] S. Boyd and C. Barratt,Linear Controller Design: Limits of Perfor-

mance. Prentice-Hall, 1991.
[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix

Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[8] M. A. Dahleh and I. J. Diaz-Bobillo,Control of Uncertain Systems: A
Linear Programming Approach. Prentice-Hall, 1995.

[9] M. Hershenson, S. Boyd, and T. H. Lee, “Optimal design of a CMOS
op-amp via geometric programming,”IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 1, pp.
1–21, 2001.

[10] M. Hershenson, S. S. Mohan, S. Boyd, and T. H. Lee, “Optimization
of inductor circuits via geometric programming,” inDesign Automation
Conference. IEEE Computer Society, 1999, pp. 994–998.

[11] S. Boyd, S.-J. Kim, D. Patil, and M. A. Horowitz, “Digitalcircuit
optimization via geometric programming,”Operations Research, vol. 53,
no. 6, pp. 899–932, 2005.

[12] H. Markowitz, “Portfolio selection,”The Journal of Finance, vol. 7,
no. 1, pp. 77–91, 1952.

[13] G. Cornuejols and R. T̈utünc̈u, Optimization methods in finance. Cam-
bridge University Press, 2007.

[14] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate controlfor commu-
nication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research society, pp. 237–252, 1998.

[15] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motivation,
architecture, algorithms, performance,”IEEE/ACM Transactions on Net-
working, vol. 14, no. 6, pp. 1246–1259, 2006.

[16] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,”Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[17] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed.
Springer, 2000.

[18] N. Cristianini and J. Shawe-Taylor,An introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

[19] Y. C. Eldar, A. Megretski, and G. C. Verghese, “Designing optimal
quantum detectors via semidefinite programming,”IEEE Transactions
on Information Theory, vol. 49, no. 4, pp. 1007–1012, 2003.

[20] Y. C. Eldar, “A semidefinite programming approach to optimalun-
ambiguous discrimination of quantum states,”IEEE Transactions on
Information Theory, vol. 49, no. 2, pp. 446–456, 2003.

[21] R. Graham, M. Gr̈otschel, and L. Lov́asz,Handbook of combinatorics.
MIT Press, 1996, vol. 2, ch. 28.

[22] IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4,
Dec. 2007, special Issue on Convex Optimization Methods for Signal
Processing.

[23] R. Calvin, C. Ray, and V. Rhyne, “The design of optimal convolutional
filters via linear programming,”IEEE Trans. Geoscience Elec., vol. 7,
no. 3, pp. 142–145, Jul. 1969.

10

Fig. 11: Array response as sensors move, with optimized weights (left) and usingweights for initial sensor
positions (right).

[24] L. Rabiner, “Linear program design of finite impulse response (FIR)
digital filters,” IEEE Trans. Aud. Electroacoustics, vol. 20, no. 4, pp.
280–288, Oct. 1972.

[25] J. Claerbout and F. Muir, “Robust modeling with erratic data,” Geo-
physics, vol. 38, p. 826, 1973.

[26] H. Taylor, S. Banks, and J. McCoy, “Deconvolution with the ℓ1 norm,”
Geophysics, vol. 44, no. 1, pp. 39–52, 1979.

[27] Y. Wang and S. Boyd, “Fast model predictive control usingonline
optimization,” in Proceedings IFAC World Congress, Jul. 2008, pp.
6974–6997.

[28] ——, “Fast evaluation of quadratic control-Lyapunov policy,” Work-
ing manuscript, Jul. 2009, available online: http://stanford.edu/∼boyd/
papers/fastclf.html.

[29] J. M. Maciejowski,Predictive Control With Constraints. Prentice Hall,
2002.

[30] A. H. Sayed,Fundamentals of Adaptive Filtering. IEEE Press, 2003.
[31] S. Haykin,Adaptive filter theory. Prentice Hall, 1996.
[32] X. Lai, “Design of smallest size two-dimensional linear-phase FIR filters

with magnitude error constraint,”Multidimensional Systems and Signal
Processing, vol. 18, no. 4, pp. 341–349, 2007.

[33] T. Q. Nguyen and R. D. Koilpillai, “The theory and designof arbitrary-
length cosine-modulated filter banks and wavelets, satisfying perfect
reconstruction,”IEEE Transactions on Signal Processing, vol. 44, no. 3,
pp. 473–483, 1996.

[34] B. Alkire and L. Vandenberghe, “Interior-point methodsfor magnitude
filter design,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 6, 2001.

[35] S. P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter designvia semidef-
inite programming and spectral factorization,” inIEEE Conference on
Decision and Control, vol. 1, 1996, pp. 271–276.

[36] R. L. Kosut, C. R. Johnson, and S. Boyd, “On achieving reduced error
propagation sensitivity in DFE design via convex optimization (I),” in
IEEE Conference on Decision and Control, vol. 5, 2000, pp. 4320–4323.

[37] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo, “Robust adaptive
beamforming using worst-case performance optimization via second-
order cone programming,” inIEEE Conference on Acoustics, Speech,
and Signal Processing, vol. 3, 2002.

[38] H. Lebret and S. Boyd, “Antenna array pattern synthesisvia convex
optimization,” IEEE Transactions on Signal Processing, vol. 45, no. 3,
pp. 526–532, 1997.

[39] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamformingand
diagonal loading,”IEEE Transactions on Signal Processing, vol. 51,
no. 7, pp. 1702–1715, 2003.

[40] R. G. Lorenz and S. Boyd, “Robust minimum variance beamforming,”
IEEE Transactions on Signal Processing, vol. 53, no. 5, pp. 1684–1696,
2005.

[41] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2001.

[42] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,”Physica D, vol. 60, no. 1-4, pp. 259–268, 1992.

[43] E. J. Cand̀es and F. Guo, “New multiscale transforms, minimum total
variation synthesis: Applications to edge-preserving image reconstruc-
tion,” Signal Processing, vol. 82, no. 11, pp. 1519–1543, 2002.

[44] A. Chambolle, “An algorithm for total variation minimization and
applications,”Journal of Mathematical Imaging and Vision, vol. 20,
no. 1, pp. 89–97, 2004.

[45] A. Beck, A. Ben-Tal, and C. Kanzow, “A fast method for finding
the global solution of the regularized structured total least squares
problem for image deblurring,”SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 1, pp. 419–443, 2008.

[46] K. L. Kroeker, “Face recognition breakthrough,”Communications of the
ACM, vol. 52, no. 8, pp. 18–19, 2009.

[47] E. Cand̀es, J. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,”Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2005.

[48] J. Tropp, “Just relax: Convex programming methods for identifying
sparse signals in noise,”IEEE Transactions on Information Theory,
vol. 52, no. 3, pp. 1030–1051, 2006.

[49] R. Tibshirani, “Regression shrinkage and selection via the Lasso,”
Journal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288,
1996.

[50] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “ℓ1 trend filtering,”
SIAM Review, vol. 51, no. 2, pp. 339–360, 2009.

[51] P. Stoica, T. McKelvey, and J. Mari, “MA estimation in polynomial
time,” in Proceedings of the IEEE Conference on Decision and Control,
vol. 4, 1999.

[52] B. Dumitrescu, I. Tabus, and P. Stoica, “On the parameterization of pos-
itive real sequences and MA parameter estimation,”IEEE Transactions
on Signal Processing, vol. 49, no. 11, pp. 2630–2639, 2001.

[53] B. Alkire and L. Vandenberghe, “Handling nonnegative constraints in
spectral estimation,” inThirty-Fourth Asilomar Conference on Signals,
Systems and Computers, vol. 1, 2000.

[54] A. Zymnis, S. Boyd, and D. Gorinevsky, “Relaxed maximum a posteriori
fault identification,”Signal Processing, vol. 89, no. 6, pp. 989–999, Jun.
2009.

[55] ——, “Mixed state estimation for a linear Gaussian Markovmodel,”
IEEE Conference on Decision and Control, pp. 3219–3226, Dec. 2008.

[56] J. Feldman, D. R. Karger, and M. J. Wainwright, “LP decoding,”
in Proceedings of the annual Allerton conference on communication
control and computing, vol. 41, no. 2, 2003, pp. 951–960.

[57] E. Candes and T. Tao, “Decoding by linear programming,”IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[58] E. J. Candes and P. A. Randall, “Highly robust error correction by convex
programming,”IEEE Transactions on Information Theory, vol. 54, no. 7,
pp. 2829–2840, 2008.

[59] F. Schlaepfer and F. Schweppe, “Continuous-time state estimation under
disturbances bounded by convex sets,”IEEE Transactions on Automatic
Control, vol. 17, no. 2, pp. 197–205, 1972.

11

[60] A. B. Kurzhanski and I. V́alyi, Ellipsoidal calculus for estimation and
control. Birkhäuser, 1996.

[61] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimaxregret
estimation of deterministic parameters with bounded data uncertainties,”
IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2177–2188,
2004.

[62] T. N. Davidson, Z. Q. Luo, and K. M. Wong, “Design of orthogonal
pulse shapes for communications via semidefinite programming,”IEEE
Transactions on Signal Processing, vol. 48, no. 5, pp. 1433–1445, 2000.

[63] A. Dua, K. Medepalli, and A. J. Paulraj, “Receive antenna selection
in MIMO systems using convex optimization,”IEEE Transactions on
Wireless Communications, vol. 5, no. 9, pp. 2353–2357, 2006.

[64] G. Sell and M. Slaney, “Solving demodulation as an optimization
problem,”To appear, IEEE Transactions on Audio, Speech and Language
Processing, Jul. 2009.

[65] G. B. Dantzig, Linear Programming and Extensions. Princeton
University Press, 1963.

[66] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004, http://control.ee.ethz.ch/∼joloef/yalmip.php.

[67] M. Grant and S. Boyd, “CVX: Matlab software for disciplined con-
vex programming (web page and software),” http://www.stanford.edu/
∼boyd/cvx/, Jul. 2008.

[68] J. Mattingley and S. Boyd, “CVXMOD: Convex optimizationsoftware
in Python (web page and software),” http://cvxmod.net/, Aug. 2008.

[69] W. E. Hart, “Python optimization modeling objects (Pyomo),” in Pro-
ceedings, INFORMS Computing Society Conference, 2009.

[70] M. Grant, “Disciplined convex programming,” Ph.D. dissertation, De-
partment of Electrical Engineering, Stanford University, Dec. 2004.

[71] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in
Global Optimization: from Theory to Implementation, ser. Nonconvex
Optimization and Its Applications, L. Liberti and N. Maculan, Eds. New
York: Springer Science & Business Media, Inc., 2006, pp. 155–210.

[72] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear bio-
logical systems: Wiener and Hammerstein cascade models,”Biological
Cybernetics, vol. 55, no. 2, pp. 135–144, 1986.

[73] K. C. Toh, M. J. Todd, and R. H. T̈utünc̈u, “SDPT3—a Matlab soft-
ware package for semidefinite programming, version 1.3,”Optimization
Methods and Software, vol. 11, no. 1, pp. 545–581, 1999.

[74] R. Tütünc̈u, K. Toh, and M. J. Todd, “Solving semidefinite-quadratic-
linear programs using SDPT3,”Mathematical Programming, vol. 95,
no. 2, pp. 189–217, 2003.

[75] D. H. Johnson and D. E. Dudgeon,Array signal processing: concepts
and techniques. Simon & Schuster, 1992.

[76] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares problems
with uncertain data,”SIAM Journal on Matrix Analysis and Applications,
vol. 18, no. 4, pp. 1035–1064, 1997.

