
NVM Cache with Predictive Allocation
Alexander Rucker, Andrew Bartolo, Christopher Chute

acrucker@stanford.edu, bartolo@stanford.edu, chute@stanford.edu

Abstract

Modern cloud applications, including databases such as MySQL and analytics libraries such as Apache Spark,
keep as much of their working sets as possible in DRAM to avoid the penalty of paging to disk. However, when
serving potentially millions of queries per second, we need to keep hot cache lines as close to the CPU as possible—
preferably in an on-die cache. SRAM caches, though commonplace, are costly in terms of area and power. Emerging
nonvolatile memory (NVM) technologies offer an alternative to SRAM with lower area and power requirements,
albeit with poor endurance. This paper explores the application benefits of adding either an L2 or L4 CPU cache
constructed out of NVM technologies, and shows that an L2 cache can improve performance only if it is relatively
fast. Because NVM presents significant endurance concerns, we separately evaluate the effectiveness of several
cache management policies in decreasing cache wearout for a simulated cache, including selecting which lines to
insert and profiling eviction policies.

I. INTRODUCTION

FOR decades, CPUs have exploited the the phenomena of temporal and spatial locality by using on-die
caches to improve performance. A hierarchy of caches can typically decrease the Average Memory

Access Time (AMAT) by responding to most memory accesses without needing to send the data to main
memory. However, a 2015 paper by Google [12] found that, for common cloud workloads like search
indexing and database queries, 50% to 60% of a CPU’s cycles are spent stalled on caches. The authors
speculate that this is due to complicated access patterns within the applications, which are hard for a
prefetcher to predict and do not leave much room to exploit instruction-level parallelism. While the size
of cloud datasets is growing to match the increasing density of storage [13], the density of CMOS is
increasing far more slowly, and with extreme expense and poor power efficiency [21].

Traditionally, CPUs have included a hierarchy of SRAM caches in an attempt to keep recently referenced
data close at hand. A recent Intel Xeon Broadwell system which we profiled contained 16 cores on-
die, each of which maintained its own 32KB L1 cache and 256KB L2 cache. All 16 cores shared a
40MB L3 cache [3]. For comparison, a single 24-bit 4K image is 24MiB in size, and machine learning
workloads must frequently reference weight and embedding matrices in the tens or hundreds of megabytes.
Furthermore, Intel’s recent decision to support per-process last level cache (LLC) partitioning [18] leaves
applications with even less aggregate LLC. For this paper, we therefore posit that computation on modern
datasets would benefit from much larger last-level CPU caches.

Fig. 1: Cycles spent waiting on cache results [12].

2

Fig. 2: Modern CPU die shot [2].

We start by evaluating the potential for impact of faster caches. We compute potential configurations
for two scenarios: replacing the L2 with a nonvolatile memory (NVM) cache, and adding an NVM cache
between the L3 and main memory. We elected not to evaluate replacing the L3 entirely with NVM because
effective multi-core programming relies on using the L3 as a high-bandwidth communication channel
between cores, and a NVM L3 would either sustain overly high latency and wearout penalties from this
programming paradigm or force all inter-process communication to happen through main memory.

We find that replacing the L2 with a much larger, but slightly slower, cache yields significant
improvements for several benchmarks, and a slight slowdown for other benchmarks that fit entirely in the
L2 cache, but the L2 cache latency cannot increase too much or the L2 hits become too slow. We were
unable to elucidate a difference between including an RRAM L4 and not including one; we believe this
is due to having a large, high-performance L3, not accurately simulating the load to memory, and having
the L4 cache not taking much area away from the L3.

After demonstrating that there is potentially a speedup to be gained from the use of NVM caches,
we then investigate strategies for reducing the number of updates to these caches. We evaluate several
strategies against a normally sized L2 cache, which allows a comparison between the different update
strategies. We find that randomly inserting cache lines actually performs better than any other update
strategy, and allows the user to trade off the amount of wear that the cache sustains while not changing
MPKI too significantly.

II. CONSTRUCTING A MUCH LARGER LLC
SRAM is a traditionally attractive cache technology for for several reasons. Standard 6T SRAM cells

are built from cross-coupled inverters, and are thus a natural fit for CMOS integration. SRAM read and
write latencies are on the order of one nanosecond for small arrays [5]. However, for constructing LLCs
in the hundreds of megabytes to gigabytes, SRAM is prohibitively area-intensive [5], [16]. Die shots of
any modern high-performance CPU reveal the vast amount of real estate that must be dedicated solely to
L3 SRAM (see Fig. 2).

A. RRAM
In the past several years, a handful of new memory technologies have emerged to fill the gap between

SRAM and DRAM. These memories are generally nonvolatile, and with various latency, area, and

3

Technology Read latency (ns) Write latency (ns) Endurance (num. writes) Area (F 2)
DRAM 50 50 > 1015 6
RRAM 10 50 1011 4
SRAM 1 1 > 1015 125

TABLE I: A summary of LLC technology tradeoffs

L2 Size (B) 256k 2M 256k
L2 Associativity 8 8 8
L2 Hit Latency (ns) 3 12 3
L3 Size (B) 40M 40M 38M
L3 Associativity 20 20 19
L3 Hit Latency (ns) 21 21 21
L4 Size (B) - - 1G
L4 Associativity - - 16
L4 Hit Latency (ns) - - 40
Memory Latency (ns) 61 61 61

TABLE II: Simulation parameters for the three configurations. The NVM L2 has on-chip tags using
space from the L2, and the NVM L4 has off-chip tags and on-chip status bits using space from the L3.

endurance characteristics. For this paper, we focus on resistive RAM (RRAM, also known as ReRAM), a
moderately mature technology with increasing industry interest. RRAM stores bits by varying the resistance
across a dielectric using ion movement [8].

Compared to SRAM, which has a typical cell size of 125 F 2 (where F is the minimum feature size for
some process), RRAM cell sizes are on the order of 4 F 2 [5], [16]. Thus, at first pass, RRAM arrays can
be made approximately 31 times denser than SRAM. However, owing to its lower required fabrication
temperature compared to CMOS SRAM, RRAM may also be arranged in a 3D crosspoint configuration
[8]. This is similar to Intel’s 3D XPoint technology, but using memristors (RRAM) instead of phase-
change memory (PCM). In the future, this arrangement may significantly increase RRAM density, by
allowing RRAM to be fabricated over the top of silicon in the back-end of semiconductor fabrication.

B. Sizing the cache
We used the aforementioned Broadwell CPU from [3] as a base to explore adding our RRAM LLC.

The system has 16 cores, 32KB of L1 and 256K of L2 per core, and a shared 40MiB L3 [3]. Our initial
benchmark, a cloud TPC-H workload for MySQL, featured working sets around 7-8GiB in size. For
economic reasons, fabricating this much RRAM on-die is infeasible.

However, we believe an amount of on-die RRAM in the range of 256MiB to 1GiB is feasible. As
RRAM is roughly 31 times denser than SRAM, a 1GiB array would occupy an effective 1024

31
= 33MiB of

SRAM-area. Our Xeon has 40MiB of existing L3, which could potentially be replaced entirely by 1GiB
of RRAM, or augmented in an L4 cache “on-top” of the L3 via 2.5D integration or an interposer.

We considered 16- and 32-way set associativity for the LLC. Assuming 8-byte words and 64-byte lines,
each address for a 1GiB direct-mapped cache would correspond to a 34-bit tag, 24-bit index, 3-bit word
offset into line, and 3-bit byte offset into word. Increasing cache size by a power of two adds one to the
number of index bits and subtracts one from the number of tag bits. Increasing set associativity does the
opposite. In our cache index table, in addition to tags, we must also maintain one valid and one dirty bit.
Note that x86-64 only really implements a 48-bit virtual address space, so we may be able to reduce the
size of each tag by 16 bits.

After the question of cache size is answered, the question of cache latency remains. The latency of a
cache at a given level is the result of three factors: it takes time to send the request to the cache, it takes time
for the cache to check the tags, and it takes time for the cache to read the data. Table II shows the measured
dual-random-read latency of the Broadwell reference system, measured using TinyMemBench[6].

4

5× 107 Writes 1011 Writes
256 kiB Private L2 (10000 UPMI) 1.9 hours 5.3 months
256 kiB Private L2 (1000 UPMI) 19 hours 4.3 years
1 GiB Shared L4 (10 UPMI) 79 days 433 years

TABLE III: Expected cache lifetimes assuming 1 IPC, varying Updates Per Million Instructions, 3
GHz, 64 byte cache lines, and 16 cores.

Benchmark Workload Reason for Inclusion
MySQL TPC-H Queries 1, 5, 10, 16, 20 Transaction processing is an important cloud workload.
glucose newton.5.1.i.smt2-cvc4.cnf Mixture of read-write and read-mostly data structures.
firefox Acid Test 3, Acid Test 2, reddit.com Complicated application and an unstructured workload.
libreoffice TPC-H spec docx to pdf conversion Java application, moderately complicated.
graph500 BFS 224 node graph search Poor cache performance, graph analytics.
gcc Compile C++ cache simulator with -O3 Random cache accesses, many different analysis steps

TABLE IV: Summary of included benchmarks

C. Endurance: A critical question
One of the key problems for RRAM caches is that of endurance. Because RRAM is still a new

technology, there are a wide variety of endurance specifications reported in the literature, ranging from
5 × 107 to 1011 [24]. In our paper and in general, “endurance” refers to the number of writes a device
block can sustain before becoming unreliable. Our methods seek to reduce wear on the NVM cache by
only including lines which will be read frequently, but updated (written to) infrequently. The expected
lifetimes for several cache configurations are shown in Table III.

III. METHODOLOGY

A. Benchmark Selection
For several reasons, we were unable to benchmark our proposed schemes against cloud applications.

One of the key problems that we encountered is that cloud applications, by their nature, are extremely I/O
oriented. This causes them to have a heavy dependence on the operating system, network architecture,
and I/O devices such as NICs. We examined memcached and redis, and found that user-level cycles
only made up about 20% of the total cycles. We also saw that even if we disregarded the cache impact of
the system code itself, and only looked at the user code, we could not begin to approximate an accurate
trace of the entire workload. This is because applications pass pointers directly to the kernel to eliminate
copying overhead.

Instead of using entirely cloud-based benchmarks, we selected a variety of applications that have
interesting instruction and data access patterns. These are shown in Table IV. We allowed the applications
to run for 20 billion instructions before tracing them, except libreoffice and gcc. These were fast-forwarded
up for 1 billion instructions due to their shorter length. We then modified DynamoRIO to dump the L1
instruction and data cache misses and evicts to a file, instead of logging every instruction and memory
access. This provided several orders of magnitude reduction in the amount of data requiring processing,
and allowed us to ensure that all the cache insertion algorithms were run against the same data.

We then used the first 1 million L1 misses to warm up the L2 caches, and simulated the L2 caches for
50 million L1 misses. We attempted to simulate the L4 cache endurance limitations, but we were unable
to gather a sufficient quantity of L3 cache misses to enable accurate measurements. Therefore, we present
endurance statistics for the L2 caches instead, which have more misses.

All evaluation was performed on a cache simulator only, because we did not have enough time during the
project to setup and run a core timing simulator. Therefore, all performance evaluation is done assuming
an in-order core model, and shown as average memory access time (AMAT). This is not an ideal metric
for evaluating performance, but, because cloud applications spend significant time stalled on memory
accesses and do not make use of cache bandwidth, they most likely do not have the ability to keep a

5

Policy Parameters Description
all Include all cache lines
none Don’t include any lines
inst Include lines that were evicted from the instruction cache
read Threshold Include lines that were read at least threshold times
write Threshold Include lines that were written less than threshold times
rand Rand% Only include a random percentage of candidate lines
bloom Size, Rand% Random include, with a Bloom filter to prevent re-insertion
cbloom Size, Rand % Same as bloom, but only include clean evictions

TABLE V: A summary of the benchmarked cache inclusion policies.

large number of requests in flight and an improvement in AMAT should directly translate into improved
system performance.

We took several steps to ensure that our simulator was accurately modeling reality. The first test we ran
was using valgrind’s cachegrind cache simulation tool [1]. Although cachegrind does not model
as complicated a cache hierarchy as we do, we were able to use it to ensure that both L1 and L3 misses
matched reality for several small programs. This validated the trace generation and unmodified cache
simulator. Then, we validated our modifications to the cache simulator by comparing our insertion on
evict approach to the default insertion on miss approach, ensuring that the miss rates and wearout rates
were nearly identical. Finally, we implemented a cache that was configured to not insert any data, and
used it to verify that data is not incorrectly written to the cache when an insertion policy says that it
should be dropped. We also ensure that accesses that bypass the cache are correctly reported as cache
misses.

B. Inclusion Algorithms
We investigated the impact of two separate policies on the cache wearout. Several of these were selected

to validate our simulation flow, including the policy of not including any misses and the policy of including
all misses. A description of all the policies is shown in Table V. After a line is inserted into the cache,
it is necessary to determine what happens when the line is written to. A naive cache might allow a line
to be updated arbitrarily in the cache, which could lead to pathological access patterns wearing only
one cache line to the detriment of others. Therefore, we evaluated the impact of varying the number of
updates necessary to evict a cache line. We found empirically that the optimal threshold is very low, and is
around 1 or 2 updates. These updates are only updates at the same level, not counting updates at previous,
nonvolatile levels. For example, consider a line that misses in the L1 data cache with a nonvolatile L2. It
is allocated into the L1, and then evicted and stored into the L2. This counts as zero updates. If the line
is later read into the L1, modified, and evicted, this will count as 1 update and may be reason to evict
the line from the L2.

The Bloom filter-based policy was the policy that we expected to perform best, but it lags behind several
simpler policies. The Bloom filter is fixed to use only one hash, and uses a very large table to to try and
get the best performance; the table is typically 5% full at the end of program execution. Lines are inserted
into the Bloom filter only when they are forced out of the cache for having been evicted too much, and
are allocated with a random percentage that is customizable as a parameter. We also evaluated a clean
Bloom filter which only inserts lines that were evicted from the previous level of the cache hierarchy
without being written to.

IV. EXPERIMENTAL RESULTS

A. NVM Cache Performance
We started by evaluating the average memory access time for an L4 cache composed of RRAM, with

RRAM device latencies of 3ns and 10ns over the existing L3 cache latency. To achieve the maximum size
possible for our L4 cache, we model it as containing both the tags and data off-chip, accessed sequentially,

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

A
M

A
T
 A

ft
e
r

L1
$

 (
n
s)

Original: 40M L3 21 ns

L2 Latency
L3 Latency
L4 Latency

Memory Latency,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

Alternate: 38M L3, 1G L4 27 ns

L2 Latency
L3 Latency
L4 Latency

Memory Latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

Alternate: 38M L3, 1G L4 41 ns

L2 Latency
L3 Latency
L4 Latency

Memory Latency

Fig. 3: AMAT difference when adding in a 1 GiB L4 with different overall hit latencies. The majority
of time, with and without the L4, is taken by the L3.

and use the reference memory latencies measured from the Xeon E5-2683v4. This makes the overall L4
hit latencies 27 and 41 nanoseconds. Although these should provide some benefit, the benchmarks and
traces that we gathered do not show a significant difference for the L4, even though they are being run
for 200M L1 misses following a 10M L1 warmup. We believe that this may be the result of the large
L3 (40M) and low memory latency (61ns) that our configuration has, which limit both the number of
accesses to the L4 cache and the L3 miss penalty that the L4 is supposed to ameliorate. We also do not
use a DRAM simulator in our model, which limits the impact of L3 misses on performance. In a real
system, LLC misses contend with each other for a limited number of scheduler slots, while in our system
they are allowed to complete as if there were no other misses. The AMAT breakdown for the NVM L4
is shown in Figure 3. The majority of cycles are spent accessing the L3 for all of our applications, which
severely limits the potential benefit of the L4. Because the L4 uses on-chip space very efficiently as well,
the potential slowdown of the L3 is limited and the results are effectively the same for both cases.

We then evaluated the potential impact of using NVM for the L2 cache, shown in Figure 4. We expected
that this would have a significant impact, because a larger L2 cache would allow reads to be served closer
to the processor, and our benchmarks make heavy use of the L2. We found that the average-case latency
is extremely critical to the L2 cache performance, because so many accesses hit in the L2. If the RRAM
L2 array takes 3ns longer than the SRAM L2 array, the decrease in L2 misses makes up for the increased
L2 access time. However, if the RRAM L2 array slows to 10ns, then all of the L2 hits start to take
more time to serve than the L2 misses, and there is a slowdown. RRAM read latencies do not appear
to be commonly reported, but depend on the ratio between the high-resistance and low-resistance states
of the RRAM cell. Because we only simulate MPKI, and then extrapolate to AMAT, we are not able to
accurately simulate the impact that store latency and load latency has. We expect that, if we had an OoO
core simulator, we would see that slowing down writes by forcing them to access the L3 would not be
as limiting as shown here.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

A
M

A
T
 A

ft
e
r

L1
$

 (
n
s)

Original: 256k L2, 3 ns

L2 Latency
L3 Latency

Memory Latency,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

Alternate: 2M L2, 6 ns

L2 Latency
L3 Latency

Memory Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

01
_t
pc

h

05
_t
pc

h

10
_t
pc

h

16
_t
pc

h

20
_t
pc

h

ac
id

_t
es

t

gc
c_

tra
ce

2

gr
ap

h

offi
ce

sa
t_
lo
g2

sa
t_
lo
g

Alternate: 2M L2, 13 ns

L2 Latency
L3 Latency

Memory Latency

Fig. 4: AMAT difference when changing the L2 to using an RRAM data array and SRAM tag arrays.
The values are computed for a 3ns and 10s latency increase.

B. Write Endurance Limitation
Our main contribution is a study of the impact of different cache insertion policies and update policies

on cache endurance, which is shown in Figure 6. Typically, we see that the insert all policy produces both
the lowest MPKI and the highest block updates. The insert all policies are run with no evict on update
and evict on 1, 2, and 4 updates. Except for one benchmark, however, there is no difference in MPKI or
updates for these cases, because once a line is evicted there is nothing to stop it from being reinserted.
The opposite extreme of this spectrum is observed in the bloom filter. These policies insert a random
percentage of values, track which are force-evicted for updates, and prevent them from being reinserted.
The bloom filter reaches a vertical asymptote, which means that it allows lines to be inserted, but does
not decrease the MPKI past some point. We believe that this is the result of the bloom filter being too
sensitive: just because a line is written once, does not mean that it won’t be repeatedly read again without
being written. In this case, the bloom filter will prevent it from ever being a cache hit again, and can
cause an unbounded number of misses with a few cache lines.

The other interesting results are the read and write threshold policies. With the exception of Graph500,
these policies do not make a major difference to updates. We believe that this is due to the lines not living
in the L1 cache long enough to allow a meaningful distinction to be made based on update count.

The most surprising result is the superior performance of the random algorithm. We found that the
random algorithm almost always outperforms all other algorithms in terms of MPKI for a given update
count. Although counterintuitive, randomly inserting a small fraction of lines actually results in a lower
MPKI for some applications. We believe that this is because these applications have their accesses to
reused lines interspersed with accesses to many non-reused lines. If there are enough non-reused lines
between accesses to a reused line, the reused line will be pushed out of the cache. By randomly inserting
only a few lines, the reused lines will be accessed enough times that they are never the LRU line.

8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

0
1

_t
p
ch

0
5

_t
p
ch

1
0

_t
p
ch

1
6

_t
p
ch

2
0

_t
p
ch

a
ci

d
_t

e
st

g
cc

_t
ra

ce
2

g
ra

p
h

o
ffi

ce
sa

t_
lo

g
sa

t_
lo

g
2

N
o
rm

a
liz

e
d
 u

p
d
a
te

s
Average Updates per Block

 0

 2

 4

 6

 8

 10

 12

 14

0
1

_t
p
ch

0
5

_t
p
ch

1
0

_t
p
ch

1
6

_t
p
ch

2
0

_t
p
ch

a
ci

d
_t

e
st

g
cc

_t
ra

ce
2

g
ra

p
h

o
ffi

ce
sa

t_
lo

g
sa

t_
lo

g
2

N
o
rm

a
liz

e
d
 u

p
d
a
te

s

Most-Updated Block

Eviction Policy
FIFO
LFU
LRU

Fig. 5: The impact of cache replacement policies on average and worst-case wear.

C. Wear Evaluation
Although we used LRU cache replacement for the majority of our evaluation, we also ran tests with

LFU and FIFO cache replacement to quantify the impact that these would have on wear. The results of
this experiment, running on a 3% random cache insertion policy, are shown in Figure 5. We found that
LRU is the best policy for minimizing the average updates per cache block. However, FIFO is better than
LRU for minimizing the number of updates to the most-updated cache block. This is because if a few
lines are frequently used, they won’t ever be replaced, and the other lines in the set will take all of the
updates. LFU is the worst for the most-updated block because it has a bias towards low-numbered ways
(it’s implemented with a for loop), and because it will tend to replace the most recently inserted cache
line.

V. RELATED WORK

A. Nonvolatile Memory
In contrast with our work, the current literature on NVM caches mostly sidesteps the concern of NVM

write endurance. In [16], Mittal et al. provide a survey of nonvolatile memory management techniques,
including strategies for lifetime enhancement. Their survey of roughly 140 works shows a shortage of
literature on minimizing writes to cache-level nonvolatile memory. In particular, the vast majority of write
minimization strategies are specific to block storage (e.g., flash), or focus primarily on wear leveling as
opposed to write minimization.

In the works that do focus on cache-level use of NVM technology, the write endurance problem is
rarely addressed. For instance, UniFI [17] is a system that employs NVM for its last level cache and main
memory, but with the goals of fault tolerance and low power consumption. Kiln [25] is another NVM
cache and memory design whose goal is to decrease write latency by avoiding logging or copy-on-write
schemes for fault tolerance. In both of these systems, write endurance is mentioned only briefly, and the
authors choose to leave write endurance for other work.

Perhaps the most similar work to ours is done by Wang et al. [22], who employ cache inclusion policies
to address the poor write endurance of NVM caches. They show that by modifying existing SSD wear
leveling mechanisms to account for intra- and inter-set write variation, they can increase expected NVM
cache lifetimes by 75%. However, the authors focus solely on wear leveling, rather than on reducing
the absolute write count to the nonvolatile cache. Ideally, writes to NVM are both uniform in physical

9

 10

 100

 1000

 10000
 5

 5
.2

 5
.4

 5
.6

 5
.8 6

 6
.2

 6
.4

 6
.6

 6
.8

L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

Firefox

 1

 10

 100

 1000

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

MySQL TPC-H Query 1

 1

 10

 100

 1000

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5L2

 B
lo

ck
 U

p
d

a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

MySQL TPC-H Query 5

 1

 10

 100

 1000

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

 0
.5

5

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8L2

 B
lo

ck
 U

p
d

a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

MySQL TPC-H Query 10

 1

 10

 100

 1000

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

MySQL TPC-H Query 16

 10

 100

 1000

 10000

 1
.6

5

 1
.7

 1
.7

5

 1
.8

 1
.8

5

 1
.9

 1
.9

5 2L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

MySQL TPC-H Query 20

 100

 1000

 10000

 100000

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

 3
0

L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

Glucose SAT Solver

 10

 100

 1000

 10000

 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5 7

 7
.5

L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

GCC

 100

 1000

 10000

 7
.5 8

 8
.5 9

 9
.5

 1
0

 1
0

.5

 1
1L2

 B
lo

ck
 U

p
d

a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

LibreOffice

 100

 1000

 10000

 100000

 4
4

.5

 4
5

 4
5

.5

 4
6

 4
6

.5

 4
7

 4
7

.5

 4
8

 4
8

.5

 4
9

 4
9

.5L2
 B

lo
ck

 U
p

d
a
te

s
p

e
r

M
e
g

a
-I

n
st

L2 MPKI

Graph500 BFS

All runs
Random Insert

Bloom Filter
Clean Evicts+Bloom Filter

Write Threshold
Read Threshold

Insert All

Fig. 6: Updates per Mega-Inst for all benchmarks and several insertion policies. Each insertion policy is
simulated with a range of parameters to establish the range of results it can produce.

10

location and minimal in number, so our techniques could be used in conjunction with the cache-specific
wear leveling schemes introduced in [22].

Sequoia [11] is a more recent (2016) proposal for improving NVM cache lifetime. Sequoia builds on
the work of Wang et al. by reducing the overhead of their intra-set wear leveling mechanism. Still, Sequoia
makes no attempt to reduce the absolute number of writes to the NVM cache, instead focusing entirely
on achieving uniform wear leveling. In sum, our work differs from current literature in that we reduce
absolute write count to the NVM cache rather than focusing on wear leveling schemes.

B. Level 4 Caches
There is also a significant body of work discussing the performance impacts of adding an L4 cache, most

of which focuses on adding DRAM caches. Several industrial x86 processors also include an additional L4
cache, including Intel’s Knights Landing and Crystalwell [20], [19]. Both of these are throughput-oriented
devices, with Knights Landing being an accelerator for traditional HPC applications and Crystalwell having
a large, bandwidth-hungry integrated GPU. This is likely due to the constraints of DRAM, which has
relatively worse random access performance due to the need to open a row before reading or writing.

Several research projects have attempted to decrease the overhead of implementing an off-chip L4
cache using DRAM. Loh et al. implemented a scheme that stores tags and 64-byte data blocks together
in DRAM, and uses an on-chip data structure to determine when an access to DRAM will be a miss, and
thus bypass it [14]. Other related works assume that the cache lines used by an off-chip L4 cache will be
larger, and optimize mapping entire pages at a time, sparsely, into the cache. [15] evaluates replacement
policies for an L4 DRAM cache, focusing on avoiding interference between different processor cores.

CHOP is also similar to our proposed solution, but again focuses on unlimited-endurance caches [10].
CHOP uses an on-chip filter cache to track hot pages. Pages that hit frequently in the filter cache are
then allocated in the off-chip DRAM cache. The primary goal of CHOP is to make the best use of the
limited bandwidth to the off-chip DRAM cache, while not exploding the size of the tag arrays. If all L3
cache evictions were allocated into the page-based L4 cache, in the worst case, the memory controller
would have to fetch 15 lines from DRAM for every L3 eviction to complete the page insertion. It is also
possible to sparsely insert lines within a page, which is the approach taken by the footprint cache [9].
The footprint cache only inserts lines that are accessed by the processor into the L4 cache, eliminating
the majority of the traffic.

The focus that the prior work has on DRAM last level caches is based around compensating for the
limitations of DRAM: it is challenging to fabricate DRAM in the same process as logic, and there is no
good way to do tight integration of DRAM into a logic process. Additionally, DRAM cells are not very
readable, and the charge on the bitlines needs to be amplified aggressively to be read; this imposes a
high penalty on opening rows in the array and random accesses, which then requires the use of a DRAM
scheduler and controller. Taken together, these factors conspire to produce a caching layer that has a high
latency per access. RRAM may be able to solve these problems, by being fabricated directly on top of
logic without the need for an access transistor [7].

VI. FUTURE DIRECTIONS

Although our work shows that RRAM caches could provide a significant speedup at several levels
of the cache hierarchy, several questions still need to be answered before a complete system could be
designed. One problem with inserting cache lines upon evicts from lower-level caches is cache coherence.
This is a problem for the proposed L2 RRAM cache, and might be a problem for the RRAM L4 cache.
We also identified a major simulation discrepancy regarding the simulation of kernel code, which could
be fixed through more thorough simulation. Another major problem is dealing with cache wearout when
it actually occurs through the addition of a translation layer.

11

A. Cache Coherency
Snooping based cache coherence is made significantly simpler by the use of an inclusive cache hierarchy.

If the L2 tags are guaranteed to contain all the data that is stored in the L1 tags, then a coherence controller
can respond to coherence requests using only the data stored in the L2. There are several ways that an
RRAM cache could be integrated in a coherent system. The simplest is adding an array to store tags from
previous levels of the cache hierarchy alongside the cache, which would increase the area required by
our design by approximately 25%. Another possibility is to query both the L1 and L2 on a coherence
request, which would impact coherence latency. Finally, it may be possible to store some data about the
L1’s contents, such as the list of mapped pages, in the L2. This would decrease the area overhead while
minimizing the number of requests forwarded to the L1.

B. Full-System Simulation
Because our simulator is based on translating a user-level binary, it does not support tracing system level

code. We considered several options to get more accurate system traces but were not able to implement
them during the quarter. The simplest solution would be to use libraries that perform computationally
intensive system level tasks, such as networking, in user space [4]. Although not an exact model of the
kernel code, the computation performed and overall access pattern should be similar. Another possibility
would be to use a system level simulator, such as gem5. This would allow an exact trace of Linux’s
execution to be gathered, at the cost of slower trace generation time.

C. Translation Layer
Another problem results from the impact of cache wearout. Current processors allow for remapping

lines or columns of memory arrays to compensate for manufacturing defects or wearout [23]. However,
this requires the cache to be tested either during manufacturing or at boot, eliminates many good bits
for one bad bit, and therefore does not handle partially failed cache lines well. Because RRAM can be
far denser than the underlying tag arrays, it should be possible to store a significant amount of error
correction data with the data in the cache array to tolerate sporadically failed bits.

An ideal RRAM cache would also enforce even wear. Our evict on write approach decreases the
opportunity for a single line to burn a hole in the cache, but there are still potential pitfalls with using an
LRU or pseudo-LRU cache replacement strategy. If all but one line in a cache set are frequently used,
the cache will keep those and repeatedly update the one unused line, leading to uneven wear. This could
be solved by wear leveling algorithm to move lines around, or by using a different replacement policy.

D. Adaptive Allocation Policies
When evaluating insertion policies, we found that different applications have extremely different baseline

update rates to the cache. Although we are able to restrict updates to be some fraction of the baseline
update rate using a random insertion policy, it is necessary to manually set the random insertion rate to
guarantee a maximum number of cache updates. A real-world system would need to use a control loop of
some kind to handle setting this insertion rate, and may need to add logic to guard against phase behavior
to ensure that the total number of updates remains bounded.

VII. CONCLUSION

The increasing availability of NVM technologies such as RRAM make them interesting candidates
for cache construction. However, write endurance concerns led us to seek a way to reduce updates to
the cache when possible, while still maintaining adequate MPKI and AMAT as measures of application
performance. Our work finds that replacing a conventional SRAM L2 with a much larger RRAM L2 yields
performance benefits for some applications (the Graph500 breadth-first search and Firefox browser), and

12

slight slowdowns for others (the SAT solver and document conversion). Our evaluation is predicated on
the existence of fast, tightly integrated RRAM, which can be fabricated directly on top of the CPU logic
instead of on a separate die.

We were unable to run the cloud applications we wanted to, because they had a significant system
component we could not trace. Instead, we selected benchmarks that we expected would have complicated
code and data access patterns. Trace-based simulation allowed us to run each application once, and then
quickly assess its behavior on a wide range of cache configurations and inclusion policies. Somewhat
surprisingly, a random inclusion policy performed best for deciding which lines were kept around in
the cache. In the scatterplots in Figure 6, note that random inclusion forms the Pareto curve for every
application we profiled, with the exception of write threshold based insertion dominating a small portion
of the space. We discovered that random inclusion is able to make the update rate arbitrarily small, and
despite doing so it does not not significantly increase MPKI (and may even decrease MPKI).

Finally, we discovered that our initial goal of an RRAM L4 cache may not be the best option. This may
be the result of simulation methodology limitations, or it may be a function of our baseline’s large L3
cache and low main memory access time, both of which were not represented in the L4 cache literature
we surveyed. It may be feasible to implement an even larger L4 cache, on the order of several gigabytes,
or to implement an L4 cache for NUMA nodes that have significant memory access times.

REFERENCES

[1] Cachegrind: a cache and branch-prediction profiler. http://valgrind.org/docs/manual/cg-manual.html.
[2] Intel core i7-3960x processor die detail. https://www.pcworld.com/article/243749/lab tested intel core i7 3960x extreme edition.html.
[3] Intel xeon e5-2683-v4. http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon
[4] Seastar. seastar-project.org.
[5] Stt-ram as a sub for sram and dram. http://arch.cs.utah.edu/arch-rd-club/STT-RAM.pptx.
[6] Tinymembench: Simple benchmark for memory throughput and latency. https://github.com/ssvb/tinymembench.
[7] Christophe Chevallier. Resistive ram, present status and future applications. https://n3xt.stanford.edu/system/files/c chevallier resistive -

ram present status and future applications.pdf, 2014.
[8] PAN Feng, CHEN Chao, Zhi-shun Wang, Yu-chao Yang, YANG Jing, and ZENG Fei. Nonvolatile resistive switching memories-

characteristics, mechanisms and challenges. Progress in Natural Science: Materials International, 20(Supplement C):1 – 15, 2010.
[9] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram caches for servers: hit ratio, latency, or bandwidth? have it all

with footprint cache. In ACM SIGARCH Computer Architecture News, volume 41, pages 404–415. ACM, 2013.
[10] Xiaowei Jiang, Niti Madan, Li Zhao, Mike Upton, Ravishankar Iyer, Srihari Makineni, Donald Newell, Yan Solihin, and Rajeev

Balasubramonian. Chop: Adaptive filter-based dram caching for cmp server platforms. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, pages 1–12. IEEE, 2010.

[11] Mohammad Reza Jokar, Mohammad Arjomand, and Hamid Sarbazi-Azad. Sequoia: A high-endurance nvm-based cache architecture.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(3):954–967, 2016.

[12] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks.
Profiling a warehouse-scale computer. In Proceedings of the 42Nd Annual International Symposium on Computer Architecture, ISCA
’15, pages 158–169, New York, NY, USA, 2015. ACM.

[13] Mark Kryder. Kryders law. Scientific American, pages 32–33, 2005.
[14] Gabriel Loh and Mark D Hill. Supporting very large dram caches with compound-access scheduling and missmap. IEEE Micro,

32(3):70–78, 2012.
[15] Gabriel H Loh. Extending the effectiveness of 3d-stacked dram caches with an adaptive multi-queue policy. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 201–212. ACM, 2009.
[16] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile memories for storage and main memory systems.

IEEE Transactions on Parallel and Distributed Systems, 27(5):1537–1550, May 2016.
[17] Somayeh Sardashti and David A Wood. Unifi: leveraging non-volatile memories for a unified fault tolerance and idle power management

technique. In Proceedings of the 26th ACM international conference on Supercomputing, pages 59–68. ACM, 2012.
[18] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gmez. Application clustering policies to address system fairness with intel

cache allocation technology. In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 194–205, Sept 2017.

[19] Eric Shiu and Simon Prakash. System challenges and hardware requirements for future consumer devices: From wearable to
chromebooks and devices in-between. In VLSI Circuits (VLSI Circuits), 2015 Symposium on, pages 1–5. IEEE, 2015.

[20] Avinash Sodani. Knights landing (knl): 2nd generation intel R© xeon phi processor. In Hot Chips 27 Symposium (HCS), 2015 IEEE,
pages 1–24. IEEE, 2015.

[21] M Mitchell Waldrop. The chips are down for moore’s law. Nature, 530(7589):144–147, 2016.
[22] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. i 2 wap: Improving non-volatile cache lifetime by reducing inter- and

intra-set write variations. In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium on,
pages 234–245. IEEE, 2013.

13

[23] Neil Weste, David Harris, and Ayan Banerjee. volume 11. 2005.
[24] Yi Wu, Jiale Liang, Shimeng Yu, Ximeng Guan, and H.-S. Philip Wong. Resistive switching random access memory - materials,

device, interconnects, and scaling considerations. pages 16–21. IEEE, 2012.
[25] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P Jouppi. Kiln: Closing the performance gap between systems with

and without persistence support. In Microarchitecture (MICRO), 2013 46th Annual IEEE/ACM International Symposium on, pages
421–432. IEEE, 2013.

	Introduction
	Constructing a Much Larger LLC
	RRAM
	Sizing the cache
	Endurance: A critical question

	Methodology
	Benchmark Selection
	Inclusion Algorithms

	Experimental Results
	NVM Cache Performance
	Write Endurance Limitation
	Wear Evaluation

	Related Work
	Nonvolatile Memory
	Level 4 Caches

	Future Directions
	Cache Coherency
	Full-System Simulation
	Translation Layer
	Adaptive Allocation Policies

	Conclusion
	References

