CME 241: Reinforcement Learning for Stochastic Control Problems in Finance

Ashwin Rao

ICME, Stanford University

Winter 2021
Meet your Instructor

- Joined Stanford ICME as Adjunct Faculty in Fall 2018
- Research Interests: A.I. for Dynamic Decisioning under Uncertainty
- Technical mentor to ICME students, partnerships with industry
- Educational background: Algorithms Theory & Abstract Algebra
- 10 years at Goldman Sachs (NY) Rates/Mortgage Derivatives Trading
- 4 years at Morgan Stanley as Managing Director - Market Modeling
- Founded Tech Startup ZLemma, Acquired by hired.com in 2015
- One of our products was algorithmic jobs/career guidance for students
- Teaching experience: Pure & Applied Math, CompSci, Finance, Mgmt
- Current Industry Job: V.P. of A.I. at Target (the Retail company)
Requirements and Setup

- **Pre-requisites:**
 - Undergraduate-level background in Applied Mathematics (Multivariate Analysis, Linear Algebra, Probability, Optimization)
 - Background in data structures/algorithms, fluency with numpy
 - Basic familiarity with Pricing, Portfolio Mgmt and Algo Trading, but we will do an overview of the requisite Finance/Economics
 - No background required in MDP, DP, RL (we will cover from scratch)

- Here’s [last year’s final exam](#) to get a sense of course difficulty

- Register for the [course on Piazza](#)

- Install Python 3 and supporting IDE/tools (eg: PyCharm, Jupyter)

- Install LaTeX/Markdown and supporting editor for tech writing

- Assignments and code in my book based on [this open-source code](#)

- **Fork** this repo and [get set up](#) to use this code in assignments

- Create separate directories for each assignment for CA ([Sven Lerner](#)) to review - send Sven your forked repo URL and *git push* often
Housekeeping

- Grade based on:
 - 30% 48-hour Mid-Term Exam (on Theory, Modeling, Programming)
 - 40% 48-hour Final Exam (on Theory, Modeling, Programming)
 - 30% Assignments: Technical Writing and Programming

- Lectures (on Zoom): Wed & Fri 4:00pm - 5:20pm, Jan 13 - Mar 19
- Office Hours 1-4pm Fri (or by appointment) on Zoom
- Course Web Site: cme241.stanford.edu
- Ask Questions and engage in Discussions on Piazza
- My e-mail: ashwin.rao@stanford.edu
Purpose and Grading of Assignments

- Assignments shouldn’t be treated as “tests” with right/wrong answer.
- Rather, they should be treated as part of your learning experience.
- You will truly understand ideas/models/algorithms only when you write down the Mathematics and the Code precisely.
- Simply reading Math/Code gives you a false sense of understanding.
- Take the initiative to make up your own assignments.
- Especially on topics you feel you don’t quite understand.
- Individual assignments won’t get a grade and there are no due dates.
- The CA will review once every 2 weeks and provide feedback.
- It will be graded less on correctness and completeness, and more on:
 - Coding and Technical Writing style that is clear and modular.
 - Demonstration of curiosity and commitment to learning through the overall body of assignments work.
 - Engagement in asking questions and seeking feedback for improvements.
Course based on the (incomplete) book I am currently writing

Supplementary/Optional reading: Sutton-Barto’s RL book

I prepare slides for each lecture (“guided tour” of respective chapter)

A couple of lecture slides are from David Silver’s RL course

Code in my book based on this open-source code

Reading this code as important as the reading of the theory

We will go over some classical papers on the Finance applications

Some supplementary/optional papers from Finance/RL

All resources organized on the course web site (“source of truth”)
Assignments: You can discuss solution approaches with other students
Because assignments are graded more for effort than correctness
Writing (answers/code) should be your own (don’t copy/paste)
You can invoke the core modules I have written (as instructed)
Exams: You cannot engage in any conversation with other students
Write to the CA if a question is unclear
Exams are graded on correctness and completeness
So *don’t ask for help* on how to solve exam questions
Open-internet Exams: Search for concepts, not answers to exam Qs
If you accidentally run into a strong hint/answer, state it honestly
Let's browse some terms used to characterize this branch of A.I.

- **Stochastic**: Uncertainty in key quantities, evolving over time
- **Optimization**: A well-defined metric to be maximized (“The Goal”)
- **Dynamic**: Decisions need to be a function of the changing situations
- **Control**: Overpower uncertainty by persistent steering towards goal

Jargon overload due to confluence of Control Theory, O.R. and A.I.

For language clarity, let’s just refer to this area as **Stochastic Control**

The core framework is called **Markov Decision Processes (MDP)**

Reinforcement Learning is a class of algorithms to solve MDPs
The MDP Framework

- State: S_t
- Reward: R_t
- Action: A_t
- Next State: S_{t+1}
- Next Reward: R_{t+1}
Components of the MDP Framework

- The Agent and the Environment interact in a time-sequenced loop
- Agent responds to [State, Reward] by taking an Action
- Environment responds by producing next step’s (random) State
- Environment also produces a (random) scalar denoted as Reward
- Each State is assumed to have the Markov Property, meaning:
 - Next State/Reward depends only on Current State (for a given Action)
 - Current State captures all relevant information from History
 - Current State is a sufficient statistic of the future (for a given Action)
- Goal of Agent is to maximize Expected Sum of all future Rewards
- By controlling the (Policy : State → Action) function
- This is a dynamic (time-sequenced control) system under uncertainty
Formal MDP Framework

The following notation is for discrete time steps. Continuous-time formulation is analogous (often involving Stochastic Calculus)

- Time steps denoted as $t = 1, 2, 3, \ldots$
- Markov States $S_t \in S$ where S is the State Space
- Actions $A_t \in A$ where A is the Action Space
- Rewards $R_t \in \mathbb{R}$ denoting numerical feedback
- Transitions $p(r, s' \mid s, a) = \mathbb{P}[(R_{t+1} = r, S_{t+1} = s') \mid S_t = s, A_t = a]$
- $\gamma \in [0, 1]$ is the Discount Factor for Reward when defining Return
- Return $G_t = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \ldots$
- Policy $\pi(a \mid s)$ is probability that Agent takes action a in states s
- The goal is find a policy that maximizes $\mathbb{E}[G_t \mid S_t = s]$ for all $s \in S$
How a baby learns to walk

Positive/negative feedback

Posture, orientation

Baby steps

World
Many real-world problems fit this MDP framework

- Self-driving vehicle (speed/steering to optimize safety/time)
- Game of Chess (Boolean \textit{Reward} at end of game)
- Complex Logistical Operations (eg: movements in a Warehouse)
- Make a humanoid robot walk/run on difficult terrains
- Manage an investment portfolio
- Control a power station
- Optimal decisions during a football game
- Strategy to win an election (high-complexity MDP)
Why are these problems hard?

- **State** space can be large or complex (involving many variables)
- Sometimes, **Action** space is also large or complex
- No direct feedback on “correct” **Actions** (only feedback is **Reward**)
- Time-sequenced complexity (**Actions** influence future **States/Actions**)
- **Actions** can have delayed consequences (late **Rewards**)
- **Agent** often doesn’t know the **Model** of the **Environment**
- “Model” refers to probabilities of state-transitions and rewards
- So, **Agent** has to learn the **Model** AND solve for the Optimal **Policy**
- **Agent Actions** need to tradeoff between “explore” and “exploit”
Value Function and Bellman Equations

- Value function (under policy π) $V_\pi(s) = \mathbb{E}[G_t|S_t = s]$ for all $s \in S$

$$V_\pi(s) = \sum_a \pi(a|s) \sum_{r,s'} p(r,s'|s,a) \cdot (r + \gamma V_\pi(s'))$$ for all $s \in S$

- Optimal Value Function $V_*(s) = \max_\pi V_\pi(s)$ for all $s \in S$

$$V_*(s) = \max_a \sum_{r,s'} p(r,s'|s,a) \cdot (r + \gamma V_*(s'))$$ for all $s \in S$

- **There exists an Optimal Policy** π_* achieving $V_*(s)$ for all $s \in S$
- Determining $V_\pi(s)$ known as **Prediction**, and $V_*(s)$ known as **Control**
- The above recursive equations are called **Bellman equations**
- In continuous time, refered to as **Hamilton-Jacobi-Bellman (HJB)**
- The algorithms based on Bellman equations are broadly classified as:
 - Dynamic Programming
 - Reinforcement Learning
Dynamic Programming versus Reinforcement Learning

- When Probabilities Model is known ⇒ Dynamic Programming (DP)
- DP Algorithms take advantage of knowledge of probabilities
- So, DP Algorithms do not require interaction with the environment
- In the Language of A.I, DP is a type of Planning Algorithm
- When Probabilities Model unknown ⇒ Reinforcement Learning (RL)
- RL Algorithms interact with the Environment and incrementally learn
- Environment interaction could be real or simulated interaction
- RL approach: Try different actions & learn what works, what doesn’t
- RL Algorithms’ key challenge is to tradeoff “explore” versus “exploit”
- DP or RL, Good approximation of Value Function is vital to success
- Deep Neural Networks are typically used for function approximation
Why is RL interesting/useful to learn about?

- RL solves MDP problem when *Environment Probabilities* are unknown
- This is typical in real-world problems (complex/unknown probabilities)
- RL interacts with *Actual Environment* or with *Simulated Environment*
- **Promise of modern A.I. is based on success of RL algorithms**
- Potential for automated decision-making in many industries
- In 10-20 years: Bots that act or behave more optimal than humans
- RL already solves various low-complexity real-world problems
- RL might soon be the most-desired skill in the technical job-market
- Possibilities in Finance are endless (we cover 5 important problems)
- Learning RL is a lot of fun! (interesting in theory as well as coding)
Many Faces of Reinforcement Learning
Vague (but in-vogue) Classification of Machine Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Machine Learning

Ashwin Rao (Stanford) “RL for Finance” course Winter 2021
Overview of the Course

- Theory of Markov Decision Processes (MDPs)
- Dynamic Programming (DP) Algorithms
- Approximate DP and Backward Induction Algorithms
- Reinforcement Learning (RL) Algorithms
- Plenty of Python implementations of models and algorithms
- Apply these algorithms to 5 Financial/Trading problems:
 - (Dynamic) Asset-Allocation to maximize Utility of Consumption
 - Pricing and Hedging of Derivatives in an Incomplete Market
 - Optimal Exercise/Stopping of Path-dependent American Options
 - Optimal Trade Order Execution (managing Price Impact)
 - Optimal Market-Making (Bids and Asks managing Inventory Risk)
- By treating each of the problems as MDPs (i.e., Stochastic Control)
- We will go over classical/analytical solutions to these problems
- Then introduce real-world considerations, and tackle with RL (or DP)
- Course blends Theory/Math, Algorithms/Coding, Real-World Finance
You can invest in (allocate wealth to) a collection of assets
Investment horizon is a fixed length of time
Each risky asset characterized by a probability distribution of returns
Periodically, you are re-allocate your wealth to the various assets
Transaction Costs & Constraints on trading hours/quantities/shorting
Allowed to consume a fraction of your wealth at specific times
Dynamic Decision: Time-Sequenced Allocation & Consumption
To maximize horizon-aggregated *Risk-Adjusted Consumption*
Risk-Adjustment involves a study of *Utility Theory*
MDP for Optimal Asset Allocation problem

- **State** is [Current Time, Current Holdings, Current Prices]
- **Action** is [Allocation Quantities, Consumption Quantity]
- **Actions** limited by various real-world trading constraints
- **Reward** is Utility of Consumption less Transaction Costs
- **State**-transitions governed by risky asset movements
Derivatives Pricing and Hedging in an Incomplete Market

- Classical Pricing/Hedging Theory assumes “frictionless market”
- Technically, refered to as arbitrage-free and complete market
- Complete market means derivatives can be perfectly replicated
- But real world has transaction costs and trading constraints
- So real markets are incomplete where classical theory doesn’t fit
- How to price and hedge in an Incomplete Market?
- Maximize “risk-adjusted-return” of the derivative plus hedges
- Similar to Asset Allocation, this is a stochastic control problem
- Deep Reinforcement Learning helps solve when framed as an MDP
State is [Current Time, PnL, Hedge Qtys, Hedge Prices]

Action is Units of Hedges to be traded at each time step

Reward only at termination, equal to Utility of terminal PnL

State-transitions governed by evolution of hedge prices

Optimal Policy \Rightarrow Derivative Hedging Strategy

Optimal Value Function \Rightarrow Derivative Price
An American option can be exercised anytime before option maturity
Key decision at any time is to exercise or continue
The default algorithm is Backward Induction on a tree/grid
But it doesn’t work for American options with complex payoffs
Also, it’s not feasible when state dimension is large
Industry-Standard: Longstaff-Schwartz’s simulation-based algorithm
RL is an attractive alternative to Longstaff-Schwartz
RL is straightforward once Optimal Exercise is modeled as an MDP
MDP for Optimal American Options Exercise

- **State** is [Current Time, History of Underlying Security Prices]
- **Action** is Boolean: Exercise (i.e., Payoff and Stop) or Continue
- **Reward** always 0, except upon Exercise (= Payoff)
- **State**-transitions governed by Underlying Prices’ Stochastic Process
- Optimal Policy ⇒ Optimal Stopping ⇒ Option Price
- Can be generalized to other Optimal Stopping problems
You are tasked with selling a large qty of a (relatively less-liquid) stock
You have a fixed horizon over which to complete the sale
Goal is to maximize aggregate sales proceeds over horizon
If you sell too fast, *Price Impact* will result in poor sales proceeds
If you sell too slow, you risk running out of time
We need to model temporary and permanent *Price Impacts*
Objective should incorporate penalty for variance of sales proceeds
Again, this amounts to maximizing Utility of sales proceeds
State is [Time Remaining, Stock Remaining to be Sold, Market Info]

Action is Quantity of Stock to Sell at current time

Reward is Utility of Sales Proceeds (i.e., Variance-adjusted-Proceeds)

Reward & State-transitions governed by Price Impact Model

Real-world Model can be quite complex (Order Book Dynamics)
Market-maker’s job is to submit bid and ask prices (and sizes)

On the Trading *Order Book* (which moves due to other players)

Market-maker needs to adjust bid/ask prizes/sizes appropriately

By anticipating the *Order Book Dynamics*

Goal is to maximize *Utility of Gains* at the end of a suitable horizon

If Buy/Sell LOs are too narrow, more frequent but small gains

If Buy/Sell LOs are too wide, less frequent but large gains

Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation

This is a classical stochastic control problem
MDP for Optimal Market-Making

- **State** is [Current Time, Mid-Price, PnL, Inventory of Stock Held]
- **Action** is Bid & Ask Prices & Sizes at each time step
- **Reward** is Utility of Gains at termination
- **State**-transitions governed by probabilities of hitting/lifting Bid/Ask
- Also governed by Order Book Dynamics (can be quite complex)
Week by Week (Tentative) Schedule

- **W1**: Markov Decision Processes
- **W2**: Bellman Equations & Dynamic Programming Algorithms
- **W3**: Backward Induction and Approximate DP Algorithms
- **W4**: Optimal Asset Allocation & Derivatives Pricing/Hedging
- **W5**: Options Exercise, Order Execution, Market-Making
- **Mid-Term Exam**
- **W6**: RL For Prediction (MC, TD, TD(λ))
- **W7**: RL for Control (SARSA, Q-Learning)
- **W8**: Batch Methods (DQN, LSTD/LSPI) and Gradient TD
- **W9**: Policy Gradient and Actor-Critic Algorithms
- **W10**: Model-based RL and Explore v/s Exploit
- **Final Exam**
Getting a sense of the style and content of the lectures

A sampling of lectures to browse through and get a sense ...

- Understanding Risk-Aversion through Utility Theory
- HJB Equation and Merton’s Portfolio Problem
- Derivatives Pricing and Hedging with Deep Reinforcement Learning
- Stochastic Control for Optimal Market-Making
- Policy Gradient Theorem and Compatible Approximation Theorem
- Value Function Geometry and Gradient TD
- Adaptive Multistage Sampling Algorithm (Origins of MCTS)
Some Landmark Papers we cover in this course

- Merton’s solution for Optimal Portfolio Allocation/Consumption
- Longstaff-Schwartz Algorithm for Pricing American Options
- Almgren-Chriss paper on Optimal Order Execution
- Avellaneda-Stoikov paper on Optimal Market-Making
- Original DQN paper and Nature DQN paper
- Lagoudakis-Parr paper on Least Squares Policy Iteration
- Sutton, McAllester, Singh, Mansour’s Policy Gradient Theorem
- Chang, Fu, Hu, Marcus’ AMS origins of Monte Carlo Tree Search
Similar Courses offered at Stanford

- AA 228/CS 238 (Mykel Kochenderfer)
- CS 234 (Emma Brunskill)
- CS 332 (Emma Brunskill)
- MS&E 338 (Ben Van Roy)
- EE 277 (Ben Van Roy)
- MS&E 251 (Edison Tse)
- MS&E 348 (Gerd Infanger)
- MS&E 351 (Ben Van Roy)
- MS&E 339 (Ben Van Roy)