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A great deal of progress has been made recently in the study of two-sided
matching processes, modelled both as cooperative games and as strategic games
with complete information. Here we consider a natural model of incomplete infor-
mation, in which agents know their own preferences but may not know those of
others. It is shown that results concerning dominant and dominated strategies
carry over from the complete information case to the present model, but results
concerning Nash equilibria do not. Some of the modelling implications of this are
brieﬂy considered. © 1989 by Academic Press, Inc.

1. INTRODUCTION

There has been a great deal of progress in the study of two-sided match-
ing markets modelled as games. Simple models without and with sidepay-
ments were proposed by Gale and Shapley (1962) and Shapley and Shubik
(1972), respectively, who studied the structure of the core. Recently more
general models have been introduced in the literature,! and the strategic
equilibria, as well as the core, have been examined.2 There has also been
progress in the use of these models to study the organization of particular
labor markets (see, e.g., Roth (1984a, 1986) concerning the entry level
market for American physicians).3

1 See, e.g., Blair (1987), Crawford and Knoer (1981), Demange and Gale (1985), Demange
et al. (1986), Kelso and Crawford (1982), Roth (1984c, 1985a), and Roth and Sotomayor
(1988a).

2 See, e.g., Dubins and Freedman (1981), Gale and Sotomayor (1985a,b), Graham and
Marshall (1987), Leonard (1983), and Roth (1982, 1984b).

3 Studies of several other labor markets are currently under way, the most closely related
of which will be reported in Roth (1989). It seems likely that these models will prove most
useful for studying markets in which relatively many heterogeneous workers and posi-
tions become available around the same time, e.g., entry level labor markets for elite profes-
sionals. But see also Mongell and Roth (1988).
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All of the above-mentioned papers formulate the problem at hand as a
game of complete information. This involves at least the implicit assump-
tion that the preferences of all agents are common knowledge. While this
is clearly not an accurate description of the situation prevailing in the
kinds of markets to which these models can mostly be applied, it may
nevertheless be an appropriate way to model many of the features of these
markets, since the alternative of modelling the market as a game of incom-
plete information presents other difficulties.

However, we will argue here that some of the conclusions reached
about strategic decisions are particularly sensitive to the assumption of
complete information, while others are not. Specifically, we will show
that, for an appropriate model of incomplete information, the conclusions
reached about dominant and dominated strategies continue to hold, while
the conclusions about strategic equilibria in non-dominant strategies do
not. In fact, it will be possible to show more than the simple negation of
some of the complete information equilibrium results. It will be shown
that things which happen at all equilibria of some complete information
games of this sort need not happen at any equilibrium in games of incom-
plete information.

The organization of this paper is as follows. Section 2 describes the
complete information model and the relevant results concerning dominant
_ strategies and strategic equilibria for that case. Section 3 presents the
incomplete information model and reconsiders equilibria and dominant
strategies. The concluding section considers some open questions and
briefly discusses some modelling issues.

2. Tue COMPLETE INFORMATION MODEL

In order to concentrate on questions of information, we will consider
the simplest of the two-sided matching models in the literature, the ‘‘mar-
riage’” market of Gale and Shapley (1962).

There are two finite, disjoint sets M and W: M = {m;, m,, . . . , my}is
the set of men, and W = {w;, w,, . . . , w,}is the set of women. Each man
has preferences over the women, and each woman has preferences over
the men. These preferences may be such that a man m would prefer to
remain single rather than be married to some woman w, say, whom he
does not care for.

To express these preferences concisely, the preferences of each man m
will be represented by an ordered list of preferences, P(m), on the set
W U {m}. That is, a man m’s preferences might be of the form

P(m)=w2, Wi, M, W3, . . ., Wy
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indicating that his first choice is to be married to woman w,, his second
choice is to be married to woman w;, and his third choice is to remain
single. Similarly, each woman w in W has an ordered list of preferences,
P(w), on the set M U {w}. In examples an agent’s preferences will be
described by writing only the ordered set of people that the agent prefers
to himself (herself), which are the acceptable matches for that agent.
Thus the preferences P(m) described above will be abbreviated by

P(m) = wy, w.

An agent who is not indifferent about any two acceptable assignments
(including remaining single) is said to have strict preferences. Let P =
{P(my), . . . , P(m,), P(wy), . . . , P(w,)} denote the set of preferences,
one for each man and woman.

An outcome of the marriage market is a set of marriages. In general, not
everyone may be married—some people may remain single. (We will
adopt the convention that a person who is not married to someone is self-
matched.) Formally we have

DEFINITION 1. A matching u is a one-to-one correspondence from the
set MUW onto itself of order two (that is, u%(x) = x) such that if u(m) # m
then u(m) € W and if w(w) # w then u(w) € M. We refer to u(x) as the
mate of x.

Note that u(x) = x means that if man m is matched to woman w (i.e., if
u(m) = w), then woman w is matched to man m (i.e., u(w) = m). The
definition also requires that individuals who are not single be matched
with agents of the opposite set—i.e., men are matched with women.
These two requirements explain why matchings can be thought of as sets
of “marriages.”’ '

A matching will sometimes be represented as a set of a matched pairs.
Thus, for example, the matching

ws wi owy wy (ms)

M
m m; ms3 Ny ms

has m; married to w, and ms remaining single, i.e., u(m;) = w, and u(ms)
= ms.

Each agent’s preferences over alternative matchings correspond ex-
actly to his (her) preferences over his own mates at the two matchings.
Thus man m, say, prefers matching w to matching v if and only if he
prefers p(m) to v(m). Thus we are assuming that man m cares about who
he is matched with, but is not otherwise concerned with the mates of
other agents. The rules of the game are that any man and woman may
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marry one another if they both agree, and any individual is free to remain
single.

Consider a matching u which matches a pair (m, w) who are not mutu-
ally acceptable. Then at least one of the individuals m and w would prefer
to be single rather than be matched to the other. Such an individually
irrational matching u will be said to be blocked by the unhappy individual.
Consider a matching u such that there exist a man m and a woman w who
are not matched to one another at u, but who prefer each other to their
assignments at u. The man and woman (m, w) will be said to block the
matching w.

DEFINITION 2. A matching u is stable if it is not blocked by any
individual or any pair of agents.

It is easy to show that, for this model, the set S(P) of stable matchings
coincides with the core.*

For a given marriage market, we say that a stable matching w is an M-
optimal stable matching if every man likes it at least as well as any other
stable matching. We can define a W-optimal stable matching similarly.
Gale and Shapley (1962) proved the following.

THEOREM 1. A stable matching exists for every marriage market.
Furthermore, when all men and women have strict preferences, there
always exist an M-optimal stable matching and a W-optimal stable
matching.

Of course when preferences are strict the M- and W-optimal stable
matchings are unique and will be denoted by M and uw, respectively.

2.1. Strategic Questions

Consider a marriage market (M, W, P) whose outcome will be deter-
mined by some ‘‘revelation mechanism’’ based on a list of preference
orderings which agents will state. That is, each man m, whose preferences
are P(m), is faced with the strategy choice of what preference order-
ing O(m) to state, and each woman w with preferences P(w) must
state a preference ordering Q(w). The set of stated preference lists, one
for each man and woman, will be denoted by Q ={0(m)), . . . , Q(m,),
QOw1), . . ., Q(w,)}. The mechanism produces a matching u = h(Q),
where £ is the function that describes the mechanism’s output for any set
Q of stated preferences. The mechanism 4 together with the data (M, W,
P) constitutes a strategic game, in which the strategies of the agents are

~ *For the simplest model of many-to-one matching, the set of stable matchings is the
subset of the core corresponding to those matchings that are not weakly dominated (Roth,
1985b).
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what preferences to state, and we will sometimes say that this is the game
“induced” by A.

For simplicity in what follows, we will consider the case in which all

- preferences are strict.’ This means not only that the true preferences P of

the agents include no indifferences, but also that only strict preferences
may be stated to the revelation mechanism. A mechanism # that for any
stated preferences Q produces a matching A(Q) that is stable with respect
to Q is called a stable mechanism. If h(Q) equals the M-optimal stable
matching with respect to Q, then /4 is the M-optimal stable mechanism.

We now consider the strategic results for the complete information case
that will be reexamined in the case of incomplete information.®

THEOREM 2. Impossibility Theorem. When there are at least two
agents on-each side of the market, no stable matching mechanism exists
which always makes stating the true preferences a dominant strategy for
every agent.

Thus any stable matching mechanism must sometimes present at least
some agents with non-trivial strategic decisions. The next theorem shows
that, at least in the case of one-to-one matching studied here, it is possible
to organize the market so that only the agents on one side face these
strategic difficulties, by employing the mechanism which yields the opti-
mal stable matching for the agents on the other side of the market.”

THEOREM 3. The M-optimal stable mechanism makes it a dominant
strategy for each man to state his true preferences. (Similarly, the W-
optimal stable mechanism makes it a dominant strategy for every woman
to state her true preferences.) .

So when an M-optimal stable mechanism is employed, Theorems 2 and
3 together imply that it is the women who will sometimes have difficult
strategic decisions to make. The following theorem shows that at least the
decision of who to list first on their stated preference lists is not a difficult
one. The theorem speaks of a woman w’s ‘‘true first choice,’” meaning the
individual who is first on her true preference list P(w) (recall that prefer-
ences are assumed to be strict).

THEOREM 4. When the M-optimal stable mechanism is used, any
strategy Q(w) in which w does not list her true first choice at the head of
her list is dominated by the strategy Q'(w) which does list her true first
choice first, but otherwise leaves Q(w) unchanged.

5 But see Roth (1984b) for a discussion of the non-strict case.

$ Theorems 2—4 are from Roth (1982), and Theorem 3 was independently presented by
Dubins and Freedman (1981).

7 This result does not apply to agents who may be matched to more than one agent
simultaneously, in models of many-to-one matching (Roth, 1985a; Sotomayor, 1987).



196 ALVIN E. ROTH

Turning from dominant strategies to equilibrium strategies, we have the
following results for the complete information case.’

THEOREM 5. Suppose each man chooses his dominant strategy and
states his true preferences, and the women choose any set of Strategies
(preference lists) P'(w) that form an equilibrium for the matching game
induced by the M-optimal stable mechanism. Then the corresponding M-
optimal stable matching for (M, W, P') is one of the stable matchings of
M, W, P).

THEOREM 6. When all preferences are strict, let . be any stable
matching for (M, W, P). Suppose each woman w in u(M) chooses the
strategy of listing only u(w) on her stated preference list of acceptable
men (and each man states his true preferences). This is an equilibrium in
the game induced by the M-optimal stable matching mechanism (and wis
the matching that results).

THEOREM 7. Let P’ be a set of preferences in which each man states
his true preferences, and each woman states a preference list which ranks
the men in the same order as her true preferences, but ranks as unaccept-
able all men who are ranked below uw(w). These preferences P' are a
strong equilibrium for the women® in the game induced by the M-optimal
stable matching mechanism (and wy is the matching that results).

So, while Theorem 2 asserts that at equilibrium some agents can be
expected to state preferences different from their true preferences, Theo-
rem 5 (together with Theorem 3) shows that at any equilibrium in un-
dominated strategies, the matching that results will nevertheless be stable
with respect to the true preferences, when the M-optimal stable mecha-
nism is used. Theorems 6 and 7 give examples of two such equilibria.
Note that to implement either of these equilibria the women must have a
good deal of information about other agents’ preferences, since this is
needed in order to determine whether a particular matching is in the core.
It is this observation which most directly motivates the present investiga-
tion, since in the markets to which this kind of theory has mostly been
applied, the agents do not possess detailed information about the prefer-
ences of others, although they may possess some general information
about these preferences.

A related result, which implies the conclusions of Theorem 3 in the
complete information case, is the following.!

8 Theorem 5 is from Roth (1984b), and Theorems 6 and 7 are from Gale and Sotomayor
(1985b).

® That is, an equilibrium with the property that no coalition of women can do better by
changing their strategies.

' Theorem 8 was first proved by Dubins and Freedman (1981). A short proof is given by
Gale and Sotomayor (1985a).
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THEOREM 8. Let P be the true preferences of the agents, and let P
differ from P in that some coalition M of the men falsify their preferences.
Then there is no matching ., stable for P, which is preferred to uy by all
members of M.

A result that will be useful in the proofs is the following:!!

THEOREM 9. In a market (M, W, P) with strict preferences, the set of
people who are single is the same for all stable matchings.

3. INCOMPLETE INFORMATION ABOUT OTHERS’ PREFERENCES

We now consider a model in which each agent does not know the
preferences of the others, but knows only the probability distribution
from which these are drawn. Since we will be dealing with probabilities,
we will need to consider not merely the preference orderings of the play-
ers, but also their expected utility functions. (Preferences will still be
assumed to be strict.) We will also consider games with quite general rules
and strategy sets, and not merely revelation games in which agents simply
state their preferences. A general matching game with incomplete infor-
mation about others’ preferences will be given by a collection.

I'=WN=MUW,{D}en, g U = XienU,, F).

The set N of players consists of the men and women to be matched. The
sets D; describe the decisions facing each player in the course of any play
of the game (i.e., an element d; of D; specifies the action of player i at each
point in the extensive form of the game at which he has decisions to
make). The function g describes how the actions taken by all the agents
correspond to matchings and lotteries over matchings, i.e., g: XieyD; —
L[M], where M is the set of all matchings between the sets M and W, and
L[AM] is the set of all probability distributions (lotteries) over Jt. The set
U, is the set of all utility functions defined over the possible mates for
player i and the possibility of remaining single, and F is a probability
distribution over n-tuples of utility functions u = {u;};en, for u; in U;. The
interpretation is that a player’s ‘‘type’’ is given by his utility function, and
at the time in which the players must choose their strategies each player
knows his own type, and the probability distribution F over vectors u is
common knowledge. The special case of a game of complete information

' The first statement of Theorem 9 of which I am now aware appears in McVitie and
Wilson (1970) for the case in which all men and women are mutually acceptable. It was also
proved in Roth (1984a) in a context directly applicable to the more general case considered
here, and with a short proof by Gale and Sotomayor (1985a).
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occurs when the distribution F gives a probability of one to some vector u
of utilities. While the set U of possible utilities for the players is large, we
will typically be concerned with games in which only a subset of U has
positive probability. For simplicity, we will henceforth confine our atten-
tion to cases in which the set of utility functions which occur with positive
probability is countable. In any event, since each player i knows his own
utility function u;, he can compute a conditional probability piu_i|u;) for
each vector of other players’, utilities u_; in U_; = X;4,U;, by applying
Bayes’ rule to F.

This is not the most general kind of incomplete information model we
might consider (cf. Harsanyi, 1967, 1968a,b). The only unknown informa-
tion is the other players’ utilities. In particular, players know their own
utilities for being matched with one another even though they do not
know what ‘‘type’” the other is: the final matching, and hence each play-
er’s utility payoff, depends only on the actions of the players, not on their
types. (That is, each player’s utility payoff depends on his own type, and
on the actions of all the players, but not on the types of the other players.)
Stated another way, players’ types do not affect their desirability, only
their desires. This seems like a natural assumption for elite professional
markets for entry level positions. For example, in the hospital intern
market, after the usual interviewing has been completed, top students are
able to rank prestigious programs, and vice versa. But agents do not
know, for example, how their top choices rank them.!?

A strategy for player i is a function o; from his type (which in this case
is his utility function) to his decisions, i.e., o;: U;— D;. If o = {oitien
denotes the strategy chosen by each player, then for each vector u of
players’ utility functions, o-(u) = {d; € D;};cy describes the decisions made
by the players, which result in the matching (or lottery over matchings)
g(o(u)). Consequently a set of strategy choices o results in a lottery over
matchings, whose probabilities are determined by the probability distribu-
tion F over vectors u, and by the function g. The expected utility to player
i who is of type u; is given by

ui(o) = Zy_ev., Pilu—iudud glo -, u))l.

An equilibrium set of strategies is a o* such that, for all players i in N
and all utility functions ;in U;, u(0*) = u;(0*;, o;) for all other strategies
o; for player i. That is, when player i’s utility is u; the strategy o deter-
mines player i’s decision di = ¢ (;), and the equilibrium condition re-
quires that for all players i and all types u; which occur with positive

12 Note the difference between this kind of model and those in the job-search literature, in
which the interviewing process itself is modelled, so that in effect agents are uncertain about
their own preferences.
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probability, player i cannot profitably substitute another decision d; =
o i(u;).

3.1. Revelation Games

We now consider the class of incomplete information games called
‘“‘revelation games,”” in which players are required only to state (‘‘re-
veal’) their types, which in this case are their utilities.”® Recall that a
general matching game with incomplete information about others’ prefer-
ences is givenby I' = (N = M U W, {Di}ien, g, U = XienU;, F). We may
call [{D;}ien, gl the mechanism, and [U, F] the state of information of the
game. Then a game T is specified by a set of players, a mechanism, and a
state of information. A revelation game T'y is a game in which the mecha-
nism is of the form [{D; = U;};en, k], where A is a function which takes
stated preferences into matchings or lotteries over matchings, i.e., A:
XienU; — LIM]. We will sometimes call the function # itself a revelation
mechanism, it being understood that the decision facing each agent is
simply what utility to state. We will pay particular attention to the strat-
egy of truth telling in a revelation game, i.c., the strategy o () = u; in
which each agent states his true type.

For any general game I' of incomplete information, and any equilibrium
o* of T', we can define the revelation game corresponding to o* to be the
game I'r(o*) with the same set of players and state of information as I" and
with the revelation mechanism 4 given by h(u) = g(o*(u)). That is, the
revelation mechanism 4 takes any set of stated utilities and produces the
same matching (or lottery over matchings) as that which would have been
produced by the equilibrium o* in the game I if the true utilities of the
players had been u. (That is, regardless of the actual types of the players
in the corresponding revelation game, if they collectively state the utilities
u the resulting matching is the one that would have resulted in I' under
strategies o* if the vector u corresponded to the true player types.) The
following observation, which is widely used in proofs about games of
incomplete information, is known as the ‘‘revelation principle’ (see, e.g.,
Myerson, 1985).

The revelation principle. For any equilibrium o* of a general incom-
plete information matching game T', let ['g(0*) be the corresponding reve-
lation game. Then

1. Truth telling is an equilibrium. That is the strategies 0T = {0 }ien
are an equilibrium in I'g(c*).

13 We will later also consider the special case of revelation games in which players can
only state preference orderings, and not numerical utilities. This appears to be the situation
in most of the actual two-sided matching markets which employ revelation procedures.
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2. When all players tell the truth in T'g(c*), the resulting matching
(or lottery over matchings) is the same as that when the players play the
strategies o* in I'.

The second observation follows immediately from the definition of the
revelation mechanism 4 and does not depend on whether or not the strate-
gies o* are an equilibrium in the original game I'. The first observation,
that truth telling is an equilibrium in the revelation game, follows from the
fact that o* is an equilibrium in T': if player i with utility «; could profit
from stating another utility function v; when all other agents state the truth
in the revelation game, then he could get the same outcome in game I',
and hence also profit, from playing o/(v;) = d; instead of o*(;) = d ¥ when
all other players use the strategies o*. But then o* would not be an
equilibrium, contrary to assumption.

We will call a revelation mechanism # stable if for any stated utilities u
its output h(u) is a stable matching or lottery over stable matchings, i.e., if
h(u) € L[S(u)]. Note that the set of stable matchings is sensitive only to
the ordinal preferences; i.e., if u = (uy, . . . , u,:,)is a vector of expected
utility functions, one for each agent, then there is a unique vector P =
P(u) of ordinal preferences corresponding to these utilities, and the set of
stable matchings is the same for any two utility vectors that have the same
corresponding preferences (i.e., S(x) = S(v) = S(P) whenever P(u) = P(v)
=P). ,

Of course while the set of stable matchings responds only to the ordinal
information contained in the expected utility functions, a mechanism for
selecting a stable matching can depend on the expected utilities in a more
detailed way. However, in the complete information case we considered
mechanisms which respond only to stated preferences. This corresponds
to what is generally observed in markets which employ centralized match-
ing mechanisms, such as the market for American medical interns (cf.
Roth, 1984a), the similar regional markets for pre-registration positions in
the United Kingdom (cf. Roth, 1989), or the bid matching procedure used
by American sororities (cf. Mongell, 1988; Mongell and Roth, 1988). The
M-optimal and W-optimal stable mechanisms, for example, depend only
on the preferences, not on the utilities. Formally, with respect to a set
MUW of agents we can define the following special class of revelation
mechanisms.

DEFINITION 3. An ordinal stable matching mechanism is a function
defined on all utility vectors « such that A(x) is in S(P) where P are the
preferences corresponding to u, and such that if v is another utility vector
corresponding to P, then A(u) = h(v).

Note that when an ordinal mechanism is used, it is equivalent to think-
ing of agents stating either their utility functions or the corresponding
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preferences. In contrast to ordinal stable mechanisms, the general stable
revelation mechanisms we have defined could be called random cardinal
stable mechanisms, in recognition of the fact that they may yield different
(and random) outcomes for stated utilities » and v for which P(u) = P(v).

3.2.  Equilibrium and Stability

The first result is an impossibility theorem that provides a strong nega-
tion to the conclusions of Theorem 5 about equilibria in the complete
information case when the M-optimal stable mechanism is employed. It
says that, in the incomplete information case, no equilibrium of any mech-
anism can have the stability properties that every equilibrium of the M-
optimal stable mechanism has in the complete information case. The
strategy of the proof will be to observe that, by the revelation principle, if
any such mechanism existed then there would be a stable revelation
mechanism with truth telling as an equilibrium, and then to show that no
such revelation mechanism exists. The proof of Theorem 10 thus also
shows that the impossibility result of Theorem 2 generalizes to the case of
random cardinal mechanisms and incomplete information.

THEOREM 10. If there are at least two agents on each side of the
market, then for any general mechanism [{D;}icx, gl there exist states of
information [U, F] for which every equilibrium o of the resulting game T
has the property that g(o(u)) & L[S(u)] for some u € U. (And the set of
such u with g(o(u)) & L[S)] has positive probability under F.) That is,
there exists no mechanism with the property that at least one of its equi-
libria is always stable with respect to the true preferences at every realiza-
tion of a game. '

To see that at least two agents are required on each side of the market,
note that, since preferences are strict, a game with only one agent on one
side of the market must have a unique stable matching, at which the
singleton agent gets his or her highest ranked mutually acceptable choice.
In such a game it is not hard to see that it is a dominant strategy for all
agents to state their true preferences when a stable mechanism is used.

The proof will examine the smallest remaining case, of two agents on
each side of the market, and give an example, i.e., a state of information,
that causes every stable revelation mechanism (and hence every mecha-
nism) to fail. The conclusion for larger sets of agents follows from the fact
that the four agents who play a role in the proof can be embedded in any
larger set of agents without affecting the conclusion, so long as their
preferences are not changed (and so that, in particular, in a larger market
these four agents do not consider any additional agents to be acceptable
matches).

The example. In order not to obscure the basic simplicity of the proof, it
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will be helpful to state the ordinal preferences of the agents first, and
consider their utility functions later. The agents are N = M U W, where
M = {my, my} and W = {w;, wy}. The most likely distribution of player
types corresponds to the following preferences:

P(my) = wy, wy, P(wy) = my, my

P(my) = wy, wy, P(wy) = my, m,.

Agents m, and w, have no other types which occur with positive proba-
bility, but m, and w; may each have two types, with their other possible
preferences being

P'(my) = wy, P'(wy) = my.

The probability that m, has preferences P'(m,) rather than P(m)) is q,
which is also the probability that w; has preferences P’'(w;) rather than
P(w)).

Let

P = (P(m)), P(my); P(w1), P(w»)),

P’ = (P'(my), P(my); P(wy), P(wy)),

P" = (P(my), P(my); P'(wy), P(wy)), and
P" = (P'(my), P(my); P'(w1), P(w2))

be the various -preference profiles which can arise with probabilities
(1 - @? q(1 — q), q(1 — g), and ¢?, respectively.

We will suppose that, for each type of each agent, the utility of being
matched to his first choice is 2, to his second choice is 1, and to his third
choice is 0. Thus, for example, when m, has preferences P(im;) his utility
i8S Up,(W1) = 2, Up(w2) = 1, and u,, (m;) = 0, and when he is the type with
preferences P’(m;) his utility is given by u,, (W) = 2, u,,(m;) = 1, and
Up (W2) = 0. )

There are three distinct matchings that may be stable for some realiza-
tion of the possible types which are denoted by

o= (’Mr)l: Z)lzz), _ (ml mz), ;= (ml m (Wl)).

w2 W (my) wr wy
The sets of stable matchings corresponding to each of the possible
combinations of types are

S®) = {n, v}, S@) = {u},
S(P") = {v}, S(P") = {7}.
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Proof of Theorem 10. Note that this example is symmetric between
the two sides of the market. Since S(P) contains only two matchings, we
may suppose without loss of generality that an arbitrary stable revelation
mechanism % chooses the stable matching u with probability at least one-
half when the utilities u corresponding to the preferences P are stated.
(Recall that there are only two stable matchings in this case, so a stable
mechanism must choose one of them with a probability of at least one-
half: If 4 instead chose » with probability greater than one-half, the argu-
ment which follows would proceed with m, replacing w,.) We will show
that & gives w;, an incentive to mis-state her utility when the other agents
adopt the strategy of truth telling and that therefore truth telling is not an
equilibrium for any stable revelation mechanism when the state of infor-
mation is as given in the example.

Let o be a strategy 4-tuple, and denote by o|P the vector of stated
utilities that results when the true types of the players correspond to the
preferences P, and similarly denote by o|P’, o|P”, and o|P” the stated
utilities that correspond to the other configurations of player types. Then
the expected utility of w,, whose utility function is u,, as specified earlier,
is

Llwz((r) = (1 - Q)Zuwz(h(O'IP)) + q(l — q)[uwz(h(O'IP'))
+ MWZ(h(O'lP'I))] + qzuwz(h(O',Pm)),

So. if g is sufficiently small, any potential losses in states of the world
other than P are offset in expected utility by any gains in the most proba-
ble state of the world, P. Thus for g = 0.01, say, w, prefers to get v for
certain instead of u with a probability of at least one-half in state P, at the
cost of getting any other match in any of the other states. But w, can
achieve this when all other agents adopt the truth-telling strategy, by
stating any utility function corresponding to the preferences P'(w;) = my,
which are not her true preferences. The reason is that when all other
agents state utilities corresponding to P, but w, states a utility correspond-
ing to P'(w,), then the unique stable matching is », and so any stable
mechanism must choose v in this case. So truth telling is not an equilib-
rium, since when other agents adopt truth-telling strategies, w, will prefer
to state preferences corresponding to P’'(w,). (Since w; has only one type
with positive probability, this fully describes her strategy, as far as it
affects any agent’s expected utility.)

By the revelation principle, the proof is now complete, since if any
mechanism existed with an equilibrium that always produced a stable
outcome, the corresponding revelation mechanism would be a stable
mechanism in which truth telling was an equilibrium. =
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The next theorem shows that the conclusion of Theorem 8 also does not
generalize to the case of incomplete information. It is possible for coali-
tions of men, by mis-stating their preferences, to obtain a preferable
matching (even) from the M-optimal stable mechanism. This is so even
though, as we will see in Theorem 12, it remains a dominant strategy for
each man to state his true preferences.

THEOREM 11. In games of incomplete information about preferences,
the M-optimal stable mechanism may be group manipulable by the men.

Proof. Consider the following example:!* The agentsare N = M U W,
where M = {m;, my, ms} and w = {w;, wy, w3, ws}. The most likely
distribution of player types corresponds to the following preferences:

P(my) = wq, wy, wy, w3, Pw1) = my, my, m3

P(my) = wy, wi, wp, ws,  P(wp) = m3, my, my

P(m3) = wy, wa, ws, P(ws) = my, my, ms
P(wy) = wy.

Note that, under these preferences, woman w, is unwilling to be
matched with any man. Except for wy, each agent has only one type
having positive probability, corresponding to the above preferences.
Woman w, has two types having positive probability, with her other possi-
ble preferences being P'(wy) = my, my.

The (small) probability that w, has preferences P'(w,) rather than
P(wy) is g. Let P = (P(m,), P(m,), P(m3), Pwy), . . . , P(wg)) and P’ =
(P(my), . . . , P'(wy)) denote the two preference profiles which can arise,
with probabilities (1 — ¢g) and g, respectively.

Let um(P) and uw(P’) denote, respectively, the M-optimal stable
matchings with respect to P and P’. Then

my m; ms (W4)) and

MM(P) = (Wl w3 Wy Wy

N (M my ms (W_s))
MM(P)_,(W‘; w, w, ws/

For ¢ sufficiently small,’ the coalition of m; and m, can assure itself a
higher expected utility by stating the preferences Q(m;) = wy, wy, w; and
O(my) = wy, w3 when other agents all state their true preferences. This'is
because

% Which is adapted from Roth (1982) by the addition of agent wy.
15 Specifically, for ¢ < [t (Ws) — U (W) [ty (We) — tm(W1)].
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(@) = (1 2 s () g

n ([P My my (W3))
pQIP) = (711 2 o ()

Note that both men m, and mj profit from m,’s misrepresentation when
the true preferences are P and that m; gets the same spouse as if he had
stated his true preferences in this case.'s But m; does better when the
preferences are P’ than he would have if m; had stated his true prefer-
ences, and although m, does worse in this case, he nevertheless receives a
higher expected utility when he and m, both mis-state their preferences
according to Q, since the probability g is small. Note that when they must
state their preferences, neither m 1 nor m, knows whether the true prefer-
ences are P or P’.

The fact that, even in the case of complete information, it is possible for
a coalition of men to mis-state their preferences in a way that does not
hurt any of them and helps some of them means that the conclusion from
Theorem 8 that coalitions of men cannot collectively manipulate the M-
optimal mechanism to their advantage cannot be expected to be very
robust. Once there is any possibility that the men can make any sort of
sidepayments among themselves, this conclusion is no longer justified.
Theorem 11 shows that uncertainty about the preferences of other agents
allows some transfers in an expected utility sense, with men able to trade
a gain in one realization for a gain in another. Note that this is so for any
positive g, i.e., even when q is arbitrarily small, in which case there is
very little uncertainty about the preferences.

3.3. Dominant and Dominated Strategies

In contrast to the results for equilibria, the results concerning dominant
strategies in the complete information case do generalize to the case of
incomplete information. We begin with a general proposition about the
relationship of dominant strategies for complete information revelation
games and the corresponding revelation games of incomplete information
about others’ preferences. (Here ‘“‘corresponding’’ means having the
same mechanism and set of players, but allowing for different states of
information.)

- PROPOSITION 1. If h is a mechanism that makes stating his true utility
u; a dominant strategy for player i in every complete information revela-
tion game T (i.e., for every specification of u), then the truth-telling strat-

16 In Roth (1982) the point was that in the complete information case with preferences P,
man m; could help the other men at no cost to himself.
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egy oX(u;) = u; is a dominant strategy in any corresponding game I'* of
incomplete information about others’ preferences.

Proof. Suppose not. Then there is another strategy o which does
better for at least some realization u € U, such that o;(;) # ;. But this
contradicts the fact that, in the complete information game with the utili-
ties given by u, it is a dominant strategy for agent i to state ;. ®

The following is an immediate consequence of Proposition 1 and Theo-
rem 3.

THEOREM 12. In matching with incomplete information about others’
preferences, the M-optimal stable mechanism makes it a dominant strat-
egy for each man to state his true preferences; i.e., olw) = u; is a
dominant strategy for each man. (Similarly, the W-optimal stable mecha-
nism makes it a dominant strategy for every woman to state her true
preferences.)

A similar, pointwise argument on realizations of the types of players
allows us to prove the following parallel to Theorem 4.

THEOREM 13. When an M-optimal stable mechanism is used in
matching with incomplete information about others’ preferences, any
strategy o {(u;) for a woman w; is dominated if her stated first choice is not
her true first for each u; in U,.

Proof. Consider a strategy o; for some woman w; that for at least one
u; in U; states a utility o;(«;) which ranks highest some alternative differ-
ent from the highest ranked alternative according to u;, i.e., such that the
maximum of a;(;) over M U {w;} is achieved by some alternative other
than the one which maximizes #;, which we will denote s*. Let of*: U;—
D; be a strategy that differs from o; only for u; € U;. Furthermore, sup-
pose that the numbers o} (;)(s) = o(u;)(s) for all s # s*in M U {w;}, and
that s* maximizes o(x;). Recall that the matching that results, and the
corresponding utility that w; derives, depends only on the stated utilities
of the players (their actions) and not on their types. So by Theorem 4
woman w; does at least as well by playing o} as she does by playing o, for
any strategy choices of the other agents, and strictly better for at least one
set of other agents’ strategy choices. ®

Since the M-optimal stable mechanism is an ordinal mechanism, no
difficulty in the proofs arises from the fact that Theorem 3 and 4 were
stated in terms of a game in which agents state preferences, while Theo-
rems 12 and 13 are stated in terms of a game in which agents state utilities.

Proposition 1 and the related argument in the proof of Theorem 13
illustrate a kind of ‘‘dominant strategy principle,”” connecting dominant
strategy results for classes of complete information games to parallel
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results for incomplete information games, as exemplified by Theorems 12
and 13. As we have seen, no such parallels exist for the equilibrium
results for the complete information game.

4. DISCUSSION

Since the questions in this paper are motivated to a large extent by
empirical questions concerning the behavior of agents in real markets, it
seems appropriate to conclude with some comments on modelling issues.
The first of these concerns the definition of stability, which was carried
over unchanged from the complete information model to the incomplete
information model. In the context of the incomplete information model,
the kind of stability studied here is ex post stability, in the sense that a
stable matching would remain stable even if all the preferences were to
become common knowledge.

The reason this is not an excessively strong requirement is that, when a
matching is proposed, each agent knows which alternative he prefers.
Although he does not yet know how his preferred alternatives evaluate
him, the ease of ascertaining this in a number of the markets of interest is
precisely what causes the instability observed in those markets. For ex-
ample, in the hospital intern labor market, a medical student who has
been offered an internship at his third choice hospital can easily contact
his first and second choices to see if they prefer him to any of the students
they are currently considering. In the late 1940s, prior to the introduction
of a stable matching procedure in this market, just this kind of very late
search caused verbal and other contracts to be broken in silfﬁciently
substantial numbers to interfere with the operation of the market (see
Roth, 1984a).

A larger modelling issue is the question of when complete and incom-
plete information models are most useful. It seems clear that, in most of
the markets to which these models can be applied, agents do not know
with precision the preferences of all the other agents. However, it is
rarely apparent what, if any, priors about agents’ preferences can be
reasonably described as being shared by all agents. So both kinds of
models impose costs. For certain kinds of questions about stability, its ex
post nature makes the differences between the two kinds of models unim-
portant. For other questions, there seems to be no practical alternative to
examining both kinds of models and the answers they give, in the light of
how much they seem to make strained assumptions about the markets in
question. In just this way, the information required to implement the
equilibria identified by the complete information model led to the present
exploration of the incomplete information case. However, the equilibrium
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results obtained here are negative, and it remains an open question what
general positive characterizations of equilibria can be obtained in the
incomplete information case, or which of the many properties of this and
related complete information models will generalize to the case of incom-
plete information. (For a comprehensive survey which concentrates on
the complete information case, see Roth and Sotomayor (1988b).)
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