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Abstract. Many imaging and compressed sensing applications seek sparse solutions to large
under-determined least-squares problems. The basis pursuit (BP) approach minimizes the 1-norm of
the solution, and the BP denoising (BPDN) approach balances it against the least-squares fit. The
duals of these problems are conventional linear and quadratic programs. We introduce a modified
parameterization of the BPDN problem and explore the effectiveness of active-set methods for solving
its dual. Our basic algorithm for the BP dual unifies several existing algorithms and is applicable to
large-scale examples.

Key words. basis pursuit, basis pursuit denoising, active-set method, quadratic program, convex
program, duality, regularization, sparse solutions, one-norm

AMS subject classifications. 49M29, 65K05, 90C25, 90C06

1. Introduction. Consider the linear system Ax+ r = b, where A is an m-by-n
matrix and b is a m-vector. In many statistical and signal processing applications the
aim is to obtain a solution (x, r) such that the residual vector r is small in norm and
the vector x is sparse. Typically, m� n and the problem is ill-posed. To obtain well
defined solutions for any m and n, we study the parameterized problem

BPδλ: minimize
x, y

‖x‖1 + 1
2δ‖x‖

2
2 + 1

2λ‖y‖
2
2

subject to Ax+ λy = b

and its dual

BPdualδλ: maximize
x, y

bTy − 1
2δ‖x‖

2
2 − 1

2λ‖y‖
2
2

subject to −e ≤ −δx+ATy ≤ e,

where δ ≥ 0, λ ≥ 0, and e is a vector of ones. The problems are duals of each other
in the sense that the Karush-Kuhn-Tucker (KKT) conditions for optimality for each
problem are satisfied by the same vector pair (x, y). (The KKT conditions require
the constraints in each problem to be satisfied and the objective values to be equal.)
Typically δ will be a small regularization parameter (say δ = 10−6 or 10−8), while λ
may be small or large. If ‖A‖ ≈ ‖b‖ ≈ 1, we expect ‖x‖ ≈ ‖y‖ ≈ 1. Thus the problem
variables (x, y) are well scaled in these formulations.

When δ = λ = 0, BPδλ is the basis pursuit (BP) problem of Chen et al. [3,4]. This
insists on a zero residual r = λy and often yields a sparse solution x. In some cases, it
yields the sparsest solution possible (Candès, Romberg, and Tao [1], Donoho [5]).

When δ = 0 and λ > 0, BPδλ is equivalent to the basis pursuit denoising (BPDN)
problem in [3,4]. It allows a nonzero residual, but the sparsity of x remains of prime
importance. Our chosen form of the problems reduce naturally to the BP problem and
its dual when λ = 0.
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When δ > 0 and λ > 0, the objective of problem BPdualδλ is minimized at the
point x = 0, y = b/λ, which satisfies the problem’s constraints if λ ≥ ‖ATb‖∞. We
can show that x = 0 and y = b/λ is the unique solution of both problems for all
λ ≥ ‖ATb‖∞. Also, both problems have unique optimal solutions (x, y) for any δ > 0
and λ > 0. In this sense, δ and λ are regularization parameters.

We present active-set algorithms, suitable for large problems, that can solve both
BPδλ and BPdualδλ. The flexibility of our algorithms provides a base from which more
involved algorithms can be easily implemented. Some examples are

• Homotopy [10], which solves BP0λ for all values of λ;
• Lars [6], which greedily approximates the solution of BP0λ for all λ;
• Reweighted one-norm minimization [2], to approximate zero-norm solutions;
• Sequential compressed sensing [8], in which rows are added to A and b.

Our approach is based on applying active-set methods to problems BPδλ and
BPdualδλ. Importantly, when δ = 0 it is not necessary to reduce λ to zero in order
to recover a solution of BP00 and BPdual00. As shown by Mangasarian and Meyer [9]
and Friedlander and Tseng [7], there exists a positive parameter λ̄ such that for all
λ ∈ (0, λ̄) the solution y of BPdual0λ coincides with the unique least-norm solution of
BPdual00. This property is crucial in making our algorithm relevant for both BP and
BPDN.

There are four components to this paper. The first two define active-set algorithms
for solving BPδλ and BPdualδλ. The third describes how to extend these algorithms to
solve related problems. The fourth gives the results of a series of numerical experiments.

2. An active-set method for BPδλ. Since we expect many components of x
to be zero, it is natural to partition the variables into two sets according to

(1) AP =
(
S N

)
, x = P

(
xS
xN

)
,

where P is a permutation. We assume that no component of xS is zero, and we
maintain xN = 0 as P changes. For any such x, we can satisfy the BPδλ constraints
Ax+ λy = b by setting y = (b− SxS)/λ.

The objective function φ(x, y) and its gradient g = ∇φ and Hessian H = ∇2φ are

φ = ‖x‖1 + 1
2δ‖x‖

2
2 + 1

2λ‖y‖
2
2 ,

g =

(
sign(x) + δx

λy

)
, H =

(
δI

λI

)
.

To improve the values of (x, y), a search direction p = (∆x,∆y) can be computed from
the quadratic program

min
p

gTp+ 1
2p
THp subject to

(
A λI

)
p = 0.

With ∆xN = 0, this becomes

min gTS∆xS + λyT∆y + 1
2δ‖∆xS‖

2 + 1
2λ‖∆y‖

2

subject to S∆xS + λ∆y = 0,

where gS = sign(xS) + δxS . The solution is given by

(2)
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0

)
.
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In some cases it may be effective to treat this “augmented system” directly. Since
we expect S to have relatively few columns, it is reasonable to eliminate ∆y = − 1

λS∆xS
and solve the least-squares problem

(3) min

∥∥∥∥( S
βI

)
∆xS − λ

(
y

−gS/β

)∥∥∥∥.
where β =

√
δλ. Alternatively we may eliminate ∆xS = 1

δ (ST∆y − (gS − ST y)) and
solve the damped least-squares problem

(4) min

∥∥∥∥(STβI
)

∆y −
(
gS − ST y

0

)∥∥∥∥.
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