Social Networks - Key to Heading Off an Epidemic


epidemic_jones_news_0.jpg

Understanding the spread of infectious diseases in populations is key to controlling them. Computational simulations of epidemics provide a valuable tool for the study of the dynamics of epidemics. In such simulations, populations are represented by networks, where hosts and their interactions among each other are represented by nodes and edges. In the past few years, it has become clear that many human social networks have a very remarkable property: they all exhibit strong community structure. A network with strong community structure consists of smaller sub-networks (the communities) that have many connections within them, but only few between them. Here we use both data from social networking websites and computer generated networks to study the effect of community structure on epidemic spread. We find that community structure not only affects the dynamics of epidemics in networks, but that it also has implications for how networks can be protected from large-scale epidemics.

| See Stanford Report | Media Preview of Research Paper on PLOS Computational Biology |