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Weak convergence

Definition (Convergence in distribution)

Random variables Xn
d→X if

E[f (Xn)]→ E[f (X )] for all bounded, continous f .

I definition is the same whether Xn are R-valued or
metric-space valued

I sometimes measurability issues for metric-space valued RVs,
which we ignore
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Tightness

I metric space (D, ρ)

Definition (Tightness)

A D-valued random variable is tight if for all ε > 0, there exists a
compact K ⊂ D such that

P(X ∈ K ) ≥ 1− ε.

Definition (Asymptotic tightness)

A sequence Xn ∈ D of such random variables is asymptotically
tight if for all ε > 0 there exists a compact K ⊂ D such that

lim sup
n→∞

P(Xn 6∈ K δ) < ε for all δ > 0,

K δ := {y ∈ D | dist(y ,K ) < δ}
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Prohorov’s Theorem

Theorem
Let Xn be D-valued random variables

(i) If Xn
d→X where X is a tight random variable, then {Xn} is

asymptotically tight

(ii) If Xn is asymptotically tight, there exists a subsequence
nk ⊂ N and a tight D-valued random variable X such that

Xnk
d→X
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The idea of Prohorov’s theorem
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Continuous Functions on Compacta

I (T , d) is a compact metric space

I L∞(T ) is bounded measurable f : T → R

I Continuous function ` : T ×X → R, and Xi
iid∼ P

The empirical process is

Zn(·) :=
1√
n

n∑
i=1

`(·,Xi )− P`(·,X ) =
√
n(Pn − P)`(·,X )

I Zn ∈ L∞(T )

I Zn is continuous

I For any finite set t1, . . . , tk ,

(Zn(t1), . . . ,Zn(tk))
d→N

(
0,Cov(`(ti ,X ), `(tj ,X ))ki ,j=1

)
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Compactness in Function Spaces

I Would like to talk about compactness in L∞(T )

I our limits will be in

C(T ,R) := {continuous f : T → R}

with metric ‖f − g‖∞ = supt∈T |f (t)− g(t)|

Arzelà-Ascoli theorem key to compactness in C(T ,R)
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Uniform continuity

Definition (Modulus of continuity)

For f : T → R, the modulus of continuity of f is

ωf (δ) := sup {|f (t)− f (s)| : d(s, t) ≤ δ}

Definition (Uniform equicontinuity)

A collection F ⊂ C(T ,R) is uniformly equicontinuous if

lim
δ↓0

sup
f ∈F

ωf (δ) = 0.
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The Arzelà-Ascoli Theorem

Theorem
Let (T , d) be a compact metric space. The following are
equivalent for F ⊂ C(T ,R):

(i) F is relatively compact (i.e., clF is compact in the supremum
norm topology)

(ii) F is uniformly equicontinuous and there exists t0 ∈ T such
that supf ∈F |f (t0)| <∞

I showing asymptotic tightness will roughly be a stochastic
analogue of (ii), uniform equicontinuity
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Uniform limits in distribution

Definition (Stochastic equi-continuity)

Let Xn ∈ L∞(T ) be random variables. The Xn are asymptotically
stochastically equicontinuous if for all ε, η > 0 there is a partition
T1, . . . ,Tk of T such that

lim sup
n→∞

P

(
max

i
sup

s,t∈Ti

|Xn,s − Xn,t | ≥ ε

)
≤ η.
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Two examples

Example (Linear functions in Rd)

Let Xi ∈ Rd , Xi
iid∼ P with P ‖X‖22 <∞. Then for

T = {t ∈ Rd | ‖t‖2 ≤ M}, the process Zn,t := 1√
n

∑n
i=1 X

>
i t is

asymptotically stochastically equicontinuous.

Example (Generalized linear models)

Let (Xi ,Yi )
iid∼ P and consider losses `(θ; x , y) = h(θ>x , y) for

some Lipschitz h with E[|h(0,Y )|2] <∞ and P ‖X‖22 <∞, θ ∈ Θ
compact. Then Zn,t := 1√

n

∑n
i=1 `(θ;Xi ,Yi ) is A.S.E.
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Weak convergence of functions

Theorem
For a process Xn ∈ L∞(T ), the following are equivalent.

(i) Xn
d→X ∈ L∞(T ), where X is tight

(ii) we have both

(a) Finite dimensional convergence (FIDI): for all
tk1 = (t1, . . . , tk) ⊂ T, there exists Ztk1

such that

(Xn,t1 , . . . ,Xn,tk )
d→Ztk1

(b) The Xn are asymptotically stochastically equicontinuous
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1. Constructing a separable subset of T
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2. Extending the process to continuous functions
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3. Demonstrating convergence proper
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Discussion

I showed that limit {Zt}t∈T has uniformly continuous sample
paths for a metric ρ on T for which (T , ρ) is a totally
bounded metric space
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From continuity to a limit distribution

Corollary

Let (T , d) be a totally bounded metric space. Then if

lim
δ↓0

lim sup
n→∞

P

(
sup

d(s,t)≤δ
|Xn,s − Xn,t | ≥ ε

)
= 0, all ε > 0,

and Xn has finite dimensional convergence, Xn
d→X ∈ L∞(T ) and

X is tight
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Donsker classes

A collection F ⊂ X → R is P-Donsker if the processes[√
n(Pn − P)f

]
f ∈F

converge in distribution to a tight limit in L∞(F)

this limit must be a Gaussian process G = GP ∈ L∞(F), i.e., G is
a random mapping G : F → R with

(i) E[Gf ] = 0

(ii) E[(Gf )2] = Pf 2 − (Pf )2

(iii) E[GfGg ] = CovP(f , g) = Pfg − (Pf )(Pg)

(iv) Equivalently to (i)–(iii), for any f1, . . . , fk ∈ F ,

(Gf1, . . . ,Gfk) ∼ N
(

0,CovP(fi , fj)
k
i ,j=1

)
.
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Brownian bridges

Example (P-Brownian bridge)

For Fn(t) = Pn(X ≤ t) and F (t) = P(X ≤ t),

√
n(Fn(t)− F (t))t∈R

d→GP

in L∞(R) and (Gt)t∈R has

Cov(Gt ,Gs) = P(X ≤ s ∧ t)− P(X ≤ s)P(X ≤ t)

and Gaussian increments
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Limiting Gaussian for Lipschitz losses

Example

Let Θ ⊂ Rd be compact, ` : Θ×X → R be a loss, where `(·, x) is
M(x)-Lipschitz on Θ with M ∈ L2(P). Then

√
n(Pn`(·,X )− P`(·,X ))

d→G ∈ C(Θ,R)

with Cov(Gθ0 ,Gθ1) = Cov(`(θ0,X ), `(θ1,X ))
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Why is this useful?

I let θ̂n be continuous w.r.t. supremum norm on T

I assume
√
n(Pn − P)

d→G in L∞(T )

I the continuous mapping theorem gives limit distributions of
θ̂n(Pn)
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From entropies to Donsker classes

Theorem
Let F ⊂ {X → R} have envelope F : X → R+ and assume∫ ∞

0
sup
Q

√
logN(F , L2(Q), (PF 2)1/2ε)dε <∞

where the supremum is over finitely supported Q. If PF 2 <∞,
then F is P-Donsker.
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Finalizing proof sketch
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Examples

Example (VC classes)

If F is a VC-class with envelope F , then
logN(F , Lr (Q), (PF r )1/r ε) . rVC(F) log 1

ε , so

√
n(Pn − P)

d→G

in L∞(F)

Example (Brownian bridge)

By above,
√
n[Fn(t)− F (t)]t∈R

d→G, where
Cov(Gt ,Gs) = F (t ∧ s)− F (t)F (s)
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