Stats 300b: Theory of Statistics Winter 2017

Lecture 20 — March 15

Lecturer: John Duchi Scribe: Teng Zhang

@ Warning: these notes may contain factual errors
Reading: VDV Chapters 7 and 8; Notes on class website.
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e limiting Gaussian experiments

e local asymptotic minimax theorem

1 Recap

Definition 1.1. A collection { Py, }gco. nen is locally asymptotically normal (LAN) at 6y € int(©)
with precision/information K € R%*? if there exists A,, € R? such that:
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where A, —%— N(0, K).
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Le Cam’s third lemma implies that,

Ap —L 5 N(Kh, K)
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or, with Z, = K~ 1Ay, Zpy —% 5 N(h, K1)
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The goal is to show how to use this to get asymptotic optimality /lower bounds in estimation
problems. We will look at estimating h in local model Pe0 4 as h varies.
vn

2 Limiting Gaussianity

Throughout, we assume that 6y = 0 (wlog). We want to show that “local” experiments P

vn’
asymptotically look like Gaussian location family experiments/observations. To do that, we first
provide some heuristics.
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In LAN, if we want to estimate h, asymptotically A, should be sufficient. In other words, if
we only want to estimate h, then hTA,, — %hTK h contains all the relevant information.



Say, we want to estimate h in a Bayesian model: draw h ~ N(0,I') denoted by 7(-), and then
sample X"|h ~ P . We can do an approximation for the posterior distribution of h|X™ by
N
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where we use op, , (||h]|) = 0 as the approximation. i.e we have h|X" ~ N((K + I 1)™1A,, (K +
I'~1~1). Then take I' — oo (diffuse prior on h), then h| X" ~ N(K~'A,, K~!) in some asymptotic
sense.

Making the posterior limit rigorous (Le Cam, Le Cam & Yang):
Define, for K = 0, I = 0, the Gaussian distribution

GK,I‘("Z) ZN((K—i-F*l)*lKZ, (K +F71)71)
Remark This is the posterior distribution of h|z in the model h ~ N(0,T), z|h ~ N(h, K~ 1).
Idea In LAN family, let Z, = K~'A,,. Then shift h in dP » ,, should have asymptotic posterior
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Let 71'¢ be Gaussian distribution N(0,T) truncated to set {h € R?: ||| < ¢} and renormalized.

Theorem 2.1 Assume that data X" satisfy X"|h ~ P . Denote Z, := K 'A,(X") (LAN
vn’

family), P,(-) := fP%m( .)dn"¢(h) the marginal distribution of X™, 71:¢(:|X™) := the posterior
on h condition on X™. Then, for all € > 0, there exist C, N < 400 such that for alln > N, ¢ > C,
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Proof See notes.

Remark The true posterior of a LAN family, under truncated Gaussian prior, is, on average,
really close to a Gaussian distribution, conditioned on Z,, = K~tA,(2"). (not the only notion of
limiting Gaussianity for LAN families)

3 Local asymptotic minimax theorem

We now reduce everything to estimation in Gaussian shift experiments N(h, K—!) as h varies in
R,

Definition 3.1. A function L : R? — R is quasi-convex if for all & € R, the a-sublevel set
{z: L(z) < a} is convex.

Example 3.1. L(z) = }|[z||3 A B is quasi-convex for any B € R.

Lemma 3.1. (Anderson) Let L be symmetric (i.e. L(z) = L(—z)) and quasi-convex. Let
A€ R™F and X ~ N (i, ). Then:

inf E[L(AX —v)] = E[L(A(X )] = E [L(AE%W)}



where W ~ N(0,I).

Theorem 3.1. (Local asymptotic minimax)
Let L : R — R be quasi-convex, symmetric and bounded. Let {Ppn} be LAN at 6y with informa-
tion K = 0. Then, with W ~ N(0,1) and Z ~ N(0, K1),

liminfliminfinf  sup  Ep,, |L(vn(d, —9))} >E [L(K—%W)} = E[L(Z)]
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Remark We can replace supreme over |6 — || < ﬁ with average of 0 over m., = truncated

normal N (6, Cn—QI) truncated to [|§ — Op|| < —%=.
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Corollary 3.1. Consider a quadratic mean differentiable family {Py}gce with Fisher information
Iy, at parameter y. Then the theorem implies that:

Jimn inf Tim inf inf / Epp [L(/i(Bn ~ 0)] dren(6) > E[L(2)
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with Z ~ N(0, 1, 1).

So efficient estimators (i.e. estimator 0, satisfying v/n(6, — 6) 4N (0, I, 1)) exist and are locally

asymptotically optimal. Anytime you have 6,, = 6 + %Ie_l S UXS) +op, (%) under Py, then 6,

is efficient and achieves LAMT bound for all § by contiguity.

Proof of Theorem 3.1.

Without loss of generality, assume that L takes values in [0, 1] and 6y = 0.
Observe that

[L(\/ﬁén — )| dr(n)
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where 6 = Ln, for any 7 with support in {h: ||h]| < c}.

Consider 7 := 71°¢, prior of h, to be the normal distribution A/(0,T), truncated to {h : ||h|| < c}
and denote the marginal distribution of X™:

Pa(t) = | P, ()dr"c(h)

where X"|h ~ P . with posterior m(h € -[X") on h. Then, the left hand-side () of the last
ﬁ?

inequality satisfies:
(%) > /IE LGV, — )| X" = 2] 4P, (a")
Using the previous notation Gk r, we get:
(%) > / inf Eq, . [L(ﬁ —h) | mn} dP, (2" — / sup L(h — h) (Grr(h|z") — n(h|z")) dP,(z™)
h h,h

Observe that for the second term:

/sup L(il —h) (dGgr(h|z™) —n(h|2™)) dP(z") < / |Grr(.|z")—=(. |2™)| |7y d P (2™)
h,h



and that, by Theorem 2.1, the right-hand side of the last inequality is less than ¢, for any € > 0, ¢
appropriately chosen and n sufficiently large.

Moreover, by Anderson’s lemma, for the first term we have:
/ir}f EGy ¢ {L(i} —h) |x”] dP,(z™) > /IE [L(/\/(O, (K + 1“71)*1))] dp,
h

Taking I' — oo, we get:
(x) >E[L(Z)] — ¢



