
Stats 300b: Theory of Statistics Winter 2017

Lecture 20 – March 15

Lecturer: John Duchi Scribe: Teng Zhang

� Warning: these notes may contain factual errors

Reading: VDV Chapters 7 and 8; Notes on class website.

Outline

• limiting Gaussian experiments

• local asymptotic minimax theorem

1 Recap

Definition 1.1. A collection {Pθ,n}θ∈Θ, n∈N is locally asymptotically normal (LAN) at θ0 ∈ int(Θ)
with precision/information K ∈ Rd×d if there exists ∆n ∈ Rd such that:

log

(
dPθ0+ h√

n
,n

dPθ0,n
(Xn)

)
= hT∆n −

1

2
hTKh+ oPθ,n(||h||)

where ∆n
d−−−→

Pθ0,n
N (0,K).

Le Cam’s third lemma implies that,

∆n
d−−−−−−→

P
θ0+ h√

n
,n

N (Kh,K)

or, with Zn = K−1∆n, Zn
d−−−−−−→

P
θ0+ h√

n
,n

N (h,K−1)

The goal is to show how to use this to get asymptotic optimality/lower bounds in estimation
problems. We will look at estimating h in local model Pθ0+ h√

n
as h varies.

2 Limiting Gaussianity

Throughout, we assume that θ0 = 0 (wlog). We want to show that “local” experiments P h√
n
,n

asymptotically look like Gaussian location family experiments/observations. To do that, we first
provide some heuristics.

In LAN, if we want to estimate h, asymptotically ∆n should be sufficient. In other words, if
we only want to estimate h, then hT∆n − 1

2h
TKh contains all the relevant information.
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Say, we want to estimate h in a Bayesian model: draw h ∼ N(0,Γ) denoted by π(·), and then
sample Xn|h ∼ P h√

n
,n. We can do an approximation for the posterior distribution of h|Xn by

π(h|Xn) ∝
dP h√

n
,n

dP0,n
(Xn)π(h)

≈ exp(hT∆n −
1

2
hTKh) exp(

1

2
hTΓ−1h)

= exp(−1

2
(h− (K + Γ−1)−1∆n)T (K + Γ−1)(h− (K + Γ−1)−1∆n) + function(∆,K))

where we use oP0,n(‖h‖) = 0 as the approximation. i.e we have h|Xn ∼ N((K + Γ−1)−1∆n, (K +
Γ−1)−1). Then take Γ→∞ (diffuse prior on h), then h|Xn ∼ N(K−1∆n,K

−1) in some asymptotic
sense.

Making the posterior limit rigorous (Le Cam, Le Cam & Yang):
Define, for K � 0, Γ � 0, the Gaussian distribution

GK,Γ(·|z) = N
(
(K + Γ−1)−1Kz, (K + Γ−1)−1

)
Remark This is the posterior distribution of h|z in the model h ∼ N(0,Γ), z|h ∼ N(h,K−1).
Idea In LAN family, let Zn = K−1∆n. Then shift h in dP h√

n
,n should have asymptotic posterior

GK,Γ(·|Zn).
Let πΓ,c be Gaussian distribution N(0,Γ) truncated to set {h ∈ Rd : ‖h‖ ≤ c} and renormalized.
Theorem 2.1 Assume that data Xn satisfy Xn|h ∼ P h√

n
,n. Denote Zn := K−1∆n(Xn) (LAN

family), P̄n(·) :=
∫
P h√

n
,n( . )dπΓ,c(h) the marginal distribution of Xn, πΓ,c(·|Xn) := the posterior

on h condition on Xn. Then, for all ε > 0, there exist C,N < +∞ such that for all n ≥ N , c ≥ C,∫
||GK,Γ(·|zn(xn))− πΓ,c(·|xn)||TV dP̄n(xn) ≤ ε

Proof See notes.
Remark The true posterior of a LAN family, under truncated Gaussian prior, is, on average,
really close to a Gaussian distribution, conditioned on Zn = K−1∆n(xn). (not the only notion of
limiting Gaussianity for LAN families)

3 Local asymptotic minimax theorem

We now reduce everything to estimation in Gaussian shift experiments N(h,K−1) as h varies in
Rd.
Definition 3.1. A function L : Rd 7→ R is quasi-convex if for all α ∈ R, the α-sublevel set
{x : L(x) ≤ α} is convex.

Example 3.1. L(x) = 1
2 ||x||

2
2 ∧B is quasi-convex for any B ∈ R.

Lemma 3.1. (Anderson) Let L be symmetric (i.e. L(z) = L(−z)) and quasi-convex. Let
A ∈ Rd×k and X ∼ N (µ,Σ). Then:

inf
v∈Rk

E [L(AX − v)] = E [L(A(X − µ))] = E
[
L(AΣ

1
2W )

]
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where W ∼ N (0, I).

Theorem 3.1. (Local asymptotic minimax)
Let L : Rd 7→ R be quasi-convex, symmetric and bounded. Let {Pθ,n} be LAN at θ0 with informa-
tion K � 0. Then, with W ∼ N (0, I) and Z ∼ N (0,K−1),

lim inf
c→∞

lim inf
n→∞

inf
θ̂n

sup
‖θ−θ0‖≤ c√

n

EPθ,n
[
L(
√
n(θ̂n − θ))

]
≥ E

[
L(K−

1
2W )

]
= E [L(Z)]

Remark We can replace supreme over ‖θ − θ0‖ ≤ c√
n

with average of θ over πc,n = truncated

normal N(θ0,
c2

n I) truncated to ‖θ − θ0‖ ≤ c√
n

.

Corollary 3.1. Consider a quadratic mean differentiable family {Pθ}θ∈Θ with Fisher information
Iθ0 at parameter θ0. Then the theorem implies that:

lim inf
c→∞

lim inf
n→∞

inf
θ̂n

∫
EPnθ

[
L(
√
n(θ̂n − θ))

]
dπc,n(θ) ≥ E[L(Z)]

with Z ∼ N (0, I−1
θ0

).

So efficient estimators (i.e. estimator θ̂n satisfying
√
n(θ̂n − θ)

d−→ N(0, I−1
θ0

)) exist and are locally

asymptotically optimal. Anytime you have θ̂n = θ+ 1
nI
−1
θ

∑n
i=1

˙̀(Xi) + oPθ(
1√
n

) under Pθ, then θ̂n
is efficient and achieves LAMT bound for all θ by contiguity.
Proof of Theorem 3.1.
Without loss of generality, assume that L takes values in [0, 1] and θ0 = 0.
Observe that

sup
||h||≤c

EP h√
n
,n

[
L(
√
n(θ̂n − θ))

]
≥
∫

EP h√
n
,n

[
L(
√
nθ̂n − h)

]
dπ(h)

where θ = h√
n

, for any π with support in {h : ||h|| ≤ c}.

Consider π := πΓ,c, prior of h, to be the normal distribution N (0,Γ), truncated to {h : ||h|| ≤ c}
and denote the marginal distribution of Xn:

P̄n(·) =

∫
P h√

n
,n(·)dπΓ,c(h)

where Xn|h ∼ P h√
n
,n with posterior π(h ∈ ·|Xn) on h. Then, the left hand-side (∗) of the last

inequality satisfies:

(∗) ≥
∫

E
[
L(
√
nθ̂n − h) |Xn = xn

]
dP̄n(xn)

Using the previous notation GK,Γ, we get:

(∗) ≥
∫

inf
ĥ
EGK,Γ

[
L(ĥ− h) |xn

]
dP̄n(xn)−

∫
sup
h,ĥ

L(ĥ− h) (GK,Γ(h |xn)− π(h |xn)) dP̄n(xn)

Observe that for the second term:∫
sup
h,ĥ

L(ĥ− h) (dGK,Γ(h |xn)− π(h |xn)) dP̄ (xn) ≤
∫
||GK,Γ( . |xn)− π( . |xn)||TV dP̄n(xn)
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and that, by Theorem 2.1, the right-hand side of the last inequality is less than ε, for any ε > 0, c
appropriately chosen and n sufficiently large.

Moreover, by Anderson’s lemma, for the first term we have:∫
inf
ĥ
EGK,Γ

[
L(ĥ− h) |xn

]
dP̄n(xn) ≥

∫
E
[
L(N (0, (K + Γ−1)−1))

]
dP̄n

Taking Γ→∞, we get:
(∗) ≥ E [L(Z)]− ε
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