
Stats 300b: Theory of Statistics Winter 2018

Lecture 19 – March 13

Lecturer: John Duchi Scribe: Saied Mehdian

� Warning: these notes may contain factual errors

Reading: TSH 12.3, 13.1-13.3; VdV 6, 7.1-7.3

Outline: Asymptotic Testing and Optimality

• Hellinger distance

• Quadratic Mean Differentiability

• Local Asymptotic normality

• Asymptotically most powerful tests

1 Recap

Measures Qn are contiguous to Pn, Qn C Pn, if Qn(An) → 0 when Pn(An) → 0. An important
consequence is Le Cam’s third lemma:

(Xn, log
dQn
dPn

)
d−−→
Pn
N
([

µ
−1
2 σ

2

]
,

[
Σ τT

τ σ2

])
then Qn CB Pn and Xn → N (µ+ τ,Σ).

Idea: We would like to asymptotically change measures using Qn CB Pn because log dQn
dPn

d−−→
Pn

z ∼

N (−1
2 σ

2, σ2) with E[ez] = 1, so ez is densty like quantity.

Today, we use this to get changes of measure and prove optimal power of tests.
As starting point, we look at optimal test and related distances between distributions.

Recall: ‖P −Q‖TV = supA |P (A) − Q(A)| = 1
2

∫
|p − q|dµ and d2

Hel(P,Q) = 1
2

∫
(
√
p − √p)2dµ

where p = dP
dµ and q = dQ

dµ . Then:

d2
Hel(P,Q) ≤ ‖P −Q‖TV ≤ dHel(P,Q)

√
2− d2

Hel(P,Q)

and

inf
ψ:X→{0,1}

P0(ψ(x) 6= 0) + P1(ψ(x) 6= 1) = 1− ‖P0 − P1‖TV .

Consider sequences P0,n and P1,n. Then

lim inf
n

inf
ψ
P0,n(ψ(x) 6= 0) + P1,n(ψ(x) 6= 1) > 0
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if and only if

lim sup
n→∞

dHel(P0,n, P1,n) < 1

Why should we use Hellinger distance? Ans: It plays nicely with iid sampling and Taylor expan-
sions.

Note that

d2
Hel(P

n, Qn) = 1−
∫ √

p(x1) . . . p(xn)
√
q(x1) . . . q(xn)dµ

=1− (

∫ √
dP
√
dQ)n = 1− (1− d2

Hel(P,Q))n

If we think about local alternatives, say P0 vs P h√
n

, if testing is right difficulty, we want d2
Hel(P0, P h√

n
) ≈

‖h‖2
n � 1

n .

2 Quadratic Mean Differentiability (Le Cam 1970’s)

Suppose {pθ}θ∈Θ is a “nice” family of densitites. Then using
√
a+ δ =

√
a+ δ

2
√
a

+o(δ2), we expect

pθ+h = pθ + ṗTθ h+O(‖h‖2) and

√
pθ+h =

√
pθ +

ṗθ
Th

2
√
pθ

+O(‖h‖2)

=
√
pθ +

1

2
˙̀
θh
√
pθ +O(‖h‖2)

where ˙̀
θ = ∂

∂θ log pθ = ṗθ
pθ

.

Nice fact:
√
pθ is in L2 for any density and always

∫
(
√
pθ)

2 =
∫
pθ = 1.

(There is a paper by David Pollard in 1997 Festschrift for Le Cam exploring this)
Derivatives in mean squared error allow us to get interesting results.

Definition 2.1. Quadratic Mean Differentiability (QMD)
A family {Pθ}θ∈Θ is QMD at θ ∈ intΘ if there exists a score function ˙̀ : X → Rd such that∫

(
√
pθ+h −

√
pθ −

1

2
hT ˙̀√pθ)2dµ = o(‖h‖2)

as h→ 0.

Proposition (Notes on website or reading): For a QMD family, Pθ ˙̀
θ = 0 and Iθ := Pθ ˙̀

θ
˙̀T
θ

exists.

Example 1: Let {Pθ}θ∈Θ be an exponential family.

pθ =
dPθ
dµ

= exp(θTT (x)−A(θ)), A(θ) = log

∫
eθ
TT (x)dµ(x)

Then {Pθ}θ∈Θ is QMD with score function ˙̀
θ(x) = T (x)−Eθ[T (x)] = T (x)−∇A(θ) = ∇θ log pθ(x).
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Sketch of Proof (VdV Lemma 7.6, which actually proves that if ˙̀
θ = ∂

∂θ log pθ and the usual

Fisher information is continuous in θ, i.e., Eθ[( ∂∂θpθ)
2/p2

θ] is continuous then family is QMD with

score ˙̀
θ).

For us, let T (x) = x without loss of generality.

√
pθ+h −

√
pθ −

1

2
hT (X −∇A(θ))

√
pθ(x)

=exp

(
1

2
(θT −A(θ))

)[
exp(

1

2
(hTx− 1

2
[A(θ + h)−A(θ)]))− 1− 1

2
hT (x−∇A(θ))

]
=
√
pθ

[
1 +

1

2
hTx− 1

2
(A(θ + h)−A(θ))− 1− 1

2
hT (x−∇A(θ))

]
+
√
pθ

[
exp(

1

2
(hTx− 1

2
[A(θ + h)−A(θ)]))− 1− 1

2
hTx+

1

2
(A(θ + h)−A(θ))

]
=
√
pθ

[
1

4
hT∇2A(θ + h̃)h

]
+
√
pθO(‖h‖2)

Thus

1

‖h‖2

∫
(
√
pθ+h −

√
pθ −

1

2
hT ˙̀√pθ)2dµ =

∫
pθO(

‖h‖2

‖h‖
)dµ→ 0

as ‖h‖ → 0 by dominated convergence.

♣

Remark How about Hellinger distance? Let {Pθ}θ∈Θ be QMD at θ.

d2
Hel(Pθ, Pθ+h) =

1

2

∫
(
√
pθ+h −

√
pθ)

2dµ =
1

2

∫
(
√
pθ+h −

√
pθ −

1

2
hT ˙̀

θ
√
pθ +

1

2
hT ˙̀

θ
√
pθ)

2dµ

=
1

2

∫
(
√
pθ+h −

√
pθ −

1

2
hT ˙̀

θ
√
pθ)

2dµ+
1

8

∫
hT ˙̀

θ
˙̀T
θ hpθdµ+

1

2

∫
(
√
pθ+h −

√
pθ −

1

2
hT ˙̀

θ
√
pθ)h

T ˙̀
θ
√
pθ

=o(‖h‖2) +
1

8

∫
hT ˙̀

θ
˙̀T
θ hpθdµ+

√
o(‖h‖2)O(‖h‖2) = o(‖h‖2) +

1

8

∫
hT ˙̀

θ
˙̀T
θ hpθdµ

=
1

8
hT Iθh+ o(‖h‖2)

So, Fisher Information determines distances (locally, as h→ 0) and so it should appear in asymp-
totic optimality of tests.

3 Local Asymptotic Normality

Hope/Idea: In “nice” families, we might have limiting normality or CLT to use Guassanity for
optimality.

Definition 3.1. A family {Pθ,n}θ∈Θ, n ∈ N is locally asymptotically normal (LAN) at θ ∈ intΘ if
there exists a sequence ∆n (random) and matrix K � 0 (information precision) such that for all
h ∈ Rd,

log
dPθ+ h√

n
,n

dPθ,n
= hT∆n −

1

2
hTKh+ oPθ,n(‖h‖)
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where ∆n
d−−−→

Pθ,n
N (0,K)

Remark hT∆n − 1
2h

TKh
d−−−→

Pθ,n
N (−1

2h
TKh, hTKh). So, we will be able to use continguity/Le

Cam’s third lemma to get limits under Qn := Pθ+ h√
n

.

Example 2: Gaussian shift family

Let Ph,n be distributions of Yi = 1√
n
h+ ξi for ξi

iid∼ N (0,Σ)

log
dP h√

n
,n

dP0,n
(Y1:n) =

√
nhTΣ−1Ȳn −

1

2
hTΣ−1h

where Ȳn = 1
n

∑n
i=1 Yi. Certainly,

√
nȲn

d−−→
P0,n

N (0,Σ−1). So, ∆n =
√
nΣ−1Ȳn

d−−→
P0,n

N (0,Σ−1) and

the family is LAN with precision/information Σ−1. ♣

Example 3: Quadratic Mean Differentiable family
Proposition: If {Pθ} is QMD and Pn := Pθ + h√

n
, P = Pnθ , then

log
dPn
dP

(X1, . . . , Xn) =

(
1√
n

n∑
i=1

˙̀
θ(xi)

)T
h− 1

2
hT Iθh+ op(1)

So QMD property implies LAN property with ∆n = 1√
n

∑n
i=1

˙̀
θ(xi) such that

∆n
d−−−→

Pnθ,n

N (0, Iθ), Iθ = E[ ˙̀
θ

˙̀T
θ ]

♣

Let’s consider testing in a LAN family. We will show how to get asymptotically optimal powers for
each level α ∈ (0, 1).

Suppose {Pθ,n} is LAN, and consider tests of p0,n vs p h√
n
,n. We consider simple hypothesis tests.

So optimal test (by Neyman-Pearson) is Ln =
dPh/

√
n,n

dP0,n
.

φn,h =


1 if logLn > cn,h
γn,h if logLn = cn,h

0 if logLn < cn,h

for some γn,h and cn,h.
We know that logLn = hT∆n − 1

2h
TKh+ oP0,n(1). So,

(logLn, logLn)
d−−→
Pn
N
([ −1

2 h
TKh

−1
2 h

TKh

]
,

[
hTKh hTKh
hTKh hTKh

])
So, by Le Cam’s third lemma, we know that

logLn
d−−−−−→

Ph/
√
n,n

N (
1

2
hTKh, hTKh)
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Consider asymptotically level-α tests φn,h (optimal by Neyman-Pearson).

lim
n→∞

EP0 [φn,h] = α = P0(logLn > cn,h) + o(1)

So if wn ∼ N (−1
2 h

TKh, hTKh), then

P0(logLn > cn,h) = P (wn > cn,h) + o(1) and cn,h =
1

2
hTKh+ z1−α

√
hTKh+ o(1)

as n→∞, where z1−α = the (1− α)-quantile of N (0, 1).
Thus, the powers of φn,h must satisfy E h√

n
[φn,h]→ 1− Φ(z1−α −

√
hTKh).

Definition 3.2. For testing θ0 against alternatives θn, sequence {φn} is asymptotically most power-
ful (AMP) at level α if lim supn→∞ Eθ0 [φn] ≤ α and for all tests {ψn} satisfying lim supn→∞ Eθ0 [ψn] ≤
α, we have lim supn→∞ Eθn [ψn]− Eθn [φn] ≤ 0.

Theorem 1. Let {Pθ} be LAN, θ ∈ R, θ0 ∈ Θ. Then φn = φn(X1, . . . , Xn) is AMP at level α if
and only if Eθ0 [φn]→ α and, for all h ∈ R, limn→∞ E h√

n
[φn] = 1− Φ(z1−α − h

√
K)
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